1
|
Salciccia C, Costanzo M, Ruocco G, Porreca F, Vivacqua G, Fabbrini G, Belvisi D, Ladogana A, Poleggi A. Proteopathic seed amplification assays in easily accessible specimens for human synucleinopathies, tauopathies, and prionopathies: A scoping review. Neurosci Biobehav Rev 2025; 169:105997. [PMID: 39746590 DOI: 10.1016/j.neubiorev.2024.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
A hallmark event in neurodegenerative diseases is represented by the misfolding, aggregation and accumulation of proteins, leading to cellular and network dysfunction preceding the development of clinical symptoms by years. Early diagnosis represents a crucial issue in the field of neuroscience as it offers the potential to utilize this therapeutic window in the future to manage disease-modifying therapy. Seed amplification assays, including Real-Time Quaking-Induced Conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA), have emerged in recent years as innovative techniques developed to detect minute amounts of amyloidogenic proteins. These techniques can utilize various biological fluids and tissues, with most evidence to date regarding their potential diagnostic use focusing on cerebrospinal fluid. In this scoping review, we aimed to investigate and discuss the available evidence regarding the diagnostic use of these assays on easily accessible biological fluids and tissues in patients affected by synucleinopathies, tauopathies or prion diseases. From a systematic search on two databases, Scopus and Pubmed, we identified 49 studies. Although most identified studies have used skin and olfactory mucosa as biological samples, there is preliminary evidence suggesting the potential implementation of these techniques using fluids as blood, saliva and tears. The results achieved so far, as well as methodological aspects and limitations to overcome, are discussed.
Collapse
Affiliation(s)
- Clara Salciccia
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Matteo Costanzo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy; Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Giulia Ruocco
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Flavia Porreca
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Giorgio Vivacqua
- Department of Experimental Morphology and Microscopy-Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome 00128, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| |
Collapse
|
2
|
Thomas CM, Salamat MKF, Almela F, Cooper JK, Ladhani K, Arnold ME, Bougard D, Andréoletti O, Houston EF. Longitudinal detection of prion infection in preclinical sheep blood samples compared using 3 assays. Blood 2024; 144:1962-1973. [PMID: 39172756 DOI: 10.1182/blood.2024024649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Variant Creutzfeldt-Jakob disease (vCJD) is a devastating disease caused by transmission of bovine spongiform encephalopathy to humans. Although vCJD cases are now rare, evidence from appendix surveys suggests that a small proportion of the United Kingdom population may be infected without showing signs of disease. These "silent" carriers could present a risk of iatrogenic vCJD transmission through medical procedures or blood/organ donation, and currently there are no validated tests to identify infected asymptomatic individuals using easily accessible samples. To address this issue, we evaluated the performance of 3 blood-based assays in a blinded study, using longitudinal sample series from a well-established large animal model of vCJD. The assays rely on amplification of misfolded prion protein (PrPSc; a marker of prion infection) and include real-time quaking-induced conversion (RT-QuIC), and 2 versions of protein misfolding cyclic amplification (PMCA). Although diagnostic sensitivity was higher for both PMCA assays (100%) than RT-QuIC (61%), all 3 assays detected prion infection in blood samples collected 26 months before the onset of clinical signs and gave no false-positive results. Parallel estimation of blood prion infectivity titers in a sensitive transgenic mouse line showed positive correlation of infectivity with PrPSc detection by the assays, suggesting that they are suitable for detection of asymptomatic vCJD infection in the human population. This study represents, to our knowledge, the largest comparison to date of preclinical prion detection in blood samples from a relevant animal model. The outcomes will guide efforts to improve early detection of prion disease and reduce infection risks in humans.
Collapse
Affiliation(s)
- Charlotte M Thomas
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | - M Khalid F Salamat
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Jillian K Cooper
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Kaetan Ladhani
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Mark E Arnold
- Animal and Plant Health Agency, New Haw, United Kingdom
| | | | - Olivier Andréoletti
- Unité Mixte de Recherche INRAe/ENVT 1225 Interactions Hôtes Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - E Fiona Houston
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Gregori L. A diagnostic blood test for prion diseases. Blood 2024; 144:1853-1854. [PMID: 39480412 DOI: 10.1182/blood.2024026431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
|
4
|
Caredio D, Koderman M, Frontzek KJ, Sorce S, Nuvolone M, Bremer J, Mariutti G, Schwarz P, Madrigal L, Mitrovic M, Sellitto S, Streichenberger N, Scheckel C, Aguzzi A. Prion diseases disrupt glutamate/glutamine metabolism in skeletal muscle. PLoS Pathog 2024; 20:e1012552. [PMID: 39259763 PMCID: PMC11419395 DOI: 10.1371/journal.ppat.1012552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
In prion diseases (PrDs), aggregates of misfolded prion protein (PrPSc) accumulate not only in the brain but also in extraneural organs. This raises the question whether prion-specific pathologies arise also extraneurally. Here we sequenced mRNA transcripts in skeletal muscle, spleen and blood of prion-inoculated mice at eight timepoints during disease progression. We detected gene-expression changes in all three organs, with skeletal muscle showing the most consistent alterations. The glutamate-ammonia ligase (GLUL) gene exhibited uniform upregulation in skeletal muscles of mice infected with three distinct scrapie prion strains (RML, ME7, and 22L) and in victims of human sporadic Creutzfeldt-Jakob disease. GLUL dysregulation was accompanied by changes in glutamate/glutamine metabolism, leading to reduced glutamate levels in skeletal muscle. None of these changes were observed in skeletal muscle of humans with amyotrophic lateral sclerosis, Alzheimer's disease, or dementia with Lewy bodies, suggesting that they are specific to prion diseases. These findings reveal an unexpected metabolic dimension of prion infections and point to a potential role for GLUL dysregulation in the glutamate/glutamine metabolism in prion-affected skeletal muscle.
Collapse
Affiliation(s)
- Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maruša Koderman
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karl J. Frontzek
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Juliane Bremer
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni Mariutti
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marija Mitrovic
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefano Sellitto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Claudia Scheckel
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Peden AH, Libori A, Ritchie DL, Yull H, Smith C, Kanguru L, Molesworth A, Knight R, Barria MA. Enhanced Creutzfeldt-Jakob disease surveillance in the older population: Assessment of a protocol for screening brain tissue donations for prion disease. Brain Pathol 2024; 34:e13214. [PMID: 37771100 PMCID: PMC10901620 DOI: 10.1111/bpa.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Human prion diseases, including Creutzfeldt-Jakob disease (CJD), occur in sporadic, genetic, and acquired forms. Variant Creutzfeldt-Jakob disease (vCJD) first reported in 1996 in the United Kingdom (UK), resulted from contamination of food with bovine spongiform encephalopathy. There is a concern that UK national surveillance mechanisms might miss some CJD cases (including vCJD), particularly in the older population where other neurodegenerative disorders are more prevalent. We developed a highly sensitive protocol for analysing autopsy brain tissue for the misfolded prion protein (PrPSc ) associated with prion disease, which could be used to screen for prion disease in the elderly. Brain tissue samples from 331 donors to the Edinburgh Brain and Tissue Bank (EBTB), from 2005 to 2022, were analysed, using immunohistochemical analysis on fixed tissue, and five biochemical tests on frozen specimens from six brain regions, based on different principles for detecting PrPSc . An algorithm was established for classifying the biochemical results. To test the effectiveness of the protocol, several neuropathologically confirmed prion disease controls, including vCJD, were included and blinded in the study cohort. On unblinding, all the positive control cases had been correctly identified. No other cases tested positive; our analysis uncovered no overlooked prion disease cases. Our algorithm for classifying cases was effective for handling anomalous biochemical results. An overall analysis suggested that a reduced biochemical protocol employing only three of the five tests on only two brain tissue regions gave sufficient sensitivity and specificity. We conclude that this protocol may be useful as a UK-wide screening programme for human prion disease in selected brains from autopsies in the elderly. Further improvements to the protocol were suggested by enhancements of the in vitro conversion assays made during the course of this study.
Collapse
Affiliation(s)
- Alexander H. Peden
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Adriana Libori
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Helen Yull
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Colin Smith
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
- Edinburgh Brain Bank (EBB), Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Lovney Kanguru
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Anna Molesworth
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Richard Knight
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Marcelo A. Barria
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
Zhang W, Orrú CD, Foutz A, Ding M, Yuan J, Shah SZA, Zhang J, Kotobelli K, Gerasimenko M, Gilliland T, Chen W, Tang M, Cohen M, Safar J, Xu B, Hong DJ, Cui L, Hughson AG, Schonberger LB, Tatsuoka C, Chen SG, Greenlee JJ, Wang Z, Appleby BS, Caughey B, Zou WQ. Large-scale validation of skin prion seeding activity as a biomarker for diagnosis of prion diseases. Acta Neuropathol 2024; 147:17. [PMID: 38231266 PMCID: PMC11812622 DOI: 10.1007/s00401-023-02661-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.
Collapse
Affiliation(s)
- Weiguanliu Zhang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Christina D Orrú
- Laboratory of Persistent Viral Diseases, NIH/NIAID Rocky Mountain Laboratories, 903 S 4 St., Hamilton, MT, 59840, USA
| | - Aaron Foutz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mingxuan Ding
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Syed Zahid Ali Shah
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jing Zhang
- Department of Population and Quantitative Health Science, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Keisi Kotobelli
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Maria Gerasimenko
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Tricia Gilliland
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Wei Chen
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Michelle Tang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mark Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jiri Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Bin Xu
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Dao-Jun Hong
- Institute of Neurology and Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, NIH/NIAID Rocky Mountain Laboratories, 903 S 4 St., Hamilton, MT, 59840, USA
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30329, USA
| | - Curtis Tatsuoka
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Shu G Chen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brian S Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, NIH/NIAID Rocky Mountain Laboratories, 903 S 4 St., Hamilton, MT, 59840, USA.
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Institute of Neurology and Department of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Kanguru L, Cudmore S, Logan G, Waddell B, Smith C, Molesworth A, Knight R. A review of the enhanced CJD surveillance feasibility study in the elderly in Scotland, UK. BMC Geriatr 2024; 24:12. [PMID: 38172703 PMCID: PMC10765616 DOI: 10.1186/s12877-023-04556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Variant Creutzfeldt - Jakob disease (vCJD) arose from dietary contamination with bovine-spongiform-encephalopathy (BSE). Because of concerns that vCJD-cases might be missed in the elderly, a feasibility study of enhanced CJD surveillance on the elderly was begun in 2016. Recruitment was lower than predicted. We describe a review of the challenges encountered in that study: identification, referral, and recruitment, and the effects of actions based on the results of that review. METHODS Review was conducted in 2017. Study data for all eligible cases identified and referred from one participating service (Anne Rowling clinic (ARC)) was curated and anonymised in a bespoke database. A questionnaire was sent out to all the clinicians in medicine of the elderly, psychiatry of old age and neurology (including ARC) specialties in NHS Lothian, exploring possible reasons for low recruitment. RESULTS Sixty-eight cases were referred from the ARC (March 2016-September 2017): 25% were recruited. Most cases had been referred because of diagnostic uncertainty. No difference was seen between those recruited and the non-recruited, apart from age and referrer. Twelve of 60 participating clinicians completed the questionnaire: only 4 had identified eligible cases. High workload, time constraints, forgetting to refer, unfamiliarity with the eligibility criteria, and the rarity of eligible cases, were some of the reasons given. Suggestions as to how to improve referral of eligible cases included: regular email reminders, feedback to referrers, improving awareness of the study, visible presence of the study team, and integration of the study with other research oriented services. These results were used to increase recruitment but without success. CONCLUSION Recruitment was lower than predicted. Actions taken following a review at 21 months did not lead to significant improvement; recruitment remained low, with many families/patients declining to take part (75%). In assessing the failure to improve recruitment, two factors need to be considered. Firstly, the initial referral rate was expected to be higher because of existing patients already known to the clinical services, with later referrals being only newly presenting patients. Secondly, the unplanned absence of a dedicated study nurse. Searching digital records/anonymised derivatives to identify eligible patients could be explored.
Collapse
Affiliation(s)
- Lovney Kanguru
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - Sarah Cudmore
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Gemma Logan
- NHS Lothian and Queen Margaret University, Musselburgh, Scotland
| | - Briony Waddell
- Department of Neurology, Ninewells Hospital, Dundee, Scotland
| | - Colin Smith
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Edinburgh Brain Bank (EBB), Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | - Anna Molesworth
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Richard Knight
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|
9
|
Bétemps D, Arsac JN, Nicot S, Canal D, Tlili H, Belondrade M, Morignat E, Verchère J, Gaillard D, Bruyère-Ostells L, Mayran C, Lakhdar L, Bougard D, Baron T. Protease-Sensitive and -Resistant Forms of Human and Murine Alpha-Synucleins in Distinct Brain Regions of Transgenic Mice (M83) Expressing the Human Mutated A53T Protein. Biomolecules 2023; 13:1788. [PMID: 38136658 PMCID: PMC10741842 DOI: 10.3390/biom13121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Human neurodegenerative diseases associated with the misfolding of the alpha-synuclein (aS) protein (synucleinopathies) are similar to prion diseases to the extent that lesions are spread by similar molecular mechanisms. In a transgenic mouse model (M83) overexpressing a mutated (A53T) form of human aS, we had previously found that Protein Misfolding Cyclic Amplification (PMCA) triggered the aggregation of aS, which is associated with a high resistance to the proteinase K (PK) digestion of both human and murine aS, a major hallmark of the disease-associated prion protein. In addition, PMCA was also able to trigger the aggregation of murine aS in C57Bl/6 mouse brains after seeding with sick M83 mouse brains. Here, we show that intracerebral inoculations of M83 mice with C57Bl/6-PMCA samples strikingly shortens the incubation period before the typical paralysis that develops in this transgenic model, demonstrating the pathogenicity of PMCA-aggregated murine aS. In the hind brain regions of these sick M83 mice containing lesions with an accumulation of aS phosphorylated at serine 129, aS also showed a high PK resistance in the N-terminal part of the protein. In contrast to M83 mice, old APPxM83 mice co-expressing human mutated amyloid precursor and presenilin 1 proteins were seen to have an aggregation of aS, especially in the cerebral cortex, hippocampus and striatum, which also contained the highest load of aS phosphorylated at serine 129. This was proven by three techniques: a Western blot analysis of PK-resistant aS; an ELISA detection of aS aggregates; or the identification of aggregates of aS using immunohistochemical analyses of cytoplasmic/neuritic aS deposits. The results obtained with the D37A6 antibody suggest a higher involvement of murine aS in APPxM83 mice than in M83 mice. Our study used novel tools for the molecular study of synucleinopathies, which highlight similarities with the molecular mechanisms involved in prion diseases.
Collapse
Affiliation(s)
- Dominique Bétemps
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jean-Noël Arsac
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Simon Nicot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Dominique Canal
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Habiba Tlili
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Maxime Belondrade
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Eric Morignat
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Jérémy Verchère
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Damien Gaillard
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Lilian Bruyère-Ostells
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Charly Mayran
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Latifa Lakhdar
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| | - Daisy Bougard
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Inserm, Etablissement Français Du Sang, 34493 Montpellier, France; (S.N.); (M.B.); (L.B.-O.); (C.M.); (D.B.)
| | - Thierry Baron
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), University of Lyon, 69364 Lyon, France; (D.B.); (J.-N.A.); (D.C.); (H.T.); (E.M.); (J.V.); (D.G.); (L.L.)
| |
Collapse
|
10
|
Pritzkow S, Ramirez F, Lyon A, Schulz PE, Appleby B, Moda F, Ramirez S, Notari S, Gambetti P, Soto C. Detection of prions in the urine of patients affected by sporadic Creutzfeldt-Jakob disease. Ann Clin Transl Neurol 2023; 10:2316-2323. [PMID: 37814583 PMCID: PMC10723238 DOI: 10.1002/acn3.51919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Currently, it is unknown whether infectious prions are present in peripheral tissues and biological fluids of patients affected by sporadic Creutzfeldt-Jakob disease (sCJD), the most common prion disorder in humans. This represents a potential risk for inter-individual prion infection. The main goal of this study was to evaluate the presence of prions in urine of patients suffering from the major subtypes of sCJD. METHODS Urine samples from sCJD patients spanning the six major subtypes were tested. As controls, we used urine samples from people affected by other neurological or neurodegenerative diseases as well as healthy controls. These samples were analyzed blinded. The presence of prions was detected by a modified version of the PMCA technology, specifically optimized for high sensitive detection of sCJD prions. RESULTS The PMCA assay was first optimized to detect low quantities of prions in diluted brain homogenates from patients affected by all subtypes of sCJD spiked into healthy urine. Twenty-nine of the 81 patients affected by sCJD analyzed in this study were positive by PMCA testing, whereas none of the 160 controls showed any signal. These results indicate a 36% sensitivity and 100% specificity. The subtypes with the highest positivity rate were VV1 and VV2, which combined account for about 15-20% of all sCJD cases, and no detection was observed in MV1 and MM2. INTERPRETATION Our findings indicate that potentially infectious prions are secreted in urine of some sCJD patients, suggesting a possible risk for inter-individual transmission. Prion detection in urine might be used as a noninvasive preliminary screening test to detect sCJD.
Collapse
Affiliation(s)
- Sandra Pritzkow
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Frank Ramirez
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Adam Lyon
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Paul E. Schulz
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Brian Appleby
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Fabio Moda
- Division of Neurology 5 – NeuropathologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Santiago Ramirez
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| | - Silvio Notari
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | | | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain DisordersUniversity of Texas McGovern Medical School at HoustonHoustonTexasUSA
| |
Collapse
|
11
|
Denouel A, Brandel JP, Peckeu-Abboud L, Seilhean D, Bouaziz-Amar E, Quadrio I, Oudart JB, Lehmann S, Bellecave P, Laplanche JL, Haik S. Prospective 25-year surveillance of prion diseases in France, 1992 to 2016: a slow waning of epidemics and an increase in observed sporadic forms. Euro Surveill 2023; 28:2300101. [PMID: 38099349 PMCID: PMC10831413 DOI: 10.2807/1560-7917.es.2023.28.50.2300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 12/17/2023] Open
Abstract
BackgroundPrion diseases are rare, fatal disorders that have repeatedly raised public health concerns since the early 1990s. An active prion disease surveillance network providing national level data was implemented in France in 1992.AimWe aimed to describe the epidemiology of sporadic, genetic and infectious forms of prion diseases in France since surveillance implementation.MethodsWe included all suspected cases notified from January 1992 to December 2016, and cases who died during the period with a definite or probable prion disease diagnosis according to EuroCJD criteria. Demographic, clinical, genetic, neuropathological and biochemical data were collected.ResultsIn total, 25,676 suspected cases were notified and 2,907 were diagnosed as prion diseases, including 2,510 (86%) with sporadic Creutzfeldt-Jakob disease (sCJD), 240 (8%) genetic and 157 (6%) with infectious prion disease. Suspected cases and sCJD cases increased over time. Younger sCJD patients (≤ 50 years) showed phenotypes related to a distinct molecular subtype distribution vs those above 50 years. Compared to other European countries, France has had a higher number of cases with iatrogenic CJD after growth hormone treatment and variant CJD (vCJD) linked to bovine spongiform encephalopathy (second after the United Kingdom), but numbers slowly decreased over time.ConclusionWe observed a decrease of CJD infectious forms, demonstrating the effectiveness of measures to limit human exposure to exogenous prions. However, active surveillance is needed regarding uncertainties about future occurrences of vCJD, possible zoonotic potential of chronic wasting diseases in cervids and increasing trends of sCJD observed in France and other countries.
Collapse
Affiliation(s)
- Angéline Denouel
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Jean-Philippe Brandel
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Cellule nationale de référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Laurène Peckeu-Abboud
- Department of Clinical Sciences, Clinical Immunology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Danielle Seilhean
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Elodie Bouaziz-Amar
- Département de Biochimie et Biologie Moléculaire, Hôpitaux Lariboisière-Fernand Widal, Paris, France
- INSERM, UMR 1144, 'Optimisation Thérapeutique en Neuropsychopharmacologie', Paris, France
| | - Isabelle Quadrio
- Neurochemistry and Neurogenetics Unit, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
- CNRS UMR5292, INSERM U1028, University of Lyon 1, BioRan, Lyon, Paris
| | - Jean-Baptiste Oudart
- CHU Reims, Pôle de Biologie, Service de Biochimie - Pharmacologie - Toxicologie, Reims, France
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Sylvain Lehmann
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | | | - Jean-Louis Laplanche
- Département de Biochimie et Biologie Moléculaire, Hôpitaux Lariboisière-Fernand Widal, Paris, France
- INSERM, UMR 1144, 'Optimisation Thérapeutique en Neuropsychopharmacologie', Paris, France
| | - Stéphane Haik
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Cellule nationale de référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
12
|
Thomas CM, Salamat MKF, de Wolf C, McCutcheon S, Blanco ARA, Manson JC, Hunter N, Houston EF. Development of a sensitive real-time quaking-induced conversion (RT-QuIC) assay for application in prion-infected blood. PLoS One 2023; 18:e0293845. [PMID: 37917783 PMCID: PMC10621866 DOI: 10.1371/journal.pone.0293845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Efforts to prevent human-to-human transmission of variant Creutzfeldt-Jakob disease (vCJD) by contaminated blood would be aided by the development of a sensitive diagnostic test that could be routinely used to screen blood donations. As blood samples from vCJD patients are extremely rare, here we describe the optimisation of real-time quaking-induced conversion (RT-QuIC) for detection of PrPSc (misfolded prion protein, a marker of prion infection) in blood samples from an established large animal model of vCJD, sheep experimentally infected with bovine spongiform encephalopathy (BSE). Comparative endpoint titration experiments with RT-QuIC, miniaturized bead protein misfolding cyclic amplification (mb-PMCA) and intracerebral inoculation of a transgenic mouse line expressing sheep PrP (tgOvARQ), demonstrated highly sensitive detection of PrPSc by RT-QuIC in a reference sheep brain homogenate. Upon addition of a capture step with iron oxide beads, the RT-QuIC assay was able to detect PrPSc in whole blood samples from BSE-infected sheep up to two years before disease onset. Both RT-QuIC and mb-PMCA also demonstrated sensitive detection of PrPSc in a reference vCJD-infected human brain homogenate, suggesting that either assay may be suitable for application to human blood samples. Our results support the further development and evaluation of RT-QuIC as a diagnostic or screening test for vCJD.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - Nora Hunter
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, United Kingdom
| |
Collapse
|
13
|
Kishida H, Ueda N, Tanaka F. The advances in the early and accurate diagnosis of Creutzfeldt-Jakob disease and other prion diseases: where are we today? Expert Rev Neurother 2023; 23:803-817. [PMID: 37581576 DOI: 10.1080/14737175.2023.2246653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
INTRODUCTION Before the introduction of MRI diffusion-weighted images (DWI), the diagnosis of Creutzfeldt-Jakob disease (CJD) relied upon nonspecific findings including clinical symptoms, EEG abnormalities, and elevated levels of cerebrospinal fluid 14-3-3 protein. Subsequently, the use of DWI has improved diagnostic accuracy, but it sometimes remains difficult to differentiate CJD from encephalitis, epilepsy, and other dementing disorders. The revised diagnostic criteria include real-time quaking-induced conversion (RT-QuIC), detecting small amounts of CJD-specific prion protein, and clinically sensitive DWI. Combining these techniques has further improved diagnostic accuracy, enabling earlier diagnosis. AREAS COVERED Herein, the authors review the recent advances in diagnostic methods and revised diagnostic criteria for sporadic CJD. They also discuss other prion diseases, such as variant CJD and chronic wasting disease, where the emergence of new types is a concern. EXPERT OPINION Despite improvements in diagnostic methods and criteria, some subtypes of prion disease are still difficult to diagnose, and even the diagnosis using the most innovative RT-QuIC test remains a challenge in terms of accuracy and standardization. However, these revised criteria can be adapted to the emergence of new types of prion diseases. It is essential to continue careful surveillance and update information on the latest prion disease phenotypes.
Collapse
Affiliation(s)
- Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Naohisa Ueda
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Yakovleva O, Pilant T, Asher DM, Gregori L. Kinetics of Abnormal Prion Protein in Blood of Transgenic Mice Experimentally Infected by Multiple Routes with the Agent of Variant Creutzfeldt-Jakob Disease. Viruses 2023; 15:1466. [PMID: 37515154 PMCID: PMC10384726 DOI: 10.3390/v15071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are characterized by the accumulation in affected tissues of the abnormal prion protein PrPTSE. We previously demonstrated PrPTSE in the blood of macaques experimentally infected with variant Creutzfeldt-Jakob disease (vCJD), a human TSE, months to years prior to clinical onset. That work supported the prospect of using PrPTSE as a blood biomarker to detect vCJD and possibly other human TSEs before the onset of overt illness. However, our results also raised questions about the origin of PrPTSE detected in blood early after inoculation and the effects of dose and route on the timing of the appearance of PrPTSE. To investigate these questions, we inoculated vCJD-susceptible transgenic mice and non-infectable prion protein-knockout mice under inoculation conditions resembling those used in macaques, with additional controls. We assayed PrPTSE in mouse blood using the protein misfolding cyclic amplification (PMCA) method. PrPTSE from the inoculum cleared from the blood of all mice before 2 months post-inoculation (mpi). Mouse PrPTSE generated de novo appeared in blood after 2 mpi. These results were consistent regardless of dose or inoculation route. We also demonstrated that a commercial ELISA-like PrPTSE test detected and quantified PMCA products and provided a useful alternative to Western blots.
Collapse
Affiliation(s)
- Oksana Yakovleva
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| | - Teresa Pilant
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| | - David M Asher
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA
| |
Collapse
|
15
|
Concha-Marambio L, Pritzkow S, Shahnawaz M, Farris CM, Soto C. Seed amplification assay for the detection of pathologic alpha-synuclein aggregates in cerebrospinal fluid. Nat Protoc 2023; 18:1179-1196. [PMID: 36653527 PMCID: PMC10561622 DOI: 10.1038/s41596-022-00787-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023]
Abstract
Misfolded alpha-synuclein (αSyn) aggregates are a hallmark event in Parkinson's disease (PD) and other synucleinopathies. Recently, αSyn seed amplification assays (αSyn-SAAs) have shown promise as a test for biochemical diagnosis of synucleinopathies. αSyn-SAAs use the intrinsic self-replicative nature of misfolded αSyn aggregates (seeds) to multiply them in vitro. In these assays, αSyn seeds circulating in biological fluids are amplified by a cyclical process that includes aggregate fragmentation into smaller self-propagating seeds, followed by elongation at the expense of recombinant αSyn (rec-αSyn). Amplification of the seeds allows detection by fluorescent dyes specific for amyloids, such as thioflavin T. Several αSyn-SAA reports have been published in the past under the names 'protein misfolding cyclic amplification' (αSyn-PMCA) and 'real-time quaking-induced conversion'. Here, we describe a protocol for αSyn-SAA, originally reported as αSyn-PMCA, which allows detection of αSyn aggregates in cerebrospinal fluid samples from patients affected by PD, dementia with Lewy bodies or multiple-system atrophy (MSA). Moreover, this αSyn-SAA can differentiate αSyn aggregates from patients with PD versus those from patients with MSA, even in retrospective samples from patients with pure autonomic failure who later developed PD or MSA. We also describe modifications to the original protocol introduced to develop an optimized version of the assay. The optimized version shortens the assay length, decreases the amount of rec-αSyn required and reduces the number of inconclusive results. The protocol has a hands-on time of ~2 h per 96-well plate and can be performed by personnel trained to perform basic experiments with specimens of human origin.
Collapse
Affiliation(s)
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, USA
| | - Mohammad Shahnawaz
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, USA
| | | | - Claudio Soto
- R&D Unit, Amprion Inc., San Diego, CA, USA.
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
16
|
Duan S, Yang J, Cui Z, Li J, Zheng H, Zhao T, Yuan Y, Liu Y, Zhao L, Wang Y, Luo H, Xu Y. Seed amplification assay of nasal swab extracts for accurate and non-invasive molecular diagnosis of neurodegenerative diseases. Transl Neurodegener 2023; 12:13. [PMID: 36922862 PMCID: PMC10017346 DOI: 10.1186/s40035-023-00345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Nasal swabs are non-invasive testing methods for detecting diseases by collecting samples from the nasal cavity or nasopharynx. Dysosmia is regarded as an early sign of coronavirus disease 2019 (COVID-19), and nasal swabs are the gold standard for the detection. By nasal swabs, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acids can be cyclically amplified and detected using real-time reverse transcriptase-polymerase chain reaction after sampling. Similarly, olfactory dysfunction precedes the onset of typical clinical manifestations by several years in prion diseases and other neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In neurodegenerative diseases, nasal swab tests are currently being explored using seed amplification assay (SAA) of pathogenic misfolded proteins, such as prion, α-synuclein, and tau. These misfolded proteins can serve as templates for the conformational change of other copies from the native form into the same misfolded form in a prion-like manner. SAA for misfolded prion-like proteins from nasal swab extracts has been developed, conceptually analogous to PCR, showing high sensitivity and specificity for molecular diagnosis of degenerative diseases even in the prodromal stage. Cyclic amplification assay of nasal swab extracts is an attractive and feasible method for accurate and non-invasive detection of trace amount of pathogenic substances for screening and diagnosis of neurodegenerative disease.
Collapse
Affiliation(s)
- Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Zheqing Cui
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Lu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Senesi M, Lewis V, Varghese S, Stehmann C, McGlade A, Doecke JD, Ellett L, Sarros S, Fowler CJ, Masters CL, Li QX, Collins SJ. Diagnostic performance of CSF biomarkers in a well-characterized Australian cohort of sporadic Creutzfeldt-Jakob disease. Front Neurol 2023; 14:1072952. [PMID: 36846121 PMCID: PMC9944944 DOI: 10.3389/fneur.2023.1072952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
The most frequently utilized biomarkers to support a pre-mortem clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) include concentrations of the 14-3-3 and total tau (T-tau) proteins, as well as the application of protein amplification techniques, such as the real time quaking-induced conversion (RT-QuIC) assay, in cerebrospinal fluid (CSF). Utilizing CSF from a cohort of neuropathologically confirmed (definite) sCJD (n = 50) and non-CJD controls (n = 48), we established the optimal cutpoints for the fully automated Roche Elecsys® immunoassay for T-tau and the CircuLexTM 14-3-3 Gamma ELISA and compared these to T-tau protein measured using a commercially available assay (INNOTEST hTAU Ag) and 14-3-3 protein detection by western immunoblot (WB). These CSF specimens were also assessed for presence of misfolded prion protein using the RT-QuIC assay. T-tau showed similar diagnostic performance irrespective of the assay utilized, with ~90% sensitivity and specificity. The 14-3-3 protein detection by western blot (WB) has 87.5% sensitivity and 66.7% specificity. The 14-3-3 ELISA demonstrated 81.3% sensitivity and 84.4% specificity. RT-QuIC was the single best performing assay, with a sensitivity of 92.7% and 100% specificity. Our study indicates that a combination of all three CSF biomarkers increases sensitivity and offers the best chance of case detection pre-mortem. Only a single sCJD case in our cohort was negative across the three biomarkers, emphasizing the value of autopsy brain examination on all suspected CJD cases to ensure maximal case ascertainment.
Collapse
Affiliation(s)
- Matteo Senesi
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia,Department of Medicine, Royal Melbourne Hospital (RMH), The University of Melbourne, Parkville, VIC, Australia
| | - Victoria Lewis
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia,Department of Medicine, Royal Melbourne Hospital (RMH), The University of Melbourne, Parkville, VIC, Australia
| | - Shiji Varghese
- National Dementia Diagnostics Laboratory (NDDL), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Amelia McGlade
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Laura Ellett
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Shannon Sarros
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher J. Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Colin L. Masters
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia,National Dementia Diagnostics Laboratory (NDDL), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia,The Florey Institute of Neuroscience and Mental Health, Florey Department, The University of Melbourne, Parkville, VIC, Australia
| | - Qiao-Xin Li
- Department of Medicine, Royal Melbourne Hospital (RMH), The University of Melbourne, Parkville, VIC, Australia,The Florey Institute of Neuroscience and Mental Health, Florey Department, The University of Melbourne, Parkville, VIC, Australia,Qiao-Xin Li ✉
| | - Steven J. Collins
- Australian National Creutzfeldt-Jakob Disease Registry (ANCJDR), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia,Department of Medicine, Royal Melbourne Hospital (RMH), The University of Melbourne, Parkville, VIC, Australia,National Dementia Diagnostics Laboratory (NDDL), The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia,*Correspondence: Steven J. Collins ✉
| |
Collapse
|
18
|
Mays CE, Trinh THT, Telling G, Kang HE, Ryou C. Endoproteolysis of cellular prion protein by plasmin hinders propagation of prions. Front Mol Neurosci 2022; 15:990136. [PMID: 36117913 PMCID: PMC9478470 DOI: 10.3389/fnmol.2022.990136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023] Open
Abstract
Many questions surround the underlying mechanism for the differential metabolic processing observed for the prion protein (PrP) in healthy and prion-infected mammals. Foremost, the physiological α-cleavage of PrP interrupts a region critical for both toxicity and conversion of cellular PrP (PrP C ) into its misfolded pathogenic isoform (PrP Sc ) by generating a glycosylphosphatidylinositol (GPI)-anchored C1 fragment. During prion diseases, alternative β-cleavage of PrP becomes prominent, producing a GPI-anchored C2 fragment with this particular region intact. It remains unexplored whether physical up-regulation of α-cleavage can inhibit disease progression. Furthermore, several pieces of evidence indicate that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 play a much smaller role in the α-cleavage of PrP C than originally believed, thus presenting the need to identify the primary protease(s) responsible. For this purpose, we characterized the ability of plasmin to perform PrP α-cleavage. Then, we conducted functional assays using protein misfolding cyclic amplification (PMCA) and prion-infected cell lines to clarify the role of plasmin-mediated α-cleavage during prion propagation. Here, we demonstrated an inhibitory role of plasmin for PrP Sc formation through PrP α-cleavage that increased C1 fragments resulting in reduced prion conversion compared with non-treated PMCA and cell cultures. The reduction of prion infectious titer in the bioassay of plasmin-treated PMCA material also supported the inhibitory role of plasmin on PrP Sc replication. Our results suggest that plasmin-mediated endoproteolytic cleavage of PrP may be an important event to prevent prion propagation.
Collapse
Affiliation(s)
- Charles E. Mays
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Trang H. T. Trinh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Glenn Telling
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States,Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Hae-Eun Kang
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States,Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea,Hae-Eun Kang,
| | - Chongsuk Ryou
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States,Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, South Korea,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea,Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, United States,*Correspondence: Chongsuk Ryou,
| |
Collapse
|
19
|
Yakovleva O, Bett C, Pilant T, Asher DM, Gregori L. Abnormal prion protein, infectivity and neurofilament light-chain in blood of macaques with experimental variant Creutzfeldt-Jakob disease. J Gen Virol 2022; 103. [PMID: 35816369 PMCID: PMC10027005 DOI: 10.1099/jgv.0.001764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative infections. Variant Creutzfeldt-Jakob disease (vCJD) and sporadic CJD (sCJD) are human TSEs that, in rare cases, have been transmitted by human-derived therapeutic products. There is a need for a blood test to detect infected donors, identify infected individuals in families with TSEs and monitor progression of disease in patients, especially during clinical trials. We prepared panels of blood from cynomolgus and rhesus macaques experimentally infected with vCJD, as a surrogate for human blood, to support assay development. We detected abnormal prion protein (PrPTSE) in those blood samples using the protein misfolding cyclic amplification (PMCA) assay. PrPTSE first appeared in the blood of pre-symptomatic cynomolgus macaques as early as 2 months post-inoculation (mpi). In contrast, PMCA detected PrPTSE much later in the blood of two pre-symptomatic rhesus macaques, starting at 19 and 20 mpi, and in one rhesus macaque only when symptomatic, at 38 mpi. Once blood of either species of macaque became PMCA-positive, PrPTSE persisted through terminal illness at relatively constant concentrations. Infectivity in buffy coat samples from terminally ill cynomolgus macaques as well as a sample collected 9 months before clinical onset of disease in one of the macaques was assayed in vCJD-susceptible transgenic mice. The infectivity titres varied from 2.7 to 4.3 infectious doses ml-1. We also screened macaque blood using a four-member panel of biomarkers for neurodegenerative diseases to identify potential non-PrPTSE pre-symptomatic diagnostic markers. Neurofilament light-chain protein (NfL) increased in blood before the onset of clinical vCJD. Cumulatively, these data confirmed that, while PrPTSE is the first marker to appear in blood of vCJD-infected cynomolgus and rhesus macaques, NfL might offer a useful, though less specific, marker for forthcoming neurodegeneration. These studies support the use of macaque blood panels to investigate PrPTSE and other biomarkers to predict onset of CJD in humans.
Collapse
Affiliation(s)
- Oksana Yakovleva
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Cyrus Bett
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Teresa Pilant
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - David M Asher
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| | - Luisa Gregori
- US Food and Drug Administration, Center for Biologics Evaluation and Research, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Silver Spring, MD 20993, USA
| |
Collapse
|
20
|
Coysh T, Mead S. The Future of Seed Amplification Assays and Clinical Trials. Front Aging Neurosci 2022; 14:872629. [PMID: 35813946 PMCID: PMC9257179 DOI: 10.3389/fnagi.2022.872629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prion-like seeded misfolding of host proteins is the leading hypothesised cause of neurodegenerative diseases. The exploitation of the mechanism in the protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC) assays have transformed prion disease research and diagnosis and have steadily become more widely used for research into other neurodegenerative disorders. Clinical trials in adult neurodegenerative diseases have been expensive, slow, and disappointing in terms of clinical benefits. There are various possible factors contributing to the failure to identify disease-modifying treatments for adult neurodegenerative diseases, some of which include: limited accuracy of antemortem clinical diagnosis resulting in the inclusion of patients with the “incorrect” pathology for the therapeutic; the role of co-pathologies in neurodegeneration rendering treatments targeting one pathology alone ineffective; treatment of the primary neurodegenerative process too late, after irreversible secondary processes of neurodegeneration have become established or neuronal loss is already extensive; and preclinical models used to develop treatments not accurately representing human disease. The use of seed amplification assays in clinical trials offers an opportunity to tackle these problems by sensitively detecting in vivo the proteopathic seeds thought to be central to the biology of neurodegenerative diseases, enabling improved diagnostic accuracy of the main pathology and co-pathologies, and very early intervention, particularly in patients at risk of monogenic forms of neurodegeneration. The possibility of quantifying proteopathic seed load, and its reduction by treatments, is an attractive pharmacodynamic biomarker in the preclinical and early clinical stages of drug development. Here we review some potential applications of seed amplification assays in clinical trials.
Collapse
Affiliation(s)
- Thomas Coysh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Mao H, Ye Y, Sun X, Qian C, Wang B, Xie L, Zhang S. Quiescent Elongation of α-Synuclein Pre-form Fibrils Under Different Solution Conditions. Front Neurosci 2022; 16:902077. [PMID: 35692426 PMCID: PMC9175570 DOI: 10.3389/fnins.2022.902077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
The intracellular aggregation of α-synuclein in neurons/glia is considered to be a key step in the pathogenesis of synucleinopathy [including Parkinson’s disease (PD), dementia with Lewy body (DLB), multiple system atrophy (MSA), etc.]. Increasing evidence indicates that the initial pathological α-synuclein aggregates can replicate themselves and propagate in a “seeding” manner to multiple areas of the brain and even to peripheral tissue, which makes it the most important biomarker for the diagnosis of synucleinopathies in recent years. The amplification and propagation capabilities of α-synuclein aggregates are very similar to those of prion-like diseases, which are based on the inherent self-recruitment capabilities of existing misfolded proteins. In vitro, the rapid recruitment process can be reproduced in a simplified model by adding a small amount of α-synuclein pre-formed fibrils to the monomer solution as fibril seeds, which may partially reveal the properties of α-synuclein aggregates. In this study, we explored the elongation rate of α-synuclein pre-formed fibrils under a quiescent incubation condition (rather than shaking/agitating). By using the ThT fluorescence assay, we compared and quantified the elongation fluorescence curves to explore the factors that affect fibril elongation. These factors include proteins’ concentration, temperature, NaCl strength, SDS, temperature pretreatment, and so on. Our work further describes the elongation of α-synuclein fibrils under quiescent incubation conditions. This may have important implications for the in vitro amplification and preservation of α-synuclein aggregates to further understand the prion-like transmission mechanism of PD.
Collapse
Affiliation(s)
- Hengxu Mao
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyi Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Sun
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Qian
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linghai Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shizhong Zhang,
| |
Collapse
|
22
|
Beatino MF, De Luca C, Campese N, Belli E, Piccarducci R, Giampietri L, Martini C, Perugi G, Siciliano G, Ceravolo R, Vergallo A, Hampel H, Baldacci F. α-synuclein as an emerging pathophysiological biomarker of Alzheimer's disease. Expert Rev Mol Diagn 2022; 22:411-425. [PMID: 35443850 DOI: 10.1080/14737159.2022.2068952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION α-syn aggregates represent the pathological hallmark of synucleinopathies as well as a frequent copathology (almost 1/3 of cases) in AD. Recent research indicates a potential role of α-syn species, measured in CSF with conventional analytical techniques, in the differential diagnosis between AD and synucleinopathies (such as DLB). Pioneering studies report the detection of α-syn in blood, however, conclusive investigations are controversial. Ultrasensitive seed amplification techniques, enabling the selective quantification of α-syn seeds, may represent an effective solution to identify the α-syn component in AD and facilitate a biomarker-guided stratification. AREAS COVERED We performed a PubMed-based review of the latest findings on α-syn-related biomarkers for AD, focusing on bodily fluids. A dissertation on the role of ultrasensitive seed amplification assays, detecting α-syn seeds from different biological samples, was conducted. EXPERT OPINION α-syn may contribute to progressive AD neurodegeneration through cross-seeding especially with tau protein. Ultrasensitive seed amplification techniques may support a biomarker-drug co-development pathway and may be a pathophysiological candidate biomarker for the evolving ATX(N) system to classify AD and the spectrum of primary NDDs. This would contribute to a precise approach to AD, aimed at implementing disease-modifying treatments.
Collapse
Affiliation(s)
| | - Ciro De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| |
Collapse
|
23
|
Lee H, Kim J, Lee YJ, Lee S, Ryou C. The Effect of Plasminogen-Derived Peptides to PrPSc Formation. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Wu J, Chen D, Shi Q, Dong X. Protein amplification technology: New advances in human prion disease diagnosis. BIOSAFETY AND HEALTH 2021. [DOI: 10.1016/j.bsheal.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021; 10:pathogens10111413. [PMID: 34832569 PMCID: PMC8619291 DOI: 10.3390/pathogens10111413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders.
Collapse
|
26
|
Peden AH, Suleiman S, Barria MA. Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification. Front Aging Neurosci 2021; 13:716452. [PMID: 34413769 PMCID: PMC8368127 DOI: 10.3389/fnagi.2021.716452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals, and can also be transmitted from animals to humans. A fundamental event in prion disease pathogenesis is the conversion of normal host prion protein (PrPC) to a disease-associated misfolded form (PrPSc). Whether or not an animal prion disease can infect humans cannot be determined a priori. There is a consensus that classical bovine spongiform encephalopathy (C-type BSE) in cattle transmits to humans, and that classical sheep scrapie is of little or no risk to human health. However, the zoonotic potential of more recently identified animal prion diseases, such as atypical scrapie, H-type and L-type BSE and chronic wasting disease (CWD) in cervids, remains an open question. Important components of the zoonotic barrier are (i) physiological differences between humans and the animal in question, (ii) amino acid sequence differences of the animal and human PrPC, and (iii) the animal prion strain, enciphered in the conformation of PrPSc. Historically, the direct inoculation of experimental animals has provided essential information on the transmissibility and compatibility of prion strains. More recently, cell-free molecular conversion assays have been used to examine the molecular compatibility on prion replication and zoonotic potential. One such assay is Protein Misfolding Cyclic Amplification (PMCA), in which a small amount of infected tissue homogenate, containing PrPSc, is added as a seed to an excess of normal tissue homogenate containing PrPC, and prion conversion is accelerated by cycles of incubation and ultrasonication. PMCA has been used to measure the molecular feasibility of prion transmission in a range of scenarios using genotypically homologous and heterologous combinations of PrPSc seed and PrPC substrate. Furthermore, this method can be used to speculate on the molecular profile of PrPSc that might arise from a zoonotic transmission. We discuss the experimental approaches that have been used to model both the intra- and inter-species molecular compatibility of prions, and the factors affecting PrPc to PrPSc conversion and zoonotic potential. We conclude that cell-free prion protein conversion assays, especially PMCA, are useful, rapid and low-cost approaches for elucidating the mechanisms of prion propagation and assessing the risk of animal prions to humans.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Brandel JP. [Prion diseases or transmissible spongiform encephalopathies]. Rev Med Interne 2021; 43:106-115. [PMID: 34148672 DOI: 10.1016/j.revmed.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are human and animal diseases naturally or experimentally transmissible with a long incubation period and a fatal course without remission. The nature of the transmissible agent remains debated but the absence of a structure evoking a conventional microorganism led Stanley B. Prusiner to hypothesize that it could be an infectious protein (proteinaceous infectious particle or prion). The prion would be the abnormal form of a normal protein, cellular PrP (PrPc) which will change its spatial conformation and be converted into scrapie prion protein (PrPsc) with properties of partial resistance to proteases, aggregation and insolubility in detergents. No inflammatory or immune response are detected in TSEs which are characterized by brain damage combining spongiosis, neuronal loss, astrocytic gliosis, and deposits of PrPsc that may appear as amyloid plaques. Although the link between the accumulation of PrPsc and the appearance of lesions remains debated, the presence of PrPsc is constant during TSE and necessary for a definitive diagnosis. Even if they remain rare diseases (2 cases per million), the identification of kuru, at the end of the 1950s, of iatrogenic cases in the course of the 1970s and of the variant of Creutzfeldt-Jakob disease (CJD) in the mid-1990s explain the interest in these diseases but also the fears they can raise for public health. They remain an exciting research model because they belong both to the group of neurodegenerative diseases with protein accumulation (sporadic CJD), to the group of communicable diseases (iatrogenic CJD, variant of CJD) but also to the group of genetic diseases with a transmission Mendelian dominant (genetic CJD, Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia).
Collapse
Affiliation(s)
- J-P Brandel
- Cellule nationale de référence des maladies de Creutzfeldt-Jakob, Groupe hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm U1127/Institut du cerveau et de la moelle épinière (ICM), Groupe hospitalier Pitié-Salpêtrière, Centre national de référence des agents transmissibles non conventionnels, 47-83, boulevard de l'Hôpital, 75651 Paris cedex 13, France.
| |
Collapse
|
28
|
Magnetic microparticle-based multimer detection system for the electrochemical detection of prion oligomers in sheep using a recyclable BDD electrode. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Dong TTT, Satoh K. The Latest Research on RT-QuIC Assays-A Literature Review. Pathogens 2021; 10:pathogens10030305. [PMID: 33807776 PMCID: PMC8000803 DOI: 10.3390/pathogens10030305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
The misfolding of proteins such as the prion protein, α-synuclein, and tau represents a key initiating event for pathogenesis of most common neurodegenerative disorders, and its presence correlates with infectivity. To date, the diagnosis of these disorders mainly relied on the recognition of clinical symptoms when neurodegeneration was already at an advanced phase. In recent years, several efforts have been made to develop new diagnostic tools for the early diagnosis of prion diseases. The real-time quaking-induced conversion (RT–QuIC) assay, an in vitro assay that can indirectly detect very low amounts of PrPSc aggregates, has provided a very promising tool to improve the early diagnosis of human prion diseases. Over the decade since RT–QuIC was introduced, the diagnosis of not only prion diseases but also synucleinopathies and tauopathies has greatly improved. Therefore, in our study, we summarize the current trends and knowledge of RT–QuIC assays, as well as discuss the diagnosis of neurodegenerative diseases using RT–QuIC assays, which have been updated in recent years.
Collapse
|
30
|
Concha-Marambio L, Chacon MA, Soto C. Preclinical Detection of Prions in Blood of Nonhuman Primates Infected with Variant Creutzfeldt-Jakob Disease. Emerg Infect Dis 2021; 26:34-43. [PMID: 31855141 PMCID: PMC6924915 DOI: 10.3201/eid2601.181423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is caused by prion infection with bovine spongiform encephalopathy and can be transmitted by blood transfusion. Protein misfolding cyclic amplification (PMCA) can detect prions in blood from vCJD patients with 100% sensitivity and specificity. To determine whether PMCA enables prion detection in blood during the preclinical stage of infection, we performed a blind study using blood samples longitudinally collected from 28 control macaques and 3 macaques peripherally infected with vCJD. Our results demonstrate that PMCA consistently detected prions in blood during the entire preclinical stage in all infected macaques, without false positives from noninfected animals, when using the optimized conditions for amplification of macaque prions. Strikingly, prions were detected as early as 2 months postinoculation (>750 days before disease onset). These findings suggest that PMCA has the potential to detect vCJD prions in blood from asymptomatic carriers during the preclinical phase of the disease.
Collapse
|
31
|
Hermann P, Appleby B, Brandel JP, Caughey B, Collins S, Geschwind MD, Green A, Haïk S, Kovacs GG, Ladogana A, Llorens F, Mead S, Nishida N, Pal S, Parchi P, Pocchiari M, Satoh K, Zanusso G, Zerr I. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol 2021; 20:235-246. [PMID: 33609480 DOI: 10.1016/s1474-4422(20)30477-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease is a fatal neurodegenerative disease caused by misfolded prion proteins (PrPSc). Effective therapeutics are currently not available and accurate diagnosis can be challenging. Clinical diagnostic criteria use a combination of characteristic neuropsychiatric symptoms, CSF proteins 14-3-3, MRI, and EEG. Supportive biomarkers, such as high CSF total tau, could aid the diagnostic process. However, discordant studies have led to controversies about the clinical value of some established surrogate biomarkers. Development and clinical application of disease-specific protein aggregation and amplification assays, such as real-time quaking induced conversion (RT-QuIC), have constituted major breakthroughs for the confident pre-mortem diagnosis of sporadic Creutzfeldt-Jakob disease. Updated criteria for the diagnosis of sporadic Creutzfeldt-Jakob disease, including application of RT-QuIC, should improve early clinical confirmation, surveillance, assessment of PrPSc seeding activity in different tissues, and trial monitoring. Moreover, emerging blood-based, prognostic, and potentially pre-symptomatic biomarker candidates are under investigation.
Collapse
Affiliation(s)
- Peter Hermann
- National Reference Center for Transmissible Spongiform Encephalopathies, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| | - Brian Appleby
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA; Departments of Neurology, Psychiatry, and Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jean-Philippe Brandel
- Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Steven Collins
- Australian National Creutzfeldt-Jakob disease Registry, Florey Institute of Neuroscience and Mental Health and Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | | | - Alison Green
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephane Haïk
- Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Franc Llorens
- National Reference Center for Transmissible Spongiform Encephalopathies, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Network Center For Biomedical Research Of Neurodegenerative Diseases, Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain; Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Barcelona, Spain
| | - Simon Mead
- National Prion Clinic, University College London Hospitals NHS Foundation Trust, London, UK; Medical Research Council Prion Unit at University College London, Institute of Prion Diseases, London, UK
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Suvankar Pal
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Piero Parchi
- Istituto di Ricovero e Cura e Carattere Scientifico, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Katsuya Satoh
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Inga Zerr
- National Reference Center for Transmissible Spongiform Encephalopathies, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
32
|
Douet JY, Huor A, Cassard H, Lugan S, Aron N, Arnold M, Vilette D, Torres JM, Ironside JW, Andreoletti O. Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients. Acta Neuropathol 2021; 141:383-397. [PMID: 33532912 PMCID: PMC7882550 DOI: 10.1007/s00401-021-02270-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt–Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.
Collapse
Affiliation(s)
- Jean-Yves Douet
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alvina Huor
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Hervé Cassard
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Naima Aron
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Mark Arnold
- APHA Sutton Bonington, Loughborough, LE12 5NB, Leicestershire, UK
| | - Didier Vilette
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Juan-Maria Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Spain
| | - James W Ironside
- Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Olivier Andreoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France.
| |
Collapse
|
33
|
Bélondrade M, Nicot S, Mayran C, Bruyere-Ostells L, Almela F, Di Bari MA, Levavasseur E, Watts JC, Fournier-Wirth C, Lehmann S, Haïk S, Nonno R, Bougard D. Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt-Jakob disease prions is strongly seed and substrate dependent. Sci Rep 2021; 11:4058. [PMID: 33603091 PMCID: PMC7893054 DOI: 10.1038/s41598-021-83630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike variant Creutzfeldt-Jakob disease prions, sporadic Creutzfeldt-Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.
Collapse
Affiliation(s)
- Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Lilian Bruyere-Ostells
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Florian Almela
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Etienne Levavasseur
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Sylvain Lehmann
- IRMB, INM, INSERM, CHU Montpellier, (LBPC-PPC), Univ Montpellier, Montpellier, France
| | - Stéphane Haïk
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France.
| |
Collapse
|
34
|
Salamat MKF, Blanco ARA, McCutcheon S, Tan KBC, Stewart P, Brown H, Smith A, de Wolf C, Groschup MH, Becher D, Andréoletti O, Turner M, Manson JC, Houston EF. Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection. PLoS Pathog 2021; 17:e1009276. [PMID: 33600501 PMCID: PMC7891701 DOI: 10.1371/journal.ppat.1009276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a human prion disease resulting from zoonotic transmission of bovine spongiform encephalopathy (BSE). Documented cases of vCJD transmission by blood transfusion necessitate on-going risk reduction measures to protect blood supplies, such as leucodepletion (removal of white blood cells, WBCs). This study set out to determine the risks of prion transmission by transfusion of labile blood components (red blood cells, platelets, plasma) commonly used in human medicine, and the effectiveness of leucodepletion in preventing infection, using BSE-infected sheep as a model. All components were capable of transmitting prion disease when donors were in the preclinical phase of infection, with the highest rates of infection in recipients of whole blood and buffy coat, and the lowest in recipients of plasma. Leucodepletion of components (<106 WBCs/unit) resulted in significantly lower transmission rates, but did not completely prevent transmission by any component. Donor PRNP genotype at codon 141, which is associated with variation in incubation period, also had a significant effect on transfusion transmission rates. A sensitive protein misfolding cyclic amplification (PMCA) assay, applied to longitudinal series of blood samples, identified infected sheep from 4 months post infection. However, in donor sheep (orally infected), the onset of detection of PrPSc in blood was much more variable, and generally later, compared to recipients (intravenous infection). This shows that the route and method of infection may profoundly affect the period during which an individual is infectious, and the test sensitivity required for reliable preclinical diagnosis, both of which have important implications for disease control. Our results emphasize that blood transfusion can be a highly efficient route of transmission for prion diseases. Given current uncertainties over the prevalence of asymptomatic vCJD carriers, this argues for the maintenance and improvement of current measures to reduce the risk of transmission by blood products. Variant Creutzfeldt-Jakob disease (vCJD) resulted from zoonotic transmission of bovine spongiform encephalopathy (BSE), and has also been transmitted by blood transfusion. One of the most important risk reduction measures introduced by human transfusion services to safeguard the blood supply is leucodepletion (removal of white blood cells) of blood components. This study represents the largest experimental analysis to date of the risks of prion infection associated with transfusion of labile blood components, and the effectiveness of leucodepletion in preventing transmission. Using a BSE-infected sheep model, we found that red blood cells, platelets and plasma from preclinical donors were all infectious, even after leucodepletion, although leucodepletion significantly reduced transmission rates. In addition, the time course of detection of prions in blood varied significantly depending on the route and method of infection. This has important implications for the risk of onward transmission, and suggests that further improvements in sensitivity of diagnostic tests will be required for reliable preclinical diagnosis of vCJD and other prion diseases. The results of this study support the continuation of current measures to reduce the risk of vCJD transmission by blood products, and suggest areas for further improvement.
Collapse
Affiliation(s)
- M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Kyle B. C. Tan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Paula Stewart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Helen Brown
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Allister Smith
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald, Germany
| | | | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
36
|
Watson N, Brandel JP, Green A, Hermann P, Ladogana A, Lindsay T, Mackenzie J, Pocchiari M, Smith C, Zerr I, Pal S. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat Rev Neurol 2021; 17:362-379. [PMID: 33972773 PMCID: PMC8109225 DOI: 10.1038/s41582-021-00488-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/04/2023]
Abstract
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, fatal and transmissible neurodegenerative disease associated with the accumulation of misfolded prion protein in the CNS. International CJD surveillance programmes have been active since the emergence, in the mid-1990s, of variant CJD (vCJD), a disease linked to bovine spongiform encephalopathy. Control measures have now successfully contained bovine spongiform encephalopathy and the incidence of vCJD has declined, leading to questions about the requirement for ongoing surveillance. However, several lines of evidence have raised concerns that further cases of vCJD could emerge as a result of prolonged incubation and/or secondary transmission. Emerging evidence from peripheral tissue distribution studies employing high-sensitivity assays suggests that all forms of human prion disease carry a theoretical risk of iatrogenic transmission. Finally, emerging diseases, such as chronic wasting disease and camel prion disease, pose further risks to public health. In this Review, we provide an up-to-date overview of the transmission of prion diseases in human populations and argue that CJD surveillance remains vital both from a public health perspective and to support essential research into disease pathophysiology, enhanced diagnostic tests and much-needed treatments.
Collapse
Affiliation(s)
- Neil Watson
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean-Philippe Brandel
- grid.411439.a0000 0001 2150 9058Cellule Nationale de référence des MCJ, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Alison Green
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Hermann
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Anna Ladogana
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Terri Lindsay
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janet Mackenzie
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maurizio Pocchiari
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Colin Smith
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Inga Zerr
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Suvankar Pal
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
37
|
Moudjou M, Castille J, Passet B, Herzog L, Reine F, Vilotte JL, Rezaei H, Béringue V, Igel-Egalon A. Improving the Predictive Value of Prion Inactivation Validation Methods to Minimize the Risks of Iatrogenic Transmission With Medical Instruments. Front Bioeng Biotechnol 2020; 8:591024. [PMID: 33335894 PMCID: PMC7736614 DOI: 10.3389/fbioe.2020.591024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Prions are pathogenic infectious agents responsible for fatal, incurable neurodegenerative diseases in animals and humans. Prions are composed exclusively of an aggregated and misfolded form (PrPSc) of the cellular prion protein (PrPC). During the propagation of the disease, PrPSc recruits and misfolds PrPC into further PrPSc. In human, iatrogenic prion transmission has occurred with incompletely sterilized medical material because of the unusual resistance of prions to inactivation. Most commercial prion disinfectants validated against the historical, well-characterized laboratory strain of 263K hamster prions were recently shown to be ineffective against variant Creutzfeldt-Jakob disease human prions. These observations and previous reports support the view that any inactivation method must be validated against the prions for which they are intended to be used. Strain-specific variations in PrPSc physico-chemical properties and conformation are likely to explain the strain-specific efficacy of inactivation methods. Animal bioassays have long been used as gold standards to validate prion inactivation methods, by measuring reduction of prion infectivity. Cell-free assays such as the real-time quaking-induced conversion (RT-QuIC) assay and the protein misfolding cyclic amplification (PMCA) assay have emerged as attractive alternatives. They exploit the seeding capacities of PrPSc to exponentially amplify minute amounts of prions in biospecimens. European and certain national medicine agencies recently implemented their guidelines for prion inactivation of non-disposable medical material; they encourage or request the use of human prions and cell-free assays to improve the predictive value of the validation methods. In this review, we discuss the methodological and technical issues regarding the choice of (i) the cell-free assay, (ii) the human prion strain type, (iii) the prion-containing biological material. We also introduce a new optimized substrate for high-throughput PMCA amplification of human prions bound on steel wires, as translational model for prion-contaminated instruments.
Collapse
Affiliation(s)
- Mohammed Moudjou
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Johan Castille
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bruno Passet
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Angélique Igel-Egalon
- Université Paris Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.,FB.INT'L, Montigny-le-Bretonneux, France
| |
Collapse
|
38
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Chu Z, Zhang W, You Q, Yao X, Liu T, Liu G, Zhang G, Gu X, Ma Z, Jin W. A Separation‐Sensing Membrane Performing Precise Real‐Time Serum Analysis During Blood Drawing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 P. R. China
| | - Qiannan You
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Xiaoyue Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Guangru Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Xiaoping Gu
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 P. R. China
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| |
Collapse
|
40
|
Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C, Edgren G, Haïk S, Hardy J, Helmy A, Ivinson AJ, Jaunmuktane Z, Jucker M, Knight R, Lemmens R, Lin IC, Love S, Mead S, Perry VH, Pickett J, Poppy G, Radford SE, Rousseau F, Routledge C, Schiavo G, Schymkowitz J, Selkoe DJ, Smith C, Thal DR, Theys T, Tiberghien P, van den Burg P, Vandekerckhove P, Walton C, Zaaijer HL, Zetterberg H, De Strooper B. Potential human transmission of amyloid β pathology: surveillance and risks. Lancet Neurol 2020; 19:872-878. [PMID: 32949547 DOI: 10.1016/s1474-4422(20)30238-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically.
Collapse
Affiliation(s)
- Elsa Lauwers
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giovanna Lalli
- UK Dementia Research Institute, University College London, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Veerle Compernolle
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Charles Duyckaerts
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - Gustaf Edgren
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Stéphane Haïk
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France; Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - John Hardy
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Adel Helmy
- Department of Clinical Neuroscience, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Adrian J Ivinson
- UK Dementia Research Institute, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Richard Knight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK; National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Western General Hospital, Edinburgh, UK
| | - Robin Lemmens
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - I-Chun Lin
- UK Dementia Research Institute, University College London, London, UK
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK
| | - James Pickett
- Alzheimer's Society, London, London, UK; Epilepsy Research UK, London, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, Southampton, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France; Unité Mixte de Recherche, INSERM, Université de Franche-Comté, Besançon, France
| | - Peter van den Burg
- European Blood Alliance, Brussels, Belgium; Department of Transfusion Medicine, Sanquin, Amsterdam, Netherlands
| | - Philippe Vandekerckhove
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Clare Walton
- Alzheimer's Society, London, London, UK; Multiple Sclerosis International Federation, London, UK
| | - Hans L Zaaijer
- Department of Blood-borne Infections, Sanquin, Amsterdam, Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
41
|
Wang Z, Becker K, Donadio V, Siedlak S, Yuan J, Rezaee M, Incensi A, Kuzkina A, Orrú CD, Tatsuoka C, Liguori R, Gunzler SA, Caughey B, Jimenez-Capdeville ME, Zhu X, Doppler K, Cui L, Chen SG, Ma J, Zou WQ. Skin α-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurol 2020; 78:2771032. [PMID: 32986090 PMCID: PMC7522783 DOI: 10.1001/jamaneurol.2020.3311] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023]
Abstract
IMPORTANCE Deposition of the pathological α-synuclein (αSynP) in the brain is the hallmark of synucleinopathies, including Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). Whether real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays can sensitively detect skin biomarkers for PD and non-PD synucleinopathies remains unknown. OBJECTIVE To develop sensitive and specific skin biomarkers for antemortem diagnosis of PD and other synucleinopathies. DESIGN, SETTING, AND PARTICIPANTS This retrospective and prospective diagnostic study evaluated autopsy and biopsy skin samples from neuropathologically and clinically diagnosed patients with PD and controls without PD. Autopsy skin samples were obtained at 3 medical centers from August 2016 to September 2019, and biopsy samples were collected from 3 institutions from August 2018 to November 2019. Based on neuropathological and clinical diagnoses, 57 cadavers with synucleinopathies and 73 cadavers with nonsynucleinopathies as well as 20 living patients with PD and 21 living controls without PD were included. Specifically, cadavers and participants had PD, LBD, MSA, Alzheimer disease, progressive supranuclear palsy, or corticobasal degeneration or were nonneurodegenerative controls (NNCs). A total of 8 approached biopsy participants either refused to participate in or were excluded from this study due to uncertain clinical diagnosis. Data were analyzed from September 2019 to April 2020. MAIN OUTCOMES AND MEASURES Skin αSynP seeding activity was analyzed by RT-QuIC and PMCA assays. RESULTS A total of 160 autopsied skin specimens from 140 cadavers (85 male cadavers [60.7%]; mean [SD] age at death, 76.8 [10.1] years) and 41 antemortem skin biopsies (27 male participants [66%]; mean [SD] age at time of biopsy, 65.3 [9.2] years) were analyzed. RT-QuIC analysis of αSynP seeding activity in autopsy abdominal skin samples from 47 PD cadavers and 43 NNCs revealed 94% sensitivity (95% CI, 85-99) and 98% specificity (95% CI, 89-100). As groups, RT-QuIC also yielded 93% sensitivity (95% CI, 85-97) and 93% specificity (95% CI, 83-97) among 57 cadavers with synucleinopathies (PD, LBD, and MSA) and 73 cadavers without synucleinopathies (Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, and NNCs). PMCA showed 82% sensitivity (95% CI, 76-88) and 96% specificity (95% CI, 85-100) with autopsy abdominal skin samples from PD cadavers. From posterior cervical and leg skin biopsy tissues from patients with PD and controls without PD, the sensitivity and specificity were 95% (95% CI, 77-100) and 100% (95% CI, 84-100), respectively, for RT-QuIC and 80% (95% CI, 49-96) and 90% (95% CI, 60-100) for PMCA. CONCLUSIONS AND RELEVANCE This study provides proof-of-concept that skin αSynP seeding activity may serve as a novel biomarker for antemortem diagnoses of PD and other synucleinopathies.
Collapse
Affiliation(s)
- Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan
| | - Vincenzo Donadio
- IRCCS Institute of Neurological Sciences of Bologna, Complex Operational Unit Clinica Neurologica, Bologna, Italy
| | - Sandra Siedlak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Masih Rezaee
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alex Incensi
- IRCCS Institute of Neurological Sciences of Bologna, Complex Operational Unit Clinica Neurologica, Bologna, Italy
| | - Anastasia Kuzkina
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Christina D. Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana
| | - Curtis Tatsuoka
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Rocco Liguori
- IRCCS Institute of Neurological Sciences of Bologna, Complex Operational Unit Clinica Neurologica, Bologna, Italy
| | - Steven A. Gunzler
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana
| | | | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kathrin Doppler
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Shu G. Chen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
42
|
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, Moda F. Cell-free amplification of prions: Where do we stand? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:325-358. [PMID: 32958239 DOI: 10.1016/bs.pmbts.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.
Collapse
Affiliation(s)
- Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | | | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Alessandra Consonni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy.
| |
Collapse
|
43
|
Knight R. Clinical diagnosis of human prion disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:1-18. [PMID: 32958229 DOI: 10.1016/bs.pmbts.2020.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human prion disease may present in a non-specific way and is often diagnosed at a relatively late stage of the illness. Until recently, clinical diagnosis has been supported by tests that are mostly non-specific and, sometimes, insensitive. Recent laboratory developments have led to a variety of tests that rely on a disease-specific mechanism. One test, the CSF RT-QuIC (Real-Time Quaking-Induced Conversion) test is very sensitive and specific for sporadic CJD and is now used in routine clinical practice. Other tests, based on other tissues, including blood and urine, have been developed and potentially could improve both clinical diagnostic accuracy and lead to earlier diagnosis. While there are yet no proven treatments for prion disease, any treatment to be developed will almost certainly require earlier diagnosis if therapeutic success is to be realized.
Collapse
Affiliation(s)
- Richard Knight
- Emeritus Professor of Clinical Neurology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
44
|
Chu Z, Zhang W, You Q, Yao X, Liu T, Liu G, Zhang G, Gu X, Ma Z, Jin W. A Separation‐Sensing Membrane Performing Precise Real‐Time Serum Analysis During Blood Drawing. Angew Chem Int Ed Engl 2020; 59:18701-18708. [PMID: 32648353 DOI: 10.1002/anie.202008241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 P. R. China
| | - Qiannan You
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Xiaoyue Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Guangru Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| | - Xiaoping Gu
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 P. R. China
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University NO.30 Puzhu Road(S) Nanjing 211816 China
| |
Collapse
|
45
|
Béringue V, Tixador P, Andréoletti O, Reine F, Castille J, Laï TL, Le Dur A, Laisné A, Herzog L, Passet B, Rezaei H, Vilotte JL, Laude H. Host prion protein expression levels impact prion tropism for the spleen. PLoS Pathog 2020; 16:e1008283. [PMID: 32702070 PMCID: PMC7402522 DOI: 10.1371/journal.ppat.1008283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/04/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Prions are pathogens formed from abnormal conformers (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc conformation to disease phenotype relationships extensively vary among prion strains. In particular, prions exhibit a strain-dependent tropism for lymphoid tissues. Prions can be composed of several substrain components. There is evidence that these substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual, providing an experimental paradigm to study the cause of prion tissue selectivity. Previously, we showed that PrPC expression levels feature in prion substrain selection in the brain. Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice expressing varying levels of ovine PrPC in their brains resulted in the phenotypic expression of the dominant sheep substrain in mice expressing near physiological PrPC levels, whereas a minor substrain replicated preferentially on high expresser mice. Considering that PrPC expression levels are markedly decreased in the spleen compared to the brain, we interrogate whether spleen PrPC dosage could drive prion selectivity. The outcome of the transmission of a large cohort of LAN isolates in the spleen from high expresser mice correlated with the replication rate dependency on PrPC amount. There was a prominent spleen colonization by the substrain preferentially replicating on low expresser mice and a relative incapacity of the substrain with higher-PrPC level need to propagate in the spleen. Early colonization of the spleen after intraperitoneal inoculation allowed neuropathological expression of the lymphoid substrain. In addition, a pair of substrain variants resulting from the adaptation of human prions to ovine high expresser mice, and exhibiting differing brain versus spleen tropism, showed different tropism on transmission to low expresser mice, with the lymphoid substrain colonizing the brain. Overall, these data suggest that PrPC expression levels are instrumental in prion lymphotropism. The cause of prion phenotype variation among prion strains remains poorly understood. In particular, prions replicate in a strain-dependent manner in the spleen. This can result in prion asymptomatic carriers. Based on our previous observations that dosage of the prion precursor (PrP) determined prion substrain selection in the brain, we examine whether PrP levels in the spleen could drive prion replication in this tissue, due to the low levels of the protein. We observe that the prion substrain with higher PrP need for replication does barely replicate in the spleen, while the component with low PrP need replicates efficiently. In addition, other human co-propagating prions with differing spleen and brain tropism showed different tropism on transmission to mice expressing low PrP levels, with the lymphoid substrain colonizing the brain. PrPC expression levels may thus be instrumental in prion tropism for the lymphoid tissue. From a diagnostic point of view, given the apparent complexity of prion diseases with respect to prion substrain composition, these data advocate to type extraneural tissues or fluids for a comprehensive identification of the circulating prions in susceptible mammals.
Collapse
Affiliation(s)
- Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
- * E-mail:
| | | | | | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Thanh-Lan Laï
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Annick Le Dur
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Aude Laisné
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Hubert Laude
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| |
Collapse
|
46
|
Uttley L, Carroll C, Wong R, Hilton DA, Stevenson M. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. THE LANCET. INFECTIOUS DISEASES 2020; 20:e2-e10. [PMID: 31876504 DOI: 10.1016/s1473-3099(19)30615-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is a fatal disease presenting with rapidly progressive dementia, and most patients die within a year of clinical onset. CJD poses a potential risk of iatrogenic transmission, as it can incubate asymptomatically in humans for decades before becoming clinically apparent. In this Review, we sought evidence to understand the current iatrogenic risk of CJD to public health by examining global evidence on all forms of CJD, including clinical incidence and prevalence of subclinical disease. We found that although CJD, particularly iatrogenic CJD, is rare, the incidence of sporadic CJD is increasing. Incubation periods as long as 40 years have been observed, and all genotypes have now been shown to be susceptible to CJD. Clinicians and surveillance programmes should maintain awareness of CJD to mitigate future incidences of its transmission. Awareness is particularly relevant for sporadic CJD, which occurs in older people in whom clinical presentation could resemble rapidly developing dementia.
Collapse
Affiliation(s)
- Lesley Uttley
- School of Health and Related Research, University of Sheffield, Sheffield, UK.
| | - Christopher Carroll
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ruth Wong
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - David A Hilton
- Department of Neuropathology, University Hospitals Plymouth National Health Service Trust, Plymouth, UK
| | - Matt Stevenson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
47
|
Saá P. Is sporadic Creutzfeldt‐Jakob disease transfusion‐transmissible? Transfusion 2020; 60:655-658. [DOI: 10.1111/trf.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Saá
- Scientific AffairsAmerican Red Cross Gaithersburg MD USA
| |
Collapse
|
48
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
49
|
McNulty EE, Nalls AV, Xun R, Denkers ND, Hoover EA, Mathiason CK. In vitro detection of haematogenous prions in white-tailed deer orally dosed with low concentrations of chronic wasting disease. J Gen Virol 2020; 101:347-361. [PMID: 31846418 PMCID: PMC7416609 DOI: 10.1099/jgv.0.001367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Infectivity associated with prion disease has been demonstrated in blood throughout the course of disease, yet the ability to detect blood-borne prions by in vitro methods remains challenging. We capitalized on longitudinal pathogenesis studies of chronic wasting disease (CWD) conducted in the native host to examine haematogenous prion load by real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification. Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent). These findings make possible the longitudinal assessment of prion disease and deeper investigation of the role haematogenous prions play in prion pathogenesis.
Collapse
Affiliation(s)
- Erin E. McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Randy Xun
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
50
|
Mok TH, Mead S. Preclinical biomarkers of prion infection and neurodegeneration. Curr Opin Neurobiol 2020; 61:82-88. [PMID: 32109717 DOI: 10.1016/j.conb.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/01/2022]
Abstract
Therapeutic strategies and study designs for neurodegenerative diseases have started to explore the potential of preventive treatment in healthy people, emphasising characterisation of biomarkers capable of indicating proximity to clinical onset. This need is even more pressing for individuals at risk of prion disease given its rarity which virtually precludes the probability of recruiting enough numbers for well powered preventive trials based on clinical endpoints. Experimental mouse inoculation studies have revealed a rapid exponential rise in infectious titres followed by a relative plateau of considerable duration before clinical onset. This clinically silent incubation period represents a potential window of opportunity for the adaptation of ultrasensitive prion seeding assays to define the onset of prion infection, and for neurodegenerative biomarker discovery through similarly sensitive digital immunoassay platforms.
Collapse
Affiliation(s)
- Tze How Mok
- National Prion Clinic, Box 98, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London W1W 7FF, United Kingdom
| | - Simon Mead
- National Prion Clinic, Box 98, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, United Kingdom; MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, 33 Cleveland Street, London W1W 7FF, United Kingdom.
| |
Collapse
|