1
|
Yamamoto R, Hiramoto N, Nagai Y, Ishikawa T, Kondo T. Iron deficiency anemia following long-term eltrombopag treatment for aplastic anemia: a single-institution experience. Int J Hematol 2025:10.1007/s12185-025-03940-2. [PMID: 39937332 DOI: 10.1007/s12185-025-03940-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Eltrombopag (EPAG), an oral thrombopoietin receptor agonist, has shown excellent efficacy in patients with aplastic anemia (AA) alone or in combination with immunosuppressive therapy. EPAG also has the unexpected ability to chelate polyvalent cations, including iron. However, the association between long-term EPAG use and iron deficiency anemia (IDA) remains unclear. To address this, we retrospectively evaluated the incidence and characteristics of EPAG-induced IDA (E-IDA) in patients with AA at our institution. Of the 36 patients with AA receiving EPAG, six (17%) developed E-IDA without evidence of bleeding, with a median onset of 1142.5 days (range, 389-1442 days) after EPAG administration. The cumulative dose of EPAG was significantly higher in patients with E-IDA than in those without E-IDA (P = 0.04). In 4 patients, E-IDA occurred after hemoglobin levels improved above 10 g/dl; this was considered recurrent anemia. In the other 2 patients, E-IDA occurred when hemoglobin levels remained below 10 g/dl; this was considered resistant anemia. After oral iron supplementation, all patients achieved hemoglobin levels higher than their peak levels prior to the onset of E-IDA. E-IDA should be considered when patients with AA treated with EPAG longer than 1 year develop recurrent or resistant anemia.
Collapse
Affiliation(s)
- Ryusuke Yamamoto
- Department of Hematology, Kobe City Medical Center General Hospital, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Yuya Nagai
- Department of Hematology, Kobe City Medical Center General Hospital, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Department of Hematology, Takanohara Central Hospital, Nara, Japan
| | - Tadakazu Kondo
- Department of Hematology, Kobe City Medical Center General Hospital, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
2
|
Hong M, Guo J, Zhao Y, Song L, Zhao S, Wang R, Shi L, Zhang Z, Wu D, He Q, Chang C. Eltrombopag restores proliferative capacity and adipose-osteogenic balance of mesenchymal stromal cells in low-risk myelodysplastic syndromes. Eur J Pharmacol 2024; 985:177086. [PMID: 39481629 DOI: 10.1016/j.ejphar.2024.177086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
In low-risk myelodysplastic syndromes (MDS), the proinflammatory signaling is excessive, and the proliferation and differentiation potentials of mesenchymal stromal cells (MSCs) are strongly impaired. Eltrombopag (ELT) has been demonstrated recently effective and relatively safe in low-risk MDS with severe thrombocytopenia. However, its impact on the MDS-MSCs has not been investigated in any detail. Here, for the first time, we investigated the changes induced by ELT in MSCs' viability, proliferation, apoptosis, senescence, multilineage differentiation properties, and stem cell support capacity in low-risk MDS patients. We demonstrated that ELT may act on improving the impaired inflammatory profile and reactivating the downregulated canonical WNT signaling pathway in low-risk MDS, and also restoring the self-renewal capacity and the balance in adipose-osteogenic differentiation of MDS-MSCs.
Collapse
Affiliation(s)
- Minghua Hong
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Luxi Song
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Sida Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Roujia Wang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lei Shi
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Subbarayan R, Srinivasan D, Shadula Osmania S, Murugan Girija D, Ikhlas S, Srivastav N, Balakrishnan R, Shrestha R, Chauhan A. Molecular insights on Eltrombopag: potential mitogen stimulants, angiogenesis, and therapeutic radioprotectant through TPO-R activation. Platelets 2024; 35:2359028. [PMID: 38832545 DOI: 10.1080/09537104.2024.2359028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
The purpose of this study is to investigate the molecular interactions and potential therapeutic uses of Eltrombopag (EPAG), a small molecule that activates the cMPL receptor. EPAG has been found to be effective in increasing platelet levels and alleviating thrombocytopenia. We utilized computational techniques to predict and confirm the complex formed by the ligand (EPAG) and the Thrombopoietin receptor (TPO-R) cMPL, elucidating the role of RAS, JAK-2, STAT-3, and other essential elements for downstream signaling. Molecular dynamics (MD) simulations were employed to evaluate the stability of the ligand across specific proteins, showing favorable characteristics. For the first time, we examined the presence of TPO-R in human umbilical cord mesenchymal stem cells (hUCMSC) and human gingival mesenchymal stem cells (hGMSC) proliferation. Furthermore, treatment with EPAG demonstrated angiogenesis and vasculature formation of endothelial lineage derived from both MSCs. It also indicated the activation of critical factors such as RUNX-1, GFI-1b, VEGF-A, MYB, GOF-1, and FLI-1. Additional experiments confirmed that EPAG could be an ideal molecule for protecting against UVB radiation damage, as gene expression (JAK-2, ERK-2, MCL-1, NFkB, and STAT-3) and protein CD90/cMPL analysis showed TPO-R activation in both hUCMSC and hGMSC. Overall, EPAG exhibits significant potential in treating radiation damage and mitigating the side effects of radiotherapy, warranting further clinical exploration.
Collapse
Affiliation(s)
- Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Research-FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Research-FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Salman Shadula Osmania
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Shoeb Ikhlas
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nityanand Srivastav
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Research-FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | | | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
4
|
Tezuka Y, Onoda N, Morishima T, Sumitomo Y, Nishii K, Takizawa H, Kai M. Expansion effect of romiplostim on hematopoietic stem and progenitor cells versus thrombopoietin and eltrombopag. Int J Hematol 2024; 120:575-586. [PMID: 39302624 PMCID: PMC11513719 DOI: 10.1007/s12185-024-03853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Romiplostim, a thrombopoietin (TPO) receptor agonist, is a clinically approved drug that is clearly effective in reconstituting hematopoiesis in refractory aplastic anemia and idiopathic thrombocytopenic purpura. However, the mechanism underlying its biological effect is unknown, and its differences from other TPO receptor agonists remain unclear. Therefore, we determined the in vitro expansion effect of romiplostim on human CD34 + hematopoietic stem and progenitor cells (HSPCs) versus recombinant human TPO (rhTPO) and another clinically available drug, eltrombopag. We also performed single-cell RNA-seq to determine effects of romiplostim on CD34 + HSPCs at the molecular level. The maximum expansion effect of romiplostim on total CD34 + cells, CD34 + CD38 + progenitor cells, and CD34 + CD38 - immature cells was comparable to that of rhTPO, but higher than that of eltrombopag, particularly on CD34 + CD38 - immature cells. Single-cell RNA-seq analysis revealed that both romiplostim and eltrombopag induced signatures driven by rhTPO, but romiplostim induced molecular changes related to RHOA signaling in the most primitive HSPC subsets that were partially driven or not driven by eltrombopag. Additionally, romiplostim did not induce TFRC expression as was observed with eltrombopag. In conclusion, romiplostim expands and affects human HSPCs similar to rhTPO, but partially different from eltrombopag in terms of induction of gene expression.
Collapse
Affiliation(s)
- Yuta Tezuka
- Research Division, Research Unit, Biomedical Science Research Laboratories 2, Kyowa Kirin Co., Ltd, 3-6-6, Asahi-Machi, Machida-Shi, Tokyo, 194-8533, Japan.
| | - Naoki Onoda
- Research Division, Research Unit, Biomedical Science Research Laboratories 2, Kyowa Kirin Co., Ltd, 3-6-6, Asahi-Machi, Machida-Shi, Tokyo, 194-8533, Japan
- Research Core Function Laboratories, Research Unit, Research Division, Kyowa Kirin Co., Ltd, Tokyo, Japan
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Laboratory of Hematopoietic Stem Cell Engineering, IRCMS, Kumamoto University, Kumamoto, Japan
| | - Yoshiki Sumitomo
- Research Division, Research Unit, Biomedical Science Research Laboratories 2, Kyowa Kirin Co., Ltd, 3-6-6, Asahi-Machi, Machida-Shi, Tokyo, 194-8533, Japan
| | - Keigo Nishii
- Research Division, Research Unit, Biomedical Science Research Laboratories 2, Kyowa Kirin Co., Ltd, 3-6-6, Asahi-Machi, Machida-Shi, Tokyo, 194-8533, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Masayuki Kai
- Research Division, Research Unit, Biomedical Science Research Laboratories 2, Kyowa Kirin Co., Ltd, 3-6-6, Asahi-Machi, Machida-Shi, Tokyo, 194-8533, Japan
| |
Collapse
|
5
|
Gebetsberger J, Streif W, Dame C. Update on the Use of Thrombopoietin-Receptor Agonists in Pediatrics. Hamostaseologie 2024; 44:316-325. [PMID: 38925157 DOI: 10.1055/a-2247-4209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
This review summarizes the rationale and current data on the use of thrombopoietin receptor agonists (TPO-RAs) for treating severe thrombocytopenia in infants, children, and adolescents. It focuses on substances that have been approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) for pediatric patients. Romiplostim and eltrombopag are already established as second-line treatment for persistent or chronic immune thrombocytopenia (ITP). As in adults, TPO-RAs are currently also evaluated in severe aplastic anemia (SAA), chemotherapy-induced thrombocytopenia (CIT), myelodysplastic syndromes (MDS), and poor engraftment after hematopoietic stem cell transplantation in pediatric and adolescent patients. Moreover, studies on the implication of TPO-RA in treating rare inherited thrombocytopenias, such as Wiskott-Aldrich syndrome (WAS), congenital amegakaryocytic thrombocytopenia (CAMT), or MYH9-associated thrombocytopenia, deserve future attention. Current developments include testing of avatrombopag and lusutrombopag that are approved for the treatment of thrombocytopenia associated with chronic liver disease (CLD) in adult patients. In pediatric and adolescent medicine, we expect in the near future a broader use of TPO-RAs as first-line treatment in primary ITP, thereby considering immunomodulatory effects that increase the rate of sustained remission off-treatment, and a selective use in rare inherited thrombocytopenias based on current clinical trials.
Collapse
Affiliation(s)
| | - Werner Streif
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Christof Dame
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Xu J, Yan Y, Zong S, Ye W, Zheng J, Min C, Wang Q, Li Z. Rapid and sustained response to luspatercept and eltrombopag combined treatment in one case of clonal cytopenias of undetermined significance with prior failure to cyclosporin and androgen therapy: a case report. Ther Adv Hematol 2024; 15:20406207241260353. [PMID: 38911444 PMCID: PMC11191611 DOI: 10.1177/20406207241260353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Clonal cytopenia of undetermined significance (CCUS) has the characteristics of high-risk transformation into myelodysplastic syndromes. At present, there are few effective treatments for CCUS, and there is no consensus or evidence-based recommendation. We present a case demonstrating a rapid, significant and sustained response to combined treatment with luspatercept and eltrombopag, following the failure of cyclosporin and androgen therapy. Even after discontinuing luspatercept for 10 months, trilineage haematopoiesis remained normal with the use of cyclosporin and other haematopoietic stimulants. This case suggests that the inhibition of transforming growth factor-β could potentially have an immunomodulatory effect, thereby promoting the recovery of haematopoietic function. Luspatercept, along with Acalabrutinib or Cyclosporine, may synergistically stimulate haematopoiesis.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixin Yan
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siwen Zong
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wencan Ye
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Min
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qingming Wang
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhenjiang Li
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, Jiangxi 330006, China
| |
Collapse
|
7
|
Yi W, Zhang J, Huang Y, Zhan Q, Zou M, Cheng X, Zhang X, Yin Z, Tao S, Cheng H, Wang F, Guo J, Ju Z, Chen Z. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells. Leukemia 2024; 38:1003-1018. [PMID: 38402368 DOI: 10.1038/s41375-024-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Iron metabolism plays a crucial role in cell viability, but its relationship with adult stem cells and cancer stem cells is not fully understood. The ferritin complex, responsible for intracellular iron storage, is important in this process. We report that conditional deletion of ferritin heavy chain 1 (Fth1) in the hematopoietic system reduced the number and repopulation capacity of hematopoietic stem cells (HSCs). These effects were associated with a decrease in cellular iron level, leading to impaired mitochondrial function and the initiation of apoptosis. Iron supplementation, antioxidant, and apoptosis inhibitors reversed the reduced cell viability of Fth1-deleted hematopoietic stem and progenitor cells (HSPCs). Importantly, leukemic stem cells (LSCs) derived from MLL-AF9-induced acute myeloid leukemia (AML) mice exhibited reduced Fth1 expression, rendering them more susceptible to apoptosis induced by the iron chelation compared to normal HSPCs. Modulating FTH1 expression using mono-methyl fumarate increased LSCs resistance to iron chelator-induced apoptosis. Additionally, iron supplementation, antioxidant, and apoptosis inhibitors protected LSCs from iron chelator-induced cell death. Fth1 deletion also extended the survival of AML mice. These findings unveil a novel mechanism by which ferritin-mediated iron homeostasis regulates the survival of both HSCs and LSCs, suggesting potential therapeutic strategies for blood cancer with iron dysregulation.
Collapse
Affiliation(s)
- Weiwei Yi
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinhua Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yingxin Huang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiang Zhan
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mi Zou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiang Cheng
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Shanghai, China
- Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Guo
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
8
|
Li Y, Kong F, Bai G, Jiang Y, Zhang W, Sun X, Sui X, Li Y, Ding M, Yuan D, Wang X, Fang X. Eltrombopag can promote platelet implantation after allogeneic hematopoietic stem cell transplantation as safely and similarly to thrombopoietin. Front Immunol 2024; 15:1340908. [PMID: 38650933 PMCID: PMC11033304 DOI: 10.3389/fimmu.2024.1340908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Background Eltrombopag has demonstrated efficacy in treating low platelet (PLT) levels, but it remains unclear whether eltrombopag can promote PLT engraftment after hematopoietic stem cell transplantation (HSCT). Methods Forty-one HSCT patients received eltrombopag 50 mg/d from +1 day until PLT >50 × 109/L or 1 month after HSCT. Fifty-one patients in the same period received thrombopoietin (TPO) to promote PLT graft after HSCT and served as a control group. Results A total of 51 patients who applied TPO during the same period were treated as a control. In the eltrombopag group, the median time to white blood cells (WBC) graft was 12 days (range, 10-17 days) and the PLT graft was 15 days (range, 10-30 days), whereas for the patients in the TPO group, the median time to WBC and PLT graft was 12 days (range, 9-23 days) and 15.5 days (range, 9-41 days), respectively. In the first month after HSCT, the median WBC count in the eltrombopag group was 4.41 × 109/L (range, 0.87-40.01 × 109/L) and the median PLT was 89x109/L (range, 30-401 × 109/L); the median WBC and PLT \counts in the TPO group were 4.65 × 109/L (range, 0.99-23.63 × 109/L) and 86 × 109/L (range, 5-512 × 109/L), respectively. Patients in the TPO or eltrombopag group did not experience serious side effects after drug administration, and the difference in side effects on liver and kidney function between the two groups was not statistically significant. Conclusion Eltrombopag is safe and similarly promotes platelet engraftment to thrombopoietin after allogeneic HSCT.
Collapse
Affiliation(s)
- Yahan Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fansheng Kong
- Department of Hematology, The Affiliated Hospital of Shandong University of Traditional Chinese Medical, Jinan, Shandong, China
| | - Guanchen Bai
- Department of Hematology, The Affiliated Taian City Centeral Hospital of Qingdao University, Taian, Shandong, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenlu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue Sun
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
9
|
Dong XF, Li YL, Li NB, Lin WN, Wang T, Wang HQ, Li LJ, Qu W, Xing LM, Liu H, Wu YH, Wang GJ, Song J, Guan J, Wang XM, Shao ZH, Fu R. [Efficacy and safety of eltrombopag in the treatment of primary immune thrombocytopenia: real-world data from a single medical center]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:271-276. [PMID: 38716599 PMCID: PMC11078668 DOI: 10.3760/cma.j.cn121090-20231108-00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Indexed: 12/05/2024]
Abstract
Objective: This study aimed at investigating the efficacy and safety of eltrombopag in the treatment of adult primary immune thrombocytopenia (ITP) and evaluated the factors influencing its efficacy and side effects. Methods: A total of 198 patients with adult ITP who were admitted to Tianjin Medical University General Hospital between January 2018 and March 2022 were retrospectively analyzed. The efficacy of each starting dose of eltrombopag was evaluated, and adverse events were analyzed. The factors influencing efficacy were investigated, including sex, age, adult ITP type, platelet antibodies, and combined drug treatments. Results: Of the 198 patients, 70 males and 128 females with a median age of 45 years (18-88 years) were included; 130 (65.7%) had newly diagnosed adult ITP, 25 (12.6%) had persistent adult ITP, and 43 (21.7%) had chronic adult ITP. The bleeding event scores at baseline were assessed; 84.3% had scores of<4 and 15.7% had scores of ≥4. The eltrombopag response rate (initial response) at 6 weeks was 78.8% (complete response [CR]: 49.0%; CR1: 14.6%; CR2: 15.2%). The median response time to eltrombopag was 7 (7, 14) days. The initial response rates to 25, 50, and 75 mg eltrombopag were 74.1%, 85.9%, and 60.0%, respectively (P=0.031). The initial response rate to the 50 mg dose was significantly higher than that of the 25-mg and 75-mg doses. Two patients received 100 mg as the starting dose, and their initial response was 0. Regarding dose adjustment, 70.7% of the patients remained on the starting dose, 8.6% underwent dose adjustment to 50 mg, and 6.1% underwent dose adjustment to 75 mg. Another two patients underwent dose adjustment to 100 mg. After dose adjustment, the persistent response rates were 83.6%, 85.3%, and 85.7% for the 25-, 50-, and 75-mg doses, respectively, with no significant difference. After dose adjustment, the sustained efficacy rate for the 100-mg dose (4 patients) was 100.0%. After 6 weeks of treatment with eltrombopag, the overall bleeding score of patients with ITP decreased. The number of patients with a score of ≥4 decreased to 0, the number of patients with a score of<4 decreased, and there was no significant change in the number of patients with a score of 1-2. The most common adverse event associated with eltrombopag was impaired liver function (7.7%). No thrombosis events or other adverse events were observed. ITP type and number of megakaryocytes significantly affected the initial response to eltrombopag. The initial response rates to eltrombopag for newly diagnosed adult ITP, persistent adult ITP, and chronic adult ITP were 85.3%, 56.0%, and 76.2%, respectively (P=0.003). For megakaryocytes, the initial response rates were 61.8%, 87.1%, and 84.3% (P=0.009) for the decreased, normal, and increased megakaryocyte groups, respectively. Conclusion: Eltrombopag, as a second-line or higher treatment for adult ITP, has a rapid onset of action and good safety. The initial response rate is significantly higher with a dose of 50 mg than with a dose of 25 mg. Patients with newly diagnosed ITP and those with normal or increased megakaryocyte numbers have a higher initial response rate to eltrombopag.
Collapse
Affiliation(s)
- X F Dong
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - Y L Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - N B Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - W N Lin
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - T Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - H Q Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - L J Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - W Qu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - L M Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - H Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - Y H Wu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - G J Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - J Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - J Guan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - X M Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - Z H Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| | - R Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, China
| |
Collapse
|
10
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Tseng YJ, Kageyama Y, Murdaugh RL, Kitano A, Kim JH, Hoegenauer KA, Tiessen J, Smith MH, Uryu H, Takahashi K, Martin JF, Samee MAH, Nakada D. Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration. Nat Commun 2024; 15:538. [PMID: 38225226 PMCID: PMC10789814 DOI: 10.1038/s41467-024-44718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are capable of regenerating the blood system, but the instructive cues that direct HSCs to regenerate particular lineages lost to the injury remain elusive. Here, we show that iron is increasingly taken up by HSCs during anemia and induces erythroid gene expression and regeneration in a Tet2-dependent manner. Lineage tracing of HSCs reveals that HSCs respond to hemolytic anemia by increasing erythroid output. The number of HSCs in the spleen, but not bone marrow, increases upon anemia and these HSCs exhibit enhanced proliferation, erythroid differentiation, iron uptake, and TET2 protein expression. Increased iron in HSCs promotes DNA demethylation and expression of erythroid genes. Suppressing iron uptake or TET2 expression impairs erythroid genes expression and erythroid differentiation of HSCs; iron supplementation, however, augments these processes. These results establish that the physiological level of iron taken up by HSCs has an instructive role in promoting erythroid-biased differentiation of HSCs.
Collapse
Affiliation(s)
- Yu-Jung Tseng
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Kageyama
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rebecca L Murdaugh
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ayumi Kitano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin A Hoegenauer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jonathan Tiessen
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mackenzie H Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James F Martin
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX, 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Talkhoncheh MS, Baudet A, Ek F, Subramaniam A, Kao YR, Miharada N, Karlsson C, Oburoglu L, Rydström A, Zemaitis K, Alattar AG, Rak J, Pietras K, Olsson R, Will B, Larsson J. Ciclopirox ethanolamine preserves the immature state of human HSCs by mediating intracellular iron content. Blood Adv 2023; 7:7407-7417. [PMID: 37487020 PMCID: PMC10758717 DOI: 10.1182/bloodadvances.2023009844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.
Collapse
Affiliation(s)
| | - Aurélie Baudet
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Yun-Ruei Kao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Natsumi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christine Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristijonas Zemaitis
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Abdul Ghani Alattar
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Justyna Rak
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Medicon Village, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Al-nakhle HH, Yagoub HS, Anbarkhan SH, Alamri GA, Alsubaie NM. In Silico Evaluation of Coding and Non-Coding nsSNPs in the Thrombopoietin Receptor ( MPL) Proto-Oncogene: Assessing Their Influence on Protein Stability, Structure, and Function. Curr Issues Mol Biol 2023; 45:9390-9412. [PMID: 38132435 PMCID: PMC10742084 DOI: 10.3390/cimb45120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The thrombopoietin receptor (MPL) gene is a critical regulator of hematopoiesis, and any alterations in its structure or function can result in a range of hematological disorders. Non-synonymous single nucleotide polymorphisms (nsSNPs) in MPL have the potential to disrupt normal protein function, prompting our investigation into the most deleterious MPL SNPs and the associated structural changes affecting protein-protein interactions. We employed a comprehensive suite of bioinformatics tools, including PredictSNP, InterPro, ConSurf, I-Mutant2.0, MUpro, Musitedeep, Project HOPE, STRING, RegulomeDB, Mutpred2, CScape, and CScape Somatic, to analyze 635 nsSNPs within the MPL gene. Among the analyzed nsSNPs, PredictSNP identified 28 as significantly pathogenic, revealing three critical functional domains within MPL. Ten of these nsSNPs exhibited high conservation scores, indicating potential effects on protein structure and function, while 14 were found to compromise MPL protein stability. Although the most harmful nsSNPs did not directly impact post-translational modification sites, 13 had the capacity to substantially alter the protein's physicochemical properties. Some mutations posed a risk to vital protein-protein interactions crucial for hematological functions, and three non-coding region nsSNPs displayed significant regulatory potential with potential implications for hematopoiesis. Furthermore, 13 out of 21 nsSNPs evaluated were classified as high-risk pathogenic variants by Mutpred2. Notably, amino acid alterations such as C291S, T293N, D295G, and W435C, while impactful on protein stability and function, were deemed non-oncogenic "passenger" mutations. Our study underscores the substantial impact of missense nsSNPs on MPL protein structure and function. Given MPL's central role in hematopoiesis, these mutations can significantly disrupt hematological processes, potentially leading to a variety of disorders. The identified high-risk pathogenic nsSNPs may hold promise as potential biomarkers or therapeutic targets for hematological diseases. This research lays the foundation for future investigations into the MPL gene's role in the realm of hematological health and diseases.
Collapse
Affiliation(s)
- Hakeemah H. Al-nakhle
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| | - Hind S. Yagoub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
- Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman 14415, Sudan
| | - Sadin H. Anbarkhan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| | - Ghadah A. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| | - Norah M. Alsubaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Monawarah 42353, Saudi Arabia; (H.S.Y.); (S.H.A.); (N.M.A.)
| |
Collapse
|
14
|
González-López TJ, Schifferli A. Early immunomodulation in immune thrombocytopenia-A report of the ICIS meeting in Lenzerheide, Switzerland 2022. Br J Haematol 2023; 203:101-111. [PMID: 37735547 DOI: 10.1111/bjh.19082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
The only way to prevent immune thrombocytopenia (ITP) from becoming refractory would be to restore tolerance to platelets at an early phase of the disease. Numerous immune alterations probably accumulate in chronic ITP; thus, the chances of cure decrease significantly with time. Currently, sustained remission off treatment (SROT) is a clinical definition describing patients who can discontinue their ITP treatment without risk and maintain a state of remission. Different treatment strategies are presently being evaluated with the goal of attaining SROT, mostly combining drugs targeting the innate and/or the adaptive immune system, the inflammation state, so as increasing the platelet load. In this sense, thrombopoietin receptor agonists (TPO-RAs) have shown promising results if used as upfront treatment. TPO-RAs seem to exhibit immunomodulation and immune tolerance properties, increasing not only the platelet antigen mass but also increasing the transforming growth factor-β concentration, and stimulating regulatory T and B lymphocytes. However, more immunological studies are needed to establish accurate molecular alterations in ITP that are potentially reversed with treatments.
Collapse
Affiliation(s)
| | - Alexandra Schifferli
- Department of Haematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| |
Collapse
|
15
|
Vieri M, Rolles B, Crocioni M, Schemionek-Reinders M, Isfort S, Panse J, Brümmendorf TH, Beier F. Eltrombopag Preserves the Clonogenic Potential of Hematopoietic Stem Cells During Treatment With Antithymocyte Globulin in Patients With Aplastic Anemia. Hemasphere 2023; 7:e906. [PMID: 37304936 PMCID: PMC10249716 DOI: 10.1097/hs9.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Aplastic anemia (AA) is frequently caused by a T-cell mediated autoimmune depletion of the hematopoietic stem and progenitor cell (HSPC) compartment. Immunosuppressive therapy (IST) with antithymocyte globulin (ATG) and cyclosporine represents the first-line treatment of AA. One side effect of ATG therapy is the release of proinflammatory cytokines such as interferon-gamma (IFN-γ), which is considered a major factor in the pathogenic autoimmune depletion of HSPC. Recently, eltrombopag (EPAG) was introduced for therapy of refractory AA patients due to its ability to bypass IFN-γ-mediated HSPC inhibition among other mechanisms. Clinical trials have evidenced that EPAG started simultaneously with IST leads to a higher response rate compared with its later administration schedules. We hypothesize that EPAG might protect HSPC from negative effects of ATG-induced release of cytokines. We observed a significant decrease in colony numbers when both healthy peripheral blood (PB) CD34+ cells and AA-derived bone marrow cells were cultured in the presence of serum from patients under ATG treatment, as compared with before treatment. Consistent with our hypothesis, this effect could be rescued by adding EPAG in vitro to both healthy and AA-derived cells. By employing an IFN-γ neutralizing antibody, we also demonstrated that the deleterious early ATG effects on the healthy PB CD34+ compartment were mediated at least partially by IFN-γ. Hence, we provide evidence for the hitherto unexplained clinical observation that concomitant use of EPAG in addition to IST comprising ATG leads to improved response in patients with AA.
Collapse
Affiliation(s)
- Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Maria Crocioni
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
- Department of Medicine and Surgery, University of Perugia, Italy
| | - Mirle Schemionek-Reinders
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany
| |
Collapse
|
16
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
17
|
Zhao J, Jia Y, Mahmut D, Deik AA, Jeanfavre S, Clish CB, Sankaran VG. Human hematopoietic stem cell vulnerability to ferroptosis. Cell 2023; 186:732-747.e16. [PMID: 36803603 PMCID: PMC9978939 DOI: 10.1016/j.cell.2023.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/20/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023]
Abstract
Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.
Collapse
Affiliation(s)
- Jiawei Zhao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuemeng Jia
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dilnar Mahmut
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Jeanfavre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Gonzalez-Lugo JD, Kambhampati S, Yacoub A, Donnellan WB, Berdeja J, Bhagat P, Fehn K, Remy C, Jasra S, Kazemi M, Pradhan K, Kim M, Mantzaris I, Sica RA, Shah N, Goldfinger M, Kornblum N, Gritsman K, Braunschweig I, Steidl U, Will B, Shastri A, Verma A. Lenalidomide and Eltrombopag for Treatment of Low- or Intermediate-Risk Myelodysplastic Syndrome: Result of a Phase II Clinical Trial. Clin Cancer Res 2023; 29:60-66. [PMID: 36255372 DOI: 10.1158/1078-0432.ccr-22-1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 10/14/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Thrombocytopenia is a serious complication of myelodysplastic syndromes (MDS) associated with an increased bleeding risk and worse prognosis. Eltrombopag (ELT), a thrombopoietin receptor agonist, can increase platelet counts and reverse anti-megakaryopoietic effects of lenalidomide (LEN) in preclinical studies. We hypothesized ELT would reduce the incidence of thrombocytopenia in MDS. PATIENTS AND METHODS We conducted a Phase II multicenter trial of ELT and LEN in adult patients with low- or intermediate-1-risk MDS with symptomatic or transfusion-dependent anemia or thrombocytopenia (NCT01772420). Thrombocytopenic patients were started on ELT and subsequently treated with LEN after platelets were increased. Patients without thrombocytopenia were started on LEN monotherapy and treated with ELT if they became thrombocytopenic. RESULTS Fifty-two patients were enrolled; mean age was 71 years (range 34-93). Overall response rate (ORR) in the intention-to-treat population was 35% (18/52). ELT monotherapy led to ORR of 33.3% (7/21), 29% achieving hematologic improvement (HI)-Platelets, and 24% bilineage responses. LEN monotherapy had 38% ORR (6/16) with all responders achieving HI-Erythroid. Fifteen patients received both ELT and LEN with ORR of 33.3%, 20% achieved HI-Erythroid, and 20% HI-Platelets with 13% bilineage responses. Median duration of response was 40 weeks for ELT (range 8-ongoing), 41 weeks (25-ongoing) for LEN, and 88 weeks (8.3-ongoing) for ELT/LEN. Non-hematologic grade 3-4 treatment-related adverse events were infrequent. Among patients on ELT, 2 had major bleeding events, 1 had a reversible increase in peripheral blasts, and 1 developed marrow fibrosis after 6 years on ELT. CONCLUSIONS ELT and LEN are well tolerated and effective in achieving hematologic improvement in patients with low-/intermediate-risk MDS.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Suman Kambhampati
- Sarah Cannon Transplant and Cellular Therapy Program, Kansas City, Kansas
| | | | | | - Jesus Berdeja
- Sarah Cannon Research Institute, Nashville, Tennessee
| | - Prafulla Bhagat
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Karen Fehn
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Cassady Remy
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Sakshi Jasra
- University of Vermont Cancer Center, Burlington, Vermont
| | | | - Kith Pradhan
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Mimi Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Ioannis Mantzaris
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - R Alejandro Sica
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Nishi Shah
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Mendel Goldfinger
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Noah Kornblum
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Kira Gritsman
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Ira Braunschweig
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Ulrich Steidl
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Britta Will
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Aditi Shastri
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| | - Amit Verma
- Division of Hemato-Oncology, Department of Oncology, Montefiore Einstein Cancer Center, Blood Cancer Institute, Bronx, New York
| |
Collapse
|
19
|
Albayrak E, Kocabaş F. Therapeutic targeting and HSC proliferation by small molecules and biologicals. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:425-496. [PMID: 37061339 DOI: 10.1016/bs.apcsb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hematopoietic stem cells (HSCs) have considerably therapeutic value on autologous and allogeneic transplantation for many malignant/non-malignant hematological diseases, especially with improvement of gene therapy. However, acquirement of limited cell dose from HSC sources is the main handicap for successful transplantation. Therefore, many strategies based on the utilization of various cytokines, interaction of stromal cells, modulation of several extrinsic and intrinsic factors have been developed to promote ex vivo functional HSC expansion with high reconstitution ability until today. Besides all these strategies, small molecules become prominent with their ease of use and various advantages when they are translated to the clinic. In the last two decades, several small molecule compounds have been investigated in pre-clinical studies and, some of them were evaluated in different stages of clinical trials for their safety and efficiencies. In this chapter, we will present an overview of HSC biology, function, regulation and also, pharmacological HSC modulation with small molecules from pre-clinical and clinical perspectives.
Collapse
|
20
|
Muntión S, Preciado S, Sánchez-Luis E, Corchete L, Díez-Campelo M, Osugui L, Martí-Chillón GJ, Vidriales MB, Navarro-Bailón A, De Las Rivas J, Sánchez-Guijo F. Eltrombopag increases the hematopoietic supporting ability of mesenchymal stem/stromal cells. Ther Adv Hematol 2022; 13:20406207221142137. [PMID: 36601635 PMCID: PMC9806379 DOI: 10.1177/20406207221142137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/11/2022] [Indexed: 12/28/2022] Open
Abstract
Background Eltrombopag (EP) is a small molecule that acts directly on hematopoietic stem cells (HSCs) and megakaryocytes to stimulate the hematopoietic process. Mesenchymal stem/stromal cells (MSCs) are key hematopoietic niche regulators. Objectives We aimed to determine whether EP has any effect on MSC function and properties (especially on their hematopoietic-supporting ability) and if so, what changes (e.g. genome-wide transcriptomic alterations) are induced in MSC after EP treatment. Design/Methods MSCs were isolated from 12 healthy donors and treated with 15 µM and 50 µM of EP for 24 h. The toxicity of the drug on MSCs and their differentiation ability were analyzed, as well as the transcriptomic profile, reactive oxygen species (ROS) and DNA damage and the changes induced in the clonogenic capacity of HSCs. Results The results show that EP also modifies MSC functions, decreasing their adipogenic differentiation, increasing the expression of genes involved in hypoxia and other pathways related to oxygen homeostasis, and enhancing their ability to support hematopoiesis in vitro. Conclusion Our findings support the use of EP in cases where hematopoiesis is defective, despite its well-known direct effects on hematopoietic cells. Our findings suggest that further studies on the effects of EP on MSCs from patients with aplastic anemia are warranted.
Collapse
Affiliation(s)
| | - Silvia Preciado
- Cell Therapy Area, Department of Hematology,
Institute of Biomedical Research of Salamanca-Hospital Universitario de
Salamanca (IBSAL-HUS), Salamanca, Spain,RICORS TERAV, ISCIII, Madrid, Spain,Centro en Red de Medicina Regenerativa y
Terapia Celular de Castilla y León, Valladolid, Spain
| | - Elena Sánchez-Luis
- Bioinformatics and Functional Genomics Group,
Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones
Científicas (CSIC) and University of Salamanca (USAL), Salamanca,
Spain
| | - Luis Corchete
- Institute of Biomedical Research of Salamanca
(IBSAL), Cancer Research Center (CiC-IBMCC, CSIC/USAL), Center for
Biomedical Research in Network of Cancer (CIBERONC), Hematology Department,
University Hospital of Salamanca, Salamanca, Spain
| | - María Díez-Campelo
- RICORS TERAV, ISCIII, Madrid, Spain,Center for Biomedical Research in Network of
Cancer (CIBERONC), Department of Hematology, University Hospital of
Salamanca (IBSAL-HUS), Salamanca, Spain,Department of Medicine, University of
Salamanca (USAL), Salamanca, Spain
| | - Lika Osugui
- Cell Therapy Area, Department of Hematology,
Institute of Biomedical Research of Salamanca-Hospital Universitario de
Salamanca (IBSAL-HUS), Salamanca, Spain,Centro en Red de Medicina Regenerativa y
Terapia Celular de Castilla y León, Valladolid, Spain
| | - Gerardo-Javier Martí-Chillón
- Cell Therapy Area, Department of Hematology,
Institute of Biomedical Research of Salamanca-Hospital Universitario de
Salamanca (IBSAL-HUS), Salamanca, Spain,Centro en Red de Medicina Regenerativa y
Terapia Celular de Castilla y León, Valladolid, Spain
| | - María-Belén Vidriales
- Center for Biomedical Research in Network of
Cancer (CIBERONC), Department of Hematology, University Hospital of
Salamanca (IBSAL-HUS), Salamanca, Spain
| | - Almudena Navarro-Bailón
- Cell Therapy Area, Department of Hematology,
Institute of Biomedical Research of Salamanca-Hospital Universitario de
Salamanca (IBSAL-HUS), Salamanca, Spain,RICORS TERAV, ISCIII, Madrid, Spain,Centro en Red de Medicina Regenerativa y
Terapia Celular de Castilla y León, Valladolid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group,
Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones
Científicas (CSIC) and University of Salamanca (USAL), Salamanca,
Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Area, Department of Hematology,
Institute of Biomedical Research of Salamanca-Hospital Universitario de
Salamanca (IBSAL-HUS), Salamanca, Spain,RICORS TERAV, ISCIII, Madrid, Spain,Centro en Red de Medicina Regenerativa y
Terapia Celular de Castilla y León, Valladolid, Spain,Center for Biomedical Research in Network of
Cancer (CIBERONC), Department of Hematology, University Hospital of
Salamanca (IBSAL-HUS), Salamanca, Spain,Department of Medicine, University of
Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
21
|
Bonadonna M, Altamura S, Tybl E, Palais G, Qatato M, Polycarpou-Schwarz M, Schneider M, Kalk C, Rüdiger W, Ertl A, Anstee N, Bogeska R, Helm D, Milsom MD, Galy B. Iron regulatory protein (IRP)-mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow. SCIENCE ADVANCES 2022; 8:eabq4469. [PMID: 36197975 PMCID: PMC9534496 DOI: 10.1126/sciadv.abq4469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 06/01/2023]
Abstract
Iron is mostly devoted to the hemoglobinization of erythrocytes for oxygen transport. However, emerging evidence points to a broader role for the metal in hematopoiesis, including the formation of the immune system. Iron availability in mammalian cells is controlled by iron-regulatory protein 1 (IRP1) and IRP2. We report that global disruption of both IRP1 and IRP2 in adult mice impairs neutrophil development and differentiation in the bone marrow, yielding immature neutrophils with abnormally high glycolytic and autophagic activity, resulting in neutropenia. IRPs promote neutrophil differentiation in a cell intrinsic manner by securing cellular iron supply together with transcriptional control of neutropoiesis to facilitate differentiation to fully mature neutrophils. Unlike neutrophils, monocyte count was not affected by IRP and iron deficiency, suggesting a lineage-specific effect of iron on myeloid output. This study unveils the previously unrecognized importance of IRPs and iron metabolism in the formation of a major branch of the innate immune system.
Collapse
Affiliation(s)
- Michael Bonadonna
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sandro Altamura
- University of Heidelberg, Department of Pediatric Hematology, Oncology and Immunology, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Elisabeth Tybl
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- IB-Cancer Research Foundation, Science Park 2, 66123 Saarbrücken, Germany
| | - Gael Palais
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Qatato
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Polycarpou-Schwarz
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Martin Schneider
- German Cancer Research Center, Mass Spectrometry based Protein Analysis Unit, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christina Kalk
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Wibke Rüdiger
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alina Ertl
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Natasha Anstee
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ruzhica Bogeska
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dominic Helm
- German Cancer Research Center, Mass Spectrometry based Protein Analysis Unit, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael D. Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bruno Galy
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Mende N, Bastos HP, Santoro A, Mahbubani KT, Ciaurro V, Calderbank EF, Londoño MQ, Sham K, Mantica G, Morishima T, Mitchell E, Lidonnici MR, Meier-Abt F, Hayler D, Jardine L, Curd A, Haniffa M, Ferrari G, Takizawa H, Wilson NK, Göttgens B, Saeb-Parsy K, Frontini M, Laurenti E. Unique molecular and functional features of extramedullary hematopoietic stem and progenitor cell reservoirs in humans. Blood 2022; 139:3387-3401. [PMID: 35073399 PMCID: PMC7612845 DOI: 10.1182/blood.2021013450] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/05/2022] [Indexed: 02/02/2023] Open
Abstract
Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and β-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.
Collapse
Affiliation(s)
- Nicole Mende
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hugo P. Bastos
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonella Santoro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Krishnaa T. Mahbubani
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Valerio Ciaurro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Emily F. Calderbank
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Mariana Quiroga Londoño
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Kendig Sham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanna Mantica
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Centre for Medical Sciences, and Centre for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, 860-0811 Kumamoto, Japan
| | - Emily Mitchell
- Cancer, Ageing and Somatic Mutation Group, Wellcome Sanger Institute, Hinxton, UK
| | - Maria Rosa Lidonnici
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabienne Meier-Abt
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute of Molecular Systems Biology (IMSB), ETH Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Daniel Hayler
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Abbie Curd
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Centre for Medical Sciences, and Centre for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Nicola K. Wilson
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute of Biomedical & Clinical Science, College of Medicine and Health, University of Exeter Medical School, Exeter, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- British Heart Foundation Centre of Excellence, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
23
|
Man Y, Lu Z, Yao X, Gong Y, Yang T, Wang Y. Recent Advancements in Poor Graft Function Following Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:911174. [PMID: 35720412 PMCID: PMC9202575 DOI: 10.3389/fimmu.2022.911174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
Poor graft function (PGF) is a life-threatening complication that occurs after transplantation and has a poor prognosis. With the rapid development of haploidentical hematopoietic stem cell transplantation, the pathogenesis of PGF has become an important issue. Studies of the pathogenesis of PGF have resulted in some success in CD34+-selected stem cell boosting. Mesenchymal stem cells, N-acetyl-l-cysteine, and eltrombopag have also been investigated as therapeutic strategies for PGF. However, predicting and preventing PGF remains challenging. Here, we propose that the seed, soil, and insect theories of aplastic anemia also apply to PGF; CD34+ cells are compared to seeds; the bone marrow microenvironment to soil; and virus infection, iron overload, and donor-specific anti-human leukocyte antigen antibodies to insects. From this perspective, we summarize the available information on the common risk factors of PGF, focusing on its potential mechanism. In addition, the safety and efficacy of new strategies for treating PGF are discussed to provide a foundation for preventing and treating this complex clinical problem.
Collapse
Affiliation(s)
- Yan Man
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhixiang Lu
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiangmei Yao
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yuemin Gong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Tonghua Yang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Tonghua Yang, ; Yajie Wang,
| | - Yajie Wang
- Department of Hematology, National Key Clinical Specialty of Hematology, Yunnan Blood Disease Clinical Medical Center, Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Tonghua Yang, ; Yajie Wang,
| |
Collapse
|
24
|
Young DJ, Fan X, Groarke EM, Patel B, Desmond R, Winkler T, Larochelle A, Calvo KR, Young NS, Dunbar CE. Long-term eltrombopag for bone marrow failure depletes iron. Am J Hematol 2022; 97:791-801. [PMID: 35312200 DOI: 10.1002/ajh.26543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022]
Abstract
Eltrombopag (EPAG) has been approved for the treatment of aplastic anemia and for immune thrombocytopenia, and a subset of patients require long-term therapy. Due to polyvalent cation chelation, prolonged therapy leads to previously underappreciated iron depletion. We conducted a retrospective review of patients treated at the NIH for aplastic anemia, myelodysplastic syndrome, and unilineage cytopenias, comparing those treated with EPAG to a historical cohort treated with immunosuppression without EPAG. We examined iron parameters, duration of therapy, response assessment, relapse rates, and common demographic parameters. We included 521 subjects treated with (n = 315) or without EPAG (n = 206) across 11 studies with multiyear follow-up (3.6 vs. 8.5 years, respectively). Duration of EPAG exposure correlated with ferritin reduction (p = 4 × 10-14 ) regardless of response, maximum dose, or degree of initial iron overload. Clearance followed first-order kinetics with faster clearance (half-life 15.3 months) compared with historical responders (47.5 months, p = 8 × 10-10 ). Risk of iron depletion was dependent upon baseline ferritin and duration of therapy. Baseline ferritin did not correlate with response of marrow failure to EPAG or to relapse risk, and timing of iron clearance did not correlate with disease response. In conclusion, EPAG efficiently chelates total body iron comparable to clinically available chelators. Prolonged use can deplete iron and ultimately lead to iron-deficiency anemia mimicking relapse, responsive to iron supplementation.
Collapse
Affiliation(s)
- David J. Young
- Translational Stem Cell Biology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| | - Xing Fan
- Translational Stem Cell Biology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| | - Emma M. Groarke
- Hematology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| | - Bhavisha Patel
- Hematology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| | - Ronan Desmond
- Hematology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
- Department of Haematology (Laboratory) Tallaght University Hospital Dublin Ireland
| | - Thomas Winkler
- Translational Stem Cell Biology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| | - Katherine R. Calvo
- Department of Laboratory Medicine Clinical Center, NIH Bethesda Maryland USA
| | - Neal S. Young
- Hematology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch National Heart, Lung, and Blood Institute, NIH Bethesda Maryland USA
| |
Collapse
|
25
|
Studies in a mosaic DBA patient and chimeric mice reveal erythroid cell-extrinsic contributions to erythropoiesis. Blood 2022; 139:3439-3449. [PMID: 35349664 DOI: 10.1182/blood.2021013507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
We follow a Diamond Blackfan anemia (DBA) patient mosaic for a pathogenic RPS19 haploinsufficiency mutation with persistent transfusion-dependent anemia. Her anemia remitted on eltrombopag (EPAG), but surprisingly mosaicism was unchanged, suggesting both mutant and normal cells responded. When EPAG was held, her anemia returned. In addition to expanding hematopoietic stem/progenitor cells, EPAG aggressively chelates iron. Since DBA anemia, at least in part, results from excessive intracellular heme leading to ferroptotic cell death, we hypothesized that the excess heme accumulating in ribosomal protein-deficient erythroid precursors inhibited the growth of adjacent genetically-normal precursors, and that the efficacy of EPAG reflected its ability to chelate iron, limit heme synthesis, and thus limit toxicity in both mutant and normal cells. To test this, we studied Rpl11 haploinsufficient (DBA) mice and mice chimeric for the cytoplasmic heme export protein, FLVCR. Flvcr1-deleted mice have severe anemia, resembling DBA. Mice transplanted with ratios of DBA to wildtype marrow cells of 50:50 are anemic, like our DBA patient. In contrast, mice transplanted with Flvcr1-deleted (unable to export heme) and wildtype marrow cells at ratios of 50:50 or 80:20 have normal numbers of red cells. Additional studies suggest that heme exported from DBA erythroid cells might impede the nurse cell function of central macrophages of erythroblastic islands to impair the maturation of genetically-normal co-adherent erythroid cells. These findings have implications for the gene therapy of DBA and may provide insights into why del(5q) myelodysplastic syndrome patients are anemic despite being mosaic for chromosome 5q deletion and loss of RPS14.
Collapse
|
26
|
Prabahran A, Koldej R, Chee L, Ritchie D. Clinical features, pathophysiology, and therapy of poor graft function post-allogeneic stem cell transplantation. Blood Adv 2022; 6:1947-1959. [PMID: 34492685 PMCID: PMC8941468 DOI: 10.1182/bloodadvances.2021004537] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Poor graft function (PGF), defined by the presence of multilineage cytopenias in the presence of 100% donor chimerism, is a serious complication of allogeneic stem cell transplant (alloSCT). Inducers or potentiators of alloimmunity such as cytomegalovirus reactivation and graft-versus-host disease are associated with the development of PGF, however, more clinical studies are required to establish further risk factors and describe outcomes of PGF. The pathophysiology of PGF can be conceptualized as dysfunction related to the number or productivity of the stem cell compartment, defects in bone marrow microenvironment components such as mesenchymal stromal cells and endothelial cells, or immunological suppression of post-alloSCT hematopoiesis. Treatment strategies focused on improving stem cell number and function and microenvironment support of hematopoiesis have been attempted with variable success. There has been limited use of immune manipulation as a therapeutic strategy, but emerging therapies hold promise. This review details the current understanding of the causes of PGF and methods of treatment to provide a framework for clinicians managing this complex problem.
Collapse
Affiliation(s)
- Ashvind Prabahran
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel Koldej
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Lynette Chee
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - David Ritchie
- Department of Clinical Haematology, Peter MacCallum Cancer Centre/Royal Melbourne Hospital, Parkville, VIC, Australia
- Australian Cancer Research Fund Translational Research Laboratory, Royal Melbourne Hospital, Parkville, VIC, Australia; and
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
27
|
Will B. Effects of eltrombopag on mesenchymal stem cells in immune thrombocytopenia purpura. Br J Haematol 2022; 197:137-138. [PMID: 35245400 DOI: 10.1111/bjh.18101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Britta Will
- Department of Medicine (Oncology), Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Guan Y, Hasipek M, Jiang D, Tiwari AD, Grabowski DR, Pagliuca S, Kongkiatkamon S, Patel B, Singh S, Parker Y, LaFramboise T, Lindner D, Sekeres MA, Mian OY, Saunthararajah Y, Maciejewski JP, Jha BK. Eltrombopag inhibits TET dioxygenase to contribute to hematopoietic stem cell expansion in aplastic anemia. J Clin Invest 2022; 132:e149856. [PMID: 35085104 PMCID: PMC8843742 DOI: 10.1172/jci149856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Eltrombopag, an FDA-approved non-peptidyl thrombopoietin receptor agonist, is clinically used for the treatment of aplastic anemia, a disease characterized by hematopoietic stem cell failure and pancytopenia, to improve platelet counts and stem cell function. Eltrombopag treatment results in a durable trilineage hematopoietic expansion in patients. Some of the eltrombopag hematopoietic activity has been attributed to its off-target effects, including iron chelation properties. However, the mechanism of action for its full spectrum of clinical effects is still poorly understood. Here, we report that eltrombopag bound to the TET2 catalytic domain and inhibited its dioxygenase activity, which was independent of its role as an iron chelator. The DNA demethylating enzyme TET2, essential for hematopoietic stem cell differentiation and lineage commitment, is frequently mutated in myeloid malignancies. Eltrombopag treatment expanded TET2-proficient normal hematopoietic stem and progenitor cells, in part because of its ability to mimic loss of TET2 with simultaneous thrombopoietin receptor activation. On the contrary, TET inhibition in TET2 mutant malignant myeloid cells prevented neoplastic clonal evolution in vitro and in vivo. This mechanism of action may offer a restorative therapeutic index and provide a scientific rationale to treat selected patients with TET2 mutant-associated or TET deficiency-associated myeloid malignancies.
Collapse
Affiliation(s)
- Yihong Guan
- Department of Translational Hematology and Oncology Research and
| | - Metis Hasipek
- Department of Translational Hematology and Oncology Research and
| | - Dongxu Jiang
- Department of Translational Hematology and Oncology Research and
| | - Anand D. Tiwari
- Department of Translational Hematology and Oncology Research and
| | | | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research and
| | | | - Bhumika Patel
- Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Salendra Singh
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yvonne Parker
- Department of Translational Hematology and Oncology Research and
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel Lindner
- Department of Translational Hematology and Oncology Research and
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Developmental Therapeutics, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Mikkael A. Sekeres
- Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Omar Y. Mian
- Department of Translational Hematology and Oncology Research and
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Developmental Therapeutics, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research and
- Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Developmental Therapeutics, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research and
- Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Developmental Therapeutics, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Babal K. Jha
- Department of Translational Hematology and Oncology Research and
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Developmental Therapeutics, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Zhang D, Gao X, Li H, Borger DK, Wei Q, Yang E, Xu C, Pinho S, Frenette PS. The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell 2022; 29:232-247.e7. [PMID: 35065706 PMCID: PMC8818037 DOI: 10.1016/j.stem.2021.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Host microbiota crosstalk is essential for the production and functional modulation of blood-cell lineages. Whether, and if so how, the microbiota influences hematopoietic stem cells (HSCs) is unclear. Here, we show that the microbiota regulates HSC self-renewal and differentiation under stress conditions by modulating local iron availability in the bone marrow (BM). In microbiota-depleted mice, HSC self-renewal was enhanced during regeneration, while the commitment toward differentiation was dramatically compromised. Mechanistically, microbiota depletion selectively impaired the recycling of red blood cells (RBCs) by BM macrophages, resulting in reduced local iron levels without affecting systemic iron homeostasis. Limiting iron availability in food (in vivo) or in culture (ex vivo), or by CD169+ macrophage depletion, enhanced HSC self-renewal and expansion. These results reveal an intricate interplay between the microbiota, macrophages, and iron, and their essential roles in regulating critical HSC fate decisions under stress.
Collapse
Affiliation(s)
- Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daniel K Borger
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eva Yang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Liu ZJ, Deschmann E, Ramsey HE, Feldman HA, Psaila B, Cooper N, Vlachodimitropoulou E, Porter J, Bussel J, Georgieff M, Sola-Visner M. Iron status influences the response of cord blood megakaryocyte progenitors to eltrombopag in vitro. Blood Adv 2022; 6:13-27. [PMID: 34654056 PMCID: PMC8753208 DOI: 10.1182/bloodadvances.2021004207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Eltrombopag (ELT) is a thrombopoietic agent approved for immune thrombocytopenia and also a potent iron chelator. Here we found that ELT exhibited dose-dependent opposing effects on in vitro megakaryopoiesis: low concentrations (≤6 µM, ELT6) stimulated megakaryopoiesis, but high concentrations (30 µM, ELT30) suppressed megakaryocyte (MK) differentiation and proliferation. The suppressive effects of ELT30 were reproduced by other iron chelators, supporting iron chelation as a likely mechanism. During MK differentiation, committed MK progenitors (CD34+/CD41+ and CD34-/CD41+ cells) were significantly more sensitive than undifferentiated progenitors (CD34+/CD41- cells) to the suppressive effects of ELT30, which resulted from both decreased proliferation and increased apoptosis. The antiproliferative effects of ELT30 were reversed by increased iron in the culture, as were the proapoptotic effects when exposure to ELT30 was short. Because committed MK progenitors exhibited the highest proliferative rate and the highest sensitivity to iron chelation, we tested whether their iron status influenced their response to ELT during rapid cell expansion. In these studies, iron deficiency reduced the proliferation of CD41+ cells in response to all ELT concentrations. Severe iron deficiency also reduced the number of MKs generated in response to high thrombopoietin concentrations by ∼50%, compared with iron-replete cultures. Our findings support the hypothesis that although iron deficiency can stimulate certain cells and steps in megakaryopoiesis, it can also limit the proliferation of committed MK progenitors, with severity of iron deficiency and degree of thrombopoietic stimulation influencing the ultimate output. Further studies are needed to clarify how megakaryopoiesis, iron deficiency, and ELT stimulation are clinically interrelated.
Collapse
Affiliation(s)
- Zhi-Jian Liu
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Emoke Deschmann
- Division of Neonatology, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Haley E. Ramsey
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Henry A. Feldman
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Bethan Psaila
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nichola Cooper
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | | | - John Porter
- Department of Hematology, University College London, London, United Kingdom
| | - James Bussel
- Division of Hematology, Department of Pediatrics, Weill Cornell Medicine, New York, NY; and
| | - Michael Georgieff
- Department of Pediatrics, Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN
| | - Martha Sola-Visner
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
31
|
Li J, Wang X, Ding J, Zhu Y, Min W, Kuang W, Yuan K, Sun C, Yang P. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell. Acta Pharm Sin B 2021; 12:2808-2831. [PMID: 35755294 PMCID: PMC9214065 DOI: 10.1016/j.apsb.2021.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cell (HSC) transplantation is the only curative therapy for many diseases. HSCs from umbilical cord blood (UCB) source have many advantages over from bone marrow. However, limited HSC dose in a single CB unit restrict its widespread use. Over the past two decades, ex vivo HSC expansion with small molecules has been an effective approach for obtaining adequate HSCs. Till now, several small-molecule compounds have entered the phase I/II trials, showing safe and favorable pharmacological profiles. As HSC expansion has become a hot topic over recent years, many newly identified small molecules along with novel biological mechanisms for HSC expansion would help solve this challenging issue. Here, we will give an overview of HSC biology, discovery and medicinal chemistry development of small molecules, natural products targeting for HSC expansion, and their recent clinical progresses, as well as potential protein targets for HSC expansion.
Collapse
|
32
|
Lee E, Seshadri M, Bussel JB. Clinical outcomes in eight patients with immune thrombocytopenia each treated with the three approved thrombopoietin receptor agonists. Am J Hematol 2021; 96:E373-E376. [PMID: 34152624 DOI: 10.1002/ajh.26277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Eun‐Ju Lee
- Division of Hematology New York Presbyterian Hospital – Weill Cornell New York New York USA
| | - Madhav Seshadri
- Division of Hematology New York Presbyterian Hospital – Weill Cornell New York New York USA
| | - James B. Bussel
- Division of Pediatric Hematology/Oncology New York Presbyterian Hospital – Weill Cornell New York New York USA
| |
Collapse
|
33
|
Kapoor S, Champion G, Olnes MJ. Thrombopoietin receptor agonists for marrow failure: A concise clinical review. Best Pract Res Clin Haematol 2021; 34:101274. [PMID: 34404526 DOI: 10.1016/j.beha.2021.101274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Bone marrow failure is characterized by a disruption of hematopoietic stem cell (HSC) homeostasis and function, which causes decreased blood counts. Germline and somatic mutations within HSCs and immune dysregulation contribute to the pathogenesis of marrow failure. Allogeneic HSC transplant is a potentially curative therapy for marrow failure, although not all patients are candidates for this procedure. Immune suppressive therapy (IST) is an effective treatment for patients with aplastic anemia (AA) and select patients with myelodysplastic syndromes, but some patients fail to respond or relapse after IST. Over the past decade, the oral thrombopoietin receptor agonist eltrombopag has become a therapeutic option for AA in combination with frontline IST, and as a single agent for relapsed and refractory patients after IST. In this review, we highlight current knowledge of thrombopoietin receptor agonist mechanisms of action, and clinical indications and toxicities in patients with marrow failure, including the risk of clonal evolution.
Collapse
Affiliation(s)
- Sargam Kapoor
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr, Anchorage, AK, 99508, USA
| | - Grace Champion
- University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Matthew J Olnes
- Hematology and Medical Oncology, Alaska Native Tribal Health Consortium, 3900 Ambassador Dr, Anchorage, AK, 99508, USA; University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA, 98195, USA; WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK, 99508, USA.
| |
Collapse
|
34
|
Lozano ML, Segú-Vergés C, Coma M, Álvarez-Roman MT, González-Porras JR, Gutiérrez L, Valcárcel D, Butta N. Elucidating the Mechanism of Action of the Attributed Immunomodulatory Role of Eltrombopag in Primary Immune Thrombocytopenia: An In Silico Approach. Int J Mol Sci 2021; 22:ijms22136907. [PMID: 34199099 PMCID: PMC8269123 DOI: 10.3390/ijms22136907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Eltrombopag is a thrombopoietin receptor (MPL) agonist approved for the treatment of primary immune thrombocytopenia (ITP). Recent evidence shows that some patients may sustain platelet counts following eltrombopag discontinuation. The systemic immunomodulatory response that resolves ITP in some patients could result from an increase in platelet mass, caused either by the direct action of eltrombopag on megakaryocytes through MPL stimulation, or potential MPL-independent actions on other cell types. To uncover the possible mechanisms of action of eltrombopag, in silico analyses were performed, including a systems biology-based approach, a therapeutic performance mapping system, and structural analyses. Through manual curation of the available bibliography, 56 key proteins were identified and integrated into the ITP interactome analysis. Mathematical models (94.92% mean accuracy) were obtained to elucidate potential MPL-dependent pathways in non-megakaryocytic cell subtypes. In addition to the effects on megakaryocytes and platelet numbers, the results were consistent with MPL-mediated effects on other cells, which could involve interferon-gamma, transforming growth factor-beta, peroxisome proliferator-activated receptor-gamma, and forkhead box protein P3 pathways. Structural analyses indicated that effects on three apoptosis-related proteins (BCL2L1, BCL2, BAX) from the Bcl-2 family may be off-target effects of eltrombopag. In conclusion, this study proposes new hypotheses regarding the immunomodulatory functions of eltrombopag in patients with ITP.
Collapse
MESH Headings
- Benzoates/chemistry
- Benzoates/pharmacology
- Benzoates/therapeutic use
- Biomarkers
- Disease Management
- Disease Susceptibility
- Humans
- Hydrazines/chemistry
- Hydrazines/pharmacology
- Hydrazines/therapeutic use
- Immunomodulation/drug effects
- Models, Biological
- Models, Molecular
- Molecular Targeted Therapy/methods
- Protein Interaction Mapping
- Protein Interaction Maps
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Pyrazoles/chemistry
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Receptors, Thrombopoietin/antagonists & inhibitors
- Receptors, Thrombopoietin/chemistry
- Receptors, Thrombopoietin/metabolism
- Signal Transduction/drug effects
- Structure-Activity Relationship
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Maria L. Lozano
- Hospital General Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, 30007 Murcia, Spain
- Correspondence: (M.L.L.); (N.B.)
| | - Cristina Segú-Vergés
- Anaxomics Biotech S.L., Diputació 237, 1°, 1, 08007 Barcelona, Spain; (C.S.-V.); (M.C.)
| | - Mireia Coma
- Anaxomics Biotech S.L., Diputació 237, 1°, 1, 08007 Barcelona, Spain; (C.S.-V.); (M.C.)
| | - María T. Álvarez-Roman
- Unidad de Trombosis y Hemostasia, Servicio de Hematología, Hospital Universitario La Paz, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - José R. González-Porras
- Unidad de Hemostasia y Trombosis, Servicio de Hematología, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain;
| | - Laura Gutiérrez
- Grupo de Investigación en Plaquetas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Departamento de Medicina, Universidad de Oviedo, 33071 Oviedo, Spain;
| | - David Valcárcel
- Servicio Hematología, Vall d´Hebron Insitute of Oncology (VHIO), Hospital Univesitario Vall d’Hebron, Universitat Autònoma de Barcelona, Centro Cellex, Natzaret, 115-117, 08035 Barcelona, Spain;
| | - Nora Butta
- Instituto de Investigación HospitaUniversitario La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
- Correspondence: (M.L.L.); (N.B.)
| |
Collapse
|
35
|
Comont T, Meunier M, Cherait A, Santana C, Cluzeau T, Slama B, Laribi K, Giraud JT, Dimicoli S, Berceanu A, Le Clech L, Cony-Makhoul P, Gruson B, Torregrosa J, Sanhes L, Jachiet V, Azerad MA, Al Jijakli A, Gyan E, Gaudin C, Broner J, Guerveno C, Guillaume T, Ades PL, Beyne-Rauzy O, Fenaux P. Eltrombopag for myelodysplastic syndromes or chronic myelomonocytic leukaemia with no excess blasts and thrombocytopenia: a French multicentre retrospective real-life study. Br J Haematol 2021; 194:336-343. [PMID: 34151423 DOI: 10.1111/bjh.17539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Despite a moderate prevalence in low-risk myelodysplastic syndromes (MDS) and chronic myelomonocytic leukaemia (CMML), thrombocytopenia remains a risk of severe bleeding and therapeutic options are still limited. There are only a few studies with eltrombopag (ELT), a thrombopoietin receptor agonist, in those patients. In this retrospective multicentre study, ELT was used in 50 patients with MDS and 11 with CMML, with no excess of marrow blasts and platelet counts of <50 × 109 /l in a 'real-life' situation. Platelet response occurred in 47 (77%) patients. The median (range) duration of response was 8 (0-69) months. None of the eight still responders who discontinued ELT had relapsed, at a median (range) of 16 (6-23) months after ELT discontinuation. Although 36% of the patients were anti-coagulated or anti-aggregated only 10% of patients had Grade ≥3 bleeding events. Thrombotic events were observed in six (10%) patients, who all but one had a medical history of arterial or venous thrombosis. Progression to acute myeloid leukaemia occurred in four (7%) patients. In this first 'real-life' study, ELT was effective and generally well tolerated in patients with MDS/CMML without excess blasts.
Collapse
Affiliation(s)
- Thibault Comont
- Service de Médecine Interne, IUCT Oncopole, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Mathieu Meunier
- CHU Grenoble Alpes, Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, Grenoble, France
| | - Amina Cherait
- Service d'Hématologie Sénior, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | | | - Thomas Cluzeau
- Service d'Hématologie Clinique, CHU de Nice, Nice, France
| | - Bohrane Slama
- Service d'onco-hématologie, Centre Hospitalier Général d'Avignon, Avignon, France
| | - Kamel Laribi
- Service d'Hématologie, Centre Hospitalier Le Mans, Le Mans, France
| | - Jean-Thomas Giraud
- Service de Médecine Interne, Centre Hospitalier de Tarbes, Tarbes, France
| | - Sophie Dimicoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Ana Berceanu
- Service d'Hématologie, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Lenaïg Le Clech
- Service d'Hématologie, Centre Hospitalier de Quimper, Quimper, France
| | | | - Berangere Gruson
- Service d'Hématologie, Centre Hospitalier Universitaire d'Amiens, Amiens, France
| | - Jose Torregrosa
- Service d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Laurence Sanhes
- Service d'Hématologie, Centre Hospitalier de Perpignan, Perpignan, France
| | - Vincent Jachiet
- Service de Médecine Interne, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Marie-Agnes Azerad
- Service d'Hématologie, Centre Hospitalier Universitaire de Liège, Liège, Belgique
| | - Ahmad Al Jijakli
- Service d'Hématologie, Centre Hospitalier d'Argenteuil, Argenteuil, France
| | - Emmanuel Gyan
- Service d'Hématologie et Thérapie Cellulaire, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Clement Gaudin
- Service de Médecine Interne-Oncogériatrie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Broner
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Claire Guerveno
- Service de Médecine Interne, Centre Hospitalier d'Albi, Albi, France
| | - Thierry Guillaume
- Service d'Hématologie, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Pr Lionel Ades
- Service d'Hématologie Sénior, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Odile Beyne-Rauzy
- Service de Médecine Interne, IUCT Oncopole, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Pierre Fenaux
- Service d'Hématologie Sénior, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | | |
Collapse
|
36
|
Di Buduo CA, Laurent PA, Zaninetti C, Lordier L, Soprano PM, Ntai A, Barozzi S, La Spada A, Biunno I, Raslova H, Bussel JB, Kaplan DL, Balduini CL, Pecci A, Balduini A. Miniaturized 3D bone marrow tissue model to assess response to Thrombopoietin-receptor agonists in patients. eLife 2021; 10:58775. [PMID: 34059198 PMCID: PMC8169123 DOI: 10.7554/elife.58775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/18/2021] [Indexed: 01/09/2023] Open
Abstract
Thrombocytopenic disorders have been treated with the Thrombopoietin-receptor agonist Eltrombopag. Patients with the same apparent form of thrombocytopenia may respond differently to the treatment. We describe a miniaturized bone marrow tissue model that provides a screening bioreactor for personalized, pre-treatment response prediction to Eltrombopag for individual patients. Using silk fibroin, a 3D bone marrow niche was developed that reproduces platelet biogenesis. Hematopoietic progenitors were isolated from a small amount of peripheral blood of patients with mutations in ANKRD26 and MYH9 genes, who had previously received Eltrombopag. The ex vivo response was strongly correlated with the in vivo platelet response. Induced Pluripotent Stem Cells (iPSCs) from one patient with mutated MYH9 differentiated into functional megakaryocytes that responded to Eltrombopag. Combining patient-derived cells and iPSCs with the 3D bone marrow model technology allows having a reproducible system for studying drug mechanisms and for individualized, pre-treatment selection of effective therapy in Inherited Thrombocytopenias. Platelets are tiny cell fragments essential for blood to clot. They are created and released into the bloodstream by megakaryocytes, giant cells that live in the bone marrow. In certain genetic diseases, such as Inherited Thrombocytopenia, the bone marrow fails to produce enough platelets: this leaves patients extremely susceptible to bruising, bleeding, and poor clotting after an injury or surgery. Certain patients with Inherited Thrombocytopenia respond well to treatments designed to boost platelet production, but others do not. Why these differences exist could be investigated by designing new test systems that recreate the form and function of bone marrow in the laboratory. However, it is challenging to build the complex and poorly understood bone marrow environment outside of the body. Here, Di Buduo et al. have developed an artificial three-dimensional miniature organ bioreactor system that recreates the key features of bone marrow. In this system, megakaryocytes were grown from patient blood samples, and hooked up to a tissue scaffold made of silk. The cells were able to grow as if they were in their normal environment, and they could shed platelets into an artificial bloodstream. After treating megakaryocytes with drugs to stimulate platelet production, Di Buduo et al. found that the number of platelets recovered from the bioreactor could accurately predict which patients would respond to these drugs in the clinic. This new test system enables researchers to predict how a patient will respond to treatment, and to tailor therapy options to each individual. This technology could also be used to test new drugs for Inherited Thrombocytopenias and other blood-related diseases; if scaled-up, it could also, one day, generate large quantities of lab-grown blood cells for transfusion.
Collapse
Affiliation(s)
| | | | - Carlo Zaninetti
- Department of Internal Medicine, I.R.C.C.S. San Matteo Foundation and the University of Pavia, Pavia, Italy
| | - Larissa Lordier
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Aikaterini Ntai
- Integrated Systems Engineering, Milano, Italy.,Isenet Biobanking, Milano, Italy
| | - Serena Barozzi
- Department of Internal Medicine, I.R.C.C.S. San Matteo Foundation and the University of Pavia, Pavia, Italy
| | - Alberto La Spada
- Integrated Systems Engineering, Milano, Italy.,Isenet Biobanking, Milano, Italy
| | - Ida Biunno
- Isenet Biobanking, Milano, Italy.,Institute for Genetic and Biomedical Research-CNR, Milano, Italy
| | - Hana Raslova
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy Cancer Campus, Equipe Labellisée Ligue Nationale Contre le Cancer, Villejuif, France
| | - James B Bussel
- Department of Pediatrics, Weill Cornell Medicine, New York, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, United States
| | - Carlo L Balduini
- Department of Internal Medicine, I.R.C.C.S. San Matteo Foundation and the University of Pavia, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, I.R.C.C.S. San Matteo Foundation and the University of Pavia, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, United States
| |
Collapse
|
37
|
Eltrombopag for patients with moderate aplastic anemia or uni-lineage cytopenias. Blood Adv 2021; 4:1700-1710. [PMID: 32330244 DOI: 10.1182/bloodadvances.2020001657] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
There is no standard or widely effective treatment of patients with moderate aplastic anemia (MAA) or hypo-productive uni-lineage cytopenias (UC). Eltrombopag (EPAG), a small molecule thrombopoietin mimetic, has previously been shown to result in durable multi-lineage hematologic responses with low toxicity in patients with refractory severe aplastic anemia (SAA). Its safety and efficacy in MAA are unknown. This prospective phase 2 study enrolled previously untreated and treated MAA and UC patients with clinically relevant cytopenias. EPAG was administered at doses escalating from 50 to 300 mg/d. Hematologic responses were assessed at 16 to 20 weeks. Responding patients were continued on EPAG until reaching defined robust or stable blood counts. EPAG was reinstituted for relapse. Thirty-four patients were enrolled between 2012 and 2017, including 31 with MAA and 3 with UC. Seventeen patients responded in at least 1 eligible lineage by the primary end point. A striking improvement in anemia was observed in a patient with Diamond-Blackfan anemia. EPAG was well tolerated, and it was discontinued for robust or stable blood counts in 12 of 17 patients after a median of 8 months. A majority required re-initiation of EPAG for declining counts, and all regained response. Two of 34 patients developed non-chromosome 7 bone marrow cytogenetic abnormalities while taking EPAG, without dysplasia or increased blasts. Somatic mutation allele frequencies in cancer genes did not increase overall on EPAG. EPAG is a well-tolerated oral treatment of cytopenias in patients with MAA/UC. This trial was registered at www.clinicaltrials.gov as #NCT01328587.
Collapse
|
38
|
Qanash H, Li Y, Smith RH, Linask K, Young-Baird S, Hakami W, Keyvanfar K, Choy JS, Zou J, Larochelle A. Eltrombopag Improves Erythroid Differentiation in a Human Induced Pluripotent Stem Cell Model of Diamond Blackfan Anemia. Cells 2021; 10:734. [PMID: 33810313 PMCID: PMC8065708 DOI: 10.3390/cells10040734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Diamond Blackfan Anemia (DBA) is a congenital macrocytic anemia associated with ribosomal protein haploinsufficiency. Ribosomal dysfunction delays globin synthesis, resulting in excess toxic free heme in erythroid progenitors, early differentiation arrest, and pure red cell aplasia. In this study, DBA induced pluripotent stem cell (iPSC) lines were generated from blood mononuclear cells of DBA patients with inactivating mutations in RPS19 and subjected to hematopoietic differentiation to model disease phenotypes. In vitro differentiated hematopoietic cells were used to investigate whether eltrombopag, an FDA-approved mimetic of thrombopoietin with robust intracellular iron chelating properties, could rescue erythropoiesis in DBA by restricting the labile iron pool (LIP) derived from excessive free heme. DBA iPSCs exhibited RPS19 haploinsufficiency, reduction in the 40S/60S ribosomal subunit ratio and early erythroid differentiation arrest in the absence of eltrombopag, compared to control isogenic iPSCs established by CRISPR/Cas9-mediated correction of the RPS19 point mutation. Notably, differentiation of DBA iPSCs in the presence of eltrombopag markedly improved erythroid maturation. Consistent with a molecular mechanism based on intracellular iron chelation, we observed that deferasirox, a clinically licensed iron chelator able to permeate into cells, also enhanced erythropoiesis in our DBA iPSC model. In contrast, erythroid maturation did not improve substantially in DBA iPSC differentiation cultures supplemented with deferoxamine, a clinically available iron chelator that poorly accesses LIP within cellular compartments. These findings identify eltrombopag as a promising new therapeutic to improve anemia in DBA.
Collapse
Affiliation(s)
- Husam Qanash
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
- Department of Biology, Catholic University of America, Washington, DC 20064, USA;
- Department of Medical Laboratory Science, College of Applied Medical Sciences, The University of Hail, Hail 55476, Saudi Arabia
| | - Yongqin Li
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
| | - Richard H. Smith
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
| | - Kaari Linask
- iPSC Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA; (K.L.); (J.Z.)
| | - Sara Young-Baird
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA;
- National Institute of General Medical Sciences (NIGMS), NIH, Bethesda, MD 20892, USA
| | - Waleed Hakami
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
- Department of Biology, Catholic University of America, Washington, DC 20064, USA;
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Keyvan Keyvanfar
- Clinical Flow Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA;
| | - John S. Choy
- Department of Biology, Catholic University of America, Washington, DC 20064, USA;
| | - Jizhong Zou
- iPSC Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA; (K.L.); (J.Z.)
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.Q.); (Y.L.); (R.H.S.); (W.H.)
| |
Collapse
|
39
|
Dong S, Wang Q, Kao YR, Diaz A, Tasset I, Kaushik S, Thiruthuvanathan V, Zintiridou A, Nieves E, Dzieciatkowska M, Reisz JA, Gavathiotis E, D’Alessandro A, Will B, Cuervo AM. Chaperone-mediated autophagy sustains haematopoietic stem-cell function. Nature 2021; 591:117-123. [PMID: 33442062 PMCID: PMC8428053 DOI: 10.1038/s41586-020-03129-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
The activation of mostly quiescent haematopoietic stem cells (HSCs) is a prerequisite for life-long production of blood cells1. This process requires major molecular adaptations to allow HSCs to meet the regulatory and metabolic requirements for cell division2-4. The mechanisms that govern cellular reprograming upon stem-cell activation, and the subsequent return of stem cells to quiescence, have not been fully characterized. Here we show that chaperone-mediated autophagy (CMA)5, a selective form of lysosomal protein degradation, is involved in sustaining HSC function in adult mice. CMA is required for protein quality control in stem cells and for the upregulation of fatty acid metabolism upon HSC activation. We find that CMA activity in HSCs decreases with age and show that genetic or pharmacological activation of CMA can restore the functionality of old mouse and human HSCs. Together, our findings provide mechanistic insights into a role for CMA in sustaining quality control, appropriate energetics and overall long-term HSC function. Our work suggests that CMA may be a promising therapeutic target for enhancing HSC function in conditions such as ageing or stem-cell transplantation.
Collapse
Affiliation(s)
- S Dong
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, NY, USA;,Institute for Aging Studies, Albert Einstein College of Medicine, NY, USA
| | - Q Wang
- Department of Cell Biology, Albert Einstein College of Medicine, NY, USA
| | - YR Kao
- Department of Cell Biology, Albert Einstein College of Medicine, NY, USA
| | - A Diaz
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, NY, USA;,Institute for Aging Studies, Albert Einstein College of Medicine, NY, USA
| | - I Tasset
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, NY, USA;,Institute for Aging Studies, Albert Einstein College of Medicine, NY, USA
| | - S Kaushik
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, NY, USA;,Institute for Aging Studies, Albert Einstein College of Medicine, NY, USA
| | - V Thiruthuvanathan
- Department of Cell Biology, Albert Einstein College of Medicine, NY, USA
| | - A Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, NY, USA
| | - E Nieves
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, NY, USA
| | - M Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, CO, USA
| | - JA Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, CO, USA
| | - E Gavathiotis
- Institute for Aging Studies, Albert Einstein College of Medicine, NY, USA;,Department of Biochemistry, Albert Einstein College of Medicine, NY, USA;,Department of Medicine (Oncology), Albert Einstein College of Medicine, NY, USA
| | - A D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, CO, USA
| | - B Will
- Institute for Aging Studies, Albert Einstein College of Medicine, NY, USA;,Department of Cell Biology, Albert Einstein College of Medicine, NY, USA;,Department of Medicine (Oncology), Albert Einstein College of Medicine, NY, USA;,Ruth L. and David S. Gottesman Institute for Stem Cell Biology, Albert Einstein College of Medicine, NY, USA,Corresponding authors: Ana Maria Cuervo MD PhD, Dept. Developmental Mol Biol, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Phone: +1 718 430 2689, , Britta Will PhD, Department of Cell Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Phone: +1 718 430 3786,
| | - AM Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, NY, USA;,Institute for Aging Studies, Albert Einstein College of Medicine, NY, USA;,Corresponding authors: Ana Maria Cuervo MD PhD, Dept. Developmental Mol Biol, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Phone: +1 718 430 2689, , Britta Will PhD, Department of Cell Biology, Institute for Aging Studies, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, Phone: +1 718 430 3786,
| |
Collapse
|
40
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Eltrombopag inhibits Type I interferon-mediated antiviral signaling by decreasing cellular iron. Biochem Pharmacol 2021; 186:114436. [PMID: 33539815 DOI: 10.1016/j.bcp.2021.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/21/2022]
Abstract
Thrombocytopenia is common among patients with viral hepatitis, limiting the use of antiviral therapy. Eltrombopag (EP) is a thrombopoietin receptor (TPO-R) agonist that has been approved for treatment of immune thrombocytopenia patients with hepatitis virus infection. Interferon-α (IFN-α) plays a crucial role in the antiviral response, and is recommended as the first-line agent for chronic hepatitis B patients. Here, we investigated whether EP inhibits the production of IFN-stimulated genes (ISGs) induced by IFN-α through the TPO-R-independent pathway by mediating reactive oxygen species production by iron chelation. Our results assessed the inhibitory effect of EP on IFN-α signaling, which contributes to the downregulation of ISGs produced by monocytes and sheds light on the underlying mechanisms using iron chelation to treat patients with hepatitis-related immunological thrombocytopenia.
Collapse
|
42
|
Jang JH, Tomiyama Y, Miyazaki K, Nagafuji K, Usuki K, Uoshima N, Fujisaki T, Kosugi H, Matsumura I, Sasaki K, Kizaki M, Sawa M, Hidaka M, Kobayashi N, Ichikawa S, Yonemura Y, Enokitani K, Matsuda A, Ozawa K, Mitani K, Lee JW, Nakao S. Efficacy and safety of romiplostim in refractory aplastic anaemia: a Phase II/III, multicentre, open-label study. Br J Haematol 2021; 192:190-199. [PMID: 33152120 PMCID: PMC7821109 DOI: 10.1111/bjh.17190] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
A previous dose-finding study has suggested that romiplostim is effective in patients with refractory aplastic anaemia (AA) and 10 µg/kg once weekly was recommended as a starting dose. In this Phase II/III, multicentre, open-label study, romiplostim was administered subcutaneously at a fixed dose of 10 µg/kg once weekly for 4 weeks (weeks 1-4) followed by weekly doses (5, 10, 15 and 20 µg/kg) titrated by platelet response for up to 52 weeks (weeks 5-52). A total of 31 patients with AA who were refractory to immunosuppressive therapy (IST) and thrombocytopenia (platelet count of ≤30 × 109 /l) were enrolled. The primary efficacy endpoint of the proportion of patients achieving any haematological (platelet, neutrophil and erythrocyte) response at week 27 was 84% [95% confidence interval (CI) 66-95%]. Trilineage response was 39% (95% CI 22-58%) at week 53. The most common treatment-related adverse events (AEs) were headache and muscle spasms (each 13%). All AEs were mild or moderate except for three patients with Grade 3 hepatic AEs; no AEs necessitated romiplostim discontinuation. Two patients developed cytogenetic abnormalities, of whom one returned to normal karyotype at last follow-up. High-dose romiplostim is effective and well tolerated in the treatment of patients with AA refractory to IST.
Collapse
Affiliation(s)
- Jun Ho Jang
- Department of HematologySungkyunkwan University Samsung Medical CenterSeoulRepublic of Korea
| | | | - Koji Miyazaki
- Department of Transfusion and Cell TransplantationKitasato University School of MedicineSagamiharaJapan
| | - Koji Nagafuji
- Department of HematologyKurume University HospitalKurumeJapan
| | - Kensuke Usuki
- Department of HematologyNTT Medical Center TokyoTokyoJapan
| | - Nobuhiko Uoshima
- Department of HematologyJapanese Red Cross Kyoto Daini HospitalKyotoJapan
| | - Tomoaki Fujisaki
- Department of Internal MedicineMatsuyama Red Cross HospitalMatsuyamaJapan
| | - Hiroshi Kosugi
- Department of HematologyOgaki Municipal HospitalOgakiJapan
| | - Itaru Matsumura
- Department of Hematology and RheumatologyKindai University Faculty of MedicineOsakaJapan
| | - Ko Sasaki
- Department of Hematology and OncologyDokkyo Medical UniversityTochigiJapan
| | - Masahiro Kizaki
- Department of HematologyInternational Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Masashi Sawa
- Department of Hematology and OncologyAnjo Kosei HospitalAnjoJapan
| | - Michihiro Hidaka
- Department of HematologyNational Hospital Organization Kumamoto Medical CenterKumamotoJapan
| | | | - Satoshi Ichikawa
- Department of Hematology and RheumatologyTohoku University HospitalSendaiJapan
| | - Yuji Yonemura
- Department of Transfusion Medicine and Cell TherapyKumamoto University HospitalKumamotoJapan
| | | | - Akira Matsuda
- Department of Hemato‐OncologyInternational Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Keiya Ozawa
- Division of HematologyJichi Medical UniversityTochigiJapan
| | - Kinuko Mitani
- Department of Hematology and OncologyDokkyo Medical UniversityTochigiJapan
| | - Jong Wook Lee
- Division of HematologySeoul St. Mary’s HospitalThe Catholic University of KoreaSeoulRepublic of Korea
| | - Shinji Nakao
- Division of Transfusion MedicineKanazawa University HospitalKanazawaJapan
| |
Collapse
|
43
|
Ebbo M, Rivière E, Godeau B. [Adult immune thrombocytopenia and thrombopoietin receptor agonist: Ten years later]. Rev Med Interne 2020; 42:38-45. [PMID: 32712041 DOI: 10.1016/j.revmed.2020.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Abstract
Ten years after their licence in France, the use of the two thrombopoietin receptor agonists (TPO-RA), eltrombopag and romiplostim, has deeply modified the landscape of immune thrombocytopenia (ITP) treatment. In this review, we summarise data on efficacy and safety of these treatments during ITP, as well as their use in clinical practice. Their place in therapeutic strategy, the recent description of persistant remission after discontinuation of TPO-RA, and future new thrombopoietic agents are also discussed. Their use has progressively increased and early use at a newly diagnosed stage of the disease is under evaluation. However physician have to keep in mind that thromboembolism rates appear to be higher with TPO-RA treatment in ITP patients at high risk of thrombosis, and that data from "real-life" studies with very long term follow up are not available. Finally, the cost of these treatments should also be evaluated in future therapeutic strategies comparisons.
Collapse
Affiliation(s)
- M Ebbo
- Département de Médecine Interne, Hôpital de la Timone, AP-HM, Marseille, France; Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - E Rivière
- Université de Bordeaux, Faculté de Médecine, 232 rue Léo Saignat, 33000 Bordeaux, France; CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Haut-Lévêque, 33604 Pessac, France
| | - B Godeau
- Service de médecine interne, Centre de référence des cytopénies autoimmunes de l'adulte, CHU Henri Mondor, APHP, UPEC, 94010 Créteil, France.
| |
Collapse
|
44
|
Hosokawa K, Yamazaki H, Tanabe M, Imi T, Sugimori N, Nakao S. High-dose romiplostim accelerates hematologic recovery in patients with aplastic anemia refractory to eltrombopag. Leukemia 2020; 35:906-909. [PMID: 32616921 DOI: 10.1038/s41375-020-0950-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Kohei Hosokawa
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirohito Yamazaki
- Division of Transfusion Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Mikoto Tanabe
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuya Imi
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naomi Sugimori
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Nakao
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
45
|
Controversies on the Consequences of Iron Overload and Chelation in MDS. Hemasphere 2020; 4:e357. [PMID: 32647792 PMCID: PMC7306315 DOI: 10.1097/hs9.0000000000000357] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many patients with MDS are prone to develop systemic and tissue iron overload in part as a consequence of disease-immanent ineffective erythropoiesis. However, chronic red blood cell transfusions, which are part of the supportive care regimen to correct anemia, are the major source of iron overload in MDS. Increased systemic iron levels eventually lead to the saturation of the physiological systemic iron carrier transferrin and the occurrence of non-transferrin-bound iron (NTBI) together with its reactive fraction, the labile plasma iron (LPI). NTBI/LPI-mediated toxicity and tissue iron overload may exert multiple detrimental effects that contribute to the pathogenesis, complications and eventually evolution of MDS. Until recently, the evidence supporting the use of iron chelation in MDS was based on anecdotal reports, uncontrolled clinical trials or prospective registries. Despite not fully conclusive, these and more recent studies, including the TELESTO trial, unravel an overall adverse action of iron overload and therapeutic benefit of chelation, ranging from improved hematological outcome, reduced transfusion dependence and superior survival of iron-loaded MDS patients. The still limited and somehow controversial experimental and clinical data available from preclinical studies and randomized trials highlight the need for further investigation to fully elucidate the mechanisms underlying the pathological impact of iron overload-mediated toxicity as well as the effect of classic and novel iron restriction approaches in MDS. This review aims at providing an overview of the current clinical and translational debated landscape about the consequences of iron overload and chelation in the setting of MDS.
Collapse
|
46
|
Liu Y, Ding L, Zhang B, Deng Z, Han Y, Wang S, Yang S, Fan Z, Zhang J, Yan H, Han D, He L, Yue W, Wang H, Li Y, Pei X. Thrombopoietin enhances hematopoietic stem and progenitor cell homing by impeding matrix metalloproteinase 9 expression. Stem Cells Transl Med 2020; 9:661-673. [PMID: 32125099 PMCID: PMC7214666 DOI: 10.1002/sctm.19-0220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/11/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
We reported a novel function of recombinant human thrombopoietin (TPO) in increasing hematopoietic stem and progenitor cell (HSPC) homing to the bone marrow (BM). Single doses of TPO treatment to the recipients immediately after BM transplantation showed significantly improved homing of HSPCs to the BM, which subsequently resulted in enhanced short‐ and long‐term engraftment of HSPCs in mice. We found that TPO could downregulate the expression and secretion of matrix metalloproteinase 9 in BM cells. As a result, SDF‐1α level was increased in the BM niche. Blocking the interaction of SDF‐1α and CXCR4 on HSPCs by using AMD3100 could significantly reverse the TPO‐enhanced HSPC homing effect. More importantly, a single dose of TPO remarkably promoted human HSPC homing and subsequent engraftment to the BM of nonobese diabetic/severe combined immunodeficiency mice. We then performed a clinical trial to evaluate the effect of TPO treatment in patients receiving haploidentical BM and mobilized peripheral blood transplantation. Surprisingly, single doses of TPO treatment to patients followed by hematopoietic stem cell transplantation significantly improved platelet engraftment in the cohort of patients with severe aplastic anemia (SAA). The mean volume of platelet and red blood cell transfusion was remarkably reduced in the cohort of patients with SAA or hematological malignancies receiving TPO treatment. Thus, our data provide a simple, feasible, and efficient approach to improve clinical outcomes in patients with allogenic hematopoietic stem cell transplantation. The clinical trial was registered in the Chinese Clinical Trial Registry website (http://www.chictr.org.cn) as ChiCTR‐OIN‐1701083.
Collapse
Affiliation(s)
- Yiming Liu
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Li Ding
- Department of Hematology, Medical Center of Air Forces, PLA, Beijing, People's Republic of China
| | - Bowen Zhang
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ziliang Deng
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Yi Han
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Shu Yang
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Jing Zhang
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Hongmin Yan
- Department of Hematology, Medical Center of Air Forces, PLA, Beijing, People's Republic of China
| | - Dongmei Han
- Department of Hematology, Medical Center of Air Forces, PLA, Beijing, People's Republic of China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| | - Hengxiang Wang
- Department of Hematology, Medical Center of Air Forces, PLA, Beijing, People's Republic of China
| | - Yanhua Li
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, People's Republic of China
| |
Collapse
|
47
|
Hernández-Sánchez JM, Bastida JM, Alonso-López D, Benito R, González-Porras JR, De Las Rivas J, Hernández Rivas JM, Rodríguez-Vicente AE. Transcriptomic analysis of patients with immune thrombocytopenia treated with eltrombopag. Platelets 2019; 31:993-1000. [PMID: 31838946 DOI: 10.1080/09537104.2019.1702156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last years, the use of thrombopoietin receptor agonists (TPO-RA), eltrombopag and romiplostim, has improved the management of immune thrombocytopenia (ITP). Moreover, eltrombopag is also active in patients with aplastic anemia and myelodysplastic syndrome. However, their mechanisms of action and signaling pathways still remain controversial. In order to gain insight into the mechanisms underlying eltrombopag therapy, a gene expression profile (GEP) analysis in patients treated with this drug was carried out. Fourteen patients with chronic ITP were studied by means of microarrays before and during eltrombopag treatment. Median age was 78 years (range, 35-87 years); median baseline platelet count was 14 × 109/L (range, 2-68 × 109/L). Ten patients responded to the therapy, two cases relapsed after an initial response and the remaining two were refractory to the therapy. Eltrombopag induced relevant changes in the hematopoiesis, platelet activation and degranulation, as well as in megakaryocyte differentiation, with overexpression of some transcription factors and the genes PPBP, ITGB3, ITGA2B, F13A1, F13A1, MYL9 and ITGA2B. In addition, GP1BA, PF4, ITGA2B, MYL9, HIST1H4H and HIST1H2BH, genes regulated by RUNX1 were also significantly enriched after eltrombopag therapy. Furthermore, in non-responder patients, an overexpression of Bcl-X gene and genes involved in erythropoiesis, such as SLC4A1 and SLC25A39, was also observed. To conclude, overexpression in genes involved in megakaryopoiesis, platelet adhesion, degranulation and aggregation was observed in patients treated with eltrombopag. Moreover, an important role regarding heme metabolism was also present in non-responder patients.
Collapse
Affiliation(s)
- Jesús María Hernández-Sánchez
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - José María Bastida
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CSIC-USAL) , Salamanca, Spain
| | - Rocío Benito
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - José Ramón González-Porras
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | | | - Jesús María Hernández Rivas
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - Ana Eugenia Rodríguez-Vicente
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| |
Collapse
|
48
|
Cooper N, Cines DB. The child with immune thrombocytopenia: to treat or not to treat, is that still the question? Haematologica 2019; 104:2132-2134. [PMID: 31666343 DOI: 10.3324/haematol.2019.229179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Nichola Cooper
- Centre for Haematology, Department of Medicine, Imperial College, Hammersmith Hospital, London, UK
| | - Douglas B Cines
- Departments of Pathology and Laboratory Medicine and Medicine, University of Pennsylvania-Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
49
|
Leitch HA, Gattermann N. Hematologic improvement with iron chelation therapy in myelodysplastic syndromes: Clinical data, potential mechanisms, and outstanding questions. Crit Rev Oncol Hematol 2019; 141:54-72. [DOI: 10.1016/j.critrevonc.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/25/2018] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
|
50
|
Nakamura-Ishizu A, Suda T. Multifaceted roles of thrombopoietin in hematopoietic stem cell regulation. Ann N Y Acad Sci 2019; 1466:51-58. [PMID: 31292976 DOI: 10.1111/nyas.14169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
Thrombopoietin (Thpo) and its receptor myeloid proliferative leukemia (Mpl) were initially identified as the cytokine signaling that stimulates megakaryopoiesis and platelet production. However, Thpo-Mpl signaling has also been widely characterized as one of the few cytokine systems that directly regulates hematopoietic stem and progenitor cells. The ability of Thpo signaling to stimulate hematopoietic stem cell (HSC) self-renewal has led to the development and utilization of Thpo mimetic drugs to treat hematopoietic diseases with restricted function of HSCs, such as aplastic anemia. This review will cover the mechanisms by which Thpo-Mpl signaling regulates HSCs.
Collapse
Affiliation(s)
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto City, Japan
| |
Collapse
|