1
|
Ambrosi TH, Taheri S, Chen K, Sinha R, Wang Y, Hunt EJ, Goodnough LH, Murphy MP, Steininger HM, Hoover MY, Felix F, Weldon KC, Koepke LS, Sokol J, Liu DD, Zhao L, Conley SD, Lu WJ, Morri M, Neff NF, Van Rysselberghe NL, Wheeler EE, Wang Y, Leach JK, Saiz A, Wang A, Yang GP, Goodman S, Bishop JA, Gardner MJ, Wan DC, Weissman IL, Longaker MT, Sahoo D, Chan CKF. Human skeletal development and regeneration are shaped by functional diversity of stem cells across skeletal sites. Cell Stem Cell 2025; 32:811-823.e11. [PMID: 40118065 PMCID: PMC12048286 DOI: 10.1016/j.stem.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/17/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
The skeleton is one of the most structurally and compositionally diverse organ systems in the human body, depending on unique cellular dynamisms. Here, we integrate prospective isolation of human skeletal stem cells (hSSCs; CD45-CD235a-TIE2-CD31-CD146-PDPN+CD73+CD164+) from ten skeletal sites with functional assays and single-cell RNA sequencing (scRNA-seq) analysis to identify chondrogenic, osteogenic, stromal, and fibrogenic subtypes of hSSCs during development and their linkage to skeletal phenotypes. We map the distinct composition of hSSC subtypes across multiple skeletal sites and demonstrate their unique in vivo clonal dynamics. We find that age-related changes in bone formation and regeneration disorders stem from a pathological fibroblastic shift in the hSSC pool. Utilizing a Boolean algorithm, we uncover gene regulatory networks that dictate differences in the ability of hSSCs to generate specific skeletal tissues. Importantly, hSSC lineage dynamics are pharmacologically malleable, providing a new strategy to treat aberrant hSSC diversity central to aging and skeletal maladies.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Chen
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuting Wang
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ethan J Hunt
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - L Henry Goodnough
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Franco Felix
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan Sokol
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stephanie D Conley
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Norma F Neff
- Chan Zuckerberg BioHub, San Francisco, CA 94158, USA
| | | | - Erika E Wheeler
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA; Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Augustine Saiz
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Surgery, University of California Davis Health, Sacramento, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - George P Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Julius A Bishop
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Michael J Gardner
- Department of Orthopaedic Surgery, Stanford Hospital and Clinics, Stanford, CA 94063, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, CA 94305, USA
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
3
|
Lin Y, Jiang S, Yao Y, Li H, Jin H, Yang G, Ji B, Li Y. Posttranslational Modification in Bone Homeostasis and Osteoporosis. MedComm (Beijing) 2025; 6:e70159. [PMID: 40170748 PMCID: PMC11959162 DOI: 10.1002/mco2.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Bone is responsible for providing mechanical protection, attachment sites for muscles, hematopoiesis micssroenvironment, and maintaining balance between calcium and phosphorate. As a highly active and dynamically regulated organ, the balance between formation and resorption of bone is crucial in bone development, damaged bone repair, and mineral homeostasis, while dysregulation in bone remodeling impairs bone structure and strength, leading to deficiency in bone function and skeletal disorder, such as osteoporosis. Osteoporosis refers to compromised bone mass and higher susceptibility of fracture, resulting from several risk factors deteriorating the balanced system between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. This balanced system is strictly regulated by translational modification, such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, glycosylation, ADP-ribosylation, S-palmitoylation, citrullination, and so on. This review specifically describes the updating researches concerning bone formation and bone resorption mediated by posttranslational modification. We highlight dysregulated posttranslational modification in osteoblast and osteoclast differentiation. We also emphasize involvement of posttranslational modification in osteoporosis development, so as to elucidate the underlying molecular basis of osteoporosis. Then, we point out translational potential of PTMs as therapeutic targets. This review will deepen our understanding between posttranslational modification and osteoporosis, and identify novel targets for clinical treatment and identify future directions.
Collapse
Affiliation(s)
- Yuzhe Lin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- Xiangya School of Medicine Central South UniversityChangshaChina
| | - Shide Jiang
- The Central Hospital of YongzhouYongzhouChina
| | - Yuming Yao
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Hongfu Jin
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Guang Yang
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Bingzhou Ji
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| | - Yusheng Li
- Department of OrthopedicsXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Weldon KC, Longaker MT, Ambrosi TH. Harnessing the diversity and potential of endogenous skeletal stem cells for musculoskeletal tissue regeneration. Stem Cells 2025; 43:sxaf006. [PMID: 39945760 PMCID: PMC11892563 DOI: 10.1093/stmcls/sxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 03/11/2025]
Abstract
In our aging society, the degeneration of the musculoskeletal system and adjacent tissues is a growing orthopedic concern. As bones age, they become more fragile, increasing the risk of fractures and injuries. Furthermore, tissues like cartilage accumulate damage, leading to widespread joint issues. Compounding this, the regenerative capacity of these tissues declines with age, exacerbating the consequences of fractures and cartilage deterioration. With rising demand for fracture and cartilage repair, bone-derived stem cells have attracted significant research interest. However, the therapeutic use of stem cells has produced inconsistent results, largely due to ongoing debates and uncertainties regarding the precise identity of the stem cells responsible for musculoskeletal growth, maintenance and repair. This review focuses on the potential to leverage endogenous skeletal stem cells (SSCs)-a well-defined population of stem cells with specific markers, reliable isolation techniques, and functional properties-in bone repair and cartilage regeneration. Understanding SSC behavior in response to injury, including their activation to a functional state, could provide insights into improving treatment outcomes. Techniques like microfracture surgery, which aim to stimulate SSC activity for cartilage repair, are of particular interest. Here, we explore the latest advances in how such interventions may modulate SSC function to enhance bone healing and cartilage regeneration.
Collapse
Affiliation(s)
- Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
- School of Medicine, University of California, Sacramento, CA 95817, United States
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| |
Collapse
|
5
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Wang L, Ruan M, Bu Q, Zhao C. Signaling Pathways Driving MSC Osteogenesis: Mechanisms, Regulation, and Translational Applications. Int J Mol Sci 2025; 26:1311. [PMID: 39941080 PMCID: PMC11818554 DOI: 10.3390/ijms26031311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are crucial for skeletal development, homeostasis, and repair, primarily through their differentiation into osteoblasts and other skeletal lineage cells. Key signaling pathways, including Wnt, TGF-β/BMP, PTH, Hedgehog, and IGF, act as critical regulators of MSC osteogenesis, playing pivotal roles in maintaining bone homeostasis and facilitating regeneration. These pathways interact in distinct ways at various stages of bone development, mineralization, and remodeling. This review provides an overview of the molecular mechanisms by which these pathways regulate MSC osteogenesis, their influence on bone tissue formation, and their implications in bone diseases and therapeutic strategies. Additionally, we explore the potential applications of these pathways in bone tissue engineering, with a particular focus on promoting the use of MSCs as seed cells for bone defect repair. Ultimately, this review aims to highlight potential avenues for advancing bone biology research, treating bone disorders, and enhancing regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Chengzhu Zhao
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Seto T, Yukata K, Tsuji S, Takeshima Y, Honda T, Sakamoto A, Takemoto K, Sakai H, Matsuo M, Sasaki Y, Kaneda M, Yoshimura M, Mihara A, Uehara K, Matsugaki A, Nakano T, Harada K, Tahara Y, Iwaisako K, Yanai R, Takeda N, Sakai T, Asagiri M. Methylglyoxal compromises callus mineralization and impairs fracture healing through suppression of osteoblast terminal differentiation. Biochem Biophys Res Commun 2025; 747:151312. [PMID: 39799866 DOI: 10.1016/j.bbrc.2025.151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Impaired fracture healing in diabetic patients leads to prolonged morbidity and increased healthcare costs. Methylglyoxal (MG), a reactive metabolite elevated in diabetes, is implicated in various complications, but its direct impact on bone healing remains unclear. Here, using a non-diabetic murine tibial fracture model, we demonstrate that MG directly impairs fracture healing. Micro-computed tomography revealed decreased volumetric bone mineral density in the callus, while callus volume remained unchanged, resulting in a brittle bone structure. This was accompanied by reduced expression of osteocalcin and bone sialoprotein, both critical for mineralization. Biomechanical analysis indicated that MG reduced the mechanical resilience of the fracture site without altering its elastic strength, suggesting that the impairment was not primarily due to the accumulation of advanced glycation end-products in the bone extracellular matrix. In vitro studies confirmed that non-cytotoxic concentrations of MG inhibited osteoblast maturation and mineralization. Transcriptomic analysis identified downregulation of Osterix, a key transcription factor for osteoblast maturation, without altering Runx2 levels, leading to decreased expression of key mineralization-related factors like osteocalcin. These findings align with clinical observations of reduced circulating osteocalcin levels in diabetic patients, suggesting that the detrimental effects of MG on osteoblasts may extend beyond bone metabolism. Our study highlights MG and MG-sensitive pathways as potential therapeutic targets for improving bone repair in individuals with diabetes and other conditions characterized by elevated MG levels.
Collapse
Affiliation(s)
- Tetsuya Seto
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kiminori Yukata
- Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shunya Tsuji
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan.
| | - Yusuke Takeshima
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Honda
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Akihiko Sakamoto
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenji Takemoto
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroki Sakai
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mayu Matsuo
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yurika Sasaki
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mizuki Kaneda
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Mikako Yoshimura
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Atsushi Mihara
- Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuya Uehara
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Koji Harada
- Department of Nursing, Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sakai
- Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
8
|
Chow SKH, Gao Q, Pius A, Morita M, Ergul Y, Murayama M, Shinohara I, Cekuc MS, Ma C, Susuki Y, Goodman SB. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng Part C Methods 2024; 30:415-430. [PMID: 39311464 DOI: 10.1089/ten.tec.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
This review explores the regenerative potential of key progenitor cell types and therapeutic strategies to improve healing of complex fractures and bone defects. We define, summarize, and discuss the differentiation potential of totipotent, pluripotent, and multipotent stem cells, emphasizing the advantages and shortcomings of cell therapy for bone repair and regeneration. The fundamental role of mesenchymal stem cells is highlighted due to their multipotency to differentiate into the key lineage cells including osteoblasts, osteocytes, and chondrocytes, which are crucial for bone formation and remodeling. Hematopoietic stem cells (HSCs) also play a significant role; immune cells such as macrophages and T-cells modulate inflammation and tissue repair. Osteoclasts are multinucleated cells that are important to bone remodeling. Vascular progenitor (VP) cells are critical to oxygen and nutrient supply. The dynamic interplay among these lineages and their microenvironment is essential for effective bone restoration. Therapies involving cells that are more than "minimally manipulated" are controversial and include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs, derived from early-stage embryos, possess pluripotent capabilities and have shown promise in preclinical studies for bone healing. iPSCs, reprogrammed from somatic cells, offer personalized medicine applications and can differentiate into various tissue-specific cell lines. Minimally manipulative cell therapy approaches such as the use of bone marrow aspirate concentrate (BMAC), exosomes, and various biomaterials for local delivery are explored for their effectiveness in bone regeneration. BMAC, which contains mostly immune cells but few mesenchymal and VPs, probably improves bone healing by facilitating paracrine-mediated intercellular communication. Exosome isolation harnesses the biological signals and cellular by-products that are a primary source for cell crosstalk and activation. Safe, efficacious, and cost-effective strategies to enhance bone healing using novel cellular therapies are part of a changing paradigm to modulate the inflammatory, repair, and regenerative pathways to achieve earlier more robust tissue healing and improved physical function. Impact Statement Stem cell therapy holds immense potential for bone healing due to its ability to regenerate damaged tissue. Nonmanipulated bone marrow aspirate contains mesenchymal stem cells that promote bone repair and reduce healing time. Induced pluripotent stem cells offer the advantage of creating patient-specific cells that can differentiate into osteoblasts, aiding in bone regeneration. Other delivery methods, such as scaffold-based techniques, enhance stem cell integration and function. Collectively, these approaches can improve treatment outcomes, reduce recovery periods, and advance our understanding of bone healing mechanisms, making them pivotal in orthopedic research and regenerative medicine.
Collapse
Affiliation(s)
- Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Alexa Pius
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yasemin Ergul
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mehmet Sertac Cekuc
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chao Ma
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Bok S, Sun J, Greenblatt MB. Are osteoblasts multiple cell types? A new diversity in skeletal stem cells and their derivatives. J Bone Miner Res 2024; 39:1386-1392. [PMID: 39052334 PMCID: PMC11425698 DOI: 10.1093/jbmr/zjae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Only in the past decade have skeletal stem cells (SSCs), a cell type displaying formal evidence of stemness and serving as the ultimate origin of mature skeletal cell types such as osteoblasts, been defined. Here, we discuss a pair of recent reports that identify that SSCs do not represent a single cell type, but rather a family of related cells that each have characteristic anatomic locations and distinct functions tailored to the physiology of those sites. The distinct functional properties of these SSCs in turn provide a basis for the diseases of their respective locations. This concept emerges from one report identifying a distinct vertebral skeletal stem cell driving the high rate of breast cancer metastasis to the spine over other skeletal sites and a report identifying 2 SSCs in the calvaria that interact to mediate both physiologic calvarial mineralization and pathologic calvarial suture fusion in craniosynostosis. Despite displaying functional differences, these SSCs are each united by shared features including a shared series of surface markers and parallel differentiation hierarchies. We propose that this diversity at the level of SSCs in turn translates into a similar diversity at the level of mature skeletal cell types, including osteoblasts, with osteoblasts derived from different SSCs each displaying different functional and transcriptional characteristics reflecting their cell of origin. In this model, osteoblasts would represent not a single cell type, but rather a family of related cells each with distinct functions, paralleling the functional diversity in SSCs.
Collapse
Affiliation(s)
- Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
- Skeletal Health and Orthopedic Research Program, Hospital for Special Surgery, New York NY 10065, United States
| |
Collapse
|
10
|
Li N, Shi B, Li Z, Han J, Sun J, Huang H, Yallowitz AR, Bok S, Xiao S, Wu Z, Chen Y, Xu Y, Qin T, Huang R, Zheng H, Shen R, Meng L, Greenblatt MB, Xu R. Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta. Bone Res 2024; 12:46. [PMID: 39183236 PMCID: PMC11345453 DOI: 10.1038/s41413-024-00349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type I collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogenitor niche as is a strategy to treat OI.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Baohong Shi
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zan Li
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jie Han
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jun Sun
- Research Division, Hospital for Special Surgery, New York, NY, 10065, USA
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Alisha R Yallowitz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Shuang Xiao
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zuoxing Wu
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Tian Qin
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Rui Huang
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Rong Shen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lin Meng
- Department of Electronic and Computer Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Matthew B Greenblatt
- Research Division, Hospital for Special Surgery, New York, NY, 10065, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
11
|
Yuan G, Lin X, Liu Y, Greenblatt MB, Xu R. Skeletal stem cells in bone development, homeostasis, and disease. Protein Cell 2024; 15:559-574. [PMID: 38442300 PMCID: PMC11259547 DOI: 10.1093/procel/pwae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Tissue-resident stem cells are essential for development and repair, and in the skeleton, this function is fulfilled by recently identified skeletal stem cells (SSCs). However, recent work has identified that SSCs are not monolithic, with long bones, craniofacial sites, and the spine being formed by distinct stem cells. Recent studies have utilized techniques such as fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing to investigate the involvement of SSCs in bone development, homeostasis, and disease. These investigations have allowed researchers to map the lineage commitment trajectory of SSCs in different parts of the body and at different time points. Furthermore, recent studies have shed light on the characteristics of SSCs in both physiological and pathological conditions. This review focuses on discussing the spatiotemporal distribution of SSCs and enhancing our understanding of the diversity and plasticity of SSCs by summarizing recent discoveries.
Collapse
Affiliation(s)
- Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ying Liu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
13
|
Liu J, Dou G, Zhao W, Hu J, Jiang Z, Wang W, Wang H, Liu S, Jin Y, Zhao Y, Chen Q, Li B. Exosomes derived from impaired liver aggravate alveolar bone loss via shuttle of Fasn in type 2 diabetes mellitus. Bioact Mater 2024; 33:85-99. [PMID: 38024229 PMCID: PMC10658186 DOI: 10.1016/j.bioactmat.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) exacerbates irreversible bone loss in periodontitis, but the mechanism of impaired bone regeneration caused by the abnormal metabolic process of T2DM remains unclear. Exosomes are regarded as the critical mediator in diabetic impairment of regeneration via organ or tissue communication. Here, we find that abnormally elevated exosomes derived from metabolically impaired liver in T2DM are significantly enriched in the periodontal region and induced pyroptosis of periodontal ligament cells (PDLCs). Mechanistically, fatty acid synthase (Fasn), the main differentially expressed molecule in diabetic exosomes results in ectopic fatty acid synthesis in PDLCs and activates the cleavage of gasdermin D. Depletion of liver Fasn effectively mitigates pyroptosis of PDLCs and alleviates bone loss. Our findings elucidate the mechanism of exacerbated bone loss in diabetic periodontitis and reveal the exosome-mediated organ communication in the "liver-bone" axis, which shed light on the prevention and treatment of diabetic bone disorders in the future.
Collapse
Affiliation(s)
- Jiani Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Geng Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wanmin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Wenzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hanzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yimin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
14
|
Li Y, Cai Z, Ma W, Bai L, Luo E, Lin Y. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis. Bone Res 2024; 12:14. [PMID: 38424439 PMCID: PMC10904802 DOI: 10.1038/s41413-024-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic osteoporosis (DOP) is a significant complication that poses continuous threat to the bone health of patients with diabetes; however, currently, there are no effective treatment strategies. In patients with diabetes, the increased levels of ferroptosis affect the osteogenic commitment and differentiation of bone mesenchymal stem cells (BMSCs), leading to significant skeletal changes. To address this issue, we aimed to target ferroptosis and propose a novel therapeutic approach for the treatment of DOP. We synthesized ferroptosis-suppressing nanoparticles, which could deliver curcumin, a natural compound, to the bone marrow using tetrahedral framework nucleic acid (tFNA). This delivery system demonstrated excellent curcumin bioavailability and stability, as well as synergistic properties with tFNA. Both in vitro and in vivo experiments revealed that nanoparticles could enhance mitochondrial function by activating the nuclear factor E2-related factor 2 (NRF2)/glutathione peroxidase 4 (GPX4) pathway, inhibiting ferroptosis, promoting the osteogenic differentiation of BMSCs in the diabetic microenvironment, reducing trabecular loss, and increasing bone formation. These findings suggest that curcumin-containing DNA tetrahedron-based ferroptosis-suppressing nanoparticles have a promising potential for the treatment of DOP and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Zhengwen Cai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Long Bai
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
15
|
Shema C, Lu Y, Wang L, Zhang Y. Monocyte alteration in elderly hip fracture healing: monocyte promising role in bone regeneration. Immun Ageing 2024; 21:12. [PMID: 38308312 PMCID: PMC10837905 DOI: 10.1186/s12979-024-00413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Individual aged with various change in cell and cellular microenvironments and the skeletal system undergoes physiological changes that affect the process of bone fracture healing. These changes are accompanied by alterations in regulating critical genes involved in this healing process. Unfortunately, the elderly are particularly susceptible to hip bone fractures, which pose a significant burden associated with higher morbidity and mortality rates. A notable change in older adults is the increased expression of activation, adhesion, and migration markers in circulating monocytes. However, there is a decrease in the expression of co-inhibitory molecules. Recently, research evidence has shown that the migration of specific monocyte subsets to the site of hip fracture plays a crucial role in bone resorption and remodeling, especially concerning age-related factors. In this review, we summarize the current knowledge about uniqueness characteristics of monocytes, and their potential regulation and moderation to enhance the healing process of hip fractures. This breakthrough could significantly contribute to the comprehension of aging process at a fundamental aging mechanism through this initiative would represent a crucial stride for diagnosing and treating age related hip fracture.
Collapse
Affiliation(s)
- Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yining Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
| | - Yingze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China.
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
16
|
Maisenbacher TC, Ehnert S, Histing T, Nüssler AK, Menger MM. Advantages and Limitations of Diabetic Bone Healing in Mouse Models: A Narrative Review. Biomedicines 2023; 11:3302. [PMID: 38137522 PMCID: PMC10741210 DOI: 10.3390/biomedicines11123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes represents a major risk factor for impaired fracture healing. Type 2 diabetes mellitus is a growing epidemic worldwide, hence an increase in diabetes-related complications in fracture healing can be expected. However, the underlying mechanisms are not yet completely understood. Different mouse models are used in preclinical trauma research for fracture healing under diabetic conditions. The present review elucidates and evaluates the characteristics of state-of-the-art murine diabetic fracture healing models. Three major categories of murine models were identified: Streptozotocin-induced diabetes models, diet-induced diabetes models, and transgenic diabetes models. They all have specific advantages and limitations and affect bone physiology and fracture healing differently. The studies differed widely in their diabetic and fracture healing models and the chosen models were evaluated and discussed, raising concerns in the comparability of the current literature. Researchers should be aware of the presented advantages and limitations when choosing a murine diabetes model. Given the rapid increase in type II diabetics worldwide, our review found that there are a lack of models that sufficiently mimic the development of type II diabetes in adult patients over the years. We suggest that a model with a high-fat diet that accounts for 60% of the daily calorie intake over a period of at least 12 weeks provides the most accurate representation.
Collapse
Affiliation(s)
- Tanja C. Maisenbacher
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| | - Andreas K. Nüssler
- Siegfried Weller Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (S.E.); (A.K.N.)
| | - Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Clinic Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (T.H.); (M.M.M.)
| |
Collapse
|
17
|
Steppe L, Megafu M, Tschaffon-Müller ME, Ignatius A, Haffner-Luntzer M. Fracture healing research: Recent insights. Bone Rep 2023; 19:101686. [PMID: 38163010 PMCID: PMC10757288 DOI: 10.1016/j.bonr.2023.101686] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 01/03/2024] Open
Abstract
Bone has the rare capability of scarless regeneration that enables the complete restoration of the injured bone area. In recent decades, promising new technologies have emerged from basic, translational and clinical research for fracture treatment; however, 5-10 % of all bone fractures still fail to heal successfully or heal in a delayed manner. Several comorbidities and risk factors have been identified which impair bone healing and might lead to delayed bone union or non-union. Therefore, a considerable amount of research has been conducted to elucidate molecular mechanisms of successful and delayed fracture healing to gain further insights into this complex process. One focus of recent research is to investigate the complex interactions of different cell types and the action of progenitor cells during the healing process. Of particular interest is also the identification of patient-specific comorbidities and how these affect fracture healing. In this review, we discuss the recent knowledge about progenitor cells for long bone repair and the influence of comorbidities such as diabetes, postmenopausal osteoporosis, and chronic stress on the healing process. The topic selection for this review was made based on the presented studies at the 2022 annual meeting of the European Calcified Tissue Society (ECTS) in Helsinki.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | - Michael Megafu
- A.T. Still University Kirksville College of Osteopathic Medicine, USA
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | | |
Collapse
|
18
|
Ghuloum FI, Stevens LA, Johnson CA, Riobo-Del Galdo NA, Amer MH. Towards modular engineering of cell signalling: Topographically-textured microparticles induce osteogenesis via activation of canonical hedgehog signalling. BIOMATERIALS ADVANCES 2023; 154:213652. [PMID: 37837904 DOI: 10.1016/j.bioadv.2023.213652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Polymer microparticles possess great potential as functional building blocks for advanced bottom-up engineering of complex tissues. Tailoring the three-dimensional architectural features of culture substrates has been shown to induce osteogenesis in mesenchymal stem cells in vitro, but the molecular mechanisms underpinning this remain unclear. This study proposes a mechanism linking the activation of Hedgehog signalling to the osteoinductive effect of surface-engineered, topographically-textured polymeric microparticles. In this study, mesenchymal progenitor C3H10T1/2 cells were cultured on smooth and dimpled poly(D,l-lactide) microparticles to assess differences in viability, cellular morphology, proliferation, and expression of a range of Hedgehog signalling components and osteogenesis-related genes. Dimpled microparticles induced osteogenesis and activated the Hedgehog signalling pathway relative to smooth microparticles and 2D-cultured controls without the addition of exogenous biochemical factors. We observed upregulation of the osteogenesis markers Runt-related transcription factor2 (Runx2) and bone gamma-carboxyglutamate protein 2 (Bglap2), as well as the Hedgehog signalling components, glioma associated oncogene homolog 1 (Gli1), Patched1 (Ptch1), and Smoothened (Smo). Treatment with the Smo antagonist KAAD-cyclopamine confirmed the involvement of Smo in Gli1 target gene activation, with a significant reduction in the expression of Gli1, Runx2 and Bglap2 (p ≤ 0.001) following KAAD-cyclopamine treatment. Overall, our study demonstrates the role of the topographical microenvironment in the modulation of Hedgehog signalling, highlighting the potential for tailoring substrate topographical design to offer cell-instructive 3D microenvironments. Topographically-textured microparticles allow the modulation of Hedgehog signalling in vitro without adding exogenous biochemical agonists, thereby eliminating potential confounding artefacts in high-throughput drug screening applications.
Collapse
Affiliation(s)
- Fatmah I Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Lee A Stevens
- Low Carbon Energy and Resources Technologies Research Group, Faculty of Engineering, University of Nottingham, UK
| | - Colin A Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
19
|
Qing J, Guo Q, Lv L, Zhang X, Liu Y, Heng BC, Li Z, Zhang P, Zhou Y. Organoid Culture Development for Skeletal Systems. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:545-557. [PMID: 37183418 DOI: 10.1089/ten.teb.2023.0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Organoids are widely considered to be ideal in vitro models that have been widely applied in many fields, including regenerative medicine, disease research and drug screening. It is distinguished from other three-dimensional in vitro culture model systems by self-organization and sustainability in long-term culture. The three core components of organoid culture are cells, exogenous factors, and culture matrix. Due to the complexity of bone tissue, and heterogeneity of osteogenic stem/progenitor cells, it is challenging to construct organoids for modeling skeletal systems. In this study, we examine current progress in the development of skeletal system organoid culture systems and analyze the current research status of skeletal stem cells, their microenvironmental factors, and various potential organoid culture matrix candidates to provide cues for future research trajectory in this field. Impact Statement The emergence of organoids has brought new opportunities for the development of many biomedical fields. The bone organoid field still has much room for exploration. This review discusses the characteristics distinguishing organoids from other three-dimensional model systems and examines current progress in the organoid production of skeletal systems. In addition, based on core elements of organoid cultures, three main problems that need to be solved in bone organoid generation are further analyzed. These include the heterogeneity of skeletal stem cells, their microenvironmental factors, and potential organoid culture matrix candidates. This information provides direction for the future research of bone organoids.
Collapse
Affiliation(s)
- Jia Qing
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Qian Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Boon Chin Heng
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| |
Collapse
|
20
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Sun Y, Boyko T, Marecic O, Struck D, Mann RK, Andrew TW, Lopez M, Tong X, Goodman SB, Yang F, Longaker MT, Chan CKF, Yang GP. Del1 Is a Growth Factor for Skeletal Progenitor Cells in the Fracture Callus. Biomolecules 2023; 13:1214. [PMID: 37627279 PMCID: PMC10452420 DOI: 10.3390/biom13081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Failure to properly form bone or integrate surgical implants can lead to morbidity and additional surgical interventions in a significant proportion of orthopedic surgeries. While the role of skeletal stem cells (SSCs) in bone formation and repair is well-established, very little is known about the factors that regulate the downstream Bone, Cartilage, Stromal, Progenitors (BCSPs). BCSPs, as transit amplifying progenitor cells, undergo multiple mitotic divisions to expand the pool of lineage committed progenitors allowing stem cells to preserve their self-renewal and stemness. Del1 is a protein widely expressed in the skeletal system, but its deletion led to minimal phenotype changes in the uninjured mouse. In this paper, we demonstrate that Del1 is a key regulator of BCSP expansion following injury. In Del1 knockout mice, there is a significant reduction in the number of BCSPs which leads to a smaller callus and decreased bone formation compared with wildtype (WT) littermates. Del1 serves to promote BCSP proliferation and prevent apoptosis in vivo and in vitro. Moreover, exogenous Del1 promotes proliferation of aged human BCSPs. Our results highlight the potential of Del1 as a therapeutic target for improving bone formation and implant success. Del1 injections may improve the success of orthopedic surgeries and fracture healing by enhancing the proliferation and survival of BCSPs, which are crucial for generating new bone tissue during the process of bone formation and repair.
Collapse
Affiliation(s)
- Yuxi Sun
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Tatiana Boyko
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
| | - Owen Marecic
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
| | - Danielle Struck
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
| | - Randall K. Mann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
| | - Tom W. Andrew
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
| | - Michael Lopez
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
| | - Xinming Tong
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA; (X.T.); (S.B.G.); (F.Y.)
| | - Stuart B. Goodman
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA; (X.T.); (S.B.G.); (F.Y.)
| | - Fan Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA; (X.T.); (S.B.G.); (F.Y.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles K. F. Chan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (R.K.M.); (T.W.A.); (M.T.L.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - George P. Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Birmingham VA Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
22
|
Xu R, Li N, Shi B, Li Z, Han J, Sun J, Yallowitz A, Bok S, Xiao S, Wu Z, Chen Y, Xu Y, Qin T, Lin Z, Zheng H, Shen R, Greenblatt M. Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in a mouse model of osteogenesis imperfecta. RESEARCH SQUARE 2023:rs.3.rs-3153957. [PMID: 37546916 PMCID: PMC10402191 DOI: 10.21203/rs.3.rs-3153957/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogentior niche as is a strategy to treat OI.
Collapse
Affiliation(s)
- Ren Xu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University
| | | | | | - Zan Li
- First Affiliated Hospital of Zhejiang University
| | | | - Jun Sun
- Weill Cornell Medicine, Cornell University
| | | | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Shuang Xiao
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | - Zouxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | | | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Tian Qin
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhiming Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | - Haiping Zheng
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen
| | | | | |
Collapse
|
23
|
Fujikawa H, Kojima H, Terashima T, Katagi M, Yayama T, Kumagai K, Mori K, Saito H, Imai S. Expression of proinflammatory cytokines and proinsulin by bone marrow-derived cells for fracture healing in long-term diabetic mice. BMC Musculoskelet Disord 2023; 24:585. [PMID: 37464323 DOI: 10.1186/s12891-023-06710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) causes bone dysfunction due to poor bone quality, leading to severe deterioration in patient of quality of life. The mechanisms of bone metabolism in DM remain unclear, although chemical and/or mechanical factors are known to disrupt the homeostasis of osteoblasts and osteoclasts. The purpose of this study was to identify the changes of osteoblasts and osteoclasts under long-term hyperglycaemic conditions, using a mouse fracture model of long-term hyperglycemia (LT-HG). METHODS C57BL/6J mice and green fluorescent protein (GFP) -positive bone marrow transplanted C57BL/6J mice with LT-HG, maintained under a state of hyperglycaemia for 2 months, were used in this study. After the experimental fracture, we examined the immunohistochemical expression of proinsulin and tumor necrosis factor (TNF) -α at the fracture site. C57BL/6J fracture model mice without hyperglycaemia were used as controls. RESULTS In the LT-HG mice, chondrocyte resorption was delayed, and osteoblasts showed an irregular arrangement at the callus site. The osteoclasts were scattered with a decrement in the number of nuclei. The expression of proinsulin was confirmed in bone marrow derived cells (BMDCs) with neovascularization 2 and 3 weeks after fracture. Immunopositivity for TNF-α was also confirmed in immature chondrocytes and BMDCs with neovascularization at 2 weeks, and the number of positive cells was not decreased at 3 weeks. Examination of GFP-grafted hyperglycaemic mice showed that the majority of cells at the fracture site were GFP-positive. Immunohistochemistry showed that the rate of double positives was 15% for GFP and proinsulin and 47% for GFP and TNF-α. CONCLUSION LT-HG induces an increase in the number of proinsulin and TNF-α positive cells derived from BMDCs. We suggest that proinsulin and TNF-α positive cells are involved in both bone formation and bone resorption after fracture under hyperglycaemic conditions, resulting in the delay of bone healing.
Collapse
Affiliation(s)
- Hitomi Fujikawa
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan.
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, 520-2192, Shiga, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, 520-2192, Shiga, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, 520-2192, Shiga, Japan
| | - Takafumi Yayama
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan
| | - Kosuke Kumagai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan
| | - Kanji Mori
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan.
| | - Hideki Saito
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan
| | - Shinji Imai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, 520-2192, Shiga, Japan
| |
Collapse
|
24
|
Zhou Q, He LL, Du LZ, Zhao NB, Lv CP, Liang JF. Impaired function of skeletal stem cells derived from growth plates in ovariectomized mice. J Bone Miner Metab 2023; 41:163-170. [PMID: 36847866 DOI: 10.1007/s00774-023-01406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/18/2023] [Indexed: 03/01/2023]
Abstract
INTRODUCTION Mouse skeletal stem cells (mSSCs, CD45-Ter119-Tie2-CD51+Thy-6C3-CD105-CD200+population) are identified in growth plates (GP) and play important roles in bone regeneration. However, the role of mSSCs in osteoporosis remains unclear. MATERIALS AND METHODS The GP were stained by HE staining, and the mSSC lineage was analyzed by flow cytometry at postnatal of 14 days and 30 days in wild-type mice. The mice (8 weeks) were either sham operated or ovariectomy (OVX) and then sacrificed at 2, 4 and 8 w. The GP were stained by Movat staining, and mSSC lineage was analyzed. Then, mSSCs were sorted by fluorescence-activated cell sorting (FACS); the clonal ability, chondrogenic differentiation and osteogenic differentiation were evaluated, and the changed genes were analyzed by RNA-seq. RESULTS The percentage of mSSCs were decreased with the narrow GP. Heights of GP were decreased significantly in 8w-ovx mice compared with 8w-sham mice. We found the percentage of mSSCs were decreased in mice at 2w after ovx, but the cell numbers were not changed. Further, the percentage and cell numbers of mSSCs were not changed at 4w and 8w after ovx. Importantly, the clonal ability, chondrogenic differentiation and osteogenic differentiation of mSSCs were impaired at 8w after ovx. We found 114 genes were down-regulated in mSSCs, including skeletal developmental genes such as Col10a1, Col2a1, Mef2c, Sparc, Matn1, Scube2 and Dlx5. On the contrary, 526 genes were up-regulated, including pro-inflammatory genes such as Csf1, Nfkbla, Nfatc2, Nfkb1 and Nfkb2. CONCLUSION Function of mSSCs was impaired by up-regulating pro-inflammatory genes in ovx-induced osteoporosis.
Collapse
Affiliation(s)
- Q Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - L L He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - L Z Du
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - N B Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - C P Lv
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - J F Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
25
|
An Inexpensive 3D Printed Mouse Model of Successful, Complication-free Long Bone Distraction Osteogenesis. Plast Reconstr Surg Glob Open 2023; 11:e4674. [PMID: 36798717 PMCID: PMC9925097 DOI: 10.1097/gox.0000000000004674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 02/17/2023]
Abstract
Distraction osteogenesis (DO) is used for skeletal defects; however, up to 50% of cases exhibit complications. Previous mouse models of long bone DO have been anecdotally hampered by postoperative complications, expense, and availability. To improve clinical techniques, cost-effective, reliable animal models are needed. Our focus was to develop a new mouse tibial distractor, hypothesized to result in successful, complication-free DO. Methods A lightweight tibial distractor was developed using CAD and 3D printing. The device was fixed to the tibia of C57Bl/6J mice prior to osteotomy. Postoperatively, mice underwent 5 days latency, 10 days distraction (0.15 mm every 12 hours), and 28 days consolidation. Bone regeneration was examined on postoperative day 43 using micro-computed tomography (μCT) and Movat's modified pentachrome staining on histology (mineralized volume fraction and pixels, respectively). Costs were recorded. We compared cohorts of 11 mice undergoing sham, DO, or acute lengthening (distractor acutely lengthened 3.0 mm). Results The histological bone regenerate was significantly increased in DO (1,879,257 ± 155,415 pixels) compared to acute lengthening (32847 ± 1589 pixels) (P < 0.0001). The mineralized volume fraction (bone/total tissue volume) of the regenerate was significantly increased in DO (0.9 ± 0.1) compared to acute lengthening (0.7 ± 0.1) (P < 0.001). There was no significant difference in bone regenerate between DO and sham. The distractor was relatively low cost ($11), with no complications. Conclusions Histology and µCT analysis confirmed that the proposed tibial DO model resulted in successful bone formation. Our model is cost-effective and reproducible, enabling implementation in genetically dissectible transgenic mice.
Collapse
|
26
|
Denervation during mandibular distraction osteogenesis results in impaired bone formation. Sci Rep 2023; 13:2097. [PMID: 36747028 PMCID: PMC9902545 DOI: 10.1038/s41598-023-27921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Mandibular distraction osteogenesis (DO) is mediated by skeletal stem cells (SSCs) in mice, which enact bone regeneration via neural crest re-activation. As peripheral nerves are essential to progenitor function during development and in response to injury, we questioned if denervation impairs mandibular DO. C57Bl6 mice were divided into two groups: DO with a segmental defect in the inferior alveolar nerve (IAN) at the time of mandibular osteotomy ("DO Den") and DO with IAN intact ("DO Inn"). DO Den demonstrated significantly reduced histological and radiological osteogenesis relative to DO Inn. Denervation preceding DO results in reduced SSC amplification and osteogenic potential in mice. Single cell RNA sequencing analysis revealed that there was a predominance of innervated SSCs in clusters dominated by pathways related to bone formation. A rare human patient specimen was also analyzed and suggested that histological, radiological, and transcriptional alterations seen in mouse DO may be conserved in the setting of denervated human mandible distraction. Fibromodulin (FMOD) transcriptional and protein expression were reduced in denervated relative to innervated mouse and human mandible regenerate. Finally, when exogenous FMOD was added to DO-Den and DO-Inn SSCs undergoing in vitro osteogenic differentiation, the osteogenic potential of DO-Den SSCs was increased in comparison to control untreated DO-Den SSCs, modeling the superior osteogenic potential of DO-Inn SSCs.
Collapse
|
27
|
Guo J, Wang F, Hu Y, Luo Y, Wei Y, Xu K, Zhang H, Liu H, Bo L, Lv S, Sheng S, Zhuang X, Zhang T, Xu C, Chen X, Su J. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep Med 2023; 4:100881. [PMID: 36603578 PMCID: PMC9873828 DOI: 10.1016/j.xcrm.2022.100881] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Systematic bone loss is commonly complicated with inflammatory bowel diseases (IBDs) with unclear pathogenesis and uncertain treatment. In experimental colitis mouse models established by dextran sulfate sodium and IL-10 knockout induced with piroxicam, bone mass and quality are significantly decreased. Colitis mice demonstrate a lower bone formation rate and fewer osteoblasts in femur. Bone marrow mesenchymal stem/stromal cells (BMSCs) from colitis mice tend to differentiate into adipocytes rather than osteoblasts. Serum from patients with IBD promotes adipogenesis of human BMSCs. RNA sequencing reveals that colitis downregulates Wnt signaling in BMSCs. For treatment, exosomes with Golgi glycoprotein 1 inserted could carry Wnt agonist 1 and accumulate in bone via intravenous administration. They could alleviate bone loss, promote bone formation, and accelerate fracture healing in colitis mice. Collectively, BMSC commitment in inflammatory microenvironment contributes to lower bone quantity and quality and could be rescued by redirecting differentiation toward osteoblasts through bone-targeted drug delivery.
Collapse
Affiliation(s)
- Jiawei Guo
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Luo
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Lumin Bo
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shunli Lv
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shihao Sheng
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xinchen Zhuang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tao Zhang
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Organoid Research Center, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
28
|
Sun H, Xu J, Wang Y, Shen S, Xu X, Zhang L, Jiang Q. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater 2023; 24:477-496. [PMID: 36714330 PMCID: PMC9843284 DOI: 10.1016/j.bioactmat.2022.12.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Large bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells. Therefore, reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair. Herein, we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels (CPP-L/GelMA) as a "bone microenvironment regulative hydrogel" to reverse the hypoxic microenvironment in bone defects region. CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase (CAT) and ROS-responsive oxygen-releasing nanoparticles (PFC@PLGA/PPS) co-loaded liposome (CCP-L) and GelMA hydrogels. Under hypoxic condition, CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks. The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis. Finally, CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway. Hence, CPP-L/GelMA, as a bone microenvironment regulative hydrogel for bone tissue respiration, can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region, possessing of great clinical therapeutic potential.
Collapse
Key Words
- Alizarin red staining, ARS
- Alkaline phosphatase, ALP
- Bone defect
- Bone marrow mesenchymal stem cells, BMSC
- Bovine serum albumin, BSA
- Brain and muscle arnt-like protein 1
- Brain and muscle arnt-like protein 1, BMAL1
- Catalase, CAT
- Fetal liver kinase-1, Flk-1
- Human umbilical vein endothelial cells, HUVEC
- Hypoxic microenvironment
- Liposome, Lip
- Microtubule-associated proteins light chain 3, LC3
- Nuclear factor (erythroid-derived 2)-like 2, NRF2
- Osteocalcin, OCN
- Osteopontin, OPN
- Perfluorocarbon, PFC
- Phosphate-buffered saline, PBS
- Poly (D, L-lactide-co-glycolide), PLGA
- Poly (propylene sulphide), PPS
- Prolonged oxygen generation
- Reactive oxygen species responsiveness
- Reactive oxygen species, ROS
- Receptor activator of nuclear factor-kappa B ligand, RANKL
- Runt-related transcription factor 2, RUNX2
- Short interfering RNA, siRNA
- Soy phosphatidylcholine, SPC
- Type I collagen, Col I
- Western blot, WB
Collapse
Affiliation(s)
- Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, Jiangsu, PR China
| | - Juan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
29
|
Yuan G, Li Z, Lin X, Li N, Xu R. New perspective of skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:280-294. [PMID: 36846511 PMCID: PMC9947737 DOI: 10.12336/biomatertransl.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023]
Abstract
Tissue-resident stem cells are a group of stem cells distinguished by their capacity for self-renewal and multilineage differentiation capability with tissue specificity. Among these tissue-resident stem cells, skeletal stem cells (SSCs) were discovered in the growth plate region through a combination of cell surface markers and lineage tracing series. With the process of unravelling the anatomical variation of SSCs, researchers were also keen to investigate the developmental diversity outside the long bones, including in the sutures, craniofacial sites, and spinal regions. Recently, fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing have been used to map lineage trajectories by studying SSCs with different spatiotemporal distributions. The SSC niche also plays a pivotal role in regulating SSC fate, such as cell-cell interactions mediated by multiple signalling pathways. This review focuses on discussing the spatial and temporal distribution of SSCs, and broadening our understanding of the diversity and plasticity of SSCs by summarizing the progress of research into SSCs in recent years.
Collapse
Affiliation(s)
- Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Zan Li
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| |
Collapse
|
30
|
Huang G, Li W, Kan H, Lu X, Liao W, Zhao X. Genetic influences of the effect of circulating inflammatory cytokines on osteoarthritis in humans. Osteoarthritis Cartilage 2022:S1063-4584(22)00961-X. [PMID: 36529415 DOI: 10.1016/j.joca.2022.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The causal relationship between inflammatory cytokines and Osteoarthritis (OA) has not been well investigated. This study investigated the causal role of inflammatory cytokines in the risk of OA and total joint arthroplasty using the Mendelian randomization (MR) method. METHOD Single nucleotide polymorphisms (SNPs) robustly associated with inflammatory cytokines were used as instrumental variables. The inverse-variance weighted (IVW) method with false discovery rate (FDR) adjusted P-value (q-value) for multiple comparisons were used as the main MR method to estimate causal effects based on the summary-level data for OA (knee and hip OA, respectively) and total joint arthroplasty (TJA). Sensitivity analyses validated the robustness of the results and ensured the absence of heterogeneity and horizontal pleiotropy. RESULTS After FDR adjustment, macrophage colony-stimulating factor (MCSF) and vascular endothelial growth factor (VEGF) were identified as causally associated with knee OA (MCSF, odds ratio [OR]: 1.16, 95% confidence interval [CI]: 1.09-1.23, q = 5.05 × 10-5; VEGF, OR: 1.09, 95% CI: 1.04-1.15, q = 0.011). We also observed that genetically predicted MCSF and VEGF were positively associated with the risk of TJA, and MCP3 was negatively associated with for the risk of TJA, although the effects seem fairly modest. Sensitivity analysis further excluded the influence of heterogeneity and horizontal pleiotropy. CONCLUSIONS Inflammatory cytokines, namely MCSF and VEGF, were causally associated with knee OA, which could enhance our understanding of inflammation in OA pathology.
Collapse
Affiliation(s)
- G Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - W Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - H Kan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - X Lu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - W Liao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - X Zhao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopedics and Tramatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Feng H, Jiang B, Xing W, Sun J, Greenblatt MB, Zou W. Skeletal stem cells: origins, definitions, and functions in bone development and disease. LIFE MEDICINE 2022; 1:276-293. [PMID: 36811112 PMCID: PMC9938638 DOI: 10.1093/lifemedi/lnac048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Skeletal stem cells (SSCs) are tissue-specific stem cells that can self-renew and sit at the apex of their differentiation hierarchy, giving rise to mature skeletal cell types required for bone growth, maintenance, and repair. Dysfunction in SSCs is caused by stress conditions like ageing and inflammation and is emerging as a contributor to skeletal pathology, such as the pathogenesis of fracture nonunion. Recent lineage tracing experiments have shown that SSCs exist in the bone marrow, periosteum, and resting zone of the growth plate. Unraveling their regulatory networks is crucial for understanding skeletal diseases and developing therapeutic strategies. In this review, we systematically introduce the definition, location, stem cell niches, regulatory signaling pathways, and clinical applications of SSCs.
Collapse
Affiliation(s)
- Heng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Jiang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
32
|
Andrew TW, Koepke LS, Wang Y, Lopez M, Steininger H, Struck D, Boyko T, Ambrosi TH, Tong X, Sun Y, Gulati GS, Murphy MP, Marecic O, Tevlin R, Schallmoser K, Strunk D, Seita J, Goodman SB, Yang F, Longaker MT, Yang GP, Chan CKF. Sexually dimorphic estrogen sensing in skeletal stem cells controls skeletal regeneration. Nat Commun 2022; 13:6491. [PMID: 36310174 PMCID: PMC9618571 DOI: 10.1038/s41467-022-34063-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Sexually dimorphic tissues are formed by cells that are regulated by sex hormones. While a number of systemic hormones and transcription factors are known to regulate proliferation and differentiation of osteoblasts and osteoclasts, the mechanisms that determine sexually dimorphic differences in bone regeneration are unclear. To explore how sex hormones regulate bone regeneration, we compared bone fracture repair between adult male and female mice. We found that skeletal stem cell (SSC) mediated regeneration in female mice is dependent on estrogen signaling but SSCs from male mice do not exhibit similar estrogen responsiveness. Mechanistically, we found that estrogen acts directly on the SSC lineage in mice and humans by up-regulating multiple skeletogenic pathways and is necessary for the stem cell's ability to self- renew and differentiate. Our results also suggest a clinically applicable strategy to accelerate bone healing using localized estrogen hormone therapy.
Collapse
Affiliation(s)
- Tom W Andrew
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren S Koepke
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yuting Wang
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Michael Lopez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Holly Steininger
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Danielle Struck
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tatiana Boyko
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Thomas H Ambrosi
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xinming Tong
- Department of Bioengineering, Stanford University, Palo Alto, CA, 94305, USA
| | - Yuxi Sun
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Birmingham VA Medical Center, Birmingham, AL, 35233, USA
| | - Gunsagar S Gulati
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew P Murphy
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Owen Marecic
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruth Tevlin
- Division of Plastic and Reconstructive Surgery, Stanford Hospital and Clinics, Palo Alto, CA, USA
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Department for Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Department for Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
- Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Jun Seita
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Palo Alto, CA, 94305, USA
- Department of Orthopedic Surgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Michael T Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - George P Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Birmingham VA Medical Center, Birmingham, AL, 35233, USA.
| | - Charles K F Chan
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
33
|
TNF overexpression and dexamethasone treatment impair chondrogenesis and bone growth in an additive manner. Sci Rep 2022; 12:18189. [PMID: 36307458 PMCID: PMC9616891 DOI: 10.1038/s41598-022-22734-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Children with chronic inflammation are often treated with glucocorticoids (GCs) and many of them experience growth retardation. It is poorly understood how GCs interact with inflammatory cytokines causing growth failure as earlier experimental studies have been performed in healthy animals. To address this gap of knowledge, we used a transgenic mouse model where human TNF is overexpressed (huTNFTg) leading to chronic polyarthritis starting from the first week of age. Our results showed that femur bone length and growth plate height were significantly decreased in huTNFTg mice compared to wild type animals. In the growth plates of huTNFTg mice, increased apoptosis, suppressed Indian hedgehog, decreased hypertrophy, and disorganized chondrocyte columns were observed. Interestingly, the GC dexamethasone further impaired bone growth, accelerated chondrocyte apoptosis and reduced the number of chondrocyte columns in huTNFTg mice. We conclude that TNF and dexamethasone separately suppress chondrogenesis and bone growth when studied in an animal model of chronic inflammation. Our data give a possible mechanistic explanation to the commonly observed growth retardation in children with chronic inflammatory diseases treated with GCs.
Collapse
|
34
|
Goodnough LH, Ambrosi TH, Steininger HM, Butler MGK, Hoover MY, Choo H, Van Rysselberghe NL, Bellino MJ, Bishop JA, Gardner MJ, Chan CKF. Cross-species comparisons reveal resistance of human skeletal stem cells to inhibition by non-steroidal anti-inflammatory drugs. Front Endocrinol (Lausanne) 2022; 13:924927. [PMID: 36093067 PMCID: PMC9454294 DOI: 10.3389/fendo.2022.924927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Fracture healing is highly dependent on an early inflammatory response in which prostaglandin production by cyclo-oxygenases (COX) plays a crucial role. Current patient analgesia regimens favor opioids over Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) since the latter have been implicated in delayed fracture healing. While animal studies broadly support a deleterious role of NSAID treatment to bone-regenerative processes, data for human fracture healing remains contradictory. In this study, we prospectively isolated mouse and human skeletal stem cells (SSCs) from fractures and compared the effect of various NSAIDs on their function. We found that osteochondrogenic differentiation of COX2-expressing mouse SSCs was impaired by NSAID treatment. In contrast, human SSCs (hSSC) downregulated COX2 expression during differentiation and showed impaired osteogenic capacity if COX2 was lentivirally overexpressed. Accordingly, short- and long-term treatment of hSSCs with non-selective and selective COX2 inhibitors did not affect colony forming ability, chondrogenic, and osteogenic differentiation potential in vitro. When hSSCs were transplanted ectopically into NSG mice treated with Indomethacin, graft mineralization was unaltered compared to vehicle injected mice. Thus, our results might contribute to understanding species-specific differences in NSAID sensitivity during fracture healing and support emerging clinical data which conflicts with other earlier observations that NSAID administration for post-operative analgesia for treatment of bone fractures are unsafe for patients.
Collapse
Affiliation(s)
- L. Henry Goodnough
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Thomas H. Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Holly M. Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - M. Gohazrua K. Butler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Malachia Y. Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - HyeRan Choo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Michael J. Bellino
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Julius A. Bishop
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Michael J. Gardner
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, United States
| | - Charles K. F. Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
35
|
Titan AL, Davitt M, Foster D, Salhotra A, Menon S, Chen K, Fahy E, Lopez M, Jones RE, Baiu I, Burcham A, Januszyk M, Gurtner G, Fox P, Chan C, Quarto N, Longaker M. Partial Tendon Injury at the Tendon-to-Bone Enthesis Activates Skeletal Stem Cells. Stem Cells Transl Med 2022; 11:715-726. [PMID: 35640155 PMCID: PMC9299518 DOI: 10.1093/stcltm/szac027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
The tendon enthesis plays a critical role in facilitating movement and reducing stress within joints. Partial enthesis injuries heal in a mechanically inferior manner and never achieve healthy tissue function. The cells responsible for tendon-to-bone healing remain incompletely characterized and their origin is unknown. Here, we evaluated the putative role of mouse skeletal stem cells (mSSCs) in the enthesis after partial-injury. We found that mSSCs were present at elevated levels within the enthesis following injury and that these cells downregulated TGFβ signaling pathway elements at both the RNA and protein levels. Exogenous application of TGFβ post-injury led to a reduced mSSC response and impaired healing, whereas treatment with a TGFβ inhibitor (SB43154) resulted in a more robust mSSC response. Collectively, these data suggest that mSSCs may augment tendon-to-bone healing by dampening the effects of TGFβ signaling within the mSSC niche.
Collapse
Affiliation(s)
- Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Davitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Deshka Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Siddharth Menon
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan Fahy
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Lopez
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ioana Baiu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Austin Burcham
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Paige Fox
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles Chan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| |
Collapse
|
36
|
Tevlin R, desJardins-Park H, Huber J, DiIorio S, Longaker M, Wan D. Musculoskeletal tissue engineering: Adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials 2022; 286:121544. [DOI: 10.1016/j.biomaterials.2022.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
|
37
|
Liang J, Wang J, Ji Y, Zhao Q, Han L, Miron R, Zhang Y. Identification of Dental Stem Cells Similar to Skeletal Stem Cells. J Dent Res 2022; 101:1092-1100. [DOI: 10.1177/00220345221084199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem and progenitor cells play important roles in the development and maintenance of teeth and bone. Surface markers expressed in bone marrow–derived mesenchymal stem cells are also expressed in dental tissue–derived stem cells. Mouse skeletal stem cells (mSSCs, CD45−Ter119−Tie2−CD51+Thy−6C3−CD105−CD200+) and human skeletal stem cells (hSSCs, CD45−CD235a−TIE2−CD31−CD146−PDPN+CD73+CD164+) have been identified in bone and shown to play important roles in skeletal development and regeneration. However, it is unclear whether dental tissues also harbor mSSC or hSSC populations. Here, we employed rainbow tracers and found that clonal expansion occurred in mouse dental tissues similar to that in bone. We sorted the mSSC population from mouse periodontal ligament (mPDL) tissue and mouse dental pulp (mDP) tissue in the lower incisors by fluorescence-activated cell sorting (FACS). In addition, we demonstrated that mPDL-derived skeletal stem cells (mPDL-SSCs) and mDP-derived skeletal stem cells (mDP-SSCs) have similar clonogenic capacity, as well as cementogenic and odontogenic potential, but not adipogenic potential, similar to the characteristics of mSSCs. Moreover, we found that the dental tissue–derived mSSC population plays an important role in repairing clipped incisors. Importantly, we sorted the hSSC population from human periodontal ligament (hPDL) and human dental pulp (hDP) tissue in molars and identified its stem cell characteristics. Finally, hPDL-like and hDP-like structures were generated after transplanting hPDL-SSCs and hDP-SSCs beneath the renal capsules. In conclusion, we demonstrated that mouse and human PDL and DP tissues harbor dental stem cells similar to mSSCs and hSSCs, respectively, providing a precise stem cell population for the exploration of dental diseases.
Collapse
Affiliation(s)
- J.F. Liang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J. Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y.T. Ji
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q. Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - L.T. Han
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - R.J. Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Y.F. Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Figeac F, Tencerova M, Ali D, Andersen TL, Appadoo DRC, Kerckhofs G, Ditzel N, Kowal JM, Rauch A, Kassem M. Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells. Stem Cells 2022; 40:149-164. [DOI: 10.1093/stmcls/sxab011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high fat diet (HFD) and insulinopenia induced by treatment with streptozotocin (STZ), we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by – 28.4±7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06±38.71%, and increased density of SCA1+ (+74.99± 29.19%) but not Runx2 +osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82± 33.05%), senescence gene signature (≈106.66± 34.03%) and LAMIN B1 - senescent cell density (+225.18± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9± 6.2% which was inversely correlated with glucose levels (R 2=0.48, p<0.004) and callus adipose tissue area (R 2=0.3711, p<0.01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycaemia per se and not just insulin levels is detrimental for bone healing.
Collapse
Affiliation(s)
- Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Current Molecular Physiology of Bone, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital, Odense
- Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Denmark
| | | | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Institute for Experimental and Clinical Research, UCLouvain, Woluwe, Belgium
- Department of Material Science and Engineering, KU Leuven, Leuven, Belgium
| | - Nicholas Ditzel
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Justyna M Kowal
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Alexander Rauch
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Kumar N, Saraber P, Ding Z, Kusumbe AP. Diversity of Vascular Niches in Bones and Joints During Homeostasis, Ageing, and Diseases. Front Immunol 2021; 12:798211. [PMID: 34975909 PMCID: PMC8718446 DOI: 10.3389/fimmu.2021.798211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
The bones and joints in the skeletal system are composed of diverse cell types, including vascular niches, bone cells, connective tissue cells and mineral deposits and regulate whole-body homeostasis. The capacity of maintaining strength and generation of blood lineages lies within the skeletal system. Bone harbours blood and immune cells and their progenitors, and vascular cells provide several immune cell type niches. Blood vessels in bone are phenotypically and functionally diverse, with distinct capillary subtypes exhibiting striking changes with age. The bone vasculature has a special impact on osteogenesis and haematopoiesis, and dysregulation of the vasculature is associated with diverse blood and bone diseases. Ageing is associated with perturbed haematopoiesis, loss of osteogenesis, increased adipogenesis and diminished immune response and immune cell production. Endothelial and perivascular cells impact immune cell production and play a crucial role during inflammation. Here, we discuss normal and maladapted vascular niches in bone during development, homeostasis, ageing and bone diseases such as rheumatoid arthritis and osteoarthritis. Further, we discuss the role of vascular niches during bone malignancy.
Collapse
Affiliation(s)
| | | | | | - Anjali P. Kusumbe
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Tissue and Tumor Microenvironments Group, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif 2021; 55:e13162. [PMID: 34918401 PMCID: PMC8780935 DOI: 10.1111/cpr.13162] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bone formation is a complex regeneration process that was regulated by many signalling pathways, such as Wnt, Notch, BMP and Hedgehog (Hh). All of these signalling have been demonstrated to participate in the bone repair process. In particular, one promising signalling pathway involved in bone formation and homeostasis is the Hh pathway. According to present knowledge, Hh signalling plays a vital role in the development of various tissues and organs in the embryo. In adults, the dysregulation of Hh signalling has been verified to be involved in bone‐related diseases in terms of osteoarthritis, osteoporosis and bone fracture; and during the repair processes, Hh signalling could be reactivated and further modulate bone formation. In this chapter, we summarize our current understanding on the function of Hh signalling in bone formation and homeostasis. Additionally, the current therapeutic strategies targeting this cascade to coordinate and mediate the osteogenesis process have been reviewed.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chun-Hui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Bone marrow CD73 + mesenchymal stem cells display increased stemness in vitro and promote fracture healing in vivo. Bone Rep 2021; 15:101133. [PMID: 34632004 PMCID: PMC8493579 DOI: 10.1016/j.bonr.2021.101133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent and considered to be of great potential for regenerative medicine. We could show recently (Breitbach, Kimura et al. 2018) that a subpopulation of MSCs as well as sinusoidal endothelial cells (sECs) in the bone marrow (BM) of CD73-EGFP reporter mice could be labeled in vivo. We took advantage of this model to explore the plasticity and osteogenic potential of CD73-EGFP+ MSCs in vitro and their role in the regenerative response upon bone lesion in vivo. Herein we show that isolated CD73-EGFP+ MSCs displayed more pronounced stemness and stronger in vitro differentiation capacity into the osteogenic lineage compared to CD73-EGFP− MSCs. In a bone fracture model, endogenous BM-resident CD73-EGFP+ MSCs were found to migrate to the fracture site and differentiate into cartilage and bone cells. Our analysis also showed that CD73-EGFP+ sECs contributed to the neovascularization of the fracture site. In addition, grafting of CD73-EGFP+ MSCs into acute bone lesions revealed their capacity to differentiate into chondrocytes and osteocytes in vivo and their contribution to callus formation in the regeneration process of fracture healing. Thus, CD73+ MSCs display enhanced stemness and osteogenic differentiation potential in vitro and in vivo illustrating a prominent role of the CD73+ MSC subpopulation to promote fracture repair. CD73+ mesenchymal stem cells (MSCs) display pronounced proliferation potential. CD73+ MSCs show high in vitro osteogenic differentiation capacity. Endogenous bone marrow-resident CD73+ MSCs contribute to fracture healing. Grafted CD73+ MSCs promote bone formation upon fracture repair.
Collapse
|
42
|
Ko KI, Sculean A, Graves DT. Diabetic wound healing in soft and hard oral tissues. Transl Res 2021; 236:72-86. [PMID: 33992825 PMCID: PMC8554709 DOI: 10.1016/j.trsl.2021.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
There is significant interest in understanding the cellular mechanisms responsible for expedited healing response in various oral tissues and how they are impacted by systemic diseases. Depending upon the types of oral tissue, wound healing may occur by predominantly re-eptihelialization, by re-epithelialization with substantial new connective tissue formation, or by a a combination of both plus new bone formation. As a result, the cells involved differ and are impacted by systemic diaseses in various ways. Diabetes mellitus is a prevalent metabolic disorder that impairs barrier function and healing responses throughout the human body. In the oral cavity, diabetes is a known risk factor for exacerbated periodontal disease and delayed wound healing, which includes both soft and hard tissue components. Here, we review the mechanisms of diabetic oral wound healing, particularly on impaired keratinocyte proliferation and migration, altered level of inflammation, and reduced formation of new connective tissue and bone. In particular, diabetes inhibits the expression of mitogenic growth factors whereas that of pro-inflammatory cytokines is elevated through epigenetic mechanisms. Moreover, hyperglycemia and oxidative stress induced by diabetes prevents the expansion of mesengenic cells that are involved in both soft and hard tissue oral wounds. A better understanding of how diabetes influences the healing processes is crucial for the prevention and treatment of diabetes-associated oral complications.
Collapse
Affiliation(s)
- Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104.
| |
Collapse
|
43
|
Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nat Commun 2021; 12:5256. [PMID: 34489407 PMCID: PMC8421385 DOI: 10.1038/s41467-021-25410-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1. Humans and other large mammals heal wounds by forming fibrotic scar tissue with diminished function. Here, the authors show that disrupting mechanotransduction through the focal adhesion kinase pathway in large animals accelerates healing, prevents fibrosis, and enhances skin regeneration.
Collapse
|
44
|
Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 2021; 597:256-262. [PMID: 34381212 PMCID: PMC8721524 DOI: 10.1038/s41586-021-03795-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/05/2021] [Indexed: 12/22/2022]
Abstract
Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Owen Marecic
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Adrian McArdle
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xinming Tong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan Sokol
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eun Young Seo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Lopez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel E Brewer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Shamik Mascharak
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Laura Lu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Oyinkansola Ajanaku
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephanie D Conley
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan
| | | | | | - Debashis Sahoo
- Pediatrics, and Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford University, Stanford, CA, USA
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Marin C, Tuts J, Luyten FP, Vandamme K, Kerckhofs G. Impaired soft and hard callus formation during fracture healing in diet-induced obese mice as revealed by 3D contrast-enhanced computed tomography imaging. Bone 2021; 150:116008. [PMID: 33992820 DOI: 10.1016/j.bone.2021.116008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022]
Abstract
The impact of diabetes mellitus on bone fracture healing is clinically relevant as the patients experience delayed fracture healing. Even though efforts have been made to understand the detrimental effects of type 2 diabetes mellitus (T2DM) on the fracture healing process, the exact mechanisms causing the pathophysiological outcomes remain unclear. The aim of this study was to assess alterations in bone fracture healing (tibial fracture surgery, intramedullary pinning) of diet-induced obese (DIO) mice, and to investigate the in vitro properties of osteochondroprogenitors derived from the diabetic micro-environment. High-resolution contrast-enhanced microfocus X-ray computed tomography (CE-CT) enabled a simultaneous 3D assessment of the amount and spatial distribution of the regenerated soft and hard tissues during fracture healing and revealed that osteogenesis as well as chondrogenesis are altered in DIO mice. Compared to age-matched lean controls, DIO mice presented a decreased bone volume fraction and increased callus volume and adiposity at day 14 post-fracture. Of note, bone turnover was found altered in DIO mice relative to controls, evidenced by decreased blood serum osteocalcin and increased serum CTX levels. The in vitro data revealed that not only the osteogenic and adipogenic differentiation of periosteum-derived cells (PDCs) were altered by hyperglycemic (HG) conditions, but also the chondrogenic differentiation. Elevated PPARγ expression in HG conditions confirmed the observed increase in differentiated adipocytes in vitro. Finally, chondrogenesis-related genes COL2 and COL10 were downregulated for PDCs treated with HG medium, confirming that chondrogenic differentiation is compromised in vitro and suggesting that this may affect callus formation and maturation during the fracture healing process in vivo. Altogether, these results provide novel insights into the alterations of long bone fracture repair and suggest a link between HG-induced dysfunctionality of osteochondroprogenitor differentiation and fracture healing impairment under T2DM conditions.
Collapse
Affiliation(s)
- Carlos Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium; Biomaterials - BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Jolien Tuts
- Biomaterials - BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium; Biomaterials - BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium; Department of Material Science and Engineering, KU Leuven, Leuven, Belgium; Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Institute for Experimental and Clinical Research, UCLouvain, Woluwe, Belgium.
| |
Collapse
|
46
|
Linnemann C, Savini L, Rollmann MF, Histing T, Nussler AK, Ehnert S. Altered Secretome of Diabetic Monocytes Could Negatively Influence Fracture Healing-An In Vitro Study. Int J Mol Sci 2021; 22:9212. [PMID: 34502120 PMCID: PMC8430926 DOI: 10.3390/ijms22179212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a main risk factor for delayed fracture healing and fracture non-unions. Successful fracture healing requires stimuli from different immune cells, known to be affected in diabetics. Especially, application of mononuclear cells has been proposed to promote wound and fracture healing. Thus, aim was to investigate the effect of pre-/diabetic conditions on mononuclear cell functions essential to promote osteoprogenitor cell function. We here show that pre-/diabetic conditions suppress the expression of chemokines, e.g., CCL2 and CCL8 in osteoprogenitor cells. The associated MCP-1 and MCP-2 were significantly reduced in serum of diabetics. Both MCPs chemoattract mononuclear THP-1 cells. Migration of these cells is suppressed under hyperglycemic conditions, proposing that less mononuclear cells invade the site of fracture in diabetics. Further, we show that the composition of cytokines secreted by mononuclear cells strongly differ between diabetics and controls. Similar is seen in THP-1 cells cultured under hyperinsulinemia or hyperglycemia. The altered secretome reduces the positive effect of the THP-1 cell conditioned medium on migration of osteoprogenitor cells. In summary, our data support that factors secreted by mononuclear cells may support fracture healing by promoting migration of osteoprogenitor cells but suggest that this effect might be reduced in diabetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (C.L.); (L.S.); (M.F.R.); (T.H.); (A.K.N.)
| |
Collapse
|
47
|
Menon S, Salhotra A, Shailendra S, Tevlin R, Ransom RC, Januszyk M, Chan CKF, Behr B, Wan DC, Longaker MT, Quarto N. Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis. Nat Commun 2021; 12:4640. [PMID: 34330896 PMCID: PMC8324898 DOI: 10.1038/s41467-021-24801-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
Cranial sutures are major growth centers for the calvarial vault, and their premature fusion leads to a pathologic condition called craniosynostosis. This study investigates whether skeletal stem/progenitor cells are resident in the cranial sutures. Prospective isolation by FACS identifies this population with a significant difference in spatio-temporal representation between fusing versus patent sutures. Transcriptomic analysis highlights a distinct signature in cells derived from the physiological closing PF suture, and scRNA sequencing identifies transcriptional heterogeneity among sutures. Wnt-signaling activation increases skeletal stem/progenitor cells in sutures, whereas its inhibition decreases. Crossing Axin2LacZ/+ mouse, endowing enhanced Wnt activation, to a Twist1+/- mouse model of coronal craniosynostosis enriches skeletal stem/progenitor cells in sutures restoring patency. Co-transplantation of these cells with Wnt3a prevents resynostosis following suturectomy in Twist1+/- mice. Our study reveals that decrease and/or imbalance of skeletal stem/progenitor cells representation within sutures may underlie craniosynostosis. These findings have translational implications toward therapeutic approaches for craniosynostosis.
Collapse
Affiliation(s)
- Siddharth Menon
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Siny Shailendra
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruth Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan C Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles K F Chan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Björn Behr
- Department of Plastic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Dipartimento di Scienze Biomediche Avanzate, Universita' degli Studi di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
48
|
Ambrosi TH, Sinha R, Steininger HM, Hoover MY, Murphy MP, Koepke LS, Wang Y, Lu WJ, Morri M, Neff NF, Weissman IL, Longaker MT, Chan CKF. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. eLife 2021; 10:e66063. [PMID: 34280086 PMCID: PMC8289409 DOI: 10.7554/elife.66063] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/02/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal stem and progenitor cell populations are crucial for bone physiology. Characterization of these cell types remains restricted to heterogenous bulk populations with limited information on whether they are unique or overlap with previously characterized cell types. Here we show, through comprehensive functional and single-cell transcriptomic analyses, that postnatal long bones of mice contain at least two types of bone progenitors with bona fide skeletal stem cell (SSC) characteristics. An early osteochondral SSC (ocSSC) facilitates long bone growth and repair, while a second type, a perivascular SSC (pvSSC), co-emerges with long bone marrow and contributes to shape the hematopoietic stem cell niche and regenerative demand. We establish that pvSSCs, but not ocSSCs, are the origin of bone marrow adipose tissue. Lastly, we also provide insight into residual SSC heterogeneity as well as potential crosstalk between the two spatially distinct cell populations. These findings comprehensively address previously unappreciated shortcomings of SSC research.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
| | | | - Norma F Neff
- Chan Zuckerberg BioHubSan FranciscoUnited States
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Ludwig Center for Cancer Stem Cell Biology and Medicine at Stanford UniversityStanfordUnited States
| | - Michael T Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Surgery, Stanford University School of MedicineStanfordUnited States
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford UniversityStanfordUnited States
| | - Charles KF Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Department of Surgery, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
49
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
50
|
Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today 2021; 26:1226-1244. [PMID: 33684524 DOI: 10.1016/j.drudis.2021.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have emerged as key players in regulating the fate and function of stem cells from both non-hematopoietic and hematopoietic lineages in bone marrow, and thus affect the osteoblastogenesis-osteoclastogenesis balance and bone homeostasis. Accumulating evidence has linked ROS and associated oxidative stress with the progression of bone disorders, and ROS-based therapeutic strategies have appeared to achieve favorable outcomes in bone. We review current knowledge of the multifactorial roles and mechanisms of ROS as a target in bone pathology. In addition, we discuss emerging ROS-based therapeutic strategies that show potential for bone therapy. Finally, we highlight the opportunities and challenges facing ROS-targeted stem cell therapeutics for improving bone health.
Collapse
|