1
|
Kirk B, Lombardi G, Duque G. Bone and muscle crosstalk in ageing and disease. Nat Rev Endocrinol 2025; 21:375-390. [PMID: 40011751 DOI: 10.1038/s41574-025-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Interorgan communication between bone and skeletal muscle is central to human health. A dysregulation of bone-muscle crosstalk is implicated in several age-related diseases. Ageing-associated changes in endocrine, inflammatory, nutritional and biomechanical stimuli can influence the differentiation capacity, function and survival of mesenchymal stem cells and bone-forming and muscle-forming cells. Consequently, the secretome phenotype of bone and muscle cells is altered, leading to impaired crosstalk and, ultimately, catabolism of both tissues. Adipose tissue acts as a third player in the bone-muscle interaction by secreting factors that affect bone and muscle cells. Physical exercise remains the key biological stimulus for bone-muscle crosstalk, either directly via the release of cytokines from bone, muscle or adipocytes, or indirectly through extracellular vesicles. Overall, bone-muscle crosstalk is considered an inherent process necessary to maintain the structure and function of both tissues across the life cycle. This Review summarizes the latest biomedical advances in bone-muscle crosstalk as it pertains to human ageing and disease. We also outline future research priorities to accommodate the understanding of this rapidly emerging field.
Collapse
Affiliation(s)
- Ben Kirk
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Gustavo Duque
- Department of Medicine, Western Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, Melbourne, Victoria, Australia.
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Wang Q, Liu M, Cao BY, Su C, Meng X, Ding Y, Ren XY, Gong CX. Osteoporosis Caused by Monoallelic Variant of WNT1 Gene in Four Pediatric Patients. Am J Med Genet A 2025; 197:e63987. [PMID: 39780405 DOI: 10.1002/ajmg.a.63987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Pediatric patients of autosomal dominant early onset osteoporosis conferred by heterozygous mutation in the WNT1 (OMIM: 615221) were rarely reported, and therapy in pediatrics is relatively inexperienced. The clinical and genotypic characteristics and treatment process of four children with osteoporosis caused by WNT1 monoallelic variation were analyzed. The patients admitted from June 2023 to January 2024. All patients presented multiple vertebral compression fracture, two of them experienced recurrent peripheral fragility fractures. The age of the first fractures occur between 2 years and 12 years. Lumber BMD by dual-energy X-ray absorptiometry were decreased (height adjusted z score of -8.06 to -3.50). Four monoallelic variants in WNT1 (c.505G>T, c.616G>A, c.677C>T and c. 506G>A with transcript ID. NM_005430.4) were identified in the probands, and relatives carrying mutations presented with a bone phenotype, consistent with autosomal dominant inheritance. Novel variant c.616G>A was analyzed by 3D protein structural modeling. Subsequent to the treatment of zelodronic acid on all four patients, lumbar BMD improvement by 0.061-0.251 g/cm2. Our data showed that the age of onset of osteoporosis by monoallelic variants in WNT1 is significantly earlier than the age of onset in the general population. Severe osteoporosis is also exhibited in pediatric patients, not just in aging patients with WNT1 variant. Zoledronic acid treatment is effective in short-term observation for pediatric patients with improvement of bone pain and BMD, and no more facture during treatment.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Bing-Yan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xi Meng
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuan Ding
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ya Ren
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chun-Xiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Lin B, Liu H, Liu H, Su L, Sun K, Feng H, Liu Y, Yu M, Han D. A novel WNT10A variant impairs the homeostasis of alveolar bone mesenchymal stem cells. Oral Dis 2025; 31:168-180. [PMID: 38852166 DOI: 10.1111/odi.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES To explore the influence of a novel WNT10A variant on bone mineral density, proliferation, and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells in humans. SUBJECTS AND METHODS Whole-exome sequencing and Sanger sequencing were utilized to detect gene variants in a family with non-syndromic tooth agenesis (NSTA). The panoramic mandibular index was calculated on the proband with WNT10A variant and normal controls to evaluate bone mineral density. Alveolar bone mesenchymal stem cells from the proband with a novel WNT10A variant and normal controls were isolated and cultured, then proliferation and osteogenic differentiation capacities were evaluated and compared. RESULTS We identified a novel WNT10A pathogenic missense variant (c.353A > G/p. Tyr118Cys) in a family with NSTA. The panoramic mandibular index of the proband implied a reduction in bone mineral density. Moreover, the proliferation and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells from the proband with WNT10A Tyr118Cys variant were significantly decreased. CONCLUSIONS Our findings broaden the spectrum of WNT10A variants in patients with non-syndromic oligodontia, suggest an association between WNT10A and the proliferation and osteogenic differentiation of alveolar bone mesenchymal stem cells, and demonstrate that WNT10A is involved in maintaining jaw bone homeostasis.
Collapse
Affiliation(s)
- Bichen Lin
- Frist Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lanxin Su
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
4
|
Liu Y, Nishiura M, Fujii M, Sandhu S, Yawaka Y, Yamazaki Y, Hasebe A, Iimura T, Kong SW, Lee JW. Selective Pyk2 inhibition enhances bone restoration through SCARA5-mediated bone marrow remodeling in ovariectomized mice. Cell Commun Signal 2024; 22:561. [PMID: 39578816 PMCID: PMC11583405 DOI: 10.1186/s12964-024-01945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Understanding the intricate cellular interactions involved in bone restoration is crucial for developing effective strategies to promote bone healing and mitigate conditions such as osteoporosis and fractures. Here, we provide compelling evidence supporting the anabolic effects of a pharmacological Pyk2 inhibitor (Pyk2-Inh) in promoting bone restoration. In vitro, Pyk2 signaling inhibition markedly enhances alkaline phosphatase (ALP) activity, a hallmark of osteoblast differentiation, through activation of canonical Wnt/β-catenin signaling. Notably, analysis of human mesenchymal stem cells through RNA-seq revealed a novel candidate, SCARA5, identified through Pyk2-Inh treatment. We demonstrate that Scara5 plays a crucial role in suppressing the differentiation from stromal cells into adipocytes, and accelerates lineage commitment to osteoblasts, establishing Scara5 as a negative regulator of bone formation. Additionally, Pyk2 inhibition significantly impedes osteoclast differentiation and bone resorption. In a co-culture system comprising osteoblasts and osteoclasts, Pyk2-Inh effectively suppressed osteoclast differentiation, accompanied by a substantial increase in the transcriptional expression of Tnfrsf11b and Csf1 in osteoblasts, highlighting a dual regulatory role in osteoblast-osteoclast crosstalk. In an ovariectomized mouse model of osteoporosis, oral administration of Pyk2-Inh significantly increased bone mass by simultaneously reducing bone resorption, promoting bone formation and decreasing bone marrow fat. These results suggest Pyk2 as a potential therapeutic target for both adipogenesis and osteogenesis in bone marrow. Our findings underscore the importance of Pyk2 signaling inhibition as a key regulator of bone remodeling, offering promising prospects for the development of novel osteoporosis therapies.
Collapse
Affiliation(s)
- Yunqing Liu
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Mai Nishiura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Mika Fujii
- Department of Oral Health Science, Gerodontology, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Sumiti Sandhu
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Yasutaka Yawaka
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Yutaka Yamazaki
- Department of Oral Health Science, Gerodontology, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Akira Hasebe
- Department of Oral Pathobiological Science, Microbiology, Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji-Won Lee
- Department of Oral Pathobiological Science, Microbiology, Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan.
| |
Collapse
|
5
|
Pohl S, Schinke T. O-GlcNAcylation in the osteoblast lineage-boosting the complexity of Wnt-stimulated bone formation. EMBO Rep 2024; 25:4110-4112. [PMID: 39256594 PMCID: PMC11467435 DOI: 10.1038/s44319-024-00242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
The molecular mechanisms explaining the osteogenic influence of Wnt molecules are still not fully clarified. A study in this issue shows that O-GlcNAcylation is required for the osteoanabolic effects of Wnt stimulation.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Zhao W, von Kroge S, Jadzic J, Milovanovic P, Sihota P, Luther J, Brylka L, von Brackel FN, Bockamp E, Busse B, Amling M, Schinke T, Yorgan TA. Osteomodulin deficiency in mice causes a specific reduction of transversal cortical bone size. J Bone Miner Res 2024; 39:1025-1041. [PMID: 38722812 PMCID: PMC11301521 DOI: 10.1093/jbmr/zjae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 08/07/2024]
Abstract
Skeletal growth, modeling, and remodeling are regulated by various molecules, one of them being the recently identified osteoanabolic factor WNT1. We have previously reported that WNT1 transcriptionally activates the expression of Omd, encoding Osteomodulin (OMD), in a murine mesenchymal cell line, which potentially explained the skeletal fragility of mice with mutational WNT1 inactivation, since OMD has been shown to regulate type I collagen fibril formation in vitro. In this study we confirmed the strong induction of Omd expression in a genome-wide expression analysis of transfected cells, and we obtained further evidence for Omd being a direct target gene of WNT1. To assess the in vivo relevance of this regulation, we crossed Omd-deficient mice with a mouse line harboring an inducible, osteoblast-specific Wnt1 transgene. After induction of Wnt1 expression for 1 or 3 weeks, the osteoanabolic potency of WNT1 was not impaired despite the Omd deficiency. Since current knowledge regarding the in vivo physiological function of OMD is limited, we next focused on skeletal phenotyping of wild-type and Omd-deficient littermates, in the absence of a Wnt1 transgene. Here we did not observe an impact of Omd deficiency on trabecular bone parameters by histomorphometry and μCT either. Importantly, however, male and female Omd-deficient mice at the ages of 12 and 24 weeks displayed a slender bone phenotype with significantly smaller long bones in the transversal dimension, while the longitudinal bone growth remained unaffected. Although mechanical testing revealed no significant changes explained by impaired bone material properties, atomic force microscopy of the femoral bone surface of Omd-deficient mice revealed moderate changes at the nanostructural level, indicating altered regulation of collagen fibril formation and aggregation. Taken together, our data demonstrate that, although OMD is dispensable for the osteoanabolic effect of WNT1, its deficiency in mice specifically modulates transversal cortical bone morphology.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jelena Jadzic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Felix N von Brackel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology (TIM), University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
7
|
Weiss MB, Syed SA, Whiteson HZ, Hirani R, Etienne M, Tiwari RK. Navigating Post-Traumatic Osteoporosis: A Comprehensive Review of Epidemiology, Pathophysiology, Diagnosis, Treatment, and Future Directions. Life (Basel) 2024; 14:561. [PMID: 38792583 PMCID: PMC11122478 DOI: 10.3390/life14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Post-traumatic osteoporosis (PTO) presents a significant challenge in clinical practice, characterized by demineralization and decreased skeletal integrity following severe traumatic injuries. This literature review manuscript addresses the knowledge gaps surrounding PTO, encompassing its epidemiology, pathophysiology, risk factors, diagnosis, treatment, prognosis, and future directions. This review emphasizes the complexity of the etiology of PTO, highlighting the dysregulation of biomineralization processes, inflammatory cytokine involvement, hormonal imbalances, glucocorticoid effects, vitamin D deficiency, and disuse osteoporosis. Moreover, it underscores the importance of multidisciplinary approaches for risk mitigation and advocates for improved diagnostic strategies to differentiate PTO from other musculoskeletal pathologies. This manuscript discusses various treatment modalities, including pharmacotherapy, dietary management, and physical rehabilitation, while also acknowledging the limited evidence on their long-term effectiveness and outcomes in PTO patients. Future directions in research are outlined, emphasizing the need for a deeper understanding of the molecular mechanisms underlying PTO and the evaluation of treatment strategies' efficacy. Overall, this review provides a comprehensive overview of PTO and highlights avenues for future investigation to enhance clinical management and patient outcomes.
Collapse
Affiliation(s)
- Matthew B. Weiss
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
| | - Shoaib A. Syed
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
| | - Harris Z. Whiteson
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
| | - Rahim Hirani
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
| | - Mill Etienne
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
- Department of Neurology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
8
|
Jahn D, Knapstein PR, Otto E, Köhli P, Sevecke J, Graef F, Graffmann C, Fuchs M, Jiang S, Rickert M, Erdmann C, Appelt J, Revend L, Küttner Q, Witte J, Rahmani A, Duda G, Xie W, Donat A, Schinke T, Ivanov A, Tchouto MN, Beule D, Frosch KH, Baranowsky A, Tsitsilonis S, Keller J. Increased β 2-adrenergic signaling promotes fracture healing through callus neovascularization in mice. Sci Transl Med 2024; 16:eadk9129. [PMID: 38630849 DOI: 10.1126/scitranslmed.adk9129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the β2-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine. In a murine model of femoral osteotomy combined with cortical impact brain injury, TBI was associated with ADRB2-dependent enhanced fracture healing compared with osteotomy alone. In the unfractured 12-week-old mouse skeleton, ADRB2 was required for TBI-induced decrease in bone formation and increased bone resorption. Adult 30-week-old mice had higher bone concentrations of norepinephrine, and ADRB2 expression was associated with decreased bone volume in the unfractured skeleton and better fracture healing in the injured skeleton. Norepinephrine stimulated expression of vascular endothelial growth factor A and calcitonin gene-related peptide-α (αCGRP) in periosteal cells through ADRB2, promoting formation of osteogenic type-H vessels in the fracture callus. Both ADRB2 and αCGRP were required for the beneficial effect of TBI on bone repair. Adult mice deficient in ADRB2 without TBI developed fracture nonunion despite high bone formation in uninjured bone. Blocking ADRB2 with propranolol impaired fracture healing in mice, whereas the ADRB2 agonist formoterol promoted fracture healing by regulating callus neovascularization. A retrospective cohort analysis of 72 patients with long bone fractures indicated improved callus formation in 36 patients treated with intravenous norepinephrine. These findings suggest that ADRB2 is a potential therapeutic target for promoting bone healing.
Collapse
Affiliation(s)
- Denise Jahn
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Paul Richard Knapstein
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Ellen Otto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Paul Köhli
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 13353 Berlin, Germany
| | - Jan Sevecke
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Frank Graef
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 13353 Berlin, Germany
| | - Christine Graffmann
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Melanie Fuchs
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Shan Jiang
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Mayla Rickert
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Cordula Erdmann
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Jessika Appelt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Lawik Revend
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
| | - Quin Küttner
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
| | - Jason Witte
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Georg Duda
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Weixin Xie
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Antonia Donat
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Thorsten Schinke
- University Medical Center Hamburg-Eppendorf, Department of Osteology and Biomechanics, 20251 Hamburg, Germany
| | - Andranik Ivanov
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Mireille Ngokingha Tchouto
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Karl-Heinz Frosch
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Anke Baranowsky
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| | - Serafeim Tsitsilonis
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- University Medical Center Hamburg-Eppendorf, Department of Trauma and Orthopedic Surgery, 20251 Hamburg, Germany
| |
Collapse
|
9
|
Ahmad M, Haffner-Luntzer M, Schoppa A, Najafova Z, Lukic T, Yorgan TA, Amling M, Schinke T, Ignatius A. Mechanical induction of osteoanabolic Wnt1 promotes osteoblast differentiation via Plat. FASEB J 2024; 38:e23489. [PMID: 38407813 DOI: 10.1096/fj.202301424rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating β-Catenin. Silencing Wnt1 impairs mechanically induced β-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/β-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Teodora Lukic
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
10
|
Lu T, Forgetta V, Zhou S, Richards JB, Greenwood CM. Identifying Rare Genetic Determinants for Improved Polygenic Risk Prediction of Bone Mineral Density and Fracture Risk. J Bone Miner Res 2023; 38:1771-1781. [PMID: 37830501 DOI: 10.1002/jbmr.4920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Osteoporosis and fractures severely impact the elderly population. Polygenic risk scores for bone mineral density have demonstrated potential clinical utility. However, the value of rare genetic determinants in risk prediction has not been assessed. With whole-exome sequencing data from 436,824 UK Biobank participants, we assigned White British ancestry individuals into a training data set (n = 317,434) and a test data set (n = 74,825). In the training data set, we developed a common variant-based polygenic risk score for heel ultrasound speed of sound (SOS). Next, we performed burden testing to identify genes harboring rare determinants of bone mineral density, targeting influential rare variants with predicted high deleteriousness. We constructed a genetic risk score, called ggSOS, to incorporate influential rare variants in significant gene burden masks into the common variant-based polygenic risk score. We assessed the predictive performance of ggSOS in the White British test data set, as well as in populations of non-White British European (n = 18,885), African (n = 7165), East Asian (n = 2236), South Asian (n = 9829), and other admixed (n = 1481) ancestries. Twelve genes in pivotal regulatory pathways of bone homeostasis harbored influential rare variants associated with SOS (p < 5.5 × 10-7 ), including AHNAK, BMP5, CYP19A1, FAM20A, FBXW5, KDM5B, KREMEN1, LGR4, LRP5, SMAD6, SOST, and WNT1. Among 4013 (5.4%) individuals in the test data set carrying these variants, a one standard deviation decrease in ggSOS was associated with 1.35-fold (95% confidence interval [CI] 1.16-1.57) increased hazard of major osteoporotic fracture. However, compared with a common variant-based polygenic risk score (C-index = 0.641), ggSOS had only marginally improved prediction accuracy in identifying at-risk individuals (C-index = 0.644), with overlapping confidence intervals. Similarly, ggSOS did not demonstrate substantially improved predictive performance in non-European ancestry populations. In summary, modeling the effects of rare genetic determinants may assist polygenic prediction of fracture risk among carriers of influential rare variants. Nonetheless, improved clinical utility is not guaranteed for population-level risk screening. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Sirui Zhou
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- 5 Prime Sciences Inc., Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Celia Mt Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Donat A, Jiang S, Xie W, Knapstein PR, Albertsen LC, Kokot JL, Sevecke J, Augustin R, Jahn D, Yorgan TA, Frosch KH, Tsitsilonis S, Baranowsky A, Keller J. The selective norepinephrine reuptake inhibitor reboxetine promotes late-stage fracture healing in mice. iScience 2023; 26:107761. [PMID: 37720081 PMCID: PMC10504537 DOI: 10.1016/j.isci.2023.107761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
Impaired fracture healing is of high clinical relevance, as up to 15% of patients with long-bone fractures display non-unions. Fracture patients also include individuals treated with selective norepinephrine reuptake inhibitors (SNRI). As SNRI were previously shown to negatively affect bone homeostasis, it remained unclear whether patients with SNRI are at risk of impaired bone healing. Here, we show that daily treatment with the SNRI reboxetine reduces trabecular bone mass in the spine but increases cortical thickness and osteoblast numbers in the femoral midshaft. Most importantly, reboxetine does not impair bone regeneration in a standardized murine fracture model, and even improves callus bridging and biomechanical stability at late healing stages. In sum, reboxetine affects bone remodeling in a site-specific manner. Treatment does not interfere with the early and intermediate stages of bone regeneration and improves healing outcomes of the late-stage fracture callus in mice.
Collapse
Affiliation(s)
- Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Paul Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lilly-Charlotte Albertsen
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Judith Luisa Kokot
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Sevecke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ruben Augustin
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Trauma Surgery, Orthopedics and Sports Traumatology, BG Hospital Hamburg, 21033 Hamburg, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
12
|
Terhal P, Venhuizen AJ, Lessel D, Tan WH, Alswaid A, Grün R, Alzaidan HI, von Kroge S, Ragab N, Hempel M, Kubisch C, Novais E, Cristobal A, Tripolszki K, Bauer P, Fischer-Zirnsak B, Nievelstein RAJ, van Dijk A, Nikkels P, Oheim R, Hahn H, Bertoli-Avella A, Maurice MM, Kornak U. AXIN1 bi-allelic variants disrupting the C-terminal DIX domain cause craniometadiaphyseal osteosclerosis with hip dysplasia. Am J Hum Genet 2023; 110:1470-1481. [PMID: 37582359 PMCID: PMC10502735 DOI: 10.1016/j.ajhg.2023.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the β-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.
Collapse
Affiliation(s)
- Paulien Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, 3584EA Utrecht, the Netherlands.
| | - Anton J Venhuizen
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abdulrahman Alswaid
- Department of Pediatrics, King Abdullah Specialized Children's Hospital, Riyadh 14611, Saudi Arabia; King Saud Bin Abdulaziz University For Health Sciences, Riyadh 22490, Saudi Arabia
| | - Regina Grün
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Hamad I Alzaidan
- Medical Genetics Department, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh 11211, Saudi Arabia
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Nada Ragab
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Institute of Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eduardo Novais
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alba Cristobal
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | | | - Peter Bauer
- Centogene GmbH, 18055 Rostock, Germany; University Hospital Rostock, Internal Medicine, Hemato-oncology, 18057 Rostock, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Rutger A J Nievelstein
- Department of Radiology & Nuclear Medicine, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Atty van Dijk
- Expert Center for Skeletal Dysplasia, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3584EA Utrecht, the Netherlands
| | - Peter Nikkels
- Department of Pathology, University Medical Centre Utrecht, 3584CX Utrecht, the Netherlands
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | - Madelon M Maurice
- Center for Molecular Medicine and Oncode Institute, University Medical Centre Utrecht, 3584CG Utrecht, the Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany; Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
13
|
Jahn D, Knapstein PR, Otto E, Köhli P, Sevecke J, Graef F, Graffmann C, Fuchs M, Jiang S, Rickert M, Erdmann C, Appelt J, Revend L, Küttner Q, Witte J, Rahmani A, Duda G, Xie W, Donat A, Schinke T, Ivanov A, Tchouto MN, Beule D, Frosch KH, Baranowsky A, Tsitsilonis S, Keller J. Increased beta2-adrenergic signaling is a targetable stimulus essential for bone healing by promoting callus neovascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548550. [PMID: 37502964 PMCID: PMC10369985 DOI: 10.1101/2023.07.14.548550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Traumatic brain injury (TBI) is associated with a hyperadrenergic state and paradoxically causes systemic bone loss while accelerating fracture healing. Here, we identify the beta2-adrenergic receptor (Adrb2) as a central mediator of these skeletal manifestations. While the negative effects of TBI on the unfractured skeleton can be explained by the established impact of Adrb2 signaling on bone formation, Adrb2 promotes neovascularization of the fracture callus under conditions of high sympathetic tone, including TBI and advanced age. Mechanistically, norepinephrine stimulates the expression of Vegfa and Cgrp primarily in periosteal cells via Adrb2, both of which synergistically promote the formation of osteogenic type-H vessels in the fracture callus. Accordingly, the beneficial effect of TBI on bone repair is abolished in mice lacking Adrb2 or Cgrp, and aged Adrb2-deficient mice without TBI develop fracture nonunions despite high bone formation in uninjured bone. Pharmacologically, the Adrb2 antagonist propranolol impairs, and the agonist formoterol promotes fracture healing in aged mice by regulating callus neovascularization. Clinically, intravenous beta-adrenergic sympathomimetics are associated with improved callus formation in trauma patients with long bone fractures. Thus, Adrb2 is a novel target for promoting bone healing, and widely used beta-blockers may cause fracture nonunion under conditions of increased sympathetic tone. Abstract Figure
Collapse
|
14
|
Jiang J, Liu Q, Mao Y, Wang N, Lin W, Li L, Liang J, Chen G, Huang H, Wen J. Klotho reduces the risk of osteoporosis in postmenopausal women: a cross-sectional study of the National Health and Nutrition Examination Survey (NHANES). BMC Endocr Disord 2023; 23:151. [PMID: 37452417 PMCID: PMC10347835 DOI: 10.1186/s12902-023-01380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is one of the diseases that endanger the health of the elderly population. Klotho protein is a hormone with anti-aging effects. A few studies have discussed the relationship between Klotho and OP. However, there is still a lack of research on larger populations. This study aims to evaluate the association between OP and Klotho in American postmenopausal women. METHODS This is a retrospective study. We searched the National Health and Nutrition Examination Survey (NHANES) database and collected data of 3 survey cycles, finally involving 871 postmenopausal women over 50 years old in the present study. All participants took dual-energy X-ray absorptiometry examination and serum Klotho testing at the time of investigation. After adjusting the possible confounding variables, a multivariate regression model was employed to estimate the relationship between OP and Klotho proteins. Besides, the P for trend and restricted cubic spline (RCS) were applied to examine the threshold effect and calculate the inflection point. RESULTS Factors influencing the occurrence of OP included age, ethnicity, body mass index and Klotho levels. Multivariate regression analysis indicated that the serum Klotho concentration was lower in OP patients than that in participants without OP (OR[log2Klotho] = 0.568, P = 0.027). The C-index of the prediction model built was 0.765, indicating good prediction performance. After adjusting the above-mentioned four variables, P values for trend showed significant differences between groups. RCSs revealed that when the Klotho concentration reached 824.09 pg/ml, the risk of OP decreased drastically. CONCLUSION Based on the analysis of the data collected from the NHANES database, we propose a correlation between Klotho and postmenopausal OP. A higher serum Klotho level is related to a lower incidence of OP. The findings of the present study can provide guidance for research on diagnosis and risk assessment of OP.
Collapse
Affiliation(s)
- Jialin Jiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Yaqian Mao
- Department of Internal Medicine, Fujian Provincial Hospital Jinshan Branch, Fuzhou, China
| | - Nengyin Wang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Liantao Li
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Jixing Liang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical, Fuzhou, China
| | - Huibin Huang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
15
|
Nottmeier C, Lavicky J, Gonzalez Lopez M, Knauth S, Kahl-Nieke B, Amling M, Schinke T, Helms J, Krivanek J, Koehne T, Petersen J. Mechanical-induced bone remodeling does not depend on Piezo1 in dentoalveolar hard tissue. Sci Rep 2023; 13:9563. [PMID: 37308580 DOI: 10.1038/s41598-023-36699-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Mechanosensory ion channels are proteins that are sensitive to mechanical forces. They are found in tissues throughout the body and play an important role in bone remodeling by sensing changes in mechanical stress and transmitting signals to bone-forming cells. Orthodontic tooth movement (OTM) is a prime example of mechanically induced bone remodeling. However, the cell-specific role of the ion channels Piezo1 and Piezo2 in OTM has not been investigated yet. Here we first identify the expression of PIEZO1/2 in the dentoalveolar hard tissues. Results showed that PIEZO1 was expressed in odontoblasts, osteoblasts, and osteocytes, while PIEZO2 was localized in odontoblasts and cementoblasts. We therefore used a Piezo1floxed/floxed mouse model in combination with Dmp1cre to inactivate Piezo1 in mature osteoblasts/cementoblasts, osteocytes/cementocytes, and odontoblasts. Inactivation of Piezo1 in these cells did not affect the overall morphology of the skull but caused significant bone loss in the craniofacial skeleton. Histological analysis revealed a significantly increased number of osteoclasts in Piezo1floxed/floxed;Dmp1cre mice, while osteoblasts were not affected. Despite this increased number of osteoclasts, orthodontic tooth movement was not altered in these mice. Our results suggest that despite Piezo1 being crucial for osteoclast function, it may be dispensable for mechanical sensing of bone remodeling.
Collapse
Affiliation(s)
- Cita Nottmeier
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarah Knauth
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany
| | - Bärbel Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jill Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Till Koehne
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| | - Julian Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Saxony, Germany.
| |
Collapse
|
16
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
17
|
Requist MR, Rolvien T, Barg A, Lenz AL. Morphologic analysis of the 1st and 2nd tarsometatarsal joint articular surfaces. Sci Rep 2023; 13:6473. [PMID: 37081030 PMCID: PMC10119313 DOI: 10.1038/s41598-023-32500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Tarsometatarsal joint arthrodesis is used to treat a variety of injuries and deformities in the midfoot. However, the surgical technique has not been optimized, in part due to limited knowledge of morphologic features and variation in the related joints. Previous research has relied primarily on dissection-based anatomical analysis, but quantitative imaging may allow for a more sophisticated description of this complex. Here, we used quantitative micro-CT imaging to examine dimensions, distance maps, and curvature of the four articular surfaces in the first and second tarsometatarsal joints. Image segmentation, articular surface identification, and anatomic coordinate systems were all done with semi or fully automatic methods, and distance and size measurements were all taken utilizing these anatomic planes. Surface curvature was studied using Gaussian curvature and a newly defined measure of curvature similarity on the whole joint and on four subregions of each surface. These data show larger articular surfaces on the cuneiforms, rather than metatarsals, and define the generally tall and narrow articular surfaces seen in these joints. Curvature analysis shows minimally curved opposing convex surfaces. Our results are valuable for furthering knowledge of surgical anatomy in this poorly understood region of the foot.
Collapse
Affiliation(s)
- Melissa R Requist
- Department of Orthopaedics, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, 84108, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Alexej Barg
- Department of Orthopaedics, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, 84108, USA.
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Amy L Lenz
- Department of Orthopaedics, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT, 84108, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84108, USA.
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
18
|
Zhang Y, Zhou L, Fu Q, Liu Z. ANKRD1 activates the Wnt signaling pathway by modulating CAV3 expression and thus promotes BMSC osteogenic differentiation and bone formation in ovariectomized mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166693. [PMID: 36958710 DOI: 10.1016/j.bbadis.2023.166693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are considered promising materials for treating bone diseases such as osteoporosis (OP). This research explored the functions and molecular mechanism of ankyrin repeat domain 1 (ANKRD1) in BMSC osteogenesis. An OP model in mice was established by bilateral ovariectomy. Manipulation of ANKRD1 expression in BMSCs or femurs was achieved by lentivirus infection. Increased ANKRD1 expression was observed in BMSCs during osteogenic induction. Silencing of ANKRD1 impaired the osteogenesis of BMSCs, as shown by the decreased alkaline phosphatase (ALP) activity, osteogenic gene (Runx2, Col1a1, Bglap, and Spp1) expression, and mineralized formation. ANKRD1-mediated promotion of osteogenesis was also reproduced in mouse MC3T3-E1 preosteoblastic cells. Activation of Wnt/β-catenin signaling, a well-known osteogenic stimulus, was also impaired in ANKRD1-silenced BMSCs. Overexpression of ANKRD1 resulted in the opposite effects on osteogenesis and Wnt/β-catenin signaling. Mechanistic studies revealed that ANKRD1 modulated caveolin-3 (CAV3) expression by reducing CAV3 ubiquitination, and the knockdown of CAV3 impaired the functions of ANKRD1. Additionally, a very low level of ANKRD1 was observed in the BMSCs from OP mice. Rescue of ANKRD1 significantly restored osteogenic differentiation and Wnt signaling activation in BMSCs from ovariectomized mice. The results of micro-CT, H&E staining, and IHC staining showed that ANKRD1 also promoted bone formation and Wnt activation and ameliorated pathological alterations in the femurs of OP mice. Collectively, this study demonstrated that ANKRD1 plays an important role in regulating the osteogenic differentiation of BMSCs and is a promising target for the treatment of OP and other bone diseases.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
19
|
Thakur AK, Miller SE, Liau NPD, Hwang S, Hansen S, de Sousa E Melo F, Sudhamsu J, Hannoush RN. Synthetic Multivalent Disulfide-Constrained Peptide Agonists Potentiate Wnt1/β-Catenin Signaling via LRP6 Coreceptor Clustering. ACS Chem Biol 2023; 18:772-784. [PMID: 36893429 DOI: 10.1021/acschembio.2c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Wnt ligands are critical for tissue homeostasis and form a complex with LRP6 and frizzled coreceptors to initiate Wnt/β-catenin signaling. Yet, how different Wnts achieve various levels of signaling activation through distinct domains on LRP6 remains elusive. Developing tool ligands that target individual LRP6 domains could help elucidate the mechanism of Wnt signaling regulation and uncover pharmacological approaches for pathway modulation. We employed directed evolution of a disulfide constrained peptide (DCP) to identify molecules that bind to the third β-propeller domain of LRP6. The DCPs antagonize Wnt3a while sparing Wnt1 signaling. Using PEG linkers with different geometries, we converted the Wnt3a antagonist DCPs to multivalent molecules that potentiated Wnt1 signaling by clustering the LRP6 coreceptor. The mechanism of potentiation is unique as it occurred only in the presence of extracellular secreted Wnt1 ligand. While all DCPs recognized a similar binding interface on LRP6, they displayed different spatial orientations that influenced their cellular activities. Moreover, structural analyses revealed that the DCPs exhibited new folds that were distinct from the parent DCP framework they were evolved from. The multivalent ligand design principles highlighted in this study provide a path for developing peptide agonists that modulate different branches of cellular Wnt signaling.
Collapse
Affiliation(s)
- Avinash K Thakur
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Stephen E Miller
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Nicholas P D Liau
- Department of Structural Biology, Genentech, South San Francisco, California 94080, United States
| | - Sunhee Hwang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Simon Hansen
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Felipe de Sousa E Melo
- Department of Molecular Oncology, Genentech, South San Francisco, California 94080, United States
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California 94080, United States
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
20
|
Peris P, Monegal A, Mäkitie RE, Guañabens N, González-Roca E. Osteoporosis related to WNT1 variants: a not infrequent cause of osteoporosis. Osteoporos Int 2023; 34:405-411. [PMID: 36396825 DOI: 10.1007/s00198-022-06609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
UNLABELLED Nearly 10% of subjects with severe idiopathic osteoporosis present pathogenic WNT1 mutations. Clinical characteristics include a family history of osteoporosis, early adulthood onset, and fragility fractures which may evolve to pseudoarthrosis. WNT1 should be genetically screened in these patients as the phenotype is often variable and therapeutic approaches may differ. INTRODUCTION Recent studies have shown that homozygous WNT1 gene mutations may be related to severe osteoporosis resembling osteogenesis imperfecta (OI). Conversely, heterozygous WNT1 mutations are linked to a milder phenotype of early-onset osteoporosis. Treatment with bisphosphonates is reported to be unsatisfactory. Our aim was to analyze the presence and prevalence of WNT1 mutations and the main associated clinical characteristics in subjects with primary early-onset osteoporosis. METHODS A cohort comprising 56 subjects (aged 19-60 years) with severe, early-onset osteoporosis was screened by massive parallel sequencing with a 23-gene panel. The gene panel included 19 genes known to cause OI (including the WNT1 gene), three genes related to osteoporosis, and the gene related to hypophosphatasia (ALPL). RESULTS We identified five patients (3 men) with heterozygous WNT1 variants. All presented severe osteoporosis with early fracture onset and a family history of fragility fractures. None presented a characteristic phenotype of OI or skeletal deformities. One patient was previously treated with bisphosphonates, presenting inadequate response to treatment and two developed pseudoarthrosis after upper arm fractures. All subjects were diagnosed in adulthood. CONCLUSIONS Nearly 1/10 adult subjects with severe idiopathic osteoporosis may present pathogenic WNT1 mutations. Clinical characteristics commonly include a family history of osteoporosis, onset in early adulthood, marked decrease in bone mass, and prevalent fractures, particularly vertebral. WNT1 should be genetically screened in these subjects as the phenotype is often variable and the therapeutic approach may differ. The role of WNT1 mutations in the development of pseudoarthrosis should also be elucidated.
Collapse
Affiliation(s)
- Pilar Peris
- Department of Rheumatology, Hospital Clínic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| | - Ana Monegal
- Department of Rheumatology, Hospital Clínic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P.O. Box 63, FIN-00014, Helsinki, Finland
| | - Nuria Guañabens
- Department of Rheumatology, Hospital Clínic, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Eva González-Roca
- Department of Immunology, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Department of Molecular Biology, CORE Laboratory, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Amling M. [Research: from the army surgeon to the academic trauma surgeon of the twenty-first century]. UNFALLCHIRURGIE (HEIDELBERG, GERMANY) 2022; 125:767-770. [PMID: 36040513 DOI: 10.1007/s00113-022-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Michael Amling
- Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg Eppendorf, Lottestr. 59, 22529, Hamburg, Deutschland.
| |
Collapse
|
22
|
Lawson LY, Migotsky N, Chermside-Scabbo CJ, Shuster JT, Joeng KS, Civitelli R, Lee B, Silva MJ. Loading-induced bone formation is mediated by Wnt1 induction in osteoblast-lineage cells. FASEB J 2022; 36:e22502. [PMID: 35969160 PMCID: PMC9430819 DOI: 10.1096/fj.202200591r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading on the skeleton stimulates bone formation. Although the exact mechanism underlying this process remains unknown, a growing body of evidence indicates that the Wnt signaling pathway is necessary for the skeletal response to loading. Recently, we showed that Wnts produced by osteoblast lineage cells mediate the osteo-anabolic response to tibial loading in adult mice. Here, we report that Wnt1 specifically plays a crucial role in mediating the mechano-adaptive response to loading. Independent of loading, short-term loss of Wnt1 in the Osx-lineage resulted in a decreased cortical bone area in the tibias of 5-month-old mice. In females, strain-matched loading enhanced periosteal bone formation in Wnt1F/F controls, but not in Wnt1F/F; OsxCreERT2 knockouts. In males, strain-matched loading increased periosteal bone formation in both control and knockout mice; however, the periosteal relative bone formation rate was 65% lower in Wnt1 knockouts versus controls. Together, these findings show that Wnt1 supports adult bone homeostasis and mediates the bone anabolic response to mechanical loading.
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Kyu Sang Joeng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Waco, TX, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO, United States
- Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
23
|
Costantini A, Mäkitie RE, Hartmann MA, Fratzl-Zelman N, Zillikens MC, Kornak U, Søe K, Mäkitie O. Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen. J Bone Miner Res 2022; 37:1623-1641. [PMID: 35949115 PMCID: PMC9542053 DOI: 10.1002/jbmr.4668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 12/05/2022]
Abstract
Early-onset osteoporosis (EOOP), characterized by low bone mineral density (BMD) and fractures, affects children, premenopausal women and men aged <50 years. EOOP may be secondary to a chronic illness, long-term medication, nutritional deficiencies, etc. If no such cause is identified, EOOP is regarded primary and may then be related to rare variants in genes playing a pivotal role in bone homeostasis. If the cause remains unknown, EOOP is considered idiopathic. The scope of this review is to guide through clinical and genetic diagnostics of EOOP, summarize the present knowledge on rare monogenic forms of EOOP, and describe how analysis of bone biopsy samples can lead to a better understanding of the disease pathogenesis. The diagnostic pathway of EOOP is often complicated and extensive assessments may be needed to reliably exclude secondary causes. Due to the genetic heterogeneity and overlapping features in the various genetic forms of EOOP and other bone fragility disorders, the genetic diagnosis usually requires the use of next-generation sequencing to investigate several genes simultaneously. Recent discoveries have elucidated the complexity of disease pathogenesis both regarding genetic architecture and bone tissue-level pathology. Two rare monogenic forms of EOOP are due to defects in genes partaking in the canonical WNT pathway: LRP5 and WNT1. Variants in the genes encoding plastin-3 (PLS3) and sphingomyelin synthase 2 (SGMS2) have also been found in children and young adults with skeletal fragility. The molecular mechanisms leading from gene defects to clinical manifestations are often not fully understood. Detailed analysis of patient-derived transiliac bone biopsies gives valuable information to understand disease pathogenesis, distinguishes EOOP from other bone fragility disorders, and guides in patient management, but is not widely available in clinical settings. Despite the great advances in this field, EOOP remains an insufficiently explored entity and further research is needed to optimize diagnostic and therapeutic approaches. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Paris Cité University, INSERM UMR1163, Institut Imagine, Paris, France
| | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark.,Clinical Cell Biology, Pathology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
24
|
A Novel Inhibitor INF 39 Promotes Osteogenesis via Blocking the NLRP3/IL-1β Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7250578. [PMID: 35872849 PMCID: PMC9300331 DOI: 10.1155/2022/7250578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Purpose. A balance between osteoblasts and osteoclasts is essential to maintain skeletal integrity, regulating bone metabolism and bone remodeling. The nucleotide binding oligomerization domain, leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) inflammasome is known as a cytosolic complex involved in producing proinflammatory cytokines consisting of interleukin- (IL-) 1β, which accelerates the occurrence of osteoporosis. Therefore, we aimed to investigate the effect of a novel NLRP3 inhibitor INF 39 on bone formation and bone resorption. Material and Methods. Cell viability of INF 39-treated osteoclasts and calvarial osteoblasts was tested by CCK-8 assays. Quantitative RT-PCR (qRT-PCR) was used to evaluate gene expression level during osteoblast and osteoclast formation. Western blot analysis was used to determine the effect of INF 39 on osteogenic and osteoclast-related proteins. Result. It was shown that INF 39 promotes osteoblast differentiation via inhibiting NLRP3, thereby reducing the production of IL-1β dependent on NLRP3 in vitro. However, RANKL-induced osteoclast differentiation is not influenced by INF 39 in vitro. Conclusion. Our study suggests that NLRP3 could be a new target and INF 39 may be a potential option for prevention and treatment of osteoporosis.
Collapse
|
25
|
Oheim R, Tsourdi E, Seefried L, Beller G, Schubach M, Vettorazzi E, Stürznickel J, Rolvien T, Ehmke N, Delsmann A, Genest F, Krüger U, Zemojtel T, Barvencik F, Schinke T, Jakob F, Hofbauer LC, Mundlos S, Kornak U. Genetic Diagnostics in Routine Osteological Assessment of Adult Low Bone Mass Disorders. J Clin Endocrinol Metab 2022; 107:e3048-e3057. [PMID: 35276006 PMCID: PMC9202726 DOI: 10.1210/clinem/dgac147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/17/2022]
Abstract
CONTEXT Many different inherited and acquired conditions can result in premature bone fragility/low bone mass disorders (LBMDs). OBJECTIVE We aimed to elucidate the impact of genetic testing on differential diagnosis of adult LBMDs and at defining clinical criteria for predicting monogenic forms. METHODS Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score < -2.0 and/or pathological fractures. After exclusion of secondary causes or unequivocal clinical/biochemical hallmarks of monogenic LBMDs, all participants were genotyped by targeted next-generation sequencing. RESULTS In total, 20.8% of the participants carried rare disease-causing variants (DCVs) in genes known to cause osteogenesis imperfecta (COL1A1, COL1A2), hypophosphatasia (ALPL), and early-onset osteoporosis (LRP5, PLS3, and WNT1). In addition, we identified rare DCVs in ENPP1, LMNA, NOTCH2, and ZNF469. Three individuals had autosomal recessive, 75 autosomal dominant, and 4 X-linked disorders. A total of 9.7% of the participants harbored variants of unknown significance. A regression analysis revealed that the likelihood of detecting a DCV correlated with a positive family history of osteoporosis, peripheral fractures (> 2), and a high normal body mass index (BMI). In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD (eg, in LRP5) were overrepresented. CONCLUSION The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield.
Collapse
Affiliation(s)
- Ralf Oheim
- Ralf Oheim, MD, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestraße 59, 22529 Hamburg, Germany.
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Gisela Beller
- Centre of Muscle and Bone Research, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Max Schubach
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Department of Orthopaedics and Trauma Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Department of Orthopaedics and Trauma Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Franca Genest
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Ulrike Krüger
- Core Facility Genomics, Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Tomasz Zemojtel
- Core Facility Genomics, Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10178 Berlin, Germany
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Uwe Kornak
- Correspondence: Uwe Kornak, PhD, Institute of Human Genetics, Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| |
Collapse
|
26
|
Caetano da Silva C, Edouard T, Fradin M, Aubert-Mucca M, Ricquebourg M, Raman R, Salles JP, Charon V, Guggenbuhl P, Muller M, Cohen-Solal M, Collet C. WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis. Hum Mol Genet 2022; 31:1622-1634. [PMID: 34875064 PMCID: PMC9122655 DOI: 10.1093/hmg/ddab349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Monogenic early onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in Wnt family member 11 (WNT11) (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G > A p.Ala73Thr) and (NM_004626.2:c.865G > A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman, respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but Wnt family member 3A (WNT3A) recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Thomas Edouard
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Melanie Fradin
- Service de Génétique Clinique, Centre de Référence des Anomalies du Développement de l'Ouest, Hôpital Sud de Rennes, Rennes F-35033, France
| | - Marion Aubert-Mucca
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Manon Ricquebourg
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Jean Pierre Salles
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Valérie Charon
- Department of Radiology, CHU de Rennes, Rennes F-35000, France
| | | | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Martine Cohen-Solal
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Corinne Collet
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
- Département de Génétique, UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, Paris F-75019, France
| |
Collapse
|
27
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
28
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
29
|
Baranowsky A, Jahn D, Jiang S, Yorgan T, Ludewig P, Appelt J, Albrecht KK, Otto E, Knapstein P, Donat A, Winneberger J, Rosenthal L, Köhli P, Erdmann C, Fuchs M, Frosch KH, Tsitsilonis S, Amling M, Schinke T, Keller J. Procalcitonin is expressed in osteoblasts and limits bone resorption through inhibition of macrophage migration during intermittent PTH treatment. Bone Res 2022; 10:9. [PMID: 35087025 PMCID: PMC8795393 DOI: 10.1038/s41413-021-00172-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Intermittent injections of parathyroid hormone (iPTH) are applied clinically to stimulate bone formation by osteoblasts, although continuous elevation of parathyroid hormone (PTH) primarily results in increased bone resorption. Here, we identified Calca, encoding the sepsis biomarker procalcitonin (ProCT), as a novel target gene of PTH in murine osteoblasts that inhibits osteoclast formation. During iPTH treatment, mice lacking ProCT develop increased bone resorption with excessive osteoclast formation in both the long bones and axial skeleton. Mechanistically, ProCT inhibits the expression of key mediators involved in the recruitment of macrophages, representing osteoclast precursors. Accordingly, ProCT arrests macrophage migration and causes inhibition of early but not late osteoclastogenesis. In conclusion, our results reveal a potential role of osteoblast-derived ProCT in the bone microenvironment that is required to limit bone resorption during iPTH.
Collapse
Affiliation(s)
- Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kai K Albrecht
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Ellen Otto
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Paul Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jack Winneberger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Lana Rosenthal
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Paul Köhli
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Melanie Fuchs
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany. .,Berlin Institute of Health, Berlin, 10178, Germany.
| |
Collapse
|
30
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
31
|
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-Specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. J Bone Miner Res 2022; 37:108-120. [PMID: 34542191 PMCID: PMC8770559 DOI: 10.1002/jbmr.4445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Wnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in the bone anabolic response to mechanical loading is not well established. Recent transcriptome profiling studies by our laboratory and others show that mechanical loading potently induces genes encoding Wnt ligands, including Wnt1 and Wnt7b. Based on these findings, we hypothesized that mechanical loading stimulates adult bone formation by inducing Wnt ligand expression. To test this hypothesis, we inhibited Wnt ligand secretion in adult (5 months old) mice using a systemic (drug) and a bone-targeted (conditional gene knockout) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the Wnt secretion inhibitor WNT974 exhibited a decrease in bone formation in non-loaded bones as well as a 54% decline in the periosteal bone formation response to tibial loading. Next, osteoblast-specific Wnt secretion was inhibited by dosing 5-month-old Osx-CreERT2; WlsF/F mice with tamoxifen. Within 1 to 2 weeks of Wls deletion, skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F ). Together, these findings show that Wnt ligand secretion is required for adult bone homeostasis, and furthermore establish a role for osteoblast-derived Wnts in mediating the bone anabolic response to tibial loading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramya Palaniappan
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
32
|
Vollersen N, Zhao W, Rolvien T, Lange F, Schmidt FN, Sonntag S, Shmerling D, von Kroge S, Stockhausen KE, Sharaf A, Schweizer M, Karsak M, Busse B, Bockamp E, Semler O, Amling M, Oheim R, Schinke T, Yorgan TA. The WNT1 G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res 2021; 9:48. [PMID: 34759273 PMCID: PMC8580994 DOI: 10.1038/s41413-021-00170-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/28/2021] [Accepted: 06/27/2021] [Indexed: 12/27/2022] Open
Abstract
The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1G177C/G177C mice were viable and did not display defects in brain development, but the majority of 24-week-old Wnt1G177C/G177C mice had skeletal fractures. This increased bone fragility was not fully explained by reduced bone mass but also by impaired bone matrix quality. Importantly, the homozygous presence of the G177C mutation did not interfere with the osteoanabolic influence of either parathyroid hormone injection or activating mutation of LRP5, the latter mimicking the effect of sclerostin neutralization. Finally, transcriptomic analyses revealed that short-term administration of WNT1 to osteogenic cells induced not only the expression of canonical WNT signaling targets but also the expression of genes encoding extracellular matrix modifiers. Taken together, our data demonstrate that regulating bone matrix quality is a primary function of WNT1. They further suggest that individuals with WNT1 mutations should profit from existing osteoanabolic therapies.
Collapse
Affiliation(s)
- Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fabiola Lange
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Felix Nikolai Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephan Sonntag
- PolyGene AG, 8153, Rümlang, Switzerland.,ETH Phenomics Center (EPIC), ETH Zürich, 8092, Zürich, Switzerland
| | | | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kilian Elia Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center, Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, D 55131, Mainz, Germany
| | - Oliver Semler
- Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, 50937, Cologne, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
33
|
Yuan T, Shi C, Xu W, Yang HL, Xia B, Tian C. Extracellular vesicles derived from T-cell acute lymphoblastic leukemia inhibit osteogenic differentiation of bone marrow mesenchymal stem cells via miR-34a-5p. Endocr J 2021; 68:1197-1208. [PMID: 34039781 DOI: 10.1507/endocrj.ej21-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reduced bone formation in patients with T-cell acute lymphoblastic leukemia (T-ALL) may be related to the interaction between tumour cells and bone marrow stromal cells (BMSCs). The miRNAs in extracellular vesicles derived from leukemia cells play an essential role in regulating the function of BMSCs; however, the regulatory mechanisms remain unclear. The expression of miR-34a-5p in T-ALL patients and cells was measured by quantitative real-time PCR. BMSCs were co-cultured with extracellular vesicles isolated from T-ALL cells in mineralization medium. The osteogenic differentiation of BMSCs was evaluated by Alizarin Red S staining, alkaline phosphatase (ALP) staining, and detection of osteogenic differentiation markers. A dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-34a-5p and Wnt family member 1 (WNT1). MiR-34a-5p expression was upregulated in T-ALL patients and Jurkat cells. After BMSCs were co-cultured with extracellular vesicles derived from T-ALL cells, osteogenic differentiation of BMSCs was inhibited, and bone mineralization and ALP activity were decreased compared to those of control cells. MiR-34a-5p knockdown in T-ALL cells restored osteogenic differentiation of BMSCs co-cultured with extracellular vesicles. In addition, miR-34a-5p targets and negatively regulates WNT1 expression. In conclusion, our results demonstrated that knockdown of miR-34a-5p in extracellular vesicles derived from T-ALL cells promoted osteogenic differentiation of BMSCs by regulating WNT1.
Collapse
Affiliation(s)
- Tian Yuan
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ce Shi
- Central Laboratory of Hematology and Oncology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, P.R. China
| | - Wen Xu
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hong-Liang Yang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Bing Xia
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chen Tian
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
34
|
Understanding the Stony Bridge between Osteoporosis and Vascular Calcification: Impact of the FGF23/Klotho axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7536614. [PMID: 34539972 PMCID: PMC8448600 DOI: 10.1155/2021/7536614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A relationship between osteoporosis (OP) and vascular calcification (VC) is now proposed. There are common mechanisms underlying the regulation of them. Fibroblast growth factor- (FGF-) 23 and Klotho are hormones associated with the metabolic axis of osteovascular metabolism. Most recently, it was suggested that the FGF23-klotho axis is associated with increasing incidence of fractures and is potentially involved in the progression of the aortic-brachial stiffness ratio. Herein, we discussed the potential role of the FGF23/Klotho axis in the pathophysiology of OP and VC. We want to provide an update review in order to allow a better understanding of the potential role of the FGF23/Klotho axis in comorbidity of OP and VC. We believe that a better understanding of the relationship between both entities can help in proposing new therapeutic targets for reducing the increasing prevalence of OP and VC in the aging population.
Collapse
|
35
|
Lauterlein JJL, Gossiel F, Weigl M, Eastell R, Hackl M, Hermann P, Bollerslev J, Frost M. Development of the Bone Phenotype and microRNA Profile in Adults With Low-Density Lipoprotein Receptor-Related Protein 5-High Bone Mass (LRP5-HBM) Disease. JBMR Plus 2021; 5:e10534. [PMID: 34532618 PMCID: PMC8441296 DOI: 10.1002/jbm4.10534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022] Open
Abstract
Pathogenic variants in the Wnt‐pathway co‐receptor low‐density lipoprotein (LDL) receptor‐related protein 5 (LRP5) cause high bone mass (LRP5‐HBM) due to insensitivity to the endogenous antagonist of Wnt‐signaling. Although indicating incessant progression of BMD and biomarkers reflecting bone formation, this has not been confirmed in individuals with LRP5‐HBM. We investigated how the LRP5‐HBM bone phenotype changes with age in adults and is associated with quantitative changes of bone turnover markers and bone‐related microRNAs (miRNAs) in the circulation. Whole body, lumbar spine, total hip, and femoral neck areal BMD (aBMD) and radial and tibial bone microarchitecture and geometry were assessed using DXA and HR‐pQCT scans of 15 individuals with LRP5‐HBMT253I (11 women; median age 51 years; range, 19 to 85 years) with a time interval between scans of 5.8 years (range, 4.9 to 7.6 years). Fasting P1NP and CTX were measured in 14 LRP5‐HBMT253I individuals and age‐, sex‐, and body mass index (BMI)‐matched controls, and 187 preselected miRNAs were quantified using qPCR in 12 individuals and age‐, sex‐, and BMI‐matched controls. DXA and HR‐pQCT scans were assessed in subjects who had reached peak bone mass (aged >25 years, n = 12). Femoral neck aBMD decreased by 0.8%/year (p = 0.01) and total hip by 0.3%/year, and radial volumetric BMD (vBMD) increased 0.3%/year (p = 0.03). Differences in bone turnover markers at follow‐up were not observed. Compared to controls, 11 of the 178 detectable miRNAs were downregulated and none upregulated in LRP5‐HBM individuals, and five of the downregulated miRNAs are reported to be involved in Wnt‐signaling. Bone loss at the hip in LRP5‐HBM individuals demonstrates that the bone phenotype does not uniformly progress with age. Differentially expressed miRNAs may reflect changes in the regulation of bone turnover and balance in LRP5‐HBM individuals. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jens-Jacob Lindegaard Lauterlein
- Department of Endocrinology and Metabolism Odense University Hospital Odense Denmark.,Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Fatma Gossiel
- Department of Oncology and Metabolism University of Sheffield Sheffield UK
| | | | - Richard Eastell
- Department of Oncology and Metabolism University of Sheffield Sheffield UK
| | | | - Pernille Hermann
- Department of Endocrinology and Metabolism Odense University Hospital Odense Denmark.,Department of Clinical Research University of Southern Denmark Odense Denmark
| | - Jens Bollerslev
- Department of Endocrinology Rikshospitalet Oslo Norway.,Faculty of Medicine University of Oslo Oslo Norway
| | - Morten Frost
- Department of Endocrinology and Metabolism Odense University Hospital Odense Denmark.,Department of Clinical Research University of Southern Denmark Odense Denmark.,Steno Diabetes Centre Odense Odense University Hospital Odense Denmark
| |
Collapse
|
36
|
Turin CG, Joeng KS, Kallish S, Raper A, Asher S, Campeau PM, Khan AN, Al Mukaddam M. Heterozygous variant in WNT1 gene in two brothers with early onset osteoporosis. Bone Rep 2021; 15:101118. [PMID: 34458510 PMCID: PMC8379666 DOI: 10.1016/j.bonr.2021.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022] Open
Abstract
Osteoporosis is a multifactorial disorder characterized by low bone mass and strength, leading to increased risk of fracture. The WNT pathway plays a critical role in bone remodeling by enhancing osteoblastic differentiation, which promotes bone formation, and inhibiting osteoclastic differentiation, decreasing bone resorption. Therefore, genetic alterations of this pathway will lead to impaired bone homeostasis and could contribute to varying response to treatment. We present the case of two brothers with early osteoporosis who were found to have a heterozygous variant of unknown significance in the WNT1 gene, c.1060_1061delCAinsG (p.H354Afs*39). This finding demonstrates that frameshift variants in WNT1 may also act in a dominant fashion leading to decreased bone mass.
Collapse
Affiliation(s)
- Christie G Turin
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., 4th floor, Philadelphia, PA 19104, USA
| | - Kyu Sang Joeng
- Mckay Orthopaedic Research Laboratory and Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Staci Kallish
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5100 Silverstein, Philadelphia, PA 19104, USA
| | - Anna Raper
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5100 Silverstein, Philadelphia, PA 19104, USA
| | - Stephanie Asher
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5100 Silverstein, Philadelphia, PA 19104, USA
| | | | - Amna N Khan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., 4th floor, Philadelphia, PA 19104, USA.,Section of Endocrinology, The Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Ave, Philadelphia, PA 19104, USA
| | - Mona Al Mukaddam
- Departments of Medicine and Orthopaedic Surgery, The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania. 3737 Market St., 3rd floor, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Formosa MM, Bergen DJM, Gregson CL, Maurizi A, Kämpe A, Garcia-Giralt N, Zhou W, Grinberg D, Ovejero Crespo D, Zillikens MC, Williams GR, Bassett JHD, Brandi ML, Sangiorgi L, Balcells S, Högler W, Van Hul W, Mäkitie O. A Roadmap to Gene Discoveries and Novel Therapies in Monogenic Low and High Bone Mass Disorders. Front Endocrinol (Lausanne) 2021; 12:709711. [PMID: 34539568 PMCID: PMC8444146 DOI: 10.3389/fendo.2021.709711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Genetic disorders of the skeleton encompass a diverse group of bone diseases differing in clinical characteristics, severity, incidence and molecular etiology. Of particular interest are the monogenic rare bone mass disorders, with the underlying genetic defect contributing to either low or high bone mass phenotype. Extensive, deep phenotyping coupled with high-throughput, cost-effective genotyping is crucial in the characterization and diagnosis of affected individuals. Massive parallel sequencing efforts have been instrumental in the discovery of novel causal genes that merit functional validation using in vitro and ex vivo cell-based techniques, and in vivo models, mainly mice and zebrafish. These translational models also serve as an excellent platform for therapeutic discovery, bridging the gap between basic science research and the clinic. Altogether, genetic studies of monogenic rare bone mass disorders have broadened our knowledge on molecular signaling pathways coordinating bone development and metabolism, disease inheritance patterns, development of new and improved bone biomarkers, and identification of novel drug targets. In this comprehensive review we describe approaches to further enhance the innovative processes taking discoveries from clinic to bench, and then back to clinic in rare bone mass disorders. We highlight the importance of cross laboratory collaboration to perform functional validation in multiple model systems after identification of a novel disease gene. We describe the monogenic forms of rare low and high rare bone mass disorders known to date, provide a roadmap to unravel the genetic determinants of monogenic rare bone mass disorders using proper phenotyping and genotyping methods, and describe different genetic validation approaches paving the way for future treatments.
Collapse
Affiliation(s)
- Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Dylan J. M. Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- The Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Celia L. Gregson
- The Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Antonio Maurizi
- Department of Applied Clinical Sciences and Biotechnological, University of L’Aquila, L’Aquila, Italy
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Garcia-Giralt
- IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - Wei Zhou
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Diana Ovejero Crespo
- IMIM (Hospital del Mar Research Institute), Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine (M.L.B.), University of Florence, Florence, Italy
| | - Luca Sangiorgi
- Department of Medical Genetics and Skeletal Rare Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Outi Mäkitie
- Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
38
|
Hendrickx G, Danyukova T, Baranowsky A, Rolvien T, Angermann A, Schweizer M, Keller J, Schröder J, Meyer-Schwesinger C, Muschol N, Paganini C, Rossi A, Amling M, Pohl S, Schinke T. Enzyme replacement therapy in mice lacking arylsulfatase B targets bone-remodeling cells, but not chondrocytes. Hum Mol Genet 2021; 29:803-816. [PMID: 31943020 PMCID: PMC7104678 DOI: 10.1093/hmg/ddaa006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Mucopolysaccharidosis type VI (MPS-VI), caused by mutational inactivation of the glycosaminoglycan-degrading enzyme arylsulfatase B (Arsb), is a lysosomal storage disorder primarily affecting the skeleton. We have previously reported that Arsb-deficient mice display high trabecular bone mass and impaired skeletal growth. In the present study, we treated them by weekly injection of recombinant human ARSB (rhARSB) to analyze the impact of enzyme replacement therapy (ERT) on skeletal growth and bone remodeling. We found that all bone-remodeling abnormalities of Arsb-deficient mice were prevented by ERT, whereas chondrocyte defects were not. Likewise, histologic analysis of the surgically removed femoral head from an ERT-treated MPS-VI patient revealed that only chondrocytes were pathologically affected. Remarkably, a side-by-side comparison with other cell types demonstrated that chondrocytes have substantially reduced capacity to endocytose rhARSB, together with low expression of the mannose receptor. We finally took advantage of Arsb-deficient mice to establish quantification of chondroitin sulfation for treatment monitoring. Our data demonstrate that bone-remodeling cell types are accessible to systemically delivered rhARSB, whereas the uptake into chondrocytes is inefficient.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Angermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Department of Electron Microscopy, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Keller
- Center for Musculoskeletal Surgery, Charité University Medicine, 10117 Berlin, Germany
| | - Jörg Schröder
- Center for Musculoskeletal Surgery, Charité University Medicine, 10117 Berlin, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Muschol
- International Center for Lysosomal Diseases, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chiara Paganini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
39
|
Zhong X, Zhang F, Yin X, Cao H, Wang X, Liu D, Chen J, Chen X. Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways. J Microbiol Biotechnol 2021; 31:765-774. [PMID: 34176870 PMCID: PMC9705830 DOI: 10.4014/jmb.2104.04016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong Cao
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xuesong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Dongsong Liu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Jing Chen
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Xue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-15861589177 E-mail:
| |
Collapse
|
40
|
Analysis of Molecular Mechanism of Erxian Decoction in Treating Osteoporosis Based on Formula Optimization Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6641838. [PMID: 34239693 PMCID: PMC8238601 DOI: 10.1155/2021/6641838] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Osteoporosis (OP) is a highly prevalent orthopedic condition in postmenopausal women and the elderly. Currently, OP treatments mainly include bisphosphonates, receptor activator of nuclear factor kappa-B ligand (RANKL) antibody therapy, selective estrogen receptor modulators, teriparatide (PTH1-34), and menopausal hormone therapy. However, increasing evidence has indicated these treatments may exert serious side effects. In recent years, Traditional Chinese Medicine (TCM) has become popular for treating orthopedic disorders. Erxian Decoction (EXD) is widely used for the clinical treatment of OP, but its underlying molecular mechanisms are unclear thanks to its multiple components and multiple target features. In this research, we designed a network pharmacology method, which used a novel node importance calculation model to identify critical response networks (CRNs) and effective proteins. Based on these proteins, a target coverage contribution (TCC) model was designed to infer a core active component group (CACG). This approach decoded the mechanisms underpinning EXD's role in OP therapy. Our data indicated that the drug response network mediated by the CACG effectively retained information of the component-target (C-T) network of pathogenic genes. Functional pathway enrichment analysis showed that EXD exerted therapeutic effects toward OP by targeting PI3K-Akt signaling (hsa04151), calcium signaling (hsa04020), apoptosis (hsa04210), estrogen signaling (hsa04915), and osteoclast differentiation (hsa04380) via JNK, AKT, and ERK. Our method furnishes a feasible methodological strategy for formula optimization and mechanism analysis and also supplies a reference scheme for the secondary development of the TCM formula.
Collapse
|
41
|
Butscheidt S, Tsourdi E, Rolvien T, Delsmann A, Stürznickel J, Barvencik F, Jakob F, Hofbauer LC, Mundlos S, Kornak U, Seefried L, Oheim R. Relevant genetic variants are common in women with pregnancy and lactation-associated osteoporosis (PLO) and predispose to more severe clinical manifestations. Bone 2021; 147:115911. [PMID: 33716164 DOI: 10.1016/j.bone.2021.115911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Pregnancy and lactation-associated osteoporosis (PLO) is a rare skeletal disorder characterized by early-onset osteoporosis typically manifestating with vertebral compression fractures or transient osteoporosis of the hip. We hypothesized that genetic variants may play a role in the development of PLO. This study aimed to analyze the presence of genetic variants and a potential association with the clinical presentation in PLO. 42 women with PLO were included from 2013 to 2019 in a multicenter study in Germany. All cases underwent comprehensive genetic analysis based on a custom-designed gene panel including genes relevant for skeletal disorders. The skeletal status was assessed using dual-energy X-ray absorptiometry (DXA). Subgroups were further analyzed by serum bone turnover markers (n = 31) and high-resolution peripheral computed tomography (HR-pQCT; n = 23). We detected relevant genetic variants in 21 women (50%), with LRP5, WNT1 and COL1A1/A2 being the most commonly involved genes. The mean number of vertebral compression fractures was 3.3 ± 3.4 per case with a significantly higher occurrence in the subgroup with genetic variants (4.8 ± 3.7 vs. 1.8 ± 2.3, p = 0.02). Among the total cohort, DXA Z-scores were significantly lower at the lumbar spine compared to the femoral neck (p = 0.002). HR-pQCT revealed a pronounced reduction of trabecular and cortical thickness, while trabecular number was within the reference range. Eighteen women (43%) received a bone-specific therapy (primarily teriparatide). Overall, a steep increase in bone mass (+37.7%) was observed after 3 years. In conclusion, pregnancy and lactation represent skeletal risk factors, which may unmask hereditary bone disorders leading to PLO. These cases were affected more severely. Nevertheless, a timely diagnosis and adequate treatment can ensure a substantial recovery potential even without specific therapy. Patients with genetically induced low bone turnover (e.g.; LRP5, WNT1) may especially benefit from osteo-anabolic medication.
Collapse
Affiliation(s)
- Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Human Genetics, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Nottmeier C, Liao N, Simon A, Decker MG, Luther J, Schweizer M, Yorgan T, Kaucka M, Bockamp E, Kahl-Nieke B, Amling M, Schinke T, Petersen J, Koehne T. Wnt1 Promotes Cementum and Alveolar Bone Growth in a Time-Dependent Manner. J Dent Res 2021; 100:1501-1509. [PMID: 34009051 PMCID: PMC8649456 DOI: 10.1177/00220345211012386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The WNT/β-catenin signaling pathway plays a central role in the biology
of the periodontium, yet the function of specific extracellular WNT
ligands remains poorly understood. By using a
Wnt1-inducible transgenic mouse model targeting
Col1a1-expressing alveolar osteoblasts,
odontoblasts, and cementoblasts, we demonstrate that the WNT ligand
WNT1 is a strong promoter of cementum and alveolar bone formation in
vivo. We induced Wnt1 expression for 1, 3, or 9 wk in
Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk.
Micro–computed tomography (CT) analyses of the mandibles revealed a
1.8-fold increased bone volume after 1 and 3 wk of
Wnt1 expression and a 3-fold increased bone
volume after 9 wk of Wnt1 expression compared to
controls. In addition, the alveolar ridges were higher in Wnt1Tg mice
as compared to controls. Nondecalcified histology demonstrated
increased acellular cementum thickness and cellular cementum volume
after 3 and 9 wk of Wnt1 expression. However, 9 wk of
Wnt1 expression was also associated with
periodontal breakdown and ectopic mineralization of the pulp. The
composition of this ectopic matrix was comparable to those of cellular
cementum as demonstrated by quantitative backscattered electron
imaging and immunohistochemistry for noncollagenous proteins. Our
analyses of 52-wk-old mice after 9 wk of Wnt1
expression revealed that Wnt1 expression affects
mandibular bone and growing incisors but not molar teeth, indicating
that Wnt1 influences only growing tissues. To further
investigate the effect of Wnt1 on cementoblasts, we
stably transfected the cementoblast cell line (OCCM-30) with a vector
expressing Wnt1-HA and performed proliferation as
well as differentiation experiments. These experiments demonstrated
that Wnt1 promotes proliferation but not
differentiation of cementoblasts. Taken together, our findings
identify, for the first time, Wnt1 as a critical
regulator of alveolar bone and cementum formation, as well as provide
important insights for harnessing the WNT signal pathway in
regenerative dentistry.
Collapse
Affiliation(s)
- C Nottmeier
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany.,Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| | - N Liao
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany.,Department of Orthodontics, College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - A Simon
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany
| | - M G Decker
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany
| | - J Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - M Schweizer
- ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - M Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - E Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - B Kahl-Nieke
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany
| | - M Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - T Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - J Petersen
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg, Hamburg, Germany
| | - T Koehne
- Department of Orthodontics, University Medical Center Hamburg, Hamburg, Germany.,Department of Orthodontics, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
43
|
He S, Guan Y, Wu Y, Zhu L, Yan B, Honda H, Yang J, Liu W. DEC1 deficiency results in accelerated osteopenia through enhanced DKK1 activity and attenuated PI3KCA/Akt/GSK3β signaling. Metabolism 2021; 118:154730. [PMID: 33607194 PMCID: PMC8311383 DOI: 10.1016/j.metabol.2021.154730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human differentiated embryonic chondrocyte expressed gene 1 (DEC1) has been implicated in enhancing osteogenesis, a desirable outcome to counteract against deregulated bone formation such as retarded bone development, osteopenia and osteoporosis. METHODS AND RESULTS DEC1 knockout (KO) and the age-matched wild-type (WT) mice were tested for the impact of DEC1 deficiency on bone development and osteopenia as a function of age. DEC1 deficiency exhibited retarded bone development at the age of 4 weeks and osteopenic phenotype in both 4- and 24-week old mice. However, the osteopenia was more severe in the 24-week age groups. Mechanistically, DEC1 deficiency downregulated the expression of bone-enhancing genes such as Runx2 and β-catenin accompanied by upregulating DKK1, an inhibitor of the Wnt/β-catenin signaling pathway. Consistently, DEC1 deficiency favored the attenuation of the integrated PI3KCA/Akt/GSK3β signaling, a pathway targeting β-catenin for degradation. Likewise, the attenuation was greater in the 24-week age group. These changes, however, were reversed by in vivo treatment with lithium chloride, a stabilizer of β-catenin, and confirmed by gain-of-function study with DEC1 transfection into DEC1 KO bone marrow mesenchymal stem cells and loss-of-function study with siDEC1 lentiviral infection into the corresponding WT cells. CONCLUSION DEC1 is a positive regulator with a broad activity spectrum in both bone development and maintenance, and the osteopenic phenotype accelerated by DEC1 deficiency is achieved by enhanced DKK1 activity and attenuated PI3KCA/Akt/GSK3β signaling.
Collapse
Affiliation(s)
- Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, China
| | - Yu Guan
- Department of Pharmacology, Nanjing Medical University, China
| | - Yichen Wu
- Department of Pharmacology, Nanjing Medical University, China
| | - Ling Zhu
- Department of Pharmacology, Nanjing Medical University, China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hiroaki Honda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, China
| |
Collapse
|
44
|
Fratzl-Zelman N, Wesseling-Perry K, Mäkitie RE, Blouin S, Hartmann MA, Zwerina J, Välimäki VV, Laine CM, Välimäki MJ, Pereira RC, Mäkitie O. Bone material properties and response to teriparatide in osteoporosis due to WNT1 and PLS3 mutations. Bone 2021; 146:115900. [PMID: 33618074 DOI: 10.1016/j.bone.2021.115900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Patients with osteoporosis-associated WNT1 or PLS3 mutations have unique bone histomorphometric features and osteocyte-specific hormone expression patterns. OBJECTIVE To investigate the effects of WNT1 and PLS3 mutations on bone material properties. DESIGN Transiliac bone biopsies were evaluated by quantitative backscattered electron imaging, immunohistochemistry, and bone histomorphometry. SETTING Ambulatory patients. PATIENTS Three pediatric and eight adult patients with WNT1 or PLS3 mutations. INTERVENTION Bone mineralization density distribution and osteocyte protein expression was evaluated in 11 patients and repeated in six patients who underwent repeat biopsy after 24 months of teriparatide treatment. MAIN OUTCOME MEASURE Bone mineralization density distribution and protein expression. RESULTS Children with WNT1 or PLS3 mutations had heterogeneous bone matrix mineralization, consistent with bone modeling during growth. Bone matrix mineralization was homogenous in adults and increased throughout the age spectrum. Teriparatide had very little effect on matrix mineralization or bone formation in patients with WNT1 or PLS3 mutations. However, teriparatide decreased trabecular osteocyte lacunae size and increased trabecular bone FGF23 expression. CONCLUSION The contrast between preserved bone formation with heterogeneous mineralization in children and low bone turnover with homogenous bone mineral content in adults suggests that WNT1 and PLS3 have differential effects on bone modeling and remodeling. The lack of change in matrix mineralization in response to teriparatide, despite clear changes in osteocyte lacunae size and protein expression, suggests that altered WNT1 and PLS3 expression may interfere with coupling of osteocyte, osteoblast, and osteoclast function. Further studies are warranted to determine the mechanism of these changes.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | - Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Ville-Valtteri Välimäki
- Department of Orthopaedics and Traumatology, Helsinki University Central Hospital and Helsinki University, Jorvi Hospital, Espoo, Finland
| | - Christine M Laine
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden
| | - Matti J Välimäki
- Division of Endocrinology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Renata C Pereira
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland; Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
46
|
Shams R, Drasites KP, Zaman V, Matzelle D, Shields DC, Garner DP, Sole CJ, Haque A, Banik NL. The Pathophysiology of Osteoporosis after Spinal Cord Injury. Int J Mol Sci 2021; 22:3057. [PMID: 33802713 PMCID: PMC8002377 DOI: 10.3390/ijms22063057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects approximately 300,000 people in the United States. Most individuals who sustain severe SCI also develop subsequent osteoporosis. However, beyond immobilization-related lack of long bone loading, multiple mechanisms of SCI-related bone density loss are incompletely understood. Recent findings suggest neuronal impairment and disability may lead to an upregulation of receptor activator of nuclear factor-κB ligand (RANKL), which promotes bone resorption. Disruption of Wnt signaling and dysregulation of RANKL may also contribute to the pathogenesis of SCI-related osteoporosis. Estrogenic effects may protect bones from resorption by decreasing the upregulation of RANKL. This review will discuss the current proposed physiological and cellular mechanisms explaining osteoporosis associated with SCI. In addition, we will discuss emerging pharmacological and physiological treatment strategies, including the promising effects of estrogen on cellular protection.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Kelsey P. Drasites
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
| | - Dena P. Garner
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Christopher J. Sole
- Department of Health and Human Performance, The Citadel, 171 Moultrie St., Charleston, SC 29409, USA; (D.P.G.); (C.J.S.)
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; (R.S.); (K.P.D.); (V.Z.); (D.M.); (D.C.S.)
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
| |
Collapse
|
47
|
Wang F, Rummukainen P, Heino TJ, Kiviranta R. Osteoblastic Wnt1 regulates periosteal bone formation in adult mice. Bone 2021; 143:115754. [PMID: 33189914 DOI: 10.1016/j.bone.2020.115754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/25/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Compelling clinical data together with genetically modified mouse models have demonstrated that Wnt1 is a key Wnt ligand in bone metabolism, regulating both osteoblast activity and osteoclast differentiation. We have previously shown that deletion of Wnt1 in limb mesenchymal cells leads to severe ostepenic bone phenotype and spontaneous fractures very early after birth. However, the function of Wnt1 in mature skeleton remained unknown. To investigate the role of Wnt1 specifically in adult bone metabolism, we generated an osteoblast lineage-targeted inducible Wnt1 knockout mouse model using tetracycline-controlled Osterix-Cre mouse line (Osx-Cre). In this model, the Cre recombinase expression is suppressed by administering doxycycline (Dox) in drinking water. As expected, Wnt1Osx-/- mice without Dox developed spontaneous fractures early by 3 weeks of age due to severe trabecular and cortical osteopenia. Administration of Dox to Wnt1Osx-Dox-/- and control mice until 4 weeks of age suppressed Wnt1 deletion and completely prevented the fractures. Withdrawal of Dox led to deletion in Wnt1 allele but the fracture incidence progressively decreased in Wnt1Osx-Dox-/- mice at 8 or 12 weeks of age (4 and 8 weeks after Dox withdrawal). Interestingly, deletion of Wnt1 at 4 weeks of age resulted only in a modest and transient trabecular osteopenia that was more pronounced in females and was normalized by 12 weeks of age. However, diaphyseal cortical bone mass and cortical thickness in the femurs were significantly decreased in Wnt1Osx-Dox-/- mice of both genders. Mechanisticly, this was due to impaired periosteal bone formation. Based on our data, in addition to its essential role in early skeletal growth, Wnt1 is an important regulator of modeling-based bone formation and cortical thickness in adult mice.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Terhi J Heino
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Endocrinology, Division of Medicine, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
48
|
Stürznickel J, Rolvien T, Delsmann A, Butscheidt S, Barvencik F, Mundlos S, Schinke T, Kornak U, Amling M, Oheim R. Clinical Phenotype and Relevance of LRP5 and LRP6 Variants in Patients With Early-Onset Osteoporosis (EOOP). J Bone Miner Res 2021; 36:271-282. [PMID: 33118644 DOI: 10.1002/jbmr.4197] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Reduced bone mineral density (BMD; ie, Z-score ≤-2.0) occurring at a young age (ie, premenopausal women and men <50 years) in the absence of secondary osteoporosis is considered early-onset osteoporosis (EOOP). Mutations affecting the WNT signaling pathway are of special interest because of their key role in bone mass regulation. Here, we analyzed the effects of relevant LRP5 and LRP6 variants on the clinical phenotype, bone turnover, BMD, and bone microarchitecture. After exclusion of secondary osteoporosis, EOOP patients (n = 372) were genotyped by gene panel sequencing, and segregation analysis of variants in LRP5/LRP6 was performed. The clinical assessment included the evaluation of bone turnover parameters, BMD by dual-energy X-ray absorptiometry, and microarchitecture via high-resolution peripheral quantitative computed tomography (HR-pQCT). In 50 individuals (31 EOOP index patients, 19 family members), relevant variants affecting LRP5 or LRP6 were detected (42 LRP5 and 8 LRP6 variants), including 10 novel variants. Seventeen variants were classified as disease causing, 14 were variants of unknown significance, and 19 were BMD-associated single-nucleotide polymorphisms (SNPs). One patient harbored compound heterozygous LRP5 mutations causing osteoporosis-pseudoglioma syndrome. Fractures were reported in 37 of 50 individuals, consisting of vertebral (18 of 50) and peripheral (29 of 50) fractures. Low bone formation was revealed in all individuals. A Z-score ≤-2.0 was detected in 31 of 50 individuals, and values at the spine were significantly lower than those at the hip (-2.1 ± 1.3 versus -1.6 ± 0.8; p = .003). HR-pQCT analysis (n = 34) showed impaired microarchitecture in trabecular and cortical compartments. Significant differences regarding the clinical phenotype were detectable between index patients and family members but not between different variant classes. Relevant variants in LRP5 and LRP6 contribute to EOOP in a substantial number of individuals, leading to a high number of fractures, low bone formation, reduced Z-scores, and impaired microarchitecture. This detailed skeletal characterization improves the interpretation of known and novel LRP5 and LRP6 variants. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alena Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Hendrickx G, Fischer V, Liedert A, von Kroge S, Haffner-Luntzer M, Brylka L, Pawlus E, Schweizer M, Yorgan T, Baranowsky A, Rolvien T, Neven M, Schumacher U, Beech DJ, Amling M, Ignatius A, Schinke T. Piezo1 Inactivation in Chondrocytes Impairs Trabecular Bone Formation. J Bone Miner Res 2021; 36:369-384. [PMID: 33180356 DOI: 10.1002/jbmr.4198] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023]
Abstract
The skeleton is a dynamic tissue continuously adapting to mechanical stimuli. Although matrix-embedded osteocytes are considered as the key mechanoresponsive bone cells, all other skeletal cell types are principally exposed to macroenvironmental and microenvironmental mechanical influences that could potentially affect their activities. It was recently reported that Piezo1, one of the two mechanically activated ion channels of the Piezo family, functions as a mechanosensor in osteoblasts and osteocytes. Here we show that Piezo1 additionally plays a critical role in the process of endochondral bone formation. More specifically, by targeted deletion of Piezo1 or Piezo2 in either osteoblast (Runx2Cre) or osteoclast lineage cells (Lyz2Cre), we observed severe osteoporosis with numerous spontaneous fractures specifically in Piezo1Runx2Cre mice. This phenotype developed at an early postnatal stage and primarily affected the formation of the secondary spongiosa. The presumptive Piezo1Runx2Cre osteoblasts in this region displayed an unusual flattened appearance and were positive for type X collagen. Moreover, transcriptome analyses of primary osteoblasts identified an unexpected induction of chondrocyte-related genes in Piezo1Runx2Cre cultures. Because Runx2 is not only expressed in osteoblast progenitor cells, but also in prehypertrophic chondrocytes, these data suggested that Piezo1 functions in growth plate chondrocytes to ensure trabecular bone formation in the process of endochondral ossification. To confirm this hypothesis, we generated mice with Piezo1 deletion in chondrocytes (Col2a1Cre). These mice essentially recapitulated the phenotype of Piezo1Runx2Cre animals, because they displayed early-onset osteoporosis with multiple fractures, as well as impaired formation of the secondary spongiosa with abnormal osteoblast morphology. Our data identify a previously unrecognized key function of Piezo1 in endochondral ossification, which, together with its role in bone remodeling, suggests that Piezo1 represents an attractive target for the treatment of skeletal disorders. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Pawlus
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Department of Electron Microscopy, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|