1
|
Huang C, Moradi S, Sholeh M, Tabaei FM, Lai T, Tan B, Meng J, Azizian K. Global trends in antimicrobial resistance of Enterococcus faecium: a systematic review and meta-analysis of clinical isolates. Front Pharmacol 2025; 16:1505674. [PMID: 40260375 PMCID: PMC12009923 DOI: 10.3389/fphar.2025.1505674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/28/2025] [Indexed: 04/23/2025] Open
Abstract
Background Multidrug-resistant bacteria are associated with a high number of deaths and pose a significant global concern. In recent decades, among these resistant bacteria, Enterococcus faecium, a hospital-acquired pathogen, has attracted more attention. Objective The present study aims to document the current state of resistance in E. faecium globally by considering several variables, including geographical locations, temporal trends, and sources of infection. Methods We searched studies in PubMed, Scopus, and Web of Science (30 November 2022). All statistical analyses were carried out using the statistical package R. Results Our meta-analysis of antibiotic resistance across various clinical isolates revealed substantial heterogeneity and variability. The average resistance proportions ranged from 2% for linezolid to 62.8% for erythromycin, with significant differences observed across different time periods, countries, and World Health Organization regional offices. Conclusion Our findings confirm the high antibacterial activity of linezolid against E. faecium isolates. Additionally, our investigation reveals a gradual increase and a concerning upward trend in resistance rates for nearly all agents in recent years. However, the significant reduction in resistance rates for certain antibiotics suggests that these drugs could potentially regain their effectiveness in the future.
Collapse
Affiliation(s)
- Chen Huang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Samaneh Moradi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Faezeh Motallebi Tabaei
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tingting Lai
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Tan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingjing Meng
- College of Health, Binzhou Polytechnic, Binzhou, Shandong, China
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
2
|
Wang Y, Xu W, Guo S, Xu S, Wang J, Zhang S, Kuang Y, Jin P. Enterococci for human health: A friend or foe? Microb Pathog 2025; 201:107381. [PMID: 39983880 DOI: 10.1016/j.micpath.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Enterococci are widely distributed in nature and exhibit good temperature and pH tolerance, making them suitable for industrial fermentation. It can produce bacteriocins, natural antibacterial substances utilized in food preservation. Some Enterococci are employed as probiotics to regulate human immunity and maintain healthy intestinal environments. However, recent scientific studies have highlighted the pathogenicity and multidrug resistance of Enterococci, classifying it as an important pathogen in clinical infections. Moreover, increasing evidence has linked Enterococcus sp., particularly Enterococcus faecalis and Enterococcus faecium, to clinical diseases, raising concerns about their safety and posing the question, how should we approach the conflicting nature of the pathogenic and beneficial effects of Enterococci? This review provides the recent advancements in Enterococci research and incorporates the perspectives of international authoritative organizations and institutions to comprehensively analyze the beneficial and harmful characteristics of Enterococci in the fields of science, clinical and industrial applications, aiming to address three important questions: whether Enterococci are beneficial or harmful to humans, their potential use in medical treatments, and the criteria to evaluate their safety. The goal is to explore the feasibility of the standardized use of Enterococci and provide guidance on the scientific selection and utilization of probiotics.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Wenfeng Xu
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Sirui Guo
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Shuo Xu
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Jing Wang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Shanshan Zhang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Yongmei Kuang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China.
| |
Collapse
|
3
|
Wang M, Peng N, Qin W, Zhu H, Abbas K, Li Y, Li Z, Wang J, Bi H. "Self-Capped" Carbon Dots with Excellent Anti-Bacteria Effect and an Extremely Low Cytotoxicity Applied for Hand Sanitizer. Adv Healthc Mater 2025; 14:e2404770. [PMID: 39962832 DOI: 10.1002/adhm.202404770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Indexed: 04/18/2025]
Abstract
The increasing challenge of antibiotic resistance necessitates the development of novel antibacterial strategies. In this study, a novel kind of self-capped carbon dots is synthesized from methylene blue (MB) and cetyltrimethylammonium chloride (CTAC), and named as MC-CDs that are specifically designed for enhanced photodynamic antibacterial activity. Under 660 nm laser irradiation, MC-CDs demonstrate high inactivation rates of Escherichia coli (96.83%) and Staphylococcus aureus (94.44%) at 14 and 18 µg mL-1 effectively, disrupting bacterial cell membranes. The incorporation of zinc cations (Zn2+) doping further enhances the antibacterial potential of MC-CDs, enabling substantial efficacy even in the absence of light due to improved electrostatic interactions with bacterial membranes. In comparison to commercial agents such as salicylic acid, p-chloro-m-xylenol, and triclosan, Zn@MC-CDs exhibit superior antibacterial performance. When formulated into a hand sanitizer, Zn@MC-CDs maintained over 90% efficacy, displaying excellent stability and extremely low cytotoxicity, highlighting their potential for safe and effective use in personal hygiene products. This study introduces self-capped carbon dot as a promising antibacterial agent, addressing a critical need for advanced and reliable solutions in infection control.
Collapse
Affiliation(s)
- Meiyan Wang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Nannan Peng
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Weixia Qin
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Haimei Zhu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Khurram Abbas
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Yan Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
4
|
Macesic N, Cottingham H, Wisniewski JA, Blakeway LV, Theegala R, Pragastis K, Stewardson A, Bass P, Gritt M, Spilsbury S, Del Rosario-Kelly D, Dennison A, Spelman DW, Jenney AW, Peleg AY. Hospital Enterococcus faecium demonstrates distinct environmental and patient reservoirs: a genomic point prevalence survey. Infect Control Hosp Epidemiol 2025; 46:1-4. [PMID: 40114494 PMCID: PMC12034451 DOI: 10.1017/ice.2025.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
We assessed the hospital environment as a reservoir of vancomycin-resistant E. faecium (VRE) and compared environmental VRE isolates to bloodstream infection E. faecium isolates. We identified distinct environmental and patient reservoirs, with the environment dominated by vanB VRE. Environment-clinical reservoir spillover accounted for 292/895 (33%) of putative transmission links.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Jessica A. Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Luke V. Blakeway
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Ravali Theegala
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Andrew Stewardson
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | - Pauline Bass
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | - Megan Gritt
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | - Stephanie Spilsbury
- Infection Prevention & Healthcare Epidemiology, Alfred Health, Melbourne, Australia
| | | | | | - Denis W. Spelman
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Health, Melbourne, Australia
| | - Adam W.J. Jenney
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Health, Melbourne, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Duarte Bernardino C, Lee M, Ren Q, Ruehle B. Facile Spray-Coating of Antimicrobial Silica Nanoparticles for High-Touch Surface Protection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12507-12519. [PMID: 39939280 PMCID: PMC11873980 DOI: 10.1021/acsami.4c18916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
The rising threat from infectious pathogens poses an ever-growing challenge. Metal-based nanomaterials have gained a great deal of attention as active components in antimicrobial coatings. Here, we report on the development of readily deployable, sprayable antimicrobial surface coatings for high-touch stainless steel surfaces that are ubiquitous in many healthcare facilities to combat the spread of pathogens. We synthesized mesoporous silica nanoparticles (MSNs) with different surface functional groups, namely, amine (MSN-NH2), carboxy (MSN-COOH), and thiol groups (MSN-SH). These were chosen specifically due to their high affinity to copper and silver ions, which were used as antimicrobial payloads and could be incorporated into the mesoporous structure through favorable host-guest interactions, allowing us to find the most favorable combinations to achieve antimicrobial efficacy against various microbes on dry or semidry high-touch surfaces. The antimicrobial MSNs were firmly immobilized on stainless steel through a simple two-step spray-coating process. First, the stainless steel surfaces are primed with sprayable polyelectrolyte solutions acting as adhesion layers, and then, the loaded nanoparticle dispersions are spray-coated on top. The employed polyelectrolytes were selected and functionalized specifically to adhere well to stainless steel substrates while at the same time being complementary to the MSN surface groups to enhance the adhesion, wettability, homogeneity, and stability of the coatings. The antimicrobial properties of the nanoparticle suspension and the coatings were tested against three commonly found pathogenic bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, as well as a fungal pathogen, Candida albicans. Especially MSN-SH loaded with silver ions showed excellent antimicrobial efficacy against all tested pathogens under application-relevant, (semi)dry conditions. The findings obtained here facilitate our understanding of the correlation between the surface properties, payloads, and antimicrobial activity and show a new pathway toward simple and easily deployable solutions to combat the spread of pathogens with the help of sprayable antimicrobial surface coatings.
Collapse
Affiliation(s)
- Carolina Duarte Bernardino
- Federal
Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
- Humboldt
University Berlin, Unter
den Linden 6, D-10117 Berlin, Germany
| | - Mihyun Lee
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory
for Biointerfaces, Empa, Swiss Federal Laboratories
for Materials and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bastian Ruehle
- Federal
Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| |
Collapse
|
6
|
Chen M, Cui R, Hong S, Zhu W, Yang Q, Li J, Nie Z, Zhang X, Ye Y, Xue Y, Wang D, Hong Y, Drlica K, Niu J, Zhao X. Broad-spectrum tolerance to disinfectant-mediated bacterial killing due to mutation of the PheS aminoacyl tRNA synthetase. Proc Natl Acad Sci U S A 2025; 122:e2412871122. [PMID: 39899725 PMCID: PMC11831201 DOI: 10.1073/pnas.2412871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Disinfectants are essential tools for controlling infectious diseases and maintaining sterile conditions in many medical and food-industry settings. Recent work revealed that a deficiency in the carbohydrate phosphotransferase system (PTS) confers pan-tolerance to killing by diverse disinfectant types through its interaction with the cAMP-CRP regulatory network. The present work characterized a pan-tolerance mutant obtained by enrichment using phenol as a lethal probe and an Escherichia coli PTS null mutant as a parental strain. The resulting super-pan-tolerant mutant, which harbored an F158C substitution in PheS, inhibited bacterial killing by multiple disinfectant classes with surprisingly little effect on antimicrobial lethality. The PheS substitution, which was expected to lower substrate recognition efficiency and result in deacylated tRNAphe occupying the ribosomal A site, activated relA expression and synthesis of ppGpp, even in the absence of disinfectant exposure. ppGpp, along with DksA, increased RpoS function by activating promoters of dsrA and iraP, two genes whose products increase the expression and stability of RpoS. Subsequently, RpoS upregulated the expression of genes encoding a universal stress protein (UspB) and an oxidative stress peroxidase (KatE), which preconditioned bacteria to better survive a variety of disinfectants. Disinfectant-mediated accumulation of reactive oxygen species (ROS) and bacterial killing were abolished/reduced by exogenous dimethyl sulfoxide and by a PheS F158C substitution up-regulating genes encoding ROS-detoxifying enzymes (katE, sodA, oxyR, ahpC). These data identify a pheS mutation-triggered, ppGpp-stimulated transcriptional regulatory cascade that negates biocide-mediated lethality, thereby tying the stringent response to protection from ROS-mediated biocide lethality.
Collapse
Affiliation(s)
- Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Runbo Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Jiahao Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Zihan Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xue Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yanghui Ye
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yuzhi Hong
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ07103
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| |
Collapse
|
7
|
Spettel K, Bumberger D, Kriz R, Frank S, Loy M, Galazka S, Suchomel M, Lagler H, Makristathis A, Willinger B. In vitro long-term exposure to chlorhexidine or triclosan induces cross-resistance against azoles in Nakaseomyces glabratus. Antimicrob Resist Infect Control 2025; 14:2. [PMID: 39849551 PMCID: PMC11755926 DOI: 10.1186/s13756-024-01511-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Topical antiseptics are crucial for preventing infections and reducing transmission of pathogens. However, commonly used antiseptic agents have been reported to cause cross-resistance to other antimicrobials in bacteria, which has not yet been described in yeasts. This study aims to assess the in vitro efficacy of antiseptics against clinical and reference isolates of Candida albicans and Nakaseomyces glabratus, and whether prolonged exposure to antiseptics promotes the development of antifungal (cross)resistance. METHODS A high-throughput approach for in vitro resistance development was established to simultaneously expose 96 C. albicans and N. glabratus isolates to increasing concentrations of a given antiseptic - chlorhexidine, triclosan or octenidine. Susceptibility testing and whole genome sequencing of yeast isolates pre- and post-exposure were performed. RESULTS Long-term exposure to antiseptics does not result in the development of stable resistance to the antiseptics themselves. However, 50 N. glabratus isolates acquired resistance to azole antifungals after long-term exposure to triclosan or chlorhexidine, revealing newly acquired mutations in the PDR1 and PMA1 genes. CONCLUSIONS Chlorhexidine as well as triclosan, but not octenidine, were able to introduce selective pressure promoting resistance to azole antifungals. Although we assessed this phenomenon only in vitro, these findings warrant critical monitoring in clinical settings.
Collapse
Affiliation(s)
- Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
| | - Dominik Bumberger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Richard Kriz
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, Vienna, 1100, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Sarah Frank
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Madita Loy
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Sonia Galazka
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, Vienna, 1220, Austria
| | - Miranda Suchomel
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, 1090, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, 1090, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
8
|
Wu W, Xiao S, Han L, Wu Q. Antimicrobial resistance, virulence gene profiles, and molecular epidemiology of enterococcal isolates from patients with urinary tract infections in Shanghai, China. Microbiol Spectr 2025; 13:e0121724. [PMID: 39612477 PMCID: PMC11705914 DOI: 10.1128/spectrum.01217-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024] Open
Abstract
Urinary tract infections (UTIs) are among the most prevalent infectious diseases, yet there is still limited understanding of the epidemiology of Enterococcal strains isolated from UTI patients in Shanghai. This study aims to elucidate the antimicrobial resistance profiles, virulence gene carriage, and molecular epidemiology of selected Enterococcal strains from UTI patients in Shanghai. A cohort of 80 Enterococcus faecalis and 40 Enterococcus faecium clinical isolates were randomly selected from UTI patients from October 2022 to March 2023. No vancomycin-resistant strains were identified based on minimum inhibitory concentration (MIC) testing. However, five strains of linezolid-resistant E. faecalis were identified, all of which were confirmed to be optrA-positive through whole-genome sequencing (WGS), with ST300 being reported as the first instance of this ST type in China. Polymerase chain reaction (PCR) assays were employed to ascertain the presence of virulence genes and multi-locus sequence type (MLST). In E. faecalis, the most common virulence genes were asal (75%), gelE (65%), esp (52.5%), and cylA (47.5%). In contrast, E. faecium primarily exhibited esp (65%) and hyl (12.5%). Among the E. faecalis strains, 21 distinct MLST types were identified, with ST16 and ST179 prevailing. Conversely, E. faecium exhibited only five MLST types, with ST78 being predominant. The prevalence of E. faecalis CC16 and E. faecium CC17 further complicates the treatment landscape for Enterococcal UTIs. IMPORTANCE This study highlighted the critical need to understand Enterococcal strains causing UTIs in Shanghai, given their high prevalence. By assessing antimicrobial resistance profiles, virulence gene presence, and molecular epidemiology, the research offered valuable insights into the local epidemiology of Enterococcus faecalis and Enterococcus. faecium. Identifying linezolid-resistant strains, all of which carry the optrA gene, including the first report of ST300 in China and recognizing dominant MLST types, such as ST16 and ST179 for E. faecalis and ST78 for E. faecium, are vital for guiding treatment and addressing the challenges these infections present. The data emphasize the need for ongoing surveillance and customized therapeutic approaches to combat emerging resistance and virulence factors in Enterococcal UTIs.
Collapse
Affiliation(s)
- Weiyi Wu
- Department of Laboratory Medicine, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzhen Xiao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Laboratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Shen H, Zhang Q, Li S, Huang T, Ma W, Wang D, Li P. Surveillance and characteristics of vancomycin-resistant Enterococcus isolates in a Chinese tertiary hospital in Shenzhen, 2018 to 2024. J Glob Antimicrob Resist 2025; 40:29-33. [PMID: 39577832 DOI: 10.1016/j.jgar.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE To investigate the prevalence and characteristics of vancomycin-resistant Enterococcus (VRE) isolates in a Chinese tertiary hospital in Shenzhen. METHODS A hospital-based retrospective epidemiological survey of Enterococcus was conducted over a 6.5-y period, from January 2018 to June 2024. The VRE isolates were identified and subjected to screening for the six van genes and multi-locus sequence typing (MLST) genotyping. The clinical characteristics, antimicrobial susceptibility profiles and molecular features were subjected to analysis. RESULTS A total of 34 non-duplicate VRE isolates were identified, comprising 32 vancomycin-resistant Enterococcus faecium (VREfm) and 2 vancomycin-resistant Enterococcus faecalis (VREfa) strains. Since its initial isolation in 2022, there has been an observable increase in the detection rate of VRE. The detection rate of VRE between 2022 and 2024 (until June) was 0.3%, 4.8%, and 8.6%, respectively. The majority of the VRE strains were isolated from urine (25/34, 73.5%), and the highest detection rate (9.1%) of VRE infections was observed in the patients aged ≥75 y. In excess of 90% of VRE isolates exhibited resistance to ciprofloxacin (97.1%) and levofloxacin (97.1%), followed by ampicillin (94.1%) and penicillin (94.1%). The non-susceptible rate was observed to be low for linezolid (2.9%) and tigecycline (5.9%). Of the 29 VREfm isolates preserved and tested, 28 were found to harbour the vanA gene. A total of six STs were identified among the 29 VREfm isolates, with ST80 (16/29, 55.2%) being the predominant. The ST80 remained the most prevalent clone until the introduction of ST78 in May 2023, at which point these two clones became the most prevalent. CONCLUSION There has been an observable increase in the prevalence of VRE in our hospital since 2022. Furthermore, an ongoing outbreak of ST80 and ST78 VREfm with vanA-harboring plasmid was identified. It is imperative that continuous surveillance be conducted in order to inform public health interventions.
Collapse
Affiliation(s)
- Hongwei Shen
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiaomin Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Shaobo Li
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Tingting Huang
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wen Ma
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Daming Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Peng Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China.
| |
Collapse
|
10
|
Shen C, Luo L, Zhou H, Xiao Y, Zeng J, Zhang L, Pu J, Zeng J, Zhang N, Jiang Y, Xu L, Chen D, Li G, Wu K, Yu H, Wang M, Guo X, Wang J, Huang B, Chen C. Emergence and ongoing outbreak of ST80 vancomycin-resistant Enterococcus faecium in Guangdong province, China from 2021 to 2023: a multicenter, time-series and genomic epidemiological study. Emerg Microbes Infect 2024; 13:2361030. [PMID: 38801248 PMCID: PMC11159589 DOI: 10.1080/22221751.2024.2361030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Surveillance systems revealed that the prevalence of vancomycin-resistant Enterococcus faecium (VREfm) has increased. We aim to investigate the epidemiological and genomic characteristics of VREfm in China. METHODS We collected 20,747 non-redundant E. faecium isolates from inpatients across 19 hospitals in six provinces between January 2018 and June 2023. VREfm was confirmed by antimicrobial susceptibility testing. The prevalence was analyzed using changepoint package in R. Genomic characteristics were explored by whole-genome sequencing. RESULTS 5.59% (1159/20,747) of E. faecium isolates were resistant to vancomycin. The prevalence of VREfm increased in Guangdong province from 5% before 2021 to 20-50% in 2023 (p < 0.0001), but not in the other five provinces. Two predominant clones before 2021, ST17 and ST78, were substituted by an emerging clone, ST80, from 2021 to 2023 (88.63%, 195/220). All ST80 VREfm from Guangdong formed a single lineage (SC11) and were genetically distant from the ST80 VREfm from other countries, suggesting a regional outbreak. All ST80 VREfm in SC11 carried a new type of plasmid harbouring a vanA cassette, which was embedded in a Tn1546-like structure flanked by IS1678 and ISL3. However, no conjugation-related gene was detected and no transconjugant was obtained in conjugation experiment, indicating that the outbreak of ST80 VREfm could be attributed to clonal transmission. CONCLUSIONS We revealed an ongoing outbreak of ST80 VREfm with a new vanA-harbouring plasmid in Guangdong, China. This clone has also been identified in other provinces and countries, foreboding a risk of wider spreading shortly. Continuous surveillance is needed to inform public health interventions.
Collapse
Affiliation(s)
- Cong Shen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Li Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hongyun Zhou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yinglun Xiao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jinxiang Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Liling Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jieying Pu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, People’s Republic of China
| | - Ni Zhang
- Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yueting Jiang
- Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lingqing Xu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, People’s Republic of China
| | - Dingqiang Chen
- Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Gang Li
- Clinical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Kuihai Wu
- Clinical Laboratory, The First People's Hospital of Foshan, Foshan, People’s Republic of China
| | - Hua Yu
- Clinical Laboratory, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, People’s Republic of China
| | - Min Wang
- Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Xuemin Guo
- Clinical Laboratory, Meizhou People's Hospital, Meizhou, People’s Republic of China
| | - Juan Wang
- Clinical Laboratory, Zhongshan People's Hospital, Zhongshan, People’s Republic of China
| | - Bin Huang
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Cha Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Clinical Laboratory/State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
12
|
Turner AM, Li L, Monk IR, Lee JYH, Ingle DJ, Portelli S, Sherry NL, Isles N, Seemann T, Sharkey LK, Walsh CJ, Reid GE, Nie S, Eijkelkamp BA, Holmes NE, Collis B, Vogrin S, Hiergeist A, Weber D, Gessner A, Holler E, Ascher DB, Duchene S, Scott NE, Stinear TP, Kwong JC, Gorrie CL, Howden BP, Carter GP. Rifaximin prophylaxis causes resistance to the last-resort antibiotic daptomycin. Nature 2024; 635:969-977. [PMID: 39443798 PMCID: PMC11602712 DOI: 10.1038/s41586-024-08095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Multidrug-resistant bacterial pathogens like vancomycin-resistant Enterococcus faecium (VREfm) are a critical threat to human health1. Daptomycin is a last-resort antibiotic for VREfm infections with a novel mode of action2, but for which resistance has been widely reported but is unexplained. Here we show that rifaximin, an unrelated antibiotic used prophylactically to prevent hepatic encephalopathy in patients with liver disease3, causes cross-resistance to daptomycin in VREfm. Amino acid changes arising within the bacterial RNA polymerase in response to rifaximin exposure cause upregulation of a previously uncharacterized operon (prdRAB) that leads to cell membrane remodelling and cross-resistance to daptomycin through reduced binding of the antibiotic. VREfm with these mutations are spread globally, making this a major mechanism of resistance. Rifaximin has been considered 'low risk' for the development of antibiotic resistance. Our study shows that this assumption is flawed and that widespread rifaximin use, particularly in patients with liver cirrhosis, may be compromising the clinical use of daptomycin, a major last-resort intervention for multidrug-resistant pathogens. These findings demonstrate how unanticipated antibiotic cross-resistance can undermine global strategies designed to preserve the clinical use of critical antibiotics.
Collapse
Affiliation(s)
- Adrianna M Turner
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lucy Li
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Norelle L Sherry
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Nicole Isles
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liam K Sharkey
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Calum J Walsh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brennan Collis
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Sara Vogrin
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - Andre Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center, Regensburg, Germany
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- DEMI Unit, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason C Kwong
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
| | - Claire L Gorrie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Glen P Carter
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Huang JR, Yang TW, Hsiao YI, Fan HM, Kuo HY, Hung KH, Chen PY, Tan CT, Shao PL. Far-UVC light (222 nm) efficiently inactivates clinically significant antibiotic-resistant bacteria on diverse material surfaces. Microbiol Spectr 2024; 12:e0425123. [PMID: 39451044 PMCID: PMC11619345 DOI: 10.1128/spectrum.04251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/05/2024] [Indexed: 10/26/2024] Open
Abstract
In recent years, there has been a gradual increase in the prevalence of drug-resistant bacteria, primarily attributed to the widespread use of antibiotics. This has resulted in heightened mortality rates, morbidity, and exorbitant healthcare costs associated with antibiotic-resistant bacterial infections. In order to mitigate the spread of antibiotic-resistant bacteria, environmental disinfection plays a crucial role. Ultraviolet radiation C (UVC) light disinfection has emerged as a potent technique to limit the transmission of nosocomial pathogens and prevent healthcare-associated infections. Different types of high-touch surfaces were used. A serial disinfected experiment with different 222 nm UVC dosages was conducted on clinically isolated antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus species (VRE), carbapenem-resistant Escherichia coli (CREC), carbapenem-resistant Klebsiella pneumonia (CRKP), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Pseudomonas aeruginosa (CRPA) on different material surfaces. The bactericidal efficacy was evaluated by The Clinical & Laboratory Standards Institute (CLSI) guidelines. 222 nm UVC irradiation had a potent bactericidal efficacy on clinical antibiotic-resistant bacteria on different high-touch surfaces that are commonly found in the environment and healthcare facilities. 222 nm UVC irradiation time was tested from 10 s to 1 h. Different surfaces affect the efficiency of 222 nm UVC. The more adsorptive a material is, the higher the dosage of 222 nm UVC irradiation energy is required for effective disinfection. The use of 222 nm UVC lamps for disinfection on different materials has been shown to be a useful method. However, it is crucial to pay attention to the energy required for effective sterilization. IMPORTANCE This study is crucial, providing compelling evidence on Far-ultraviolet radiation C (Far-UVC) light's efficacy against clinically significant antibiotic-resistant bacteria-a pressing issue in microbiology and infection control. Our research employs antibiotic-resistant strains from clinically isolated bacteria, emphasizing real-world relevance. Simultaneously, we assess Far-UVC light (222 nm) across diverse material surfaces commonly found in clinical settings. This dual approach ensures practical applicability and broad relevance. Our comprehensive setup and rigorous methodologies unequivocally demonstrate Far-UVC light's potency in combating antibiotic-resistant bacteria. Since 222 nm far-UVC has a disinfection capability and is harmless to mammalian cells, this dual effectiveness positions Far-UVC as a secure tool for infection control, with potential applications in healthcare settings, mitigating antibiotic-resistant bacteria spread, and reducing healthcare-associated infections.
Collapse
Affiliation(s)
- Jhen-Rong Huang
- Department of Laboratory Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Tsai-Wen Yang
- Department of Laboratory Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Ya-I Hsiao
- Department of Laboratory Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Hui-Min Fan
- Department of Laboratory Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Han-Yueh Kuo
- Division of Infectious Disease, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Kuo-Hsiang Hung
- Department of Laboratory Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | | | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University College of Medicine, Taipei, Taiwan
- Intelligent Healthcare Innovation Center, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Pei-Lan Shao
- Department of Laboratory Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
- Department of Pediatrics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| |
Collapse
|
14
|
Nordholt N, Sobisch LY, Gödt A, Lewerenz D, Schreiber F. Heterogeneous survival upon disinfection underlies evolution of increased tolerance. Microbiol Spectr 2024; 12:e0327622. [PMID: 39436131 PMCID: PMC11619369 DOI: 10.1128/spectrum.03276-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Disinfection is important to limit the spread of infections, but failure of disinfection may foster the evolution of antimicrobial resistance in bacteria. Persisters are phenotypically tolerant subpopulations that survive toxic stress longer than susceptible cells, leading to failure in treatments with antimicrobials and facilitating resistance evolution. To date, little is known about persistence in the context of disinfectants. The aim of this study was to investigate the influence of persisters on disinfection and to determine the consequences of disinfectant persistence for the evolution of increased tolerance to disinfectants. Disinfection kinetics with high temporal resolution were recorded for Escherichia coli exposed to the following six disinfectants: hydrogen peroxide (H2O2), glutaraldehyde (GTA), chlorhexidine (CHX), benzalkonium chloride (BAC), didecyldimethylammonium chloride (DDAC), and isopropanol (ISO). A mathematical model was used to infer the presence of persisters from the time-kill data. Time-kill kinetics for BAC, DDAC, and ISO were indicative of persisters, whereas no or weak evidence was found for H2O2, GTA, and CHX. When subjected to comparative experimental evolution under recurring disinfection, E. coli evolved increased tolerance to substances for which persisters were predicted (BAC and ISO), whereas adaptation failed for substances in which no persisters were predicted (GTA and CHX), causing extinction of exposed populations. Our findings have implications for the risk of disinfection failure, highlighting a potential link between persistence to disinfectants and the ability to evolve disinfectant survival mechanisms. IMPORTANCE Disinfection is key to control the spread of infections. But the application of disinfectants bears the risk to promote the evolution of reduced susceptibility to antimicrobials if bacteria survive the treatment. The ability of individual bacteria to survive disinfection can display considerable heterogeneity within isogenic populations and may be facilitated by tolerant persister subpopulations. Using time-kill kinetics and interpreting the data within a mathematical framework, we quantify heterogeneity and persistence in Escherichia coli when exposed to six different disinfectants. We find that the level of persistence, and with this the risk for disinfection failure, depends on the disinfectant. Importantly, evolution experiments under recurrent disinfection provide evidence that links the presence of persisters to the ability to evolve reduced susceptibility to disinfectants. This study emphasizes the impact of heterogeneity within bacterial populations on disinfection outcomes and the potential consequences for the evolution of antimicrobial resistances.
Collapse
Affiliation(s)
- Niclas Nordholt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Lydia-Yasmin Sobisch
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Annett Gödt
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Dominique Lewerenz
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Frank Schreiber
- Division of Biodeterioration and Reference Organisms (4.1), Department of Materials and the Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
15
|
Vadadoriya N, Sajeevan S, Bhojani G, Patel N, Haldar S, Chatterjee S. Antibiotic resistance pattern of bacterial strains emerged using frequent hand sanitizers during corona pandemic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:868. [PMID: 39215846 DOI: 10.1007/s10661-024-13031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Hands are in fact the main route of transmission of pathogenic infections. By using proper hand sanitization, we can break the virus's transmission chain, which is especially important in the ongoing COVID pandemic outbreaks. The effectiveness of hand sanitization is solely dependent on the use of sufficient antibacterial agents, which come in a variety of levels and types, including antimicrobials commercial, water-based, or alcohol-based hand sanitizer, the latter being widely used during pandemics. Therefore, the sudden overuse of sanitizers also could lead to an increase in the tolerance limit for normal hand flora and the new development of antimicrobial resistance (AMR). In this study, we investigated the relationship between hand sanitizer-tolerant bacteria and their antibiotic resistance profile to multiple antibiotic agents. On a timely basis before and after using different hand sanitizers, bacterial strains were collected from the volunteers of CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI). Sanitizer tolerant bacterial strains were observed also just after the application of sanitizers, which also showed the AMR phenomenon. The resultant sanitizers' resistant microbiome showed the dominant presence of Bacillus sp., Staphyloccocus sp., Paenibacillus sp., Lysinibacillus sp., Exiguobacterium sp. and Leclercia sp. All 36 nos of bacterial strains showed MDR (> 5 nos).
Collapse
Affiliation(s)
- Nikita Vadadoriya
- Analytical Discipline and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Institute, GB Marg, Bhavnagar, 364002, Gujarat, India
| | - Shilja Sajeevan
- Analytical Discipline and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Institute, GB Marg, Bhavnagar, 364002, Gujarat, India
| | - Gopal Bhojani
- Analytical Discipline and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Institute, GB Marg, Bhavnagar, 364002, Gujarat, India
| | - Neha Patel
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, 695014, Kerala, India
| | - Soumya Haldar
- Analytical Discipline and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Institute, GB Marg, Bhavnagar, 364002, Gujarat, India
| | - Shruti Chatterjee
- Institute of Science, Nirma University, SG Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
16
|
Yang X, Ren L, Gong M, Lu Y, Ding X. Impacts of COVID-19 pandemic on culture-proven sepsis in neonates. Front Cell Infect Microbiol 2024; 14:1391929. [PMID: 38903936 PMCID: PMC11186981 DOI: 10.3389/fcimb.2024.1391929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Objective To assess the effects of COVID-19 pandemic on the epidemiology of neonatal sepsis and the antibiotic resistance profiles of pathogens involved. Methods This retrospective cohort study analyzed infants diagnosed with culture-proven sepsis at the neonatal department of a tertiary children's hospital in East China from January 2016 to December 2022. We compared the clinical and microbiological characteristics of neonatal sepsis cases between the pre-pandemic Phase I (2016-2019) and during the COVID-19 pandemic Phase II (2020-2022). Results A total of 507 infants with 525 sepsis episodes were included, with 343 episodes in Phase I and 182 in Phase II. The incidence of early-onset sepsis (EOS) was significantly lower during Phase II (p < 0.05). Infants in Phase II had lower gestational ages and birth weights compared to Phase I. Clinical signs such as mottled skin, severe anemia, thrombocytopenia were more prevalent in Phase II, alongside a higher incidence of complications. Notably, necrotizing enterocolitis (NEC) (p < 0.05) and meningitis (p < 0.1) occurred more frequently during Phase II. Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) were the predominant pathogens isolated from infants of death and cases with complications. A significant decrease in the proportion of K. pneumoniae was observed in Phase II, alongside increased antibiotic resistance in both E. coli and K. pneumoniae. The period of the COVID-19 pandemic (Phase II) was identified as an independent risk factor for complications in infants with neonatal sepsis. Conclusion COVID-19 pandemic response measures correlated with a decrease in EOS and an increase in neonatal sepsis complications and antibiotic resistance.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Luxin Ren
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Min Gong
- Department of Pediatrics, Richmond University Medical Center, Staten Island, NY, United States
| | - Yanhong Lu
- Department of Respiratory Medicine, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Ding
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Bhatt S, Patel A, Kesselman MM, Demory ML. Hand Sanitizer: Stopping the Spread of Infection at a Cost. Cureus 2024; 16:e61846. [PMID: 38975405 PMCID: PMC11227450 DOI: 10.7759/cureus.61846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The recent rise in hand sanitizer use due to the COVID-19 pandemic has had a beneficial impact on stopping the spread of disease, but the potential negative implications of its overuse on the body and the microbiome have yet to be thoroughly reviewed. Epidermal layers absorb hand sanitizer from direct application to the skin, making them some of the most susceptible cells to the adverse effects of overuse. The increased usage of hand sanitizer can affect the variation, quantity, and diversity of the skin microflora, leading to conditions such as eczema, atopic dermatitis, and even systemic toxicity due to colonization of the skin with pathogenic bacteria. Due to the close-knit relationship between the skin and gut, the gastrointestinal system can also incur disruptions due to the negative effects on the skin as a result of excessive hand sanitizer use, leading to gut dysbiosis. Additionally, the accidental ingestion of hand sanitizer, and its abuse or misuse, can be toxic and lead to alcohol poisoning, which is an issue most commonly seen not only in the pediatric population but also in adolescents and adults due to aberrant recreational exposure. As a vulnerable body system, the eyes can also be negatively impacted by hand sanitizer misuse leading to chemical injury, visual impairment, and even blindness. In this review, we aim to highlight the variations in hand sanitizer formulation, the benefits, and how misuse or overuse may lead to adverse effects on the skin, gut, and eyes. In particular, we review the advantages and disadvantages of alcohol-based hand sanitizers (ABHSs) and non-alcohol-based hand sanitizers (NABHSs) and how the components and chemicals used in each can contribute to organ dysbiosis and systemic damage.
Collapse
Affiliation(s)
- Shreya Bhatt
- Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Aasha Patel
- Dentistry, Roseman University College of Dental Medicine, South Jordan, USA
| | - Marc M Kesselman
- Rheumatology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Michelle L Demory
- Microbiology and Immunology, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, USA
| |
Collapse
|
18
|
Peacock WF, Dhand A, Albert NM, Shahid Z, Luk A, Vollman K, Schoppelrey RB, Cadwell C, Dadwal S, Amin AN, Torriani FJ. Stethoscope barriers narrative review; It's time for a strategy unfriendly to multi-drug resistant organisms (MDROs). J Infect Public Health 2024; 17:1001-1006. [PMID: 38636310 DOI: 10.1016/j.jiph.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
The current standard of stethoscope hygiene doesn't eliminate the transmission of harmful pathogens, including multi-drug resistant organisms (MDROs). In the era of the increasing prevalence of MDRO infections, the use of new systems providing touch free barriers may improve patient safety versus traditional stethoscope cleaning practices with chemical agents. Our purpose was to provide a narrative literature review regarding barriers as an improvement over the current standard of care for stethoscope hygiene. Searching PubMed, articles were identified if they were in English and published after 1990, using the search term "stethoscope barrier", or if they were from a previously published stethoscope hygiene article using "author's name + stethoscope". Included articles evaluated or discussed stethoscope barriers. Of 28 manuscripts identified, 15 met the inclusion criteria. Barriers were considered superior to alternatives if they were single use, disposable, applied in a touch free fashion, were impervious to pathogens, provided an aseptic patient contact, and were acoustically invisible. Use of a practitioner's personal stethoscope with a disposable diaphragm barrier should be recommended as a new standard of care as this represents an improvement in patient safety and patient experience when compared to the disposable stethoscope or isopropyl alcohol stethoscope diaphragm cleaning.
Collapse
Affiliation(s)
| | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
20
|
Omari S, Ng'ong'a F, Kimotho J. In vitro assessment and comparison of quality of alcohol-based hand rubs, pre- and peri-COVID-19 pandemic outbreak in Kenya. F1000Res 2024; 12:1546. [PMID: 38778804 PMCID: PMC11109557 DOI: 10.12688/f1000research.140226.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Background In the wake of the coronavirus disease 2019 (COVID-19) pandemic, the World Health Organization recommended the use of alcohol-based hand rubs (ABHRs) to curb transmission, leading to increased production and use. This has posed a danger of production and use of poor-quality ABHRs. Methods This study assessed and compared the quality of ABHRs in the Kenyan market that were produced before and after the outbreak of the COVID-19 pandemic in March 2020. Quality testing was carried out against European EN 1500:2013 and Kenyan EAS 789:2013 Standards and 20 samples analyzed for alcohol content by GC-FID. Results The study found that 27.8% of the peri-COVID-19 pandemic sanitizers had less than 90% bactericidal reduction activity as compared to 12.5% manufactured pre-COVID-19 pandemic. Only 25% peri-COVID-19 pandemic ABHRs met the EAS 789:2013 acceptable limit of over 60% alcohol content. Product adulteration with methanol was found in 20 % of the samples with only 5% complying with FDA approval limit of <0.063% v/v methanol. Study found no correlation between the total alcohol content and the efficacy of ABHRs. Conclusions The study found that more substandard products were produced during the pandemic. This raises a concern about possible emergence of alcohol resistant strains of microorganisms. The study therefore recommends an adequate quality monitoring system to curb against substandard products.
Collapse
Affiliation(s)
- Samuel Omari
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Innovation and Technology Transfer Division, Kenya Medical Research Institute, Nairobi, Kenya
| | - Florence Ng'ong'a
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - James Kimotho
- Innovation and Technology Transfer Division, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
21
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
22
|
Golli AL, Zlatian OM, Cara ML, Olteanu M. Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit. Pharmaceuticals (Basel) 2024; 17:407. [PMID: 38675369 PMCID: PMC11054378 DOI: 10.3390/ph17040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to determine the trend of the antimicrobial resistance pattern of pathogens isolated in samples collected from patients hospitalized in the intensive care unit (ICU) in selected periods before and after COVID-19. A retrospective study of bacterial pathogens was performed on 1267 patients. Positive bacterial culture data from 1695 samples from the pre-COVID-19 period and 1562 samples from the post-COVID-19 period were obtained. The most frequently isolated bacteria in both periods were Staphylococcus aureus and Klebsiella spp. The resistance rates of Klebsiella spp. Significantly increased against colistin (0.38% to 20.51%), gentamicin (44.62% to 64.85%), and aztreonam (56.35% to 3.60%). There was a significant increase in the resistance rate against colistin for E. coli strains (4.69% to 32.46%) and for Acinetobacter sp. strains (3.37% to 18.09%). More than 50% of the Staphylococcus aureus strains were MRSA, with statistically significant increases in the antimicrobial resistance rate against doxycycline (40.08% to 51.72%), linezolid (0.22% to 3.13%), rifampicin (53.16% to 64.93%), and teicoplanin (26.31% to 53.40%). The study revealed a significantly increasing trend in the antimicrobial resistance rate of Gram-negative pathogens against certain antibiotics, including those used only in cases where there are no other therapeutic options.
Collapse
Affiliation(s)
- Andreea-Loredana Golli
- Department of Public Health and Management, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ovidiu Mircea Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Monica Laura Cara
- Department of Public Health and Management, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mădălina Olteanu
- Department of Orthodontics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
23
|
Wagner TM, Pöntinen AK, Fenzel CK, Engi D, Janice J, Almeida-Santos AC, Tedim AP, Freitas AR, Peixe L, van Schaik W, Johannessen M, Hegstad K. Interactions between commensal Enterococcus faecium and Enterococcus lactis and clinical isolates of Enterococcus faecium. FEMS MICROBES 2024; 5:xtae009. [PMID: 38606354 PMCID: PMC11008740 DOI: 10.1093/femsmc/xtae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Anna Kaarina Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Carolin Kornelia Fenzel
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Engi
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Ana C Almeida-Santos
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana P Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CiberES CB22/06/00035), 28029 Madrid, Spain
| | - Ana R Freitas
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 1H- TOXRUN – One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4584-116 Gandra, Portugal
| | - Luísa Peixe
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mona Johannessen
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
24
|
Reinseth I, Diep DB, Kjos M, Tønnesen HH, Carlsen H. Exploring the feasibility of bacteriocins EntK1 and EntEJ97s in treatment of systemic vancomycin resistant enterococci infections in mice. J Appl Microbiol 2024; 135:lxae054. [PMID: 38439668 DOI: 10.1093/jambio/lxae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
AIMS Enterocins K1 and EJ97 have specific antimicrobial activity against Enterococcus faecium and Enterococcus faecalis, respectively. The aim of this study was to investigate the utility of these enterocins for in vivo treatment of systemic enterococcal infections. METHODS AND RESULTS The antimicrobial effect in blood was analysed and compared against the effect in saline. Colony forming unit counts revealed that the enterocins killed all the bacteria within 1 hour. Additionally, the bactericidal effect against E. faecalis was more rapid in blood, indicating a possible synergy between EntEJ97 and blood. Importantly, no enterocin resistant mutants emerged in these experiments. Injecting the enterocins intraperitoneally in an in vivo mouse model and using fluorescence and minimum inhibitory concentration determination to estimate concentrations of the peptides in plasma, indicate that the enterocins exist in circulation in therapeutic concentrations. Alanine aminotransferase detection, and haemolysis analysis indicates that there is no detectable liver damage or haemolytic effect after injection. CONCLUSIONS The study revealed that EntK1 and EntEJ97 are able to kill all bacteria ex vivo in the presence of blood. In vivo experiments determine that the enterocins exist in circulation in therapeutic concentrations without causing liver damage or haemolysis. Future experiments should test these peptides for treatment of infection in a relevant in vivo model.
Collapse
Affiliation(s)
- Ingvild Reinseth
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003 1432 Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003 1432 Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003 1432 Ås, Norway
| | - Hanne H Tønnesen
- Section of Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern 0316 Oslo, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003 1432 Ås, Norway
| |
Collapse
|
25
|
Liu P, Zeng B, Wu X, Zheng F, Zhang Y, Liao X. Risk exploration and prediction model construction for linezolid-resistant Enterococcus faecalis based on big data in a province in southern China. Eur J Clin Microbiol Infect Dis 2024; 43:259-268. [PMID: 38032514 PMCID: PMC10821975 DOI: 10.1007/s10096-023-04717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Enterococcus faecalis is a common cause of healthcare-associated infections. Its resistance to linezolid, the antibiotic of last resort for vancomycin-resistant enterococci, has become a growing threat in healthcare settings. METHODS We analyzed the data of E. faecalis isolates from 26 medical institutions between 2018 and 2020 and performed univariate and multivariate logistic regression analyses to determine the independent predictors for linezolid-resistant E. faecalis (LREFs). Then, we used the artificial neural network (ANN) and logistic regression (LR) to build a prediction model for linezolid resistance and performed a performance evaluation and comparison. RESULTS Of 12,089 E. faecalis strains, 755 (6.25%) were resistant to linezolid. Among vancomycin-resistant E. faecalis, the linezolid-resistant rate was 24.44%, higher than that of vancomycin-susceptible E. faecalis (p < 0.0001). Univariate and multivariate regression analyses showed that gender, age, specimen type, length of stay before culture, season, region, GDP (gross domestic product), number of beds, and hospital level were predictors of linezolid resistance. Both the ANN and LR models constructed in the study performed well in predicting linezolid resistance in E. faecalis, with AUCs of 0.754 and 0.741 in the validation set, respectively. However, synthetic minority oversampling technique (SMOTE) did not improve the prediction ability of the models. CONCLUSION E. faecalis linezolid-resistant rates varied by specimen site, geographic region, GDP level, facility level, and the number of beds. At the same time, community-acquired E. faecalis with linezolid resistance should be monitored closely. We can use the prediction model to guide clinical medication and take timely prevention and control measures.
Collapse
Affiliation(s)
- Peijun Liu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Bangwei Zeng
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
| | - Xiaoyan Wu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Feng Zheng
- Information Department, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Yangmei Zhang
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Xiaohua Liao
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
26
|
Jakkrawanpithak P, Powattanasuk W, Sooppapipatt N, Pudla M, Srimaneekarn N, Buranachad N, Yuma S, Supa-Amornkul S. Efficacy of antiseptics for rubber dam sterilization prior to endodontic treatment. J Oral Sci 2024; 66:5-8. [PMID: 37853618 DOI: 10.2334/josnusd.23-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
PURPOSE This study investigated the efficacy of various antiseptics for disinfection of rubber dams used during endodontic treatment, the duration of disinfection effectiveness, and the disinfection protocol employed by dental schools in Thailand. METHODS The efficacy of 10% povidone-iodine, 1.5% tincture iodine and 70% ethyl alcohol in eliminating Enterococcus faecalis (E. faecalis) and Candida albicans (C. albicans) on the rubber dam was investigated. Time duration of disinfection was evaluated at 0, 30, 60, and 120 min. The two-step disinfection method adopted at Thai dental school was examined. Independent t-test or Kruskal-Wallis followed by a Dunnett's test was used for statistical analysis. RESULTS Among the three antiseptics, 10% povidone and 1.5% tincture iodine eradicated the microorganisms completely, whereas 70% ethyl alcohol did not achieve a statistically significant decrease. The duration of sterilization effectiveness was 120 min for 10% povidone-iodine, but bacteria were eliminated only at 0 min by 1.5% tincture iodine. The results also indicated that the two-step protocol scarcely eliminated the microorganisms. CONCLUSION The best antiseptic for rubber dam disinfection is 10% povidone-iodine, which remains effective for 120 min. The two-step protocol typically practiced in Thai dental schools needs to be updated. The use of 10% povidone-iodine alone is adequate for complete eradication of E. faecalis and C. albicans.
Collapse
Affiliation(s)
| | - Wifada Powattanasuk
- Mahidol International Dental School, Faculty of Dentistry, Mahidol University
| | | | - Matsayapan Pudla
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University
| | | | - Naiyana Buranachad
- Department of Advance General Dentistry, Faculty of Dentistry, Mahidol University
| | - Suraphong Yuma
- Department of Physics, Faculty of Science, Mahidol University
| | | |
Collapse
|
27
|
Prokopová A, Mokrejš P, Gál R, Pavlačková J, Hurajová A. Characterization of Poultry Gelatins Prepared by a Biotechnological Method for Targeted Changes at the Molecular Level. Int J Mol Sci 2024; 25:916. [PMID: 38255989 PMCID: PMC10815914 DOI: 10.3390/ijms25020916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chicken collagen is a promising raw material source for the production gelatins and hydrolysates. These can be prepared biotechnologically using proteolytic enzymes. By choosing the appropriate process conditions, such changes can be achieved at the molecular level of collagen, making it possible to prepare gelatins with targeted properties for advanced cosmetic, pharmaceutical, medical, or food applications. The present research aims to investigate model samples of chicken gelatins, focusing on: (i) antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-etylbenzotiazolin-6-sulfonic acid (ABTS); (ii) the distribution of molecular weights via gel permeation chromatography with refractometric detection (GPC-RID); (iii) functional groups and the configuration of polypeptide chains related to molecular-level properties using Fourier transform infrared spectroscopy (FTIR); (iv) the microbiological populations on sabouraud dextrose agar (SDA), plate count agar (PCA), tryptic soy agar (TSA), and violet red bile lactose (VRBL) using the matrix-assisted laser desorption ionization (MALDI) method. Antioxidant activity towards ABTS radicals was more than 80%; activity towards DPPH radicals was more than 69%. The molecular weights of all gelatin samples showed typical α-, β-, and γ-chains. FTIR analysis confirmed that chicken gelatins all contain typical vibrational regions for collagen cleavage products, Amides A and B, and Amides I, II, and III, at characteristic wavenumbers. A microbiological analysis of the prepared samples showed no undesirable bacteria that would limit advanced applications of the prepared products. Chicken gelatins represent a promising alternative to products made from standard collagen tissues of terrestrial animals.
Collapse
Affiliation(s)
- Aneta Prokopová
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Jana Pavlačková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| | - Anna Hurajová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic;
| |
Collapse
|
28
|
Eigner F, Keller S, Schmitt S, Corti S, Nolff MC. Efficiency of octenidine dihydrochloride alcohol combination compared to ethanol based skin antiseptics for preoperative skin preparation in dogs. PLoS One 2023; 18:e0293211. [PMID: 37934779 PMCID: PMC10629653 DOI: 10.1371/journal.pone.0293211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVE To quantify the bacterial burden after skin disinfection using an alcohol octenidine dihydrochloride combination (Octenisept®) compared to an 74.1% ethanol 10% 2-propanol combination (Softasept N®). STUDY DESIGN Prospective randomized clinical trial. MATERIAL & METHODS 61 dogs undergoing clean or clean-contaminated surgeries (excluding surgeries on the gastrointestinal tract) were randomly assigned to group O (skin disinfection with alcohol and octenidine dihydrochloride after washing with octenidine containing soap) or to control group C (skin disinfection using the ethanol-2-propanol combination after washing with a neutral soap without antiseptic ingredients). Samples were then taken from 8 different locations within the surgical field at four different stages: after clipping, after washing, after disinfection and one hour later. At each stage, two different sampling techniques (wet-dry swab technique (WDS) and contact plates (CP)) were used for quantitative analysis of bacterial counts. RESULTS WDS detected about 100-fold more bacteria compared to CP sampling in cases with high bacterial burden, but was not accurate enough to detect small numbers. CP sampling was therefore used for comparison of treatment protocols. 30 dogs were assigned to group O and 31 to group C. A relative reduction of 69% in group O and 77 percent in group C was observed after the soap wash. No significant differences were detected between both groups. Washing and disinfection resulted in a reduction of bacterial counts of 99.99% in group O versus 99.7% in group C (p = 0.018). Bacterial reduction one hour after washing and disinfection was significantly higher in group O (99.9%) than in group C (98.5%, p = 0.001). CONCLUSION Additional octenidine dihydrochloride provided a slightly better decontamination effect after disinfection, particularly one hour after, which means it may only be indicated in longer surgeries. WDS is more sensitive but less specific to detect bacteria on the skin than the CP sampling.
Collapse
Affiliation(s)
- Fabian Eigner
- Vetsuisse Faculty Zürich, Clinic for Small Animal Surgery, University of Zürich, Zurich, Switzerland
| | - Stefanie Keller
- Vetsuisse Faculty Zürich, Clinic for Small Animal Reproduction, University of Zürich, Zurich, Switzerland
| | - Sarah Schmitt
- Vetsuisse Faculty Zürich, Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, University Zürich, Zurich, Switzerland
| | - Sabrina Corti
- Vetsuisse Faculty Zürich, Institute for Food Safety and Hygiene, University Zürich, Zurich, Switzerland
| | - Mirja C. Nolff
- Vetsuisse Faculty Zürich, Clinic for Small Animal Surgery, University of Zürich, Zurich, Switzerland
| |
Collapse
|
29
|
Wagner TM, Romero-Saavedra F, Laverde D, Johannessen M, Hübner J, Hegstad K. Enterococcal Membrane Vesicles as Vaccine Candidates. Int J Mol Sci 2023; 24:16051. [PMID: 38003243 PMCID: PMC10671723 DOI: 10.3390/ijms242216051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. In a previous study, we identified six protein vaccine candidates associated with extracellular membrane vesicles (MVs) produced by nosocomial E. faecium. In this study, we immunized rabbits with two different VRE-derived MV preparations and characterized the resulting immune sera. Both anti-MV sera exhibited high immunoreactivity towards the homologous strain, three additional VRE strains, and eight different unrelated E. faecium strains representing different sequence types (STs). Additionally, we demonstrated that the two anti-MV sera were able to mediate opsonophagocytic killing of not only the homologous strain but also three unrelated heterologous VRE strains. Altogether, our results indicate that E. faecium MVs, regardless of the purification method for obtaining them, are promising vaccine candidates against multidrug-resistant E. faecium and suggest that these naturally occurring MVs can be used as a multi-antigen platform to elicit protective immune responses against enterococcal infections.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Johannes Hübner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, N-9038 Tromsø, Norway
| |
Collapse
|
30
|
Kampf G. Proposal for a definition to describe resistance to biocidal active substances and disinfectants. J Hosp Infect 2023; 139:251-252. [PMID: 37271315 DOI: 10.1016/j.jhin.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Affiliation(s)
- G Kampf
- University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
31
|
Suchomel M, Brill FHH, Kampf G, Leslie RA, Macinga DR. Evolving the EN 1500 test method for alcohol-based hand rub closer to clinical reality by reducing the organic load on hands and enabling product to be applied to dry hands. J Hosp Infect 2023:S0195-6701(23)00145-7. [PMID: 37210037 DOI: 10.1016/j.jhin.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The methods currently used in Europe and North America to evaluate the bactericidal efficacy of hand hygiene products have some limitations, e.g., in the selection of test organisms or the method of contamination, and none of the methods allows prediction of actual clinical efficacy. WHO has therefore proposed to develop methods that better reflect typical clinical reality. METHODS In a first experiment, we investigated two contamination methods (immersion according to EN 1500 and low-volume according to ASTM E2755) with the EN 1500 test organism Escherichia coli and using 60% v/v iso-propanol. The second experiment was for comparison of the two contamination methods with Enterococcus faecalis. Finally, the two test organisms were compared using the low-volume contamination method. Data within each experiment was statistically compared using the Wilcoxon test for paired samples and data from all experiments were combined and fit to linear mixed effects models. RESULTS Mixed-effects analysis confirmed that the test organism and contamination method both impacted the pre-values and all three of these were factors that influenced log10 reductions. Higher pre-values resulted in significantly higher log10 reductions, immersion contributed to significantly higher log10 reductions, and E. coli affected significantly lower log10 reductions. CONCLUSION An efficacy evaluation against E. faecalis with a low-volume contamination method could be considered as an alternative to the EN 1500 standard. This could help improve the clinical relevance of the test method with including a Gram-positive organism and reducing soil load which allows a product application closer to reality.
Collapse
Affiliation(s)
- Miranda Suchomel
- Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria.
| | - Florian H H Brill
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Hamburg, Germany
| | - Günter Kampf
- University Medicine Greifswald, Greifswald, Germany
| | - Rachel A Leslie
- Research and Development, GOJO Industries, Inc., Akron, OH, USA
| | - David R Macinga
- Research and Development, GOJO Industries, Inc., Akron, OH, USA
| |
Collapse
|
32
|
Almahri A, Al-bonayan AM, Attar RMS, Karkashan A, Abbas B, Al-Qahtani SD, El-Metwaly NM. Multifunctional Lipophobic Polymer Dots from Cyclodextrin: Antimicrobial/Anticancer Laborers and Silver Ions Chemo-Sensor. ACS OMEGA 2023; 8:16956-16965. [PMID: 37214711 PMCID: PMC10193544 DOI: 10.1021/acsomega.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
β-Cyclodextrin (CD) is currently exploited for the implantation of lipophobic polymer dots (PDs) for antimicrobial and anticancer laborers. Moreover, the PDs were investigated to act as a chemo-sensor for metal detection. The data revealed that under basic conditions, photoluminescent PDs (5.1 nm) were successively clustered with a controllable size at 190 °C, whereas under acidic conditions, smaller-sized non-photoluminescent carbon nanoparticles (2.9 nm) were obtained. The fluorescence intensity of synthesized PDs under basic conditions was affected by pH, and such an intensity was significantly higher compared to that prepared under acidic conditions. The PDs were exploited as florescent detectors in estimation of Ag+ ions in aquatic streams. Treatment of Ag+ ion colloids with PDs resulted in fluorescence quenching attributing to the production of AgNPs that approved by spectral studies. The cell viability percent was estimated for Escherichia coli, Staphylococcus aureus, and Candida albicans after incubation with PDs implanted under basic conditions for 24 h. The cell mortality percent was estimated for breast cancer (MCF-7) after incubation with different concentrations of PDs that were implanted under acidic versus basic conditions to show that treatment of the tested cells with 1000 μg/mL PDs prepared under basic (IC50 232.5 μg/mL) and acidic (IC50 88.6 μg/mL) conditions resulted in cell mortality percentages of 70 and 90%, respectively.
Collapse
Affiliation(s)
- Albandary Almahri
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ameena M. Al-bonayan
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
| | - Roba M. S. Attar
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Alaa Karkashan
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Basma Abbas
- Department
of Biology, College of Sciences, University
of Jeddah, Jeddah 21959, Saudi Arabia
| | - Salhah D. Al-Qahtani
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street Mansoura 35516, Egypt
| |
Collapse
|
33
|
Wang Q, Liu C, Sun S, Yang G, Luo J, Wang N, Chen B, Wang L. Enhance antibiotic resistance and human health risks in aerosols during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162035. [PMID: 36754321 PMCID: PMC9901221 DOI: 10.1016/j.scitotenv.2023.162035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Aerosols are an important route for the transmission of antibiotic resistance genes (ARGs). Since the 2019 (COVID-19) pandemic, the large-scale use of disinfectants has effectively prevented the spread of environmental microorganisms, but studies regarding the antibiotic resistance of airborne bacteria remain limited. This study focused on four functional urban areas (commercial areas, educational areas, residential areas and wastewater treatment plant) to study the variations in ARG abundances, bacterial community structures and risks to human health during the COVID-19 pandemic in aerosol. The results indicated the abundance of ARGs during the COVID-19 period were up to approximately 13-fold greater than before the COVID-19 period. Large-scale disinfection resulted in a decrease in total bacterial abundance. However, chlorine-resistant bacteria tended to be survived. Among the four functional areas, the diversity and abundance of aerosol bacteria were highest in commercial aera. Antibiotic susceptibility assays suggested elevated resistance of isolated bacteria to several tested antibiotics due to disinfection exposure. The potential exposure risks of ARGs to human health were 2 times higher than before the COVID-19 pandemic, and respiratory intake was the main exposure route. The results highlighted the elevated antibiotic resistance of bacteria in aerosols that were exposed to disinfectants after the COVID-19 pandemic. This study provides theoretical guidance for the rational use of disinfectants and control of antimicrobial resistance.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Guang Yang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Jinghui Luo
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Bin Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Litao Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
34
|
da Silva DAV, Dieckmann R, Makarewicz O, Hartung A, Bethe A, Grobbel M, Belik V, Pletz MW, Al Dahouk S, Neuhaus S. Biocide Susceptibility and Antimicrobial Resistance of Escherichia coli Isolated from Swine Feces, Pork Meat and Humans in Germany. Antibiotics (Basel) 2023; 12:antibiotics12050823. [PMID: 37237726 DOI: 10.3390/antibiotics12050823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Phenotypic susceptibility testing of Escherichia (E.) coli is an essential tool to gain a better understanding of the potential impact of biocide selection pressure on antimicrobial resistance. We, therefore, determined the biocide and antimicrobial susceptibility of 216 extended-spectrum β-lactamase-producing (ESBL) and 177 non-ESBL E. coli isolated from swine feces, pork meat, voluntary donors and inpatients and evaluated associations between their susceptibilities. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of benzalkonium chloride, chlorhexidine digluconate (CHG), chlorocresol (PCMC), glutaraldehyde (GDA), isopropanol (IPA), octenidine dihydrochloride and sodium hypochlorite (NaOCl) showed unimodal distributions, indicating the absence of bacterial adaptation to biocides due to the acquisition of resistance mechanisms. Although MIC95 and MBC95 did not vary more than one doubling dilution step between isolates of porcine and human origin, significant differences in MIC and/or MBC distributions were identified for GDA, CHG, IPA, PCMC and NaOCl. Comparing non-ESBL and ESBL E. coli, significantly different MIC and/or MBC distributions were found for PCMC, CHG and GDA. Antimicrobial susceptibility testing revealed the highest frequency of resistant E. coli in the subpopulation isolated from inpatients. We observed significant but weakly positive correlations between biocide MICs and/or MBCs and antimicrobial MICs. In summary, our data indicate a rather moderate effect of biocide use on the susceptibility of E. coli to biocides and antimicrobials.
Collapse
Affiliation(s)
- David Attuy Vey da Silva
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Dieckmann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Anita Hartung
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute of Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Szilvia Neuhaus
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
35
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
36
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
37
|
SHEA/IDSA/APIC Practice Recommendation: Strategies to prevent healthcare-associated infections through hand hygiene: 2022 Update. Infect Control Hosp Epidemiol 2023; 44:355-376. [PMID: 36751708 PMCID: PMC10015275 DOI: 10.1017/ice.2022.304] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The purpose of this document is to highlight practical recommendations to assist acute-care hospitals in prioritization and implementation of strategies to prevent healthcare-associated infections through hand hygiene. This document updates the Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals through Hand Hygiene, published in 2014. This expert guidance document is sponsored by the Society for Healthcare Epidemiology (SHEA). It is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America, the Association for Professionals in Infection Control and Epidemiology, the American Hospital Association, and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise.
Collapse
|
38
|
Gail J, Schmidt A, Thoma MH. A Novel Approach on Dielectric Barrier Discharge Using Printed Circuit Boards. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023. [DOI: 10.1109/trpms.2022.3210651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Jonathan Gail
- First Physical Institute, Justus Liebig University, Giessen, Germany
| | - Alisa Schmidt
- First Physical Institute, Justus Liebig University, Giessen, Germany
| | - Markus H. Thoma
- First Physical Institute, Justus Liebig University, Giessen, Germany
| |
Collapse
|
39
|
Vancomycin-Resistant Enterococcus faecium and the emergence of new Sequence Types associated with Hospital Infection. Res Microbiol 2023; 174:104046. [PMID: 36858192 DOI: 10.1016/j.resmic.2023.104046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Enterococcus faecium is a major cause of vancomycin-resistant enterococcal (VRE) infection. New variants of the pathogen have emerged and become dominant in healthcare settings. Two such examples, vanB ST796 and vanA ST1421 sequence types, originally arose in Australia and proceeded to cause VRE outbreaks in other countries. Of concern is the detection of a vancomycin variable enterococcal (VVE) variant of ST1421 in Europe that exhibits a vancomycin-susceptible phenotype but which can revert to resistant in the presence of vancomycin. The recent application of genome sequencing for increasing our understanding of the evolution and spread of VRE is also explored here.
Collapse
|
40
|
Kumar V, Yasmeen N, Chaudhary AA, Alawam AS, Al-Zharani M, Suliman Basher N, Harikrishnan S, Goud MD, Pandey A, Lakhawat SS, Sharma PK. Specialized pro-resolving lipid mediators regulate inflammatory macrophages: A paradigm shift from antibiotics to immunotherapy for mitigating COVID-19 pandemic. Front Mol Biosci 2023; 10:1104577. [PMID: 36825200 PMCID: PMC9942001 DOI: 10.3389/fmolb.2023.1104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The most severe clinical manifestations of the horrifying COVID-19 disease, that claimed millions of lives during the pandemic time, were Acute respiratory distress syndrome (ARDS), Coagulopathies, septic shock leading eventually to death. ARDS was a consequence of Cytokine storm. The viral SARS-COV2infection lead to avalanche of cytokines and eicosanoids causing "cytokine storm" and "eicosanoid storm." Cytokine storm is one of the macrophage-derived inflammatory responses triggered by binding of virus particles to ACE2 receptors of alveolar macrophages, arise mainly due to over production of various pro-inflammatory mediators like cytokines, e.g., interleukin (IL)-1, IL-2, and tumor necrosis factor (TNF)- α, causing pulmonary edema, acute respiratory distress, and multi-organ failure. Cytokine storm was regarded as the predictor of severity of the disease and was deemed one of the causes of the high mortality rates due to the COVID-19. The basis of cytokine storm is imbalanced switching between an inflammation increasing - pro-inflammatory (M1) and an inflammation regulating-anti-inflammatory (M2) forms of alveolar macrophages which further deteriorates if opportunistic secondary bacterial infections prevail in the lungs. Lack of sufficient knowledge regarding the virus and its influence on co-morbidities, clinical treatment of the diseases included exorbitant use of antibiotics to mitigate secondary bacterial infections, which led to the unwarranted development of multidrug resistance (MDR) among the population across the globe. Antimicrobial resistance (AMR) needs to be addressed from various perspectives as it may deprive future generations of the basic health immunity. Specialized pro-resolving mediators (SPMs) are generated from the stereoselective enzymatic conversions of essential fatty acids that serve as immune resolvents in controlling acute inflammatory responses. SPMs facilitate the clearance of injured tissue and cell debris, the removal of pathogens, and augment the concentration of anti-inflammatory lipid mediators. The SPMs, e.g., lipoxins, protectins, and resolvins have been implicated in exerting inhibitory influence on with cytokine storm. Experimental evidence suggests that SPMS lower antibiotic requirement. Therefore, in this review potential roles of SPMs in enhancing macrophage polarization, triggering immunological functions, hastening inflammation resolution, subsiding cytokine storm and decreasing antibiotic requirement that can reduce AMR load are discussed.
Collapse
Affiliation(s)
- Vikram Kumar
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India,*Correspondence: Vikram Kumar,
| | - Nusrath Yasmeen
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Nosiba Suliman Basher
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - S. Harikrishnan
- Amity institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | - Aishwarya Pandey
- INRS, Eau Terre Environnement Research Centre, Québec, QC, Canada
| | | | | |
Collapse
|
41
|
Peacock WF, Chemaly RF, Torriani F, Shahid Z, Dawal S. A new normal for the clinician's third hand: Stethoscope hygiene and infection prevention. Am J Infect Control 2023; 51:114-118. [PMID: 36351475 DOI: 10.1016/j.ajic.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- W Frank Peacock
- Research Henry JN Taub Department of Emergency Medicine Baylor College of Medicine, Houston, TX.
| | - Roy F Chemaly
- Clinical Virology Research Department of ID/IC/EH UT MD, Anderson Cancer Center, Houston, TX; Division of Epidemiology, Human Genetics, and Environmental Sciences, UT School of Public Health, Houston, TX; Medicine Baylor College of Medicine, Houston, TX
| | - Francesca Torriani
- Infection Prevention and Clinical Epidemiology and Tuberculosis Control UC San Diego Health, Clinical Division of ID And Global Health at UC San Diego San Diego, CA
| | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, Manhattan, NY
| | | |
Collapse
|
42
|
Fukushige M, Syue LS, Morikawa K, Lin WL, Lee NY, Chen PL, Ko WC. Trend in healthcare-associated infections due to vancomycin-resistant Enterococcus at a hospital in the era of COVID-19: More than hand hygiene is needed. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:1211-1218. [PMID: 35989164 PMCID: PMC9357275 DOI: 10.1016/j.jmii.2022.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Variable control measures for vancomycin-resistant Enterococcus (VRE) infections were adopted among different hospitals and areas. We investigated the burden and patient characteristics of healthcare-associated VRE infections in 2018-2019 and 2020, when multiple preventive measures for COVID-19 were taken. METHODS During the COVID-19 pandemic, mask waring and hand hygiene were enforced in the study hospital. The incidence densities of healthcare-associated infections (HAIs), including overall HAIs, methicillin-resistant Staphylococcus aureus (MRSA) HAIs, VRE HAIs, and VRE healthcare-associated bloodstream infections (HABSIs), consumption of broad-spectrum antibiotics and hygiene products, demographic characteristics and medical conditions of affected patients, were compared before and after the pandemic. RESULTS The incidence density of both VRE HAIs and VRE HABSIs did not change statistically significantly, however, the highest in 2020 than that in 2018 and 2019. This was in spite of universal mask waring and increased consumption of 75% alcohol in 2020 and consistent implementation of an antibiotic stewardship program in three observed years. The increased prescriptions of broad-spectrum cephalosporins might partially explain the increase of VRE infection. CONCLUSION Increased mask wearing and hand hygiene may not result in the decline in the development of VRE HAIs in the hospital during the COVID-19 pandemic, and continued monitoring of the dynamics of HAIs remains indispensable.
Collapse
Affiliation(s)
- Mizuho Fukushige
- Faculty of Medicine, University of Tsukuba, Ibaraki, Japan,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shang Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Wen-Liang Lin
- Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Corresponding author. Department of Internal Medicine, National Cheng Kung University Hospital, No. 138, Sheng Li Road, Tainan, 704, Taiwan. Fax: +886 6 2752038
| |
Collapse
|
43
|
Ismail A, Raya NR, Orabi A, Ali AM, Abo-zeid Y. Investigating the Antibacterial Activity and Safety of Zinc Oxide Nanoparticles versus a Commercial Alcohol-Based Hand-Sanitizer: Can Zinc Oxide Nanoparticles Be Useful for Hand Sanitation? Antibiotics (Basel) 2022; 11:antibiotics11111606. [PMID: 36421249 PMCID: PMC9686634 DOI: 10.3390/antibiotics11111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Hand hygiene is the key factor to control and prevent the spread of infections, for example, hospital-acquired infections (HAIs). People commonly use alcohol-based hand sanitizers to assure hand hygiene. However, frequent use of alcohol-based hand sanitizers in a pandemic situation (e.g., COVID-19) was associated with serious drawbacks such as skin toxicity including irritation, skin dermatitis, and skin dryness or cracking, along with peeling, redness, or itching with higher possibility of infection. This demands the development of alternative novel products that are effective as alcohol-based hand sanitizers but have no hazardous effects. Zinc oxide nanoparticles (ZnO-NPs) are known to have broad-spectrum antimicrobial activity, be compatible with the biological system and the environment, and have applicable and economic industrial-scale production. Thus, ZnO-NPs might be a good candidate for hand sanitation. To the best of our knowledge, the antibacterial activity of ZnO-NPs in comparison to alcohol-based hand sanitizers has not yet been studied. In the present work, a comparative study of the antibacterial activity of ZnO-NPs vs. Sterillium, a commercial alcohol-based hand sanitizer that is commonly used in Egyptian hospitals, was performed against common microorganisms known to cause HAIs in Egypt, including Acinetobacter baumannii, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), and Staphylococcus aureus. The safety profiles of ZnO-NPs and Sterillium were also assessed. The obtained results demonstrated the superior antibacterial activity and safety of ZnO-NPs compared to Sterillium. Therefore, ZnO-NPs could be a promising candidate for hand sanitation in comparison to alcohol-based hand sanitizers; however, several studies related to long-term toxicity and stability of ZnO-NPs and investigations into their antimicrobial activity and safety in healthcare settings are still required in the future to ascertain their antimicrobial activity and safety.
Collapse
Affiliation(s)
- Aliaa Ismail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Nermeen R. Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Ahmed Orabi
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Alaa M. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
- Correspondence: ; Tel.: +20-1092792846
| |
Collapse
|
44
|
Rozman U, Duh D, Cimerman M, Turk SŠ. Hygiene of Medical Devices and Minimum Inhibitory Concentrations for Alcohol-Based and QAC Disinfectants among Isolates from Physical Therapy Departments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14690. [PMID: 36429408 PMCID: PMC9691081 DOI: 10.3390/ijerph192214690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Disinfectants are used intensively to control and prevent healthcare-associated infections. With continuous use and exposure to disinfectants, bacteria may develop reduced susceptibility. The study aimed to check the hygiene of devices in the physiotherapy department. For isolated bacterial strains, we aimed to determine the minimum inhibitory concentration of five different disinfectant wipe products currently in use. Microbiological environmental sampling in four various institutions in four different cities from two counties was performed, followed by CFU calculation and identification using matrix-assisted laser desorption and ionization with time-of-flight analyzer mass spectrometry (MALDI-TOF). The sampling was performed on three different occasions: before patient use, after patient use, and after disinfection. The susceptibility of isolates to three different alcohol-based and three different quaternary ammonium compounds (QAC) disinfectant wipes was examined by determining the minimal inhibitory concentrations (MIC). We identified 27 different bacterial species from 11 different genera. Gram-positive bacteria predominated. The most abundant genera were Staphylococcus, Micrococcus, and Bacillus. The average MIC values of alcohol-based disinfectants range between 66.61 and 148.82 g/L, and those of QAC-based disinfectants range between 2.4 and 3.5 mg/L. Distinctive strains with four-fold increases in MIC values, compared to average values, were identified. The widespread use of disinfectants can induce a reduction in the susceptibility of bacteria against disinfectants and affect the increase in the proportion of antibiotic-resistant bacteria. Therefore, it is urgent to define clear criteria for defining a microorganism as resistant to disinfectants by setting epidemiological cut-off (ECOFF) values and standardizing protocols for testing the resistance of microorganisms against disinfectants.
Collapse
Affiliation(s)
- Urška Rozman
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Darja Duh
- Chemicals Office of the Republic of Slovenia, Ajdovščina 4, 1000 Ljubljana, Slovenia
| | - Mojca Cimerman
- National Laboratory of Health, Environment and Food, Prvomajska ulica 1, 2000 Maribor, Slovenia
| | - Sonja Šostar Turk
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| |
Collapse
|
45
|
Ali AM, Hill HJ, Elkhouly GE, Bakkar MR, Raya NR, Stamataki Z, Abo-Zeid Y. Rhamnolipid Nano-Micelles Inhibit SARS-CoV-2 Infection and Have No Dermal or Eye Toxic Effects in Rabbits. Antibiotics (Basel) 2022; 11:1556. [PMID: 36358211 PMCID: PMC9686650 DOI: 10.3390/antibiotics11111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Hand hygiene is considered to be the key factor in controlling and preventing infection, either in hospital care settings or in the community. Alcohol-based hand sanitizers are commonly used due to their rapid action and broad spectrum of microbicidal activity, offering protection against bacteria and viruses. However, their frequent administration during COVID-19 pandemic was associated with serious hazards, such as skin toxicity, including irritation, skin dermatitis, skin dryness or cracking, along with peeling redness or itching, with the higher possibility of getting infections. Thus, there is a need to find alternative and novel approaches for hand sanitation. In our previous publications, we reported that rhamnolipids nano-micelles had a comparable antibacterial activity to alcohol-based hand sanitizer and a lower cytotoxicity against human dermal fibroblast cells. In the current study, we investigated the antiviral activity of rhamnolipids nano-micelles against SARS-CoV-2. There was no cytotoxic effect on Vero cells noted at the tested concentrations of rhamnolipids nano-micelles. The rhamnolipids nano-micelles solution at 20, 78, and 312 µg/mL all demonstrated a significant (p < 0.05) decrease of virus infectivity compared to the virus only and the blank vehicle sample. In addition, an acute irritation test was performed on rabbits to further ascertain the biosafety of rhamnolipids nano-micelles. In the eye and skin irritation tests, no degree of irritation was recorded after topical application of rhamnolipids nano-micelles. In addition, histopathological, biomarker, and hematological analyses from animals treated with rhamnolipids nano-micelles were identical to those recorded for untreated animal. From the above, we can conclude that rhamnolipids nano-micelles are a good candidate to be used as a hand sanitizer instead of alcohol-based hand sanitizers. However, they must still be tested in the future among healthcare workers (HCW) in a health care setting to ascertain their antimicrobial efficacy and safety compared to alcohol-based hand sanitizers.
Collapse
Affiliation(s)
- Alaa M Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Harriet J Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Gehad E Elkhouly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Marwa Reda Bakkar
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Nermeen R Raya
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Yasmin Abo-Zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| |
Collapse
|
46
|
Anticancer and Microbicide Action of Carbon Quantum Dots Derived from Microcrystalline Cellulose: Hydrothermal versus Infrared Assisted Techniques. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Nye TM, Tükenmez H, Singh P, Flores-Mireles AL, Obernuefemann CLP, Pinkner JS, Sarkar S, Bonde M, Lindgren AEG, Dodson KW, Johansson J, Almqvist F, Caparon MG, Hultgren SJ. Ring-fused 2-pyridones effective against multidrug-resistant Gram-positive pathogens and synergistic with standard-of-care antibiotics. Proc Natl Acad Sci U S A 2022; 119:e2210912119. [PMID: 36252016 PMCID: PMC9618150 DOI: 10.1073/pnas.2210912119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023] Open
Abstract
The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Taylor M. Nye
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Hasan Tükenmez
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | | | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Jerome S. Pinkner
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Souvik Sarkar
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Anders E. G. Lindgren
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Karen W. Dodson
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
- Umeå Centre for Microbial Research, UCMR, Umeå University, SE-90187 Umeå, Sweden
| | - Michael G. Caparon
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110-1093
| |
Collapse
|
48
|
González-González R, Huertas-Jiménez MA, Ochoa-Hein E, Galindo-Fraga A, Macías-Hernández AE, De la Torre-Rosas A. Report of a Multimodal Strategy for Improvement of Hand Hygiene Compliance in a Latin American Hospital. How Far From Excellence? J Patient Saf 2022; 18:667-673. [PMID: 36170585 DOI: 10.1097/pts.0000000000000982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study was to report the results of a multimodal strategy for improvement of hand hygiene (HH) compliance in a third-level hospital in Mexico. METHODS This is an epidemiological study in a public, acute care, academic, tertiary referral center from 2009 to 2019. Healthcare worker (HCW) compliance with HH was assessed after implementation of the World Health Organization multimodal strategy that included permanent and widespread access to alcohol-based hand rubs; educational activities for staff, students, patients, and relatives; reminders in healthcare areas; patient empowerment; water quality surveillance; frequent evaluation of compliance; and feedback. The primary outcome was HH compliance rate (measured by direct observation). The association of HH with healthcare-associated infections was the secondary outcome. RESULTS A total of 60,685 HH opportunities were evaluated. The HH compliance rate increased significantly from 39.83% (95% confidence interval [CI] = 38.83%-40.84%) to 64.81% (95% CI = 64.08%-65.54%), mostly due to HH compliance in World Health Organization moments 3 to 5 (r = 0.86, P = 0.001). A statistically significant inverse association was found between HH compliance rates and surgical site infection rates (incidence rate ratio = 0.9977, 95% CI = 0.9957-0.9997, P = 0.029). CONCLUSIONS A multimodal strategy in a Latin American setting showed an increase in HH compliance over 10 years of follow-up that should nonetheless be improved. An association between HH compliance and surgical site infection rates was noticed, but this did not occur with other healthcare-associated infections; this underscores the need for a comprehensive bundled approach in their prevention.
Collapse
Affiliation(s)
- Ricardo González-González
- From the Department of Hospital Epidemiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City
| | - Martha Asunción Huertas-Jiménez
- From the Department of Hospital Epidemiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City
| | - Eric Ochoa-Hein
- From the Department of Hospital Epidemiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City
| | - Arturo Galindo-Fraga
- From the Department of Hospital Epidemiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City
| | | | | |
Collapse
|
49
|
Qadri H, Haseeb Shah A, Mudasir Ahmad S, Alshehri B, Almilaibary A, Ahmad Mir M. Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi. Saudi J Biol Sci 2022; 29:103376. [PMID: 35874656 PMCID: PMC9290337 DOI: 10.1016/j.sjbs.2022.103376] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 12/24/2022] Open
Abstract
COVID-19 pandemic has traumatized the entire world. During this outbreak, an upsurge in MDR-associated pathogenic microbial organisms has been recorded. The increasing human microbial diseases pose a severe danger to global human safety. The infectious microbes have developed multiple tolerance strategies to overcome the negative drug impacts. Several naturally occurring chemicals produced from bacteria, plants, animals, marine species, and other sources with antimicrobial characteristics have been reviewed. These compounds show promise in minimizing the globally increasing microbial diseases.
Human infectious diseases caused by various microbial pathogens, in general, impact a large population of individuals every year. These microbial diseases that spread quickly remain to be a big issue in various health-related domains and to withstand the negative drug impacts, the antimicrobial-resistant pathogenic microbial organisms (pathogenic bacteria and pathogenic fungi) have developed a variety of resistance processes against many antimicrobial drug classes. During the COVID-19 outbreak, there seems to be an upsurge in drug and multidrug resistant-associated pathogenic microbial species. The preponderance of existing antimicrobials isn’t completely effective, which limits their application in clinical settings. Several naturally occurring chemicals produced from bacteria, plants, animals, marine species, and other sources are now being studied for antimicrobial characteristics. These natural antimicrobial compounds extracted from different sources have been demonstrated to be effective against a variety of diseases, although plants remain the most abundant source. These compounds have shown promise in reducing the microbial diseases linked to the development of drug tolerance and resistance. This paper offers a detailed review of some of the most vital and promising natural compounds and their derivatives against various human infectious microbial organisms. The inhibitory action of different natural antimicrobial compounds, and their possible mechanism of antimicrobial action against a range of pathogenic fungal and bacterial organisms, is provided. The review will be useful in refining current antimicrobial (antifungal and antibacterial) medicines as well as establishing new treatment strategies to tackle the rising number of human bacterial and fungal-associated infections.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | | | - Bader Alshehri
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Abdullah Almilaibary
- Department of Family & Community Medicine, Faculty of Medicine, Albaha University, Alaqiq 307501, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
50
|
Alonso VPP, Furtado MM, Iwase CHT, Brondi-Mendes JZ, Nascimento MDS. Microbial resistance to sanitizers in the food industry: review. Crit Rev Food Sci Nutr 2022; 64:654-669. [PMID: 35950465 DOI: 10.1080/10408398.2022.2107996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hygiene programs which comprise the cleaning and sanitization steps are part of the Good Hygiene Practices (GHP) and are considered essential to ensure food safety and quality. Inadequate hygiene practices may contribute to the occurrence of foodborne diseases, development of microbial resistance to sanitizers, and economic losses. In general, the sanitizer resistance is classified as intrinsic or acquired. The former is an inherent characteristic, naturally present in some microorganisms, whereas the latter is linked to genetic modifications that can occur at random or after continuous exposure to a nonnormal condition. The resistance mechanisms can involve changes in membrane permeability or in the efflux pump, and enzymatic activity. The efflux pump mechanism is the most elucidated in relation to the resistance caused by the use of different types of sanitizers. In addition, microbial resistance to sanitizers can also be favored in the presence of biofilms due to the protection given by the glycocalyx matrix and genetic changes. Therefore, this review aimed to show the main microbial resistance mechanisms to sanitizers, including genetic modifications, biofilm formation, and permeability barrier.
Collapse
Affiliation(s)
| | - Marianna Miranda Furtado
- Department of Food Science and Nutrition, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|