1
|
Hu M, Oliveira APBN, Fang Z, Feng Y, Miranda M, Kowli S, Arunachalam PS, Vasudevan G, Hui HSY, Grifoni A, Sette A, Litvack M, Rouphael N, Suthar MS, Ji X, Maecker HT, Hagan T, Dhillon G, Nicolls MR, Pulendran B. Altered baseline immunological state and impaired immune response to SARS-CoV-2 mRNA vaccination in lung transplant recipients. Cell Rep Med 2025; 6:102050. [PMID: 40187358 PMCID: PMC12047491 DOI: 10.1016/j.xcrm.2025.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
The effectiveness of COVID-19 mRNA vaccines is diminished in organ transplant patients. Using a multi-omics approach, we investigate the immunological state of lung transplant (LTX) recipients at baseline and after SARS-CoV-2 mRNA vaccination compared to healthy controls (HCs). LTX patients exhibit a baseline immune profile resembling severe COVID-19 and sepsis, characterized by elevated pro-inflammatory cytokines (e.g., EN-RAGE [also known as S100A12], interleukin [IL]-6), reduced human leukocyte antigen (HLA)-DR expression on monocytes and dendritic cells, impaired cytokine production, and increased plasma microbial products. Single-cell RNA sequencing identifies an enriched monocyte cluster in LTX patients marked by high S100A family expression and reduced cytokine and antigen presentation genes. Post vaccination, LTX patients show diminished antibody, B cell, and T cell responses, along with blunted innate immune signatures. Integrative analysis links these altered baseline immunological features to impaired vaccine responses. These findings provide critical insights into the immunosuppressed condition of LTX recipients and their reduced vaccine-induced adaptive and innate immune responses.
Collapse
Affiliation(s)
- Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Ana Paula B N Oliveira
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Molly Miranda
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Gowri Vasudevan
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Harold Sai-Yin Hui
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Litvack
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA, USA
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Decatur, GA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Xuhuai Ji
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gundeep Dhillon
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Xia Q, Li H, Sun K, Li H, Zeng X. Management of concurrent severe COVID-19 pneumonia and antibody-mediated rejection following kidney transplantation: a case report. Front Med (Lausanne) 2025; 12:1521785. [PMID: 40182852 PMCID: PMC11966428 DOI: 10.3389/fmed.2025.1521785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Background Due to its high mutation rate, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recurrently emerged worldwide in recent years, leading to an increased incidence of rejection following kidney transplantation and a worsened prognosis for recipients. The management of the concomitant occurrence of SARS-CoV-2 infection and rejection in kidney transplant recipients poses significant challenges, with limited available experience on this topic. This study presents a case report highlighting the simultaneous manifestation of severe corona virus disease 2019 (COVID-19) pneumonia and acute antibody-mediated rejection (ABMR) during the early post-transplantation period. Methods The recipient underwent the renal transplantation from a deceased donor after brain death and received comprehensive management including antiviral therapy, adjustment of immunosuppressive medications, and relevant supportive care during the course of SARS-CoV-2 infection. In the overlapping period of severe COVID-19 pneumonia and ABMR, we implemented plasma exchange (PE) combined with intravenous immunoglobulin (IVIG) and rituximab treatment, while closely monitoring infection-related indicators and elucidate the impact of PE on SARS-CoV-2 antibodies. Results The administration of PE did not significantly impact the level of SARS-CoV-2 IgG antibody. Meanwhile, the combination of PE, IVIG, and rituximab treatment effectively reversed ABMR without exacerbating SARS-CoV-2 infection. Conclusion The timely administration of antiviral and anti-rejection therapies in the early stage of renal transplant recipient can lead to favorable outcome in case of SARS-CoV-2 infection and concurrent ABMR.
Collapse
|
3
|
Favà A, Couceiro C, Calatayud L, Hernandez-Hermida Y, Melilli E, Montero N, Manonelles A, Coloma A, Codina S, Lloberas N, Oliveras L, Lino LA, Galofré C, Sabé N, Gomez-Preciado F, Sandoval D, Pizarro D, Domínguez MA, Cruzado JM. Hybrid immunity protection against SARS-CoV-2 and severe COVID-19 in kidney transplantation: A retrospective, comparative cohort study. Am J Transplant 2024; 24:2282-2291. [PMID: 39097095 DOI: 10.1016/j.ajt.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Hybrid immunity, resulting from a combination of SARS-CoV-2 infection and vaccination, offers robust protection against COVID-19 in the general population. However, its impact on immunocompromised patients remains unexplored. We investigated the effect of hybrid immunity against the Omicron variant in a population of kidney transplant recipients receiving the fourth dose mRNA monovalent vaccination. By extracting data from the clinical records and performing individual interviews, participants were categorized into the hybrid cohort (previously infected and vaccinated individuals) and the vaccine cohort (vaccinated-only individuals). The study comprised 1114 participants, 442 in the hybrid and 672 in the vaccine cohorts. From April 2022 to August 2023, 286 infections, 38 hospitalizations and 9 deaths were reported. The cumulative incidence of infection was 12.1% (95% confidence interval [CI], 9.03-16.03) for the hybrid cohort and 36.54% (95% CI, 32.81-40.54) for the vaccine cohort after 300 days of follow-up. Hybrid immunity was associated to a 72% lower risk of infection (adjusted hazard ratio, 0.28; 95% CI, 0.21-0.38) and a 96% lower risk of hospitalization (adjusted hazard ratio, 0.04; 95% CI, 0.01-0.32). No deaths occurred in the hybrid cohort. Hybrid immunity was associated with a lower incidence of SARS-CoV-2 infection and severe COVID-19, underscoring its importance for risk stratification in this vulnerable patient population.
Collapse
Affiliation(s)
- Alexandre Favà
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Carlos Couceiro
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Laura Calatayud
- Microbiology Department, Bellvitge University Hospital, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | | | - Edoardo Melilli
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Nuria Montero
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Ana Coloma
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Sergi Codina
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Nuria Lloberas
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Laia Oliveras
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Luis Arturo Lino
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Claudia Galofré
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Nuria Sabé
- Department of Infectious Diseases, Bellvitge University Hospital, Barcelona, Spain
| | - Francisco Gomez-Preciado
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
| | - Diego Sandoval
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Daniel Pizarro
- Microbiology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Maria Angeles Domínguez
- Microbiology Department, Bellvitge University Hospital, Barcelona, Spain; Research Network for Infectious Diseases (CIBERINFEC), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Josep Maria Cruzado
- Nephrology Department, Bellvitge University Hospital, Barcelona, Spain; Nephrology and Renal Transplantation Group, Infectious Disease and Transplantation Program, Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Espi M, Charmetant X, Benotmane I, Lefsihane K, Barateau V, Gallais F, Boulenouar H, Ovize A, Barbry A, Bouz C, Morelon E, Defrance T, Fafi-Kremer S, Caillard S, Thaunat O. Memory B Cells Provide Long-Term Protection to Vaccinated Kidney Transplant Recipients Against SARS-CoV-2 Variants. J Med Virol 2024; 96:e70037. [PMID: 39530340 DOI: 10.1002/jmv.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Kidney transplant recipients (KTRs) are highly vulnerable to COVID-19. An intensified scheme of vaccination offers short-term protection to the 50%-75% of KTRs able to develop a germinal center reaction, required for the generation of neutralizing titers of antibodies (NAbs). However, the duration of this vaccinal protection is unknown. In-depth longitudinal analysis of the immune response to vaccination of 33 KTRs demonstrates that the low peak of IgGs, the progressive decline in antibody titers, and the emergence of a variant of concerns (VOC) of SARS-CoV2, synergize to let 2/3 of responders to vaccine without NAbs after only a few months. Yet, a retrospective study of an independent cohort of 274 KTRs, revealed that the risk of severe COVID-19 in the latter was low, similar to that of patients with serum neutralizing capacity against VOC. Our work links this late vaccine protection with the presence of memory B cells, which are generated during the initial vaccine-induced germinal center reaction, have a wide repertoire directed against conserved spike epitopes, and rapidly differentiate into IgG-producing plasma cells upon antigenic rechallenge. We conclude that in contrast with a serological layer that goes fading rapidly, the cellular layer of humoral memory provides an efficient long-term protection against VOC to KTRs. This illustration of the complementary roles of the two layers of the humoral memory has implications in immunopathology beyond the COVID-19 in KTRs.
Collapse
Affiliation(s)
- Maxime Espi
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Charmetant
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Department of Transplantation, Hospices Civils de Lyon, Edouard Herriot Hospital, Nephrology and Clinical Immunology, Lyon, France
- Claude Bernard University, Villeurbanne, France
| | - Ilies Benotmane
- Department of Nephrology Dialysis and Transplantation, Strasbourg University Hospital, Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Katia Lefsihane
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Véronique Barateau
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Floriane Gallais
- Department of Virology, Strasbourg University Hospital, Strasbourg, France
| | - Hafsa Boulenouar
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Anne Ovize
- Eurofins Biomnis Laboratory, Lyon, France
| | | | | | - Emmanuel Morelon
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Department of Transplantation, Hospices Civils de Lyon, Edouard Herriot Hospital, Nephrology and Clinical Immunology, Lyon, France
- Claude Bernard University, Villeurbanne, France
| | - Thierry Defrance
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Samira Fafi-Kremer
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Department of Virology, Strasbourg University Hospital, Strasbourg, France
| | - Sophie Caillard
- Department of Nephrology Dialysis and Transplantation, Strasbourg University Hospital, Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Department of Transplantation, Hospices Civils de Lyon, Edouard Herriot Hospital, Nephrology and Clinical Immunology, Lyon, France
- Claude Bernard University, Villeurbanne, France
| |
Collapse
|
5
|
Tomita Y, Uehara S, Terada M, Yamamoto N, Nakamura M. Impaired SARS-CoV-2-specific responses via activated T follicular helper cells in immunocompromised kidney transplant recipients. Sci Rep 2024; 14:24571. [PMID: 39427014 PMCID: PMC11490627 DOI: 10.1038/s41598-024-76251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Activated T follicular helper (aTfh) cells are likely important in host immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. We characterized the immune responses of aTfh cells to the second (D2) and third (booster; D3) doses of an mRNA vaccine in the peripheral blood of 40 kidney transplant recipients (KTRs) and 17 healthy control volunteers (HCs). A significant increase in SARS-CoV-2-specific IgG antibody was seen after D3 in the KTRs; nonetheless, the levels after D2 and D3 were significantly lower than in the HCs. After D2, dramatic increases in activated CD45RA-CXCR5+ICOS+PD1+ circulating Tfh (acTfh) cells were observed in the HCs, as well as the seropositive patients among the KTRs, when compared with the seronegative patients among the KTRs. Unlike the HCs, KTRs had less prominent immune responses, including the acTfh and T cells that produce interferon gamma, tumor necrosis factor alpha, and interleukin 21. In addition, the increase in acTfh cells was significantly associated with anti-IgG antibody levels after D3. These results indicate impaired SARS-CoV-2-specific responses via acTfh cells in KTRs, and they suggest that acTfh cells in peripheral blood may play an important role in antibody maintenance following SARS-CoV-2 mRNA vaccination.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Saeko Uehara
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Mari Terada
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Norio Yamamoto
- Department of Virology, Division of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
6
|
Kobashi Y, Kawamura T, Shimazu Y, Kaneko Y, Nishikawa Y, Sugiyama A, Tani Y, Nakayama A, Yoshida M, Zho T, Yamamoto C, Saito H, Takita M, Wakui M, Kodama T, Tsubokura M. Kinetics of humoral and cellular immune responses 5 months post-COVID-19 booster dose by immune response groups at the peak immunity phase: An observational historical cohort study using the Fukushima vaccination community survey. Vaccine X 2024; 20:100553. [PMID: 39309610 PMCID: PMC11416657 DOI: 10.1016/j.jvacx.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background Understanding the waning of immunity after booster vaccinations is important to identify which immune-low populations should be prioritized. Methods We investigated longitudinal cellular and humoral immunity after the third vaccine dose in both high- and low-cellular and humoral immunity groups at the peak immunity phase after the booster vaccination in a large community-based cohort. Blood samples were collected from 1045 participants at peak (T1: median 54 days post-third dose) and decay (T2: median 145 days post-third dose) phases to assess IgG(S), neutralizing activity, and ELISpot responses. Participants were categorized into high/low ELISpot/IgG(S) groups at T1. Cellular and humoral responses were tracked for approximately five months after the third vaccination. Results In total, 983 participants were included in the cohort. IgG(S) geometric mean fold change between timepoints revealed greater waning in the >79 years age group (T2/T1 fold change: 0.27) and higher IgG(S) fold change in the low-ELISpot group at T1 (T2/T1 fold change: 0.32-0.33) than in the other groups, although ELISpot geometric mean remained stable. Conclusions Antibody level of those who did not respond well to third dose vaccination waned rapidly than those who responded well. Evidence-based vaccine strategies are essential in preventing potential health issues caused by vaccines, including side-effects.
Collapse
Affiliation(s)
- Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Ishikawa District, Fukushima, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuzo Shimazu
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Ishikawa District, Fukushima, Japan
| | - Akira Sugiyama
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yuta Tani
- Medical Governance Research Institute, Minato-ku, Tokyo, Japan
| | - Aya Nakayama
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Makoto Yoshida
- Medical Governance Research Institute, Minato-ku, Tokyo, Japan
| | - Tianchen Zho
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Morihito Takita
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Hirata, Ishikawa District, Fukushima, Japan
- General Incorporated Association for Comprehensive Disaster Health Management Research Institute, Japan
| |
Collapse
|
7
|
Benotmane I, Jungbauer-Groznica M, Staropoli I, Planas D, Dehan O, Brisebarre A, Simon-Loriere E, Fafi-Kremer S, Schwartz O, Bruel T, Caillard S. In Vitro and In Vivo Neutralizing Efficacy of Monoclonal Antibodies Against Sars-Cov-2 Variants in Kidney Transplant Recipients. Transpl Int 2024; 37:13272. [PMID: 39081903 PMCID: PMC11286486 DOI: 10.3389/ti.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Ilies Benotmane
- Department of Nephrology Dialysis and Transplantation, Strasbourg University Hospital, Strasbourg, France
- Institut national de la santé et de la recherche médicale (Inserm) UMR S1109, LabEx Transplantex, Fédération de médecine translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Martin Jungbauer-Groznica
- Institut Pasteur, Université Paris Cité, Centre national de la recherche scientifique (CNRS) UMR3569, Virus and Immunity Unit, Paris, France
- Antiviral Activities of Antibodies Group, Université Paris Cité, Centre national de la recherche scientifique (CNRS) UMR3569, Paris, France
- Université Paris Cité, École Doctorale BioSPC 562, Paris, France
| | - Isabelle Staropoli
- Institut Pasteur, Université Paris Cité, Centre national de la recherche scientifique (CNRS) UMR3569, Virus and Immunity Unit, Paris, France
| | - Delphine Planas
- Institut Pasteur, Université Paris Cité, Centre national de la recherche scientifique (CNRS) UMR3569, Virus and Immunity Unit, Paris, France
| | - Océane Dehan
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, Paris, France
- National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris, France
| | - Angela Brisebarre
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, Paris, France
- National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris, France
| | - Etienne Simon-Loriere
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, Paris, France
- National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris, France
| | - Samira Fafi-Kremer
- Institut national de la santé et de la recherche médicale (Inserm) UMR S1109, LabEx Transplantex, Fédération de médecine translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Department of Virology, Strasbourg University Hospital, Strasbourg, France
| | - Olivier Schwartz
- Institut Pasteur, Université Paris Cité, Centre national de la recherche scientifique (CNRS) UMR3569, Virus and Immunity Unit, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Timothée Bruel
- Institut Pasteur, Université Paris Cité, Centre national de la recherche scientifique (CNRS) UMR3569, Virus and Immunity Unit, Paris, France
- Antiviral Activities of Antibodies Group, Université Paris Cité, Centre national de la recherche scientifique (CNRS) UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Sophie Caillard
- Department of Nephrology Dialysis and Transplantation, Strasbourg University Hospital, Strasbourg, France
- Institut national de la santé et de la recherche médicale (Inserm) UMR S1109, LabEx Transplantex, Fédération de médecine translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Singer J, Tunbridge MJ, Shi B, Perkins GB, Chai CS, Salehi T, Sim BZ, Kireta S, Johnston JK, Akerman A, Milogiannakis V, Aggarwal A, Turville S, Hissaria P, Ying T, Wu H, Grubor-Bauk B, Coates PT, Chadban SJ. Dietary Inulin to Improve SARS-CoV-2 Vaccine Response in Kidney Transplant Recipients: The RIVASTIM-Inulin Randomised Controlled Trial. Vaccines (Basel) 2024; 12:608. [PMID: 38932337 PMCID: PMC11209582 DOI: 10.3390/vaccines12060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney transplant recipients are at an increased risk of hospitalisation and death from SARS-CoV-2 infection, and standard two-dose vaccination schedules are typically inadequate to generate protective immunity. Gut dysbiosis, which is common among kidney transplant recipients and known to effect systemic immunity, may be a contributing factor to a lack of vaccine immunogenicity in this at-risk cohort. The gut microbiota modulates vaccine responses, with the production of immunomodulatory short-chain fatty acids by bacteria such as Bifidobacterium associated with heightened vaccine responses in both observational and experimental studies. As SCFA-producing populations in the gut microbiota are enhanced by diets rich in non-digestible fibre, dietary supplementation with prebiotic fibre emerges as a potential adjuvant strategy to correct dysbiosis and improve vaccine-induced immunity. In a randomised, double-bind, placebo-controlled trial of 72 kidney transplant recipients, we found dietary supplementation with prebiotic inulin for 4 weeks before and after a third SARS-CoV2 mRNA vaccine to be feasible, tolerable, and safe. Inulin supplementation resulted in an increase in gut Bifidobacterium, as determined by 16S RNA sequencing, but did not increase in vitro neutralisation of live SARS-CoV-2 virus at 4 weeks following a third vaccination. Dietary fibre supplementation is a feasible strategy with the potential to enhance vaccine-induced immunity and warrants further investigation.
Collapse
Affiliation(s)
- Julian Singer
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Matthew J. Tunbridge
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Bree Shi
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Griffith B. Perkins
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
| | - Cheng Sheng Chai
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
| | - Tania Salehi
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Beatrice Z. Sim
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Svjetlana Kireta
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Julie K. Johnston
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
| | - Anouschka Akerman
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Vanessa Milogiannakis
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Anupriya Aggarwal
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Stuart Turville
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (A.A.); (V.M.); (A.A.); (S.T.)
| | - Pravin Hissaria
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
- Department of Immunology and Allergy, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tracey Ying
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Huiling Wu
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Branka Grubor-Bauk
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
- Viral Immunology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA 5011, Australia
| | - P. Toby Coates
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; (M.J.T.); (T.S.); (B.Z.S.); (S.K.); (J.K.J.); (P.T.C.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia; (G.B.P.); (C.S.C.); (P.H.); (B.G.-B.)
| | - Steven J. Chadban
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia; (J.S.); (T.Y.); (H.W.)
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
9
|
Benotmane I, Legendre C, Caillard S. Challenges Faced by Solid Organ Transplant Recipients During the COVID-19 Pandemic in France: Historical Insights and Key Takeaways. Transplantation 2024; 108:819-822. [PMID: 38526428 DOI: 10.1097/tp.0000000000004924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Affiliation(s)
- Ilies Benotmane
- Department of Nephrology, Dialysis, and Transplantation, Strasbourg University Hospital, Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Christophe Legendre
- Department of Nephrology-Transplantation, Hôpital Necker, Université de Paris, Paris, France
| | - Sophie Caillard
- Department of Nephrology, Dialysis, and Transplantation, Strasbourg University Hospital, Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Ayala-Borges B, Escobedo M, Egri N, Herrera S, Crespo M, Mirabet S, Arias-Cabrales C, Vilella A, Palou E, Mosquera MM, Pascal M, Colmenero J, Farrero M, Bodro M. Impact of SARS-CoV-2 Infection on Humoral and Cellular Immunity in a Cohort of Vaccinated Solid Organ Transplant Recipients. Vaccines (Basel) 2023; 11:1845. [PMID: 38140248 PMCID: PMC10747916 DOI: 10.3390/vaccines11121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of the present study was to determine humoral and T-cell responses after four doses of mRNA-1273 vaccine in solid organ transplant (SOT) recipients, and to study predictors of immunogenicity, including the role of previous SARS-CoV-2 infection in immunity. Secondarily, safety was also assessed. Liver, heart, and kidney transplant recipients eligible for SARS-CoV-2 vaccination from three different institutions in Barcelona, Spain were included. IgM/IgG antibodies and T cell ELISpot against the S protein four weeks after receiving four consecutive booster doses of the vaccine were analyzed. One hundred and forty-three SOT recipients were included (41% liver, 38% heart, and 21% kidney). The median time from transplantation to vaccination was 6.6 years (SD 7.4). In total, 93% of the patients developed SARS-CoV-2 IgM/IgG antibodies and 94% S-ELISpot positivity. In total, 97% of recipients developed either humoral or cellular response (100% of liver recipients, 95% of heart recipients, and 88% of kidney recipients). Hypogammaglobulinemia was associated with the absence of SARS-CoV-2 IgG/IgM antibodies and S-ELISpot reactivity after vaccination, whereas past symptomatic SARS-CoV-2 infection was associated with SARS-CoV-2 IgG/IgM antibodies and S-ELISpot reactivity. Local and systemic side effects were generally mild or moderate, and no recipients experienced the development of de novo DSA or graft dysfunction following vaccination.
Collapse
Affiliation(s)
- Bernardo Ayala-Borges
- Unit for Heart Failure and Heart Transplantation, Department of Cardiology, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain;
| | - Miguel Escobedo
- Liver Transplantation, Liver Unit, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (M.E.); (J.C.)
| | - Natalia Egri
- Department of Immunology, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (N.E.); (E.P.); (M.P.)
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Crespo
- Nephrology Department, Renal Transplant Unit, Hospital del Mar Research Institute, Hospital del Mar, 08003 Barcelona, Spain; (M.C.); (C.A.-C.)
| | - Sonia Mirabet
- Heart Transplantation Unit, Department of Cardiology, Hospital Sant Pau, Centro de Investigación Biomédica en Red Enfermedades Cardiovaculares (CIBERCV), 08041 Barcelona, Spain;
| | - Carlos Arias-Cabrales
- Nephrology Department, Renal Transplant Unit, Hospital del Mar Research Institute, Hospital del Mar, 08003 Barcelona, Spain; (M.C.); (C.A.-C.)
| | - Anna Vilella
- Department of Preventive Medicine and Epidemiology, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain;
| | - Eduard Palou
- Department of Immunology, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (N.E.); (E.P.); (M.P.)
| | - María M. Mosquera
- Microbiology Department, Hospital Clínic de Barcelona, Institute for Global Health (ISGlobal), University of Barcelona, 08036 Barcelona, Spain;
| | - Mariona Pascal
- Department of Immunology, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (N.E.); (E.P.); (M.P.)
- Department of Medicine, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Colmenero
- Liver Transplantation, Liver Unit, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (M.E.); (J.C.)
- Department of Medicine, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Marta Farrero
- Unit for Heart Failure and Heart Transplantation, Department of Cardiology, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain;
- Department of Medicine, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel, 08036 Barcelona, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clínic, L’Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel, 08036 Barcelona, Spain
| |
Collapse
|
11
|
Nassar MK, Sabry A, Elgamal M, Zeid Z, Abdellateif Abdelghany D, Tharwat S. Tixagevimab and Cilgavimab (Evusheld) Boosts Antibody Levels to SARS-CoV-2 in End-Stage Renal Disease Patients on Chronic Hemodialysis: A Single-Center Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2109. [PMID: 38138212 PMCID: PMC10744812 DOI: 10.3390/medicina59122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: In addition to a suboptimal and rapidly diminishing response to the coronavirus disease 2019 (COVID-19) vaccine, hemodialysis (HD) patients are at risk for developing a severe COVID-19 infection. In 2022, the combination of cilgavimab and tixagevimab (Evusheld, AstraZeneca) was approved for COVID-19 preexposure prophylaxis in high-risk groups. The purpose of this study was to evaluate the humoral response and short-term safety of this antibody combination in a group of HD patients. Materials and Methods: Seventy-three adult maintenance hemodialysis patients were recruited from a tertiary-care hospital for this double-blinded, non-randomized, placebo-controlled study. Patients were placed into two groups: the intervention group (n = 43) received a single 300 mg dosage of cilgavimab and tixagevimab, while the control group (n = 30) received a saline placebo. The titer of COVID-19-neutralizing antibodies was measured at baseline and after 1 and 6 months. The patients were evaluated for any drug-related adverse effects and monitored for six months for the emergence of any COVID-19-related events. Results: Patients in the intervention group were substantially older and had been on HD for longer (p = 0.002 and 0.006, respectively). The baseline antibody levels were higher in the Evusheld group. The antibody level in the intervention group increased significantly after 1 month and remained consistent for 6 months, whereas the antibody level in the control group fell significantly after 6 months during the study period (Wald χ2 = 30.620, p < 0.001). The drug-related adverse effects were modest and well-tolerated, and only seven patients experienced them. Six months after study enrollment, 10 patients in the intervention group and 6 patients in the control group had been infected with COVID-19, respectively. In the control group, ICU admission and mortality were observed, but in the intervention group, the infection was milder with no aggressive consequences. Conclusions: This study demonstrated the short-term safety and efficacy of tixagevimab-cilgavimab for COVID-19 preexposure prophylaxis in HD patients. These findings require more studies with more HD patients and longer follow-up periods.
Collapse
Affiliation(s)
- Mohammed Kamal Nassar
- Mansoura Nephrology & Dialysis Unit (MNDU), Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.K.N.); (A.S.)
- Department of Internal Medicine, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
| | - Alaa Sabry
- Mansoura Nephrology & Dialysis Unit (MNDU), Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.K.N.); (A.S.)
| | - Mohamed Elgamal
- Chest Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (D.A.A.)
| | - Zeinab Zeid
- Al-Khezam Dialysis Center, Al-Adan Hospital, Hadiya 47000, Kuwait;
| | | | - Samar Tharwat
- Department of Internal Medicine, Faculty of Medicine, Horus University, New Damietta 34517, Egypt
- Rheumatology & Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Herrera S, Aguado JM, Candel FJ, Cordero E, Domínguez-Gil B, Fernández-Ruiz M, Los Arcos I, Len Ò, Marcos MÁ, Muñez E, Muñoz P, Rodríguez-Goncer I, Sánchez-Céspedes J, Valerio M, Bodro M. Executive summary of the consensus statement of the group for the study of infection in transplantation and other immunocompromised host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the treatment of SARS-CoV-2 infection in solid organ transplant recipients. Transplant Rev (Orlando) 2023; 37:100788. [PMID: 37591117 DOI: 10.1016/j.trre.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - Jose M Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, Madrid 28040, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
| | - Elisa Cordero
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | | | - Mario Fernández-Ruiz
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ibai Los Arcos
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Òscar Len
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | | | - Elena Muñez
- Infectious Diseases Unit, Internal Medicine Department, University Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Patricia Muñoz
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Javier Sánchez-Céspedes
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | - Maricela Valerio
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Fylaktou A, Stai S, Kasimatis E, Xochelli A, Nikolaidou V, Papadopoulou A, Myserlis G, Lioulios G, Asouchidou D, Giannaki M, Yannaki E, Tsoulfas G, Papagianni A, Stangou M. Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2. Vaccines (Basel) 2023; 11:1670. [PMID: 38006002 PMCID: PMC10674678 DOI: 10.3390/vaccines11111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Renal transplant recipients (RTRs) tend to mount weaker immune responses to vaccinations, including vaccines against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Humoral immunity was assessed using anti-receptor binding domain (RBD) and neutralizing antibodies (NAb) serum levels measured by ELISA, and cellular immunity was assessed using T-, B-, NK, natural killer-like T (NKT)-cell subpopulations, and monocytes measured by flow cytometry, and also specific T-cell immunity, at predefined time points after BNT162b2 vaccination, in 57 adult RTRs. RESULTS Administration of three booster doses was necessary to achieve anti-RBD and NAb protective levels in almost all patients (92.98%). Ab production, at several time points, was positively correlated with the corresponding renal function and inversely correlated with hemodialysis vintage (HDV) and treatment with mycophenolic acid (MPA). A gradual rise in several cell subpopulations, including total lymphocytes (p = 0.026), memory B cells (p = 0.028), activated CD4 (p = 0.005), and CD8 cells (p = 0.001), was observed even after the third vaccination dose, while a significant reduction in CD3+PD1+ (p = 0.002), NKT (p = 0.011), and activated NKT cells (p = 0.034) was noted during the same time interval. Moreover, SARS-CoV-2-specific T-cells were present in 41% of the patients who were unable to develop Nabs, and their positivity rates four months after the second dose were in inverse correlation with monocytes (p = 0.045) and NKT cells (p = 0.01). CONCLUSIONS SARS-CoV-2-specific T-cell responses preceded the humoral ones, while two booster doses were needed for this group of immunocompromised patients to mount a protective immune response.
Collapse
Affiliation(s)
- Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Stamatia Stai
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Efstratios Kasimatis
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Vasiliki Nikolaidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Grigorios Myserlis
- Department of Transplant Surgery, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Georgios Lioulios
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Despoina Asouchidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Maria Giannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Georgios Tsoulfas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Transplant Surgery, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Stangou
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
14
|
Marchitto L, Chatterjee D, Ding S, Gendron-Lepage G, Tauzin A, Boutin M, Benlarbi M, Medjahed H, Sylla M, Lanctôt H, Durand M, Finzi A, Tremblay C. Humoral Responses Elicited by SARS-CoV-2 mRNA Vaccine in People Living with HIV. Viruses 2023; 15:2004. [PMID: 37896781 PMCID: PMC10612047 DOI: 10.3390/v15102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
While mRNA SARS-CoV-2 vaccination elicits strong humoral responses in the general population, humoral responses in people living with HIV (PLWH) remain to be clarified. Here, we conducted a longitudinal study of vaccine immunogenicity elicited after two and three doses of mRNA SARS-CoV-2 vaccine in PLWH stratified by their CD4 count. We measured the capacity of the antibodies elicited by vaccination to bind the Spike glycoprotein of different variants of concern (VOCs). We also evaluated the Fc-mediated effector functions of these antibodies by measuring their ability to eliminate CEM.NKr cells stably expressing SARS-CoV-2 Spikes. Finally, we measured the relative capacity of the antibodies to neutralize authentic SARS-CoV-2 virus after the third dose of mRNA vaccine. We found that after two doses of SARS-CoV-2 mRNA vaccine, PLWH with a CD4 count < 250/mm3 had lower levels of anti-RBD IgG antibodies compared to PLWH with a CD4 count > 250/mm3 (p < 0.05). A third dose increased these levels and importantly, no major differences were observed in their capacity to mediate Fc-effector functions and neutralize authentic SARS-CoV-2. Overall, our work demonstrates the importance of mRNA vaccine boosting in immuno-compromised individuals presenting low levels of CD4.
Collapse
Affiliation(s)
- Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | | | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marianne Boutin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | | | - Mohamed Sylla
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Hélène Lanctôt
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
15
|
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to a global pandemic that continues to be responsible for ongoing health issues for people worldwide. Immunocompromised individuals such as kidney transplant recipients and dialysis patients have been and continue to be among the most affected, with poorer outcomes after infection, impaired response to COVID-19 vaccines, and protracted infection. The pandemic also has had a significant impact on patients with underlying chronic kidney disease (CKD), with CKD increasing susceptibility to COVID-19, risk of hospital admission, and mortality. COVID-19 also has been shown to lead to acute kidney injury (AKI) through both direct and indirect mechanisms. The incidence of COVID-19 AKI has been decreasing as the pandemic has evolved, but continues to be associated with adverse patient outcomes correlating with the severity of AKI. There is also increasing evidence examining the longer-term effect of COVID-19 on the kidney demonstrating continued decline in kidney function several months after infection. This review summarizes the current evidence examining the impact of COVID-19 on the kidney, covering both the impact on patients with CKD, including patients receiving kidney replacement therapy, in addition to discussing COVID-19 AKI.
Collapse
Affiliation(s)
- Samira Bell
- Division of Population Health and Genomics, University of Dundee, Dundee, Scotland.
| | - Griffith B Perkins
- University of Adelaide, South Australia, 5005 Australia; Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide
| | - Urmila Anandh
- Department of Nephrology, Amrita Hospitals, Faridabad, Haryana, India
| | - P Toby Coates
- University of Adelaide, South Australia, 5005 Australia; Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide
| |
Collapse
|
16
|
Liu H, Aviszus K, Zelarney P, Liao SY, Gerber AN, Make B, Wechsler ME, Marrack P, Reinhardt RL. Vaccine-elicited B- and T-cell immunity to SARS-CoV-2 is impaired in chronic lung disease patients. ERJ Open Res 2023; 9:00400-2023. [PMID: 37583809 PMCID: PMC10423317 DOI: 10.1183/23120541.00400-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Background While vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides significant protection from coronavirus disease 2019, the protection afforded to individuals with chronic lung disease is less well established. This study seeks to understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity. Methods Deep immune phenotyping of humoral and cell-mediated responses to the SARS-CoV-2 vaccine was performed in patients with asthma, COPD and interstitial lung disease (ILD) compared to healthy controls. Results 48% of vaccinated patients with chronic lung diseases had reduced antibody titres to the SARS-CoV-2 vaccine antigen relative to healthy controls. Vaccine antibody titres were significantly reduced among asthma (p<0.035), COPD (p<0.022) and a subset of ILD patients as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B-cells in circulation. Vaccine-specific memory T-cells were significantly reduced in patients with asthma (CD8+ p<0.004; CD4+ p<0.023) and COPD (CD8+ p<0.008) compared to healthy controls. Impaired T-cell responsiveness was also observed in a subset of ILD patients (CD8+ 21.4%; CD4+ 42.9%). Additional heterogeneity between healthy and disease cohorts was observed among bulk and vaccine-specific follicular T-helper cells. Conclusions Deep immune phenotyping of the SARS-CoV-2 vaccine response revealed the complex nature of vaccine-elicited immunity and highlights the need for more personalised vaccination schemes in patients with underlying lung conditions.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Katja Aviszus
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | | | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony N. Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Barry Make
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Michael E. Wechsler
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - Philippa Marrack
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - R. Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Subramanian V. Susceptibility to SARS-CoV-2 Infection and Immune Responses to COVID-19 Vaccination Among Recipients of Solid Organ Transplants. J Infect Dis 2023; 228:S34-S45. [PMID: 37539762 PMCID: PMC10401623 DOI: 10.1093/infdis/jiad152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Solid organ transplant recipients (SOTRs) are at high risk for infections including SARS-CoV-2, primarily due to use of immunosuppressive therapies that prevent organ rejection. Furthermore, these immunosuppressants are typically associated with suboptimal responses to vaccination. While COVID-19 vaccines have reduced the risk of COVID-19-related morbidity and mortality in SOTRs, breakthrough infection rates and death remain higher in this population compared with immunocompetent individuals. Approaches to enhancing response in SOTRs, such as through administration of additional doses and heterologous vaccination, have resulted in increased seroresponse and antibody levels. In this article, safety and immunogenicity of mRNA COVID-19 vaccines in SOTRs are explored by dose. Key considerations for clinical practice and the current vaccine recommendations for SOTRs are discussed within the context of the dynamic COVID-19 vaccination guideline landscape. A thorough understanding of these topics is essential for determining public health and vaccination strategies to help protect immunocompromised populations, including SOTRs.
Collapse
Affiliation(s)
- Vijay Subramanian
- Transplant Institute, Tampa General Hospital and University of South Florida Morsani School of Medicine, Tampa, Florida, USA
| |
Collapse
|
18
|
Liew MY, Mathews JI, Li A, Singh R, Jaramillo SA, Weiss ZF, Bowman K, Ankomah PO, Ghantous F, Lewis GD, Neuringer I, Bitar N, Lipiner T, Dighe AS, Kotton CN, Seaman MS, Lemieux JE, Goldberg MB. Delayed and Attenuated Antibody Responses to Coronavirus Disease 2019 Vaccination With Poor Cross-Variant Neutralization in Solid-Organ Transplant Recipients-A Prospective Longitudinal Study. Open Forum Infect Dis 2023; 10:ofad369. [PMID: 37577118 PMCID: PMC10414143 DOI: 10.1093/ofid/ofad369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Background Therapeutically immunosuppressed transplant recipients exhibit attenuated responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. To elucidate the kinetics and variant cross-protection of vaccine-induced antibodies in this population, we conducted a prospective longitudinal study in heart and lung transplant recipients receiving the SARS-CoV-2 messenger RNA (mRNA) 3-dose vaccination series. Methods We measured longitudinal serum antibody and neutralization responses against the ancestral and major variants of SARS-CoV-2 in SARS-CoV-2-uninfected lung (n = 18) and heart (n = 17) transplant recipients, non-lung-transplanted patients with cystic fibrosis (n = 7), and healthy controls (n = 12) before, during, and after the primary mRNA vaccination series. Results Among healthy controls, strong anti-spike responses arose immediately following vaccination and displayed cross-neutralization against all variants. In contrast, among transplant recipients, after the first 2 vaccine doses, increases in antibody concentrations occurred gradually, and cross-neutralization was completely absent against the Omicron B.1.1.529 variant. However, most (73%) of the transplant recipients had a significant response to the third vaccine dose, reaching levels comparable to those of healthy controls, with improved but attenuated neutralization of immune evasive variants, particularly Beta, Gamma, and Omicron. Responses in non-lung-transplanted patients with cystic fibrosis paralleled those in healthy controls. Conclusions In this prospective, longitudinal analysis of variant-specific antibody responses, lung and heart transplant recipients display delayed and defective responses to the first 2 SARS-CoV-2 vaccine doses but significantly augmented responses to a third dose. Gaps in antibody-mediated immunity among transplant recipients are compounded by decreased neutralization against Omicron variants, leaving many patients with substantially weakened immunity against currently circulating variants.
Collapse
Affiliation(s)
- May Y Liew
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Josh I Mathews
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amy Li
- Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rohan Singh
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Salvador A Jaramillo
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zoe F Weiss
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn Bowman
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pierre O Ankomah
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gregory D Lewis
- Heart Transplant Program, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Neuringer
- Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natasha Bitar
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taryn Lipiner
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anand S Dighe
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Camille N Kotton
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob E Lemieux
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease and Microbiome Program, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease and Microbiome Program, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Perrillo R, Garrido LF, Ma TW, Rahimi R, Lilly B. Vaccination with HepB-CpG vaccine in individuals undergoing immune suppressive drug therapy. Vaccine 2023:S0264-410X(23)00716-8. [PMID: 37353450 DOI: 10.1016/j.vaccine.2023.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Immunosuppressed patients are a targeted group for HBV vaccination but suboptimal antibody responses occur when traditional recombinant vaccines are used. METHODS We tested an FDA approved immune adjuvanted HBV vaccine (HEPLISAV--B® or HepB-CpG) in medically immune suppressed individuals. HepB-CpG was given to 10 patients taking biologic agents or anti-rejection therapy. Each received vaccine at time 0 and week 4 with a third dose at week 12 if anti-HBs remained less than 10 mIU/mL. RESULTS Seroprotective anti-HBs developed in 70 % of participants by week 24. Those taking biologic agents responded more rapidly and a third dose was generally needed in those transplanted. By week 24, most taking biologics but only 2 of 6 on anti-rejection treatment had antibody levels exceeding 100 mIU/mL. CONCLUSIONS Seroprotective anti-HBs developed in 70 % with HepB-CpG. Antibody responses were more rapid in those taking biologic agents but a third dose improved antibody responses in transplanted participants.
Collapse
Affiliation(s)
- Robert Perrillo
- Hepatology Division, Baylor Scott and White Medical Center, Dallas, TX, United States.
| | - Luis Felipe Garrido
- Hepatology Division, Baylor Scott and White Medical Center, Dallas, TX, United States
| | - Tsung-Wei Ma
- Baylor Scott and White Research Institute, United States
| | - Robert Rahimi
- Hepatology Division, Baylor Scott and White Medical Center, Dallas, TX, United States
| | - Barbara Lilly
- Baylor Scott and White Research Institute, United States
| |
Collapse
|
20
|
Werbel WA, Karaba AH, Chiang TPY, Massie AB, Brown DM, Watson N, Chahoud M, Thompson EA, Johnson AC, Avery RK, Cochran WV, Warren D, Liang T, Fribourg M, Huerta C, Samaha H, Klein SL, Bettinotti MP, Clarke WA, Sitaras I, Rouphael N, Cox AL, Bailey JR, Pekosz A, Tobian AAR, Durand CM, Bridges ND, Larsen CP, Heeger PS, Segev DL. Persistent SARS-CoV-2-specific immune defects in kidney transplant recipients following third mRNA vaccine dose. Am J Transplant 2023; 23:744-758. [PMID: 36966905 PMCID: PMC10037915 DOI: 10.1016/j.ajt.2023.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Kidney transplant recipients (KTRs) show poorer response to SARS-CoV-2 mRNA vaccination, yet response patterns and mechanistic drivers following third doses are ill-defined. We administered third monovalent mRNA vaccines to n = 81 KTRs with negative or low-titer anti-receptor binding domain (RBD) antibody (n = 39 anti-RBDNEG; n = 42 anti-RBDLO), compared with healthy controls (HCs, n = 19), measuring anti-RBD, Omicron neutralization, spike-specific CD8+%, and SARS-CoV-2-reactive T cell receptor (TCR) repertoires. By day 30, 44% anti-RBDNEG remained seronegative; 5% KTRs developed BA.5 neutralization (vs 68% HCs, P < .001). Day 30 spike-specific CD8+% was negative in 91% KTRs (vs 20% HCs; P = .07), without correlation to anti-RBD (rs = 0.17). Day 30 SARS-CoV-2-reactive TCR repertoires were detected in 52% KTRs vs 74% HCs (P = .11). Spike-specific CD4+ TCR expansion was similar between KTRs and HCs, yet KTR CD8+ TCR depth was 7.6-fold lower (P = .001). Global negative response was seen in 7% KTRs, associated with high-dose MMF (P = .037); 44% showed global positive response. Of the KTRs, 16% experienced breakthrough infections, with 2 hospitalizations; prebreakthrough variant neutralization was poor. Absent neutralizing and CD8+ responses in KTRs indicate vulnerability to COVID-19 despite 3-dose mRNA vaccination. Lack of neutralization despite CD4+ expansion suggests B cell dysfunction and/or ineffective T cell help. Development of more effective KTR vaccine strategies is critical. (NCT04969263).
Collapse
Affiliation(s)
- William A Werbel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Andrew H Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Teresa Po-Yu Chiang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allan B Massie
- Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA; Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| | - Diane M Brown
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha Watson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Chahoud
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth A Thompson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Robin K Avery
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Willa V Cochran
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Warren
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Liang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miguel Fribourg
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Hady Samaha
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Sabra L Klein
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Maria P Bettinotti
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William A Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nadine Rouphael
- Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Medicine, Emory University, Atlanta, Georgia, USA; Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nancy D Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Peter S Heeger
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dorry L Segev
- Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA; Department of Population Health, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
21
|
Del Mastro A, Picascia S, D'Apice L, Trovato M, Barba P, Di Biase I, Di Biase S, Laccetti M, Belli A, Amato G, Di Muro P, Credendino O, Picardi A, De Berardinis P, Del Pozzo G, Gianfrani C. Booster Dose of SARS-CoV-2 mRNA Vaccine in Kidney Transplanted Patients Induces Wuhan-Hu-1 Specific Neutralizing Antibodies and T Cell Activation but Lower Response against Omicron Variant. Viruses 2023; 15:v15051132. [PMID: 37243218 DOI: 10.3390/v15051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Kidney transplanted recipients (KTR) are at high risk of severe SARS-CoV-2 infection due to immunosuppressive therapy. Although several studies reported antibody production in KTR after vaccination, data related to immunity to the Omicron (B.1.1.529) variant are sparse. Herein, we analyzed anti-SARS-CoV-2 immune response in seven KTR and eight healthy controls after the second and third dose of the mRNA vaccine (BNT162b2). A significant increase in neutralizing antibody (nAb) titers were detected against pseudoviruses expressing the Wuhan-Hu-1 spike (S) protein after the third dose in both groups, although nAbs in KTR were lower than controls. nAbs against pseudoviruses expressing the Omicron S protein were low in both groups, with no increase after the 3rd dose in KTR. Reactivity of CD4+ T cells after boosting was observed when cells were challenged with Wuhan-Hu-1 S peptides, while Omicron S peptides were less effective in both groups. IFN-γ production was detected in KTR in response to ancestral S peptides, confirming antigen-specific T cell activation. Our study demonstrates that the 3rd mRNA dose induces T cell response against Wuhan-Hu-1 spike peptides in KTR, and an increment in the humoral immunity. Instead, humoral and cellular immunity to Omicron variant immunogenic peptides were low in both KTR and healthy vaccinated subjects.
Collapse
Affiliation(s)
- Andrea Del Mastro
- AORN A. Cardarelli-Internal Medicine Division 1-Immunology Unit, 80131 Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | - Pasquale Barba
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| | | | | | - Marco Laccetti
- AORN A. Cardarelli-Internal Medicine Division 1-Immunology Unit, 80131 Naples, Italy
| | - Antonello Belli
- AORN A. Cardarelli-Clinical Pathology Division, 80131 Naples, Italy
| | - Gerardino Amato
- AORN A. Cardarelli-Clinical Pathology Division, 80131 Naples, Italy
| | - Potito Di Muro
- AORN A. Cardarelli-Nephrology and Dialysis Unit, 80131 Naples, Italy
| | - Olga Credendino
- AORN A. Cardarelli-Nephrology and Dialysis Unit, 80131 Naples, Italy
| | - Alessandra Picardi
- AORN A. Cardarelli-Molecular Biology Laboratory-Hematology and HSC Transplantation Unit, 80131 Naples, Italy
| | | | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics, Italian National Council of Research, 80131 Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, 80131 Naples, Italy
| |
Collapse
|
22
|
Zhang L, Yang J, Deng M, Xu C, Lai C, Deng X, Wang Y, Zhou Q, Liu Y, Wan L, Li P, Fang J, Hou J, Lai X, Ma F, Li N, Li G, Kong W, Zhang W, Li J, Cao M, Feng L, Chen Z, Chen L, Ji T. Blood unconjugated bilirubin and tacrolimus are negative predictors of specific cellular immunity in kidney transplant recipients after SAR-CoV-2 inactivated vaccination. Sci Rep 2023; 13:7263. [PMID: 37142713 PMCID: PMC10158706 DOI: 10.1038/s41598-023-29669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/08/2023] [Indexed: 05/06/2023] Open
Abstract
The immunogenicity of SARS-CoV-2 vaccines is poor in kidney transplant recipients (KTRs). The factors related to poor immunogenicity to vaccination in KTRs are not well defined. Here, observational study demonstrated no severe adverse effects were observed in KTRs and healthy participants (HPs) after first or second dose of SARS-CoV-2 inactivated vaccine. Different from HPs with excellent immunity against SARS-CoV-2, IgG antibodies against S1 subunit of spike protein, receptor-binding domain, and nucleocapsid protein were not effectively induced in a majority of KTRs after the second dose of inactivated vaccine. Specific T cell immunity response was detectable in 40% KTRs after the second dose of inactivated vaccine. KTRs who developed specific T cell immunity were more likely to be female, and have lower levels of total bilirubin, unconjugated bilirubin, and blood tacrolimus concentrations. Multivariate logistic regression analysis found that blood unconjugated bilirubin and tacrolimus concentration were significantly negatively associated with SARS-CoV-2 specific T cell immunity response in KTRs. Altogether, these data suggest compared to humoral immunity, SARS-CoV-2 specific T cell immunity response are more likely to be induced in KTRs after administration of inactivated vaccine. Reduction of unconjugated bilirubin and tacrolimus concentration might benefit specific cellular immunity response in KTRs following vaccination.
Collapse
Affiliation(s)
- Lei Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Department of Organ Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Jiaqing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanhui Xu
- Neurosurgery Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Xuanying Deng
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Wang
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China
| | - Qiang Zhou
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yichu Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Li Wan
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Jiali Fang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jingcai Hou
- Organ Transplant Department, Zhongshan City People's Hospital, Zhongshan, 528403, People's Republic of China
| | - Xingqiang Lai
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Feifei Ma
- Obstetrical Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ning Li
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Guanghui Li
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiting Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jiali Li
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Mibu Cao
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Zheng Chen
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China.
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
23
|
Chiu HF, Tsai SF, Wu MJ, Yu TM, Chuang YW, Chen CH. Outcomes and Effects of Vaccination on Sars-Cov-2 Omicron Infection in Kidney Transplant Recipients. Transplant Proc 2023:S0041-1345(23)00255-5. [PMID: 37208223 DOI: 10.1016/j.transproceed.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Kidney transplant recipients (KTRs) are at high risk of COVID-19. Vaccination is significantly effective at preventing infection and reducing infection severity. Omicron infections are less severe than infections by previous strains, but breakthrough disease is more common. Thus, we conducted this study to observe the vaccine efficacy in our KTRs. METHODS During the surge in the Omicron variant, beginning in May 2022, we retrieved data from 365 KTRs who had received at least one dose of various COVID vaccines until June 30, 2022. Outcomes of the KTRs (n = 168) after at least the 2nd vaccination were assessed until September 30, 2022, before the border was opened for tourism. RESULTS The antibody response in KTRs after the 1st and 2nd doses of SARS-CoV-2 vaccines demonstrated a significant increase from the 1st dose (median: 0.4; IQR: 0.4-8.4 U/mL, P < .001) to the 2nd dose (median: 57.5; IQR: 0.4-799.2 U/mL), and the response rate rose from 32% to 65% (P < .001). SARS-CoV-2 infection was identified in 14/365 (3.8%) patients after at least the 1st dose and 7/187 (3.7%) patients at least 7 days beyond the 2nd dose. Most KTRs had a mild course, but 3 (17%) were hospitalized due to pneumonia. CONCLUSIONS Our data demonstrate a lower response rate and anti-S titers after 2nd dose vaccination in KTRs than in the general population, but a lower incidence of SARS-CoV-2 infection after vaccination was observed during the Omicron outbreak. Owing to the breakthrough infections found in ordinarily vaccinated KTRs, we must emphasize the importance of vaccination and boosters to prevent severe illness, hospitalizations, and death among those developing infections.
Collapse
Affiliation(s)
- Hsien-Fu Chiu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Shang-Feng Tsai
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Tung-Min Yu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Ya-Wen Chuang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
Taheri S. Efficacy and safety of booster vaccination against SARS-CoV-2 in dialysis and renal transplant patients: systematic review and meta-analysis. Int Urol Nephrol 2023; 55:791-802. [PMID: 36723829 PMCID: PMC9890430 DOI: 10.1007/s11255-023-03471-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Patients under renal replacement therapy are at an increased risk of severe infection with SARS-CoV-2, and have been known to have impaired response to standard vaccination. This systematic review and meta-analysis aims at evaluating the efficacy of booster dose vaccination in this population. METHODS A systematic review has been conducted to find trials on the booster dose vaccination in kidney transplant recipients (KTRs) or patients under dialysis. Data of seroconversion rates at different timepoints, especially 1 month prior and post-booster dose vaccination have been collected and analyzed. Effects of different factors including type of renal replacement therapy (RRT), vaccine type and brands, magnitude of response to the standard vaccination, and immunosuppression drugs on the response rates have been investigated. Meta-analyses were performed using software Stata v.17. RESULTS Overall 58 studies were included. Both RRT patient subgroups represented significant seroconversion, post- (versus pre-) booster dose vaccination, but only in KTRs the booster dose seroconversion surpassed that of the standard protocol. T-cell response was also significantly augmented after booster vaccination, with no difference between the RRT subgroups. mRNA and vector vaccine types had comparable immunogenicity when employed as boosters, both significantly higher than the inactivated virus vaccine, with no significant disparity regarding the vaccine brands. Patients with poor response to standard vaccination had a significant response to booster dose, with dialysis patients having stronger response. The differential effects of vaccine types and brands in the poor responders was similar to that of the overall RRT population. No rejection episodes or graft failure post-booster vaccination was reported. CONCLUSION In patients under RRT, booster dose vaccination against SARS-CoV-2 is safe and efficacious determined by significant seroconversion, and therefore, it should be considered to be implemented in all these patients. Since in the KTR patients, the third dose vaccination significantly increased the seroconversion rates even beyond that of the standard protocol, three dose vaccine doses is recommended to be recognized as the standard vaccination protocol in this population. The same recommendation could be considered for dialysis patients, due to their augmented risk of breakthrough infection.
Collapse
Affiliation(s)
- Saeed Taheri
- New Lahijan Scientific Foundation, Lahijan, Iran.
| |
Collapse
|
25
|
Körber N, Holzmann-Littig C, Wilkens G, Liao BH, Werz ML, Platen L, Cheng CC, Tellenbach M, Kappler V, Lehner V, Mijočević H, Christa C, Assfalg V, Heemann U, Schmaderer C, Protzer U, Braunisch MC, Bauer T, Renders L. Comparable cellular and humoral immunity upon homologous and heterologous COVID-19 vaccination regimens in kidney transplant recipients. Front Immunol 2023; 14:1172477. [PMID: 37063863 PMCID: PMC10102365 DOI: 10.3389/fimmu.2023.1172477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundKidney transplant recipients (KTRs) are at high risk for a severe course of coronavirus disease 2019 (COVID-19); thus, effective vaccination is critical. However, the achievement of protective immunogenicity is hampered by immunosuppressive therapies. We assessed cellular and humoral immunity and breakthrough infection rates in KTRs vaccinated with homologous and heterologous COVID-19 vaccination regimens.MethodWe performed a comparative in-depth analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–specific T-cell responses using multiplex Fluorospot assays and SARS-CoV-2-specific neutralizing antibodies (NAbs) between three-times homologously (n = 18) and heterologously (n = 8) vaccinated KTRs.ResultsWe detected SARS-CoV-2-reactive T cells in 100% of KTRs upon third vaccination, with comparable frequencies, T-cell expression profiles, and relative interferon γ and interleukin 2 production per single cell between homologously and heterologously vaccinated KTRs. SARS-CoV-2-specific NAb positivity rates were significantly higher in heterologously (87.5%) compared to homologously vaccinated (50.0%) KTRs (P < 0.0001), whereas the magnitudes of NAb titers were comparable between both subcohorts after third vaccination. SARS-CoV-2 breakthrough infections occurred in equal numbers in homologously (38.9%) and heterologously (37.5%) vaccinated KTRs with mild-to-moderate courses of COVID-19.ConclusionOur data support a more comprehensive assessment of not only humoral but also cellular SARS-CoV-2-specific immunity in KTRs to provide an in-depth understanding about the COVID-19 vaccine–induced immune response in a transplant setting.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Nina Körber,
| | - Christopher Holzmann-Littig
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
- Technical University of Munich (TUM) Medical Education Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gesa Wilkens
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Bo-Hung Liao
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Maia L. Werz
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Louise Platen
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Myriam Tellenbach
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Verena Kappler
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Viktor Lehner
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Hrvoje Mijočević
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Catharina Christa
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Volker Assfalg
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Matthias C. Braunisch
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Lutz Renders
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| |
Collapse
|
26
|
Moal V, Valade M, Boschi C, Robert T, Orain N, Bancod A, Edouard S, Colson P, La Scola B. Protection from successive Omicron variants with SARS-CoV-2 vaccine and monoclonal antibodies in kidney transplant recipients. Front Microbiol 2023; 14:1147455. [PMID: 37065151 PMCID: PMC10095161 DOI: 10.3389/fmicb.2023.1147455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionKidney transplant recipients (KTRs) are at high risk of severe COVID-19, even when they are fully vaccinated. Additional booster vaccinations or passive immunization with prophylactic monoclonal antibodies are recommended to increase their protection against severe COVID-19.MethodsHere, we describe the neutralization of SARS-CoV-2 Delta, Omicron BA.1, BA.2, BA.4, and BA.5 variants, firstly by 39 serum samples from vaccinated KTRs exhibiting anti-spike antibody concentrations ≥264 binding antibody units (BAU)/mL and, secondly, by tixagevimab/cilgavimab.ResultsNo neutralization was observed for 18% of the KTRs, while serum from only 46% of patients could neutralize the five variants. Cross-neutralization of the Delta and Omicron variants occurred for 65–87% of sera samples. The anti-spike antibody concentration correlated with neutralization activity for all the variants. The neutralization titers against the Delta variant were higher in vaccinated KTRs who had previously presented with COVID-19, compared to those KTRs who had only been vaccinated. Breakthrough infections occurred in 39% of the KTRs after the study. Tixagevimab/cilgavimab poorly neutralizes Omicron variants, particularly BA.5, and does not neutralize BQ.1, which is currently the most prevalent strain.DiscussionAs a result, sera from seropositive vaccinated KTRs had poor neutralization of the successive Omicron variants. Several Omicron variants are able to escape tixagevimab/cilgavimab.
Collapse
Affiliation(s)
- Valérie Moal
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Aix Marseille Université, Assistance Publique Hôpitaux de Marseille, Hôpital Conception, Centre de Néphrologie et Transplantation Rénale, Marseille, France
- *Correspondence: Valérie Moal, ; Bernard La Scola,
| | - Margaux Valade
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Céline Boschi
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Thomas Robert
- Aix Marseille Université, Assistance Publique Hôpitaux de Marseille, Hôpital Conception, Centre de Néphrologie et Transplantation Rénale, Marseille, France
| | - Nicolas Orain
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Audrey Bancod
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Sophie Edouard
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Philippe Colson
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Bernard La Scola
- Aix Marseille Université, Institut de Recherche pour le Développement, Microbes Evolution Phylogeny and Infections (MEPHI), Assistance Publique Hôpitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique Hôpitaux de Marseille, Marseille, France
- *Correspondence: Valérie Moal, ; Bernard La Scola,
| |
Collapse
|
27
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
28
|
Barateau V, Peyrot L, Saade C, Pozzetto B, Brengel-Pesce K, Elsensohn MH, Allatif O, Guibert N, Compagnon C, Mariano N, Chaix J, Djebali S, Fassier JB, Lina B, Lefsihane K, Espi M, Thaunat O, Marvel J, Rosa-Calatrava M, Pizzorno A, Maucort-Boulch D, Henaff L, Saadatian-Elahi M, Vanhems P, Paul S, Walzer T, Trouillet-Assant S, Defrance T. Prior SARS-CoV-2 infection enhances and reshapes spike protein-specific memory induced by vaccination. Sci Transl Med 2023; 15:eade0550. [PMID: 36921035 DOI: 10.1126/scitranslmed.ade0550] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/17/2023]
Abstract
The diversity of vaccination modalities and infection history are both variables that have an impact on the immune memory of individuals vaccinated against SARS-CoV-2. To gain more accurate knowledge of how these parameters imprint on immune memory, we conducted a long-term follow-up of SARS-CoV-2 spike protein-specific immune memory in unvaccinated and vaccinated COVID-19 convalescent individuals as well as in infection-naïve vaccinated individuals. Here, we report that individuals from the convalescent vaccinated (hybrid immunity) group have the highest concentrations of spike protein-specific antibodies at 6 months after vaccination. As compared with infection-naïve vaccinated individuals, they also display increased frequencies of an atypical mucosa-targeted memory B cell subset. These individuals also exhibited enhanced TH1 polarization of their SARS-CoV-2 spike protein-specific follicular T helper cell pool. Together, our data suggest that prior SARS-CoV-2 infection increases the titers of SARS-CoV-2 spike protein-specific antibody responses elicited by subsequent vaccination and induces modifications in the composition of the spike protein-specific memory B cell pool that are compatible with enhanced functional protection at mucosal sites.
Collapse
Affiliation(s)
- Véronique Barateau
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Loïc Peyrot
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Carla Saade
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Bruno Pozzetto
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
- Immunology laboratory, CIC1408, CHU Saint Etienne, Saint Etienne 42055, France
| | - Karen Brengel-Pesce
- Laboratoire Commun de Recherche Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Hopital Lyon Sud, Pierre-Bénite 69495, France
| | - Mad-Hélénie Elsensohn
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon 69003, France
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne 69100, France
| | - Omran Allatif
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Nicolas Guibert
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, Lyon University, Avenue Rockefeller, Lyon 69008, France
| | - Christelle Compagnon
- Laboratoire Commun de Recherche Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Hopital Lyon Sud, Pierre-Bénite 69495, France
| | | | - Julie Chaix
- BIOASTER, 40 Avenue Tony Garnier, Lyon 69007, France
| | - Sophia Djebali
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Jean-Baptiste Fassier
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, Lyon University, Avenue Rockefeller, Lyon 69008, France
| | - Bruno Lina
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
- Virology laboratory, Institute of Infectious Agents, National Reference Centre for Respiratory Viruses, Hospices Civils de Lyon, Lyon 69317, France
| | - Katia Lefsihane
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Maxime Espi
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Olivier Thaunat
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Jacqueline Marvel
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Manuel Rosa-Calatrava
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Andres Pizzorno
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Delphine Maucort-Boulch
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon 69003, France
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne 69100, France
| | - Laetitia Henaff
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
- Service D'Hygiène, Épidémiologie, Infectiovigilance et Prévention, Hôpital Édouard Herriot, Hospices Civils de Lyon, Lyon 69008, France
| | - Mitra Saadatian-Elahi
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
- Service D'Hygiène, Épidémiologie, Infectiovigilance et Prévention, Hôpital Édouard Herriot, Hospices Civils de Lyon, Lyon 69008, France
| | - Philippe Vanhems
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
- Service D'Hygiène, Épidémiologie, Infectiovigilance et Prévention, Hôpital Édouard Herriot, Hospices Civils de Lyon, Lyon 69008, France
| | - Stéphane Paul
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
- Immunology laboratory, CIC1408, CHU Saint Etienne, Saint Etienne 42055, France
| | - Thierry Walzer
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| | - Sophie Trouillet-Assant
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
- Laboratoire Commun de Recherche Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Hopital Lyon Sud, Pierre-Bénite 69495, France
| | - Thierry Defrance
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1 Inserm, U1111, CNRS, UMR5308, ENS Lyon, Université Jean Monnet de Saint-Etienne, Lyon 69007, France
| |
Collapse
|
29
|
Pedersen RM, Bang LL, Tornby DS, Nilsson AC, Nielsen C, Madsen LW, Johansen IS, Sydenham TV, Jensen TG, Justesen US, the COVAC-TX study group DavidsenJesper R.PoulsenMikael K.AbaziRozeta, Vitved L, Palarasah Y, Bistrup C, Andersen TE. Serum Neutralization of Omicron BA.5, BA.2 and BA.1 in Triple Vaccinated Kidney Transplant Recipients. Kidney Int Rep 2023; 8:667-671. [PMID: 36532715 PMCID: PMC9741493 DOI: 10.1016/j.ekir.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rune M. Pedersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Line L. Bang
- Department of Clinical Microbiology, Odense University Hospital and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Ditte S. Tornby
- Department of Clinical Microbiology, Odense University Hospital and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Anna C. Nilsson
- Department of Clinical Immunology, Odense University Hospital and Research Unit for Clinical Immunology, University of Southern Denmark, Odense, Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital and Research Unit for Clinical Immunology, University of Southern Denmark, Odense, Denmark
| | - Lone W. Madsen
- Department of Infectious Diseases, Odense University Hospital and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital and Research Unit for Infectious Diseases, University of Southern Denmark, Odense, Denmark
| | - Thomas V. Sydenham
- Department of Clinical Microbiology, Odense University Hospital and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Thøger G. Jensen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Ulrik S. Justesen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | | | - Lars Vitved
- Department of Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital and the Nephrology Research Unit, University of Southern Denmark, Odense, Denmark
| | - Thomas E. Andersen
- Department of Clinical Microbiology, Odense University Hospital and Research Unit for Clinical Microbiology, University of Southern Denmark, Odense, Denmark,Correspondence: Thomas E. Andersen, Department of Clinical Microbiology, Odense University Hospital University of Southern Denmark, J. B. Winsløws Vej 21.2, 5000 Odense, Syddanmark, Denmark
| |
Collapse
|
30
|
Reeg DB, Hofmann M, Neumann-Haefelin C, Thimme R, Luxenburger H. SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants. Pathogens 2023; 12:pathogens12020244. [PMID: 36839516 PMCID: PMC9966413 DOI: 10.3390/pathogens12020244] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T cells being linked to efficient viral clearance. Vaccination against SARS-CoV-2 induces both CD4+ and CD8+ T cell responses and permits protection from severe COVID-19, including infection with the currently circulating variants of concern. Nevertheless, in immunocompromised individuals, first data imply significantly impaired SARS-CoV-2-specific immune responses after both natural infection and vaccination. Hence, these high-risk groups require particular consideration, not only in routine clinical practice, but also in the development of future vaccination strategies. In order to assist physicians in the guidance of immunocompromised patients, concerning the management of infection or the benefit of (booster) vaccinations, this review aims to provide a concise overview of the current knowledge about SARS-CoV-2-specific cellular immune responses in the vulnerable cohorts of cancer patients, people living with HIV (PLWH), and solid organ transplant recipients (SOT). Recent findings regarding the virus-specific cellular immunity in these differently immunocompromised populations might influence clinical decision-making in the future.
Collapse
|
31
|
Liu H, Aviszus K, Zelarney P, Liao SY, Gerber AN, Make B, Wechsler ME, Marrack P, Reinhardt RL. Vaccine-elicited B and T cell immunity to SARS-CoV-2 is impaired in chronic lung disease patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.25.23284971. [PMID: 36747750 PMCID: PMC9901055 DOI: 10.1101/2023.01.25.23284971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The protection afforded by vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to individuals with chronic lung disease is not well established. To understand how chronic lung disease impacts SARS-CoV-2 vaccine-elicited immunity we performed deep immunophenotyping of the humoral and cell mediated SARS-CoV-2 vaccine response in an investigative cohort of vaccinated patients with diverse pulmonary conditions including asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung disease (ILD). Compared to healthy controls, 48% of vaccinated patients with chronic lung diseases had reduced antibody titers to the SARS-CoV-2 vaccine antigen as early as 3-4 months after vaccination, correlating with decreased vaccine-specific memory B cells. Vaccine-specific CD4 and CD8 T cells were also significantly reduced in patients with asthma, COPD, and a subset of ILD patients compared to healthy controls. These findings reveal the complex nature of vaccine-elicited immunity in high-risk patients with chronic lung disease.
Collapse
Affiliation(s)
- Haolin Liu
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Katja Aviszus
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Pearlanne Zelarney
- Research Informatics Services, National Jewish Health, Denver, CO, 80206, USA
| | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Division of Environmental and Occupational Health Sciences, National Jewish Health, Denver CO, 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver CO, 80206, USA
| | - Barry Make
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver CO, 80206, USA
| | - Michael E Wechsler
- Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver CO, 80206, USA
| | - Philippa Marrack
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - R Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
32
|
Rezahosseini O, Hamm SR, Heftdal LD, Pérez-Alós L, Møller DL, Perch M, Madsen JR, Hald A, Hansen CB, Armenteros JJA, Pries-Heje MM, Hasselbalch RB, Fogh K, Frikke-Schmidt R, Hilsted LM, Sørensen E, Ostrowski SR, Harboe ZB, Iversen K, Bundgaard H, Sørensen SS, Rasmussen A, Garred P, Nielsen SD. Humoral and T-cell response 12 months after the first BNT162b2 vaccination in solid organ transplant recipients and controls: Kinetics, associated factors, and role of SARS-CoV-2 infection. Front Immunol 2023; 13:1075423. [PMID: 36713395 PMCID: PMC9880190 DOI: 10.3389/fimmu.2022.1075423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction We investigated humoral and T-cell responses within 12 months after first BNT162b2 vaccine in solid organ transplant (SOT) recipients and controls who had received at least three vaccine doses. Furthermore, we compared the immune response in participants with and without previous SARS-CoV-2 infection. Methods We included adult liver, lung, and kidney transplant recipients, and controls were selected from a parallel cohort of healthcare workers. Results At 12th-month, the IgG geometric mean concentrations (GMCs) (P<0.001), IgA GMCs (P=0.003), and median IFN-γ (P<0.001) were lower in SOT recipients than in controls. However, in SOT recipients and controls with previous infection, the neutralizing index was 99%, and the IgG, and IgA responses were comparable. After adjustment, female-sex (aOR: 3.6, P<0.009), kidney (aOR: 7.0, P= 0.008) or lung transplantation (aOR: 7.5, P= 0.014), and use of mycophenolate (aOR: 5.2, P=0.03) were associated with low IgG non response. Age (OR:1.4, P=0.038), time from transplantation to first vaccine (OR: 0.45, P<0.035), and previous SARS-CoV-2 infection (OR: 0.14, P<0.001), were associated with low IgA non response. Diabetes (OR:2.4, P=0.044) was associated with T-cell non response. Conclusion In conclusion, humoral and T-cell responses were inferior in SOT recipients without previous SARS-CoV-2 infection but comparable to controls in SOT recipients with previous infection.
Collapse
Affiliation(s)
- Omid Rezahosseini
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sebastian Rask Hamm
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Line Dam Heftdal
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dina Leth Møller
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Roth Madsen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annemette Hald
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jose Juan Almagro Armenteros
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rasmus Bo Hasselbalch
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark,Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kamille Fogh
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark,Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Linda Maria Hilsted
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Pulmonary and Infectious Diseases, Hospital of North Zealand, Copenhagen University Hospital, Hillerød, Denmark
| | - Kasper Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark,Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Schwartz Sørensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Allan Rasmussen
- Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Susanne Dam Nielsen,
| |
Collapse
|
33
|
Espi M, Charmetant X, Mathieu C, Lalande A, Decimo D, Koppe L, Pelletier C, Ovize A, Barbry A, Morelon E, Kalbacher E, Fouque D, Thaunat O. Rapid waning of immune memory against SARS-CoV-2 in maintenance hemodialysis patients after mRNA vaccination and impact of a booster dose. Kidney Int Rep 2023; 8:907-911. [PMID: 36644712 PMCID: PMC9827668 DOI: 10.1016/j.ekir.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Affiliation(s)
- Maxime Espi
- Centre International de recherche en Infectiologie, INSERM U1111, UCBL1, CNRS UMR5308, ENS, Lyon, France,Hospices civils de Lyon, CHLS, Service de néphrologie dialyse et nutrition, Pierre Bénite, France
| | - Xavier Charmetant
- Centre International de recherche en Infectiologie, INSERM U1111, UCBL1, CNRS UMR5308, ENS, Lyon, France,Hospices civils de Lyon, HEH, Service de transplantation, Néphrologie et Immunologie clinique, Lyon, France
| | - Cyrille Mathieu
- Centre International de recherche en Infectiologie, INSERM U1111, UCBL1, CNRS UMR5308, ENS, Lyon, France
| | - Alexandre Lalande
- Centre International de recherche en Infectiologie, INSERM U1111, UCBL1, CNRS UMR5308, ENS, Lyon, France
| | - Didier Decimo
- Centre International de recherche en Infectiologie, INSERM U1111, UCBL1, CNRS UMR5308, ENS, Lyon, France
| | - Laetitia Koppe
- Hospices civils de Lyon, CHLS, Service de néphrologie dialyse et nutrition, Pierre Bénite, France,CarMeN laboratory, INSERM U1060, INRAE U1397, Université Lyon1, Lyon, France,Faculté de médecine, UCBL1, Villeurbanne, France
| | - Caroline Pelletier
- Hospices civils de Lyon, HEH, Service de néphrologie et hémodialyse, Lyon, France
| | - Anne Ovize
- Laboratoires Eurofins Biomnis, Lyon, France
| | | | - Emmanuel Morelon
- Hospices civils de Lyon, HEH, Service de transplantation, Néphrologie et Immunologie clinique, Lyon, France,Faculté de médecine, UCBL1, Villeurbanne, France
| | - Emilie Kalbacher
- Hospices civils de Lyon, HEH, Service de néphrologie et hémodialyse, Lyon, France
| | - Denis Fouque
- Hospices civils de Lyon, CHLS, Service de néphrologie dialyse et nutrition, Pierre Bénite, France,Faculté de médecine, UCBL1, Villeurbanne, France
| | - Olivier Thaunat
- Centre International de recherche en Infectiologie, INSERM U1111, UCBL1, CNRS UMR5308, ENS, Lyon, France,Hospices civils de Lyon, HEH, Service de transplantation, Néphrologie et Immunologie clinique, Lyon, France,Faculté de médecine, UCBL1, Villeurbanne, France,Correspondence: Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, 5 Place d’Arsonval, 69003 Lyon, France
| |
Collapse
|
34
|
Zhou X, Wang Y, Huang B, Feng R, Zhou X, Li C, Zhang X, Shao M, Gan Y, Jin Y, An Y, Xiao X, Wang S, Liu Q, Cheng G, Zhu F, Zhang K, Wang N, Xing X, Li R, Li Y, Liu Y, Lu D, Sun X, Li Z, Liu Y, He J. Dynamics of T follicular helper cells in patients with rheumatic diseases and subsequent antibody responses in a three-dose immunization regimen of CoronaVac. Immunology 2023; 168:184-197. [PMID: 36057099 DOI: 10.1111/imm.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 12/30/2022] Open
Abstract
Given increased acceptance of the CoronaVac, there is an unmet need to assess the safety and immunogenic changes of CoronaVac in patients with rheumatic diseases (RD). Here we comprehensively analysed humoral and cellular responses in patient with RD after a three-dose immunization regimen of CoronaVac. RD patients with stable condition and/or low disease activity (n = 40) or healthy controls (n = 40) were assigned in a 1:1 ratio to receive CoronaVac (Sinovac). The prevalence of anti-receptor binding domain (RBD) antibodies and neutralizing antibodies was similar between healthy control (HC) and RD patients after the second and the third vaccination. However, the titers of anti-RBD IgG and neutralizing antibodies were significantly lower in RD patients compared to HCs (p < 0.05), which was associated with an impaired T follicular helper (Tfh) cell response. Among RD patients, those who generated an antibody response displayed a significantly higher Tfh cells compared to those who failed after the first and the second vaccination (p < 0.05). Interestingly, subjects with a negative serological response displayed a similar Tfh memory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides as their anti-RBD IgG positive counterpart, and all (4/4) of the non-responders in HCs, and 62.5% (5/8) of the non-responders in patients with RD displayed a positive serological response following the third dose. No serious adverse events were observed. In conclusion, our findings support SARS-CoV-2 vaccination in patients with RD with stable and/or low disease activity. The impaired ability in generating vaccine-specific antibodies in patients with RD was associated with a reduction in Tfh cells induction. The window of vaccination times still needs to be explored in future studies. Clinical trial registration: This trial was registered with ChiCTR2100049138.
Collapse
Affiliation(s)
- Xingyu Zhou
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yifan Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Bo Huang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ruiling Feng
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xinyao Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xia Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Miao Shao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuzhou Gan
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuebo Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuan An
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xian Xiao
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shiyang Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Qinghong Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Gong Cheng
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fengyunzhi Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Kai Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Naidi Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaoyan Xing
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ru Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuhui Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yisi Liu
- The First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yudong Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
35
|
Berger B, Hazzan M, Kamar N, Francois H, Matignon M, Greze C, Gatault P, Frimat L, Westeel PF, Goutaudier V, Snanoudj R, Colosio C, Sicard A, Bertrand D, Mousson C, Bamoulid J, Thierry A, Anglicheau D, Couzi L, Chemouny JM, Duveau A, Moal V, Le Meur Y, Blancho G, Tourret J, Malvezzi P, Mariat C, Rerolle JP, Bouvier N, Caillard S, Thaunat O, the French Solid Organ Transplant (SOT) COVID Registry 34. Absence of Mortality Differences Between the First and Second COVID-19 Waves in Kidney Transplant Recipients. Kidney Int Rep 2022; 7:2617-2629. [PMID: 36159445 PMCID: PMC9489985 DOI: 10.1016/j.ekir.2022.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction SARS-CoV-2 pandemic evolved in 2 consecutive waves during 2020. Improvements in the management of COVID-19 led to a reduction in mortality rates among hospitalized patients during the second wave. Whether this progress benefited kidney transplant recipients (KTRs), a population particularly vulnerable to severe COVID-19, remained unclear. Methods In France, 957 KTRs were hospitalized for COVID-19 in 2020 and their data were prospectively collected into the French Solid Organ Transplant (SOT) COVID registry. The presentation, management, and outcomes of the 359 KTRs diagnosed during the first wave were compared to those of the 598 of the second wave. Results Baseline comorbidities were similar between KTRs of the 2 waves. Maintenance immunosuppression was reduced in most patients but withdrawal of antimetabolite (73.7% vs. 58.4%, P < 0.001) or calcineurin inhibitor (32.1% vs. 16.6%, P < 0.001) was less frequent during the second wave. Hydroxychloroquine and azithromycin that were commonly used during the first wave (21.7% and 30.9%, respectively) but were almost abandoned during the second wave. In contrast, the use of high dose corticosteroids doubled (19.5% vs. 41.6%, P < 0.001). Despite these changing trends in COVID-19 management, 60-day mortality was not statistically different between the 2 waves (25.3% vs. 23.9%; Log Rank, P = 0.48) and COVID-19 hospitalization period was not associated with death due to COVID-19 in multivariate analysis (Hazard ratio 0.89, 95% confidence interval 0.67-1.17, P = 0.4). Conclusion We conclude that changing of therapeutic trends during 2020 did not reduce COVID-19 related mortality among KTRs. Our data indirectly support the importance of vaccination and neutralizing monoclonal anti-SARS-CoV-2 antibodies to protect KTRS from severe COVID-19.
Collapse
Affiliation(s)
- Bastien Berger
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices civils de Lyon, Lyon, France
| | - Marc Hazzan
- Department of Nephrology and Transplantation, University of Lille, Lille, France
| | - Nassim Kamar
- Department of Nephrology and Transplantation, University of Toulouse, Toulouse, France
| | - Hélène Francois
- Department of Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Marie Matignon
- Department of Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Paris, Institut Francilien de Recherche en Néphrologie et Transplantation IFRNT, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Université Paris-Est-Créteil, Département Hospitalo-Universitaire, Virus-Immunité-Cancer, Institut Mondor de Recherche Biomédicale, Equipe 21, INSERM U 955, Créteil, France
| | - Clarisse Greze
- Department of Nephrology and Transplantation, Hôpital Bichat, Paris, France
| | - Philippe Gatault
- Department of Nephrology and Transplantation, University of Tours, Tours, France
| | - Luc Frimat
- Department of Nephrology, University of Lorraine, CHRU-Nancy, Vandoeuvre, France, INSERM CIC-EC CIE6, Nancy, France
| | - Pierre F. Westeel
- Department of Nephrology and Transplantation, University of Amiens, Amiens, France
| | - Valentin Goutaudier
- Department of Nephrology and Transplantation, University of Montpellier, Montpellier, France
| | - Renaud Snanoudj
- Nephrology and Renal Transplantation Department, Hôpital Foch, Paris, France
| | - Charlotte Colosio
- Department of Nephrology and Transplantation, University of Reims, Reims, France
| | - Antoine Sicard
- Service de Néphrologie-Dialyse-Transplantation, Hôpital Pasteur 2, CHU de Nice, Unité de Recherche Clinique Côte d'Azur, Université Côte d'Azur, Nice, France
| | - Dominique Bertrand
- Department of Nephrology and Transplantation, University of Rouen, Rouen, France
| | - Christiane Mousson
- Department of Nephrology and Transplantation, University of Dijon, Dijon, France
| | - Jamal Bamoulid
- Department of Nephrology, University of Besançon, Besançon, France
| | - Antoine Thierry
- Department of Nephrology and Transplantation, University of Poitiers, Poitiers, France
| | - Dany Anglicheau
- Service de Néphrologie et Transplantation Adultes, Hôpital Universitaire Necker- APHP Centre-Université de Paris INEM INSERM U 1151 - CNRS UMR 8253, Paris, France
| | - Lionel Couzi
- Service de Néphrologie-Transplantation-Dialyse-Aphérèse, Hôpital Pellegrin, CHU de Bordeaux Pellegrin, Unité Mixte de Recherche “ImmunoConcEpT” 5164 - Université de Bordeaux, Bordeaux, France
| | - Jonathan M. Chemouny
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CIC-P 1414, Rennes, France
| | - Agnes Duveau
- Department of Nephrology and Transplantation, University of Angers, Angers, France
| | - Valerie Moal
- Centre de Néphrologie et Transplantation Rénale, Aix Marseille Université, Hôpitaux Universitaires de Marseille, Hôpital Conception, Marseille, France
| | - Yannick Le Meur
- Department of Nephrology, CHU de Brest, UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, Labex IGO, Brest, France
| | - Gilles Blancho
- Department of Nephrology and Transplantation, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Jérôme Tourret
- Nephrology and Renal Transplantation Department, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié Salpétrière, Paris, France
| | - Paolo Malvezzi
- Department of Nephrology, University of Grenoble, Grenoble, France
| | - Christophe Mariat
- Department of Nephrology and Transplantation, University of St Etienne, St Etienne, France
| | - Jean-Philippe Rerolle
- Department of Nephrology and Transplantation, University of Limoges, Limoges, France
| | - Nicolas Bouvier
- Department of Nephrology and Transplantation, University of Caen, Caen, France
| | - Sophie Caillard
- Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
- INSERM, IRM UMR-S 1109, University of Strasbourg, Strasbourg, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices civils de Lyon, Lyon, France
- CIRI, INSERM U1111, University Claude Bernard Lyon I, Lyon, France
- Claude Bernard University (Lyon 1), Villeurbanne, France
| | - the French Solid Organ Transplant (SOT) COVID Registry34
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices civils de Lyon, Lyon, France
- Department of Nephrology and Transplantation, University of Lille, Lille, France
- Department of Nephrology and Transplantation, University of Toulouse, Toulouse, France
- Department of Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Paris, France
- Department of Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Paris, Institut Francilien de Recherche en Néphrologie et Transplantation IFRNT, Groupe Hospitalier Henri-Mondor/Albert-Chenevier, Université Paris-Est-Créteil, Département Hospitalo-Universitaire, Virus-Immunité-Cancer, Institut Mondor de Recherche Biomédicale, Equipe 21, INSERM U 955, Créteil, France
- Department of Nephrology and Transplantation, Hôpital Bichat, Paris, France
- Department of Nephrology and Transplantation, University of Tours, Tours, France
- Department of Nephrology, University of Lorraine, CHRU-Nancy, Vandoeuvre, France, INSERM CIC-EC CIE6, Nancy, France
- Department of Nephrology and Transplantation, University of Amiens, Amiens, France
- Department of Nephrology and Transplantation, University of Montpellier, Montpellier, France
- Nephrology and Renal Transplantation Department, Hôpital Foch, Paris, France
- Department of Nephrology and Transplantation, University of Reims, Reims, France
- Service de Néphrologie-Dialyse-Transplantation, Hôpital Pasteur 2, CHU de Nice, Unité de Recherche Clinique Côte d'Azur, Université Côte d'Azur, Nice, France
- Department of Nephrology and Transplantation, University of Rouen, Rouen, France
- Department of Nephrology and Transplantation, University of Dijon, Dijon, France
- Department of Nephrology, University of Besançon, Besançon, France
- Department of Nephrology and Transplantation, University of Poitiers, Poitiers, France
- Service de Néphrologie et Transplantation Adultes, Hôpital Universitaire Necker- APHP Centre-Université de Paris INEM INSERM U 1151 - CNRS UMR 8253, Paris, France
- Service de Néphrologie-Transplantation-Dialyse-Aphérèse, Hôpital Pellegrin, CHU de Bordeaux Pellegrin, Unité Mixte de Recherche “ImmunoConcEpT” 5164 - Université de Bordeaux, Bordeaux, France
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, CIC-P 1414, Rennes, France
- Department of Nephrology and Transplantation, University of Angers, Angers, France
- Centre de Néphrologie et Transplantation Rénale, Aix Marseille Université, Hôpitaux Universitaires de Marseille, Hôpital Conception, Marseille, France
- Department of Nephrology, CHU de Brest, UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, Inserm, Labex IGO, Brest, France
- Department of Nephrology and Transplantation, Centre Hospitalier Universitaire de Nantes, Nantes, France
- Nephrology and Renal Transplantation Department, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié Salpétrière, Paris, France
- Department of Nephrology, University of Grenoble, Grenoble, France
- Department of Nephrology and Transplantation, University of St Etienne, St Etienne, France
- Department of Nephrology and Transplantation, University of Limoges, Limoges, France
- Department of Nephrology and Transplantation, University of Caen, Caen, France
- Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
- INSERM, IRM UMR-S 1109, University of Strasbourg, Strasbourg, France
- CIRI, INSERM U1111, University Claude Bernard Lyon I, Lyon, France
- Claude Bernard University (Lyon 1), Villeurbanne, France
| |
Collapse
|
36
|
Song JW, Hu W, Shen L, Wang FS. Safety and immunogenicity of COVID-19 vaccination in immunocompromised patients. Chin Med J (Engl) 2022; 135:2656-2666. [PMID: 36719354 PMCID: PMC9945070 DOI: 10.1097/cm9.0000000000002505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT The coronavirus disease 2019 (COVID-19) pandemic poses a great threat to public health. Individuals who are immunocompromised because of the progression of the primary disease or receiving immunosuppressive medications are prone to severe COVID-19 complications and poor outcomes. Abundant data have shown that many COVID-19 vaccines are safe and effective in large-scale populations; however, these clinical trials have excluded immunocompromised populations. Available evidence indicates that immunocompromised populations have a blunted immune response to other vaccines, raising concerns regarding the efficacy of COVID-19 vaccination in these populations. Thus, there is an urgent need to delineate the efficacy of COVID-19 vaccines in these vulnerable populations. Here, we review the characteristics of specific humoral and cellular responses to COVID-19 vaccination in immunocompromised populations, including HIV-infected patients and those receiving immunosuppressive treatment, especially solid organ transplant recipients and those undergoing anti-CD20 treatment. We also addressed the challenges that immunocompromised populations will face in the future pandemic and the need for basic and clinical translational studies to highlight the best vaccination strategies for these populations.
Collapse
Affiliation(s)
- Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
- Department of Emergency, The Fifth Medical Center of Chinese PLA Hospital, Beijing 100039, China
| | - Lili Shen
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| |
Collapse
|
37
|
Panizo N, Giménez E, Albert E, Zulaica J, Rodríguez-Moreno A, Rusu L, Giménez-Civera E, Puchades MJ, D’Marco L, Gandía-Salmerón L, Torres I, Sancho A, Gavela E, Gonzalez-Rico M, Montomoli M, Perez-Baylach CM, Bonilla B, Solano C, Alvarado MF, Torregrosa I, Gonzales-Candia B, Alcaraz MJ, Geller R, Górriz JL, Navarro D. SARS-CoV-2-Spike Antibody and T-Cell Responses Elicited by a Homologous Third mRNA COVID-19 Dose in Hemodialysis and Kidney Transplant Recipients. Microorganisms 2022; 10:2275. [PMID: 36422345 PMCID: PMC9694477 DOI: 10.3390/microorganisms10112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 09/15/2023] Open
Abstract
The effect of a third vaccine dose (3D) of homologous mRNA vaccine on blood levels of SARS-CoV-2-receptor binding domain (RBD)-total antibodies was assessed in 40 hemodialysis patients (HD) and 21 kidney transplant recipients (KTR) at a median of 46 days after 3D. Anti-RBD antibodies were detected in 39/40 HD and 19/21 KTR. Overall, 3D boosted anti-RBD antibody levels (median: 58-fold increase). Neutralizing antibodies (NtAb) against the Wuhan-Hu-1, Delta, and Omicron variants were detected in 14, 13, and 11 out of 14 HD patients, and in 5, 5, and 4 out of 8 KTR patients, respectively. The median fold increase in NtAb titers in HD patients was 77, 28, and 5 and 56, 37, and 9 in KTR patients for each respective variant. SARS-CoV-2-S S-IFN-γ-producing CD8+ and CD4+ T-cell responses were detected in the majority of HD (35 and 36/37, respectively) and all KTR (16/16) patients at 3D. Overall, the administration of 3D boosted T-cell levels in both population groups. In conclusion, a homologous mRNA COVID-19 vaccine 3D exerts a booster effect on anti-RBD antibodies, NtAb binding to Wuhan-Hu-1, Delta, and Omicron variants, and SARS-CoV-2-S-IFN-γ-producing T cells in both HD and KTR patients. The magnitude of the effect was more marked in HD than KTR patients.
Collapse
Affiliation(s)
- Nayara Panizo
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Joao Zulaica
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980 Valencia, Spain
| | - Alicia Rodríguez-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980 Valencia, Spain
| | - Luciana Rusu
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980 Valencia, Spain
| | - Elena Giménez-Civera
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Maria Jesús Puchades
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Luis D’Marco
- Universidad Cardenal Herrera-CEU Medicine Department, CEU Universities, 46115 Valencia, Spain
| | - Lorena Gandía-Salmerón
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Asunción Sancho
- Nephrology Service, Transplant Unit, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Eva Gavela
- Nephrology Service, Transplant Unit, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
| | - Miguel Gonzalez-Rico
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Marco Montomoli
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | | | - Begoña Bonilla
- B BraumAvitum Hemodialysis Centres Valnefron Valencia and Massamagrell, 46021 Valencia, Spain
| | - Camila Solano
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Mª Fernanda Alvarado
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Isidro Torregrosa
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - Boris Gonzales-Candia
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
| | - María Jesús Alcaraz
- Microbiology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980 Valencia, Spain
| | - José Luis Górriz
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - David Navarro
- Nephrology Service, Hospital Clínico Universitario de Valencia, INCLIVA Health Research Institutue, 46010 Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
38
|
Benotmane I, Velay A, Gautier-Vargas G, Olagne J, Obrecht A, Cognard N, Heibel F, Braun-Parvez L, Keller N, Martzloff J, Perrin P, Pszczolinski R, Moulin B, Fafi-Kremer S, Thaunat O, Caillard S. Breakthrough COVID-19 cases despite prophylaxis with 150 mg of tixagevimab and 150 mg of cilgavimab in kidney transplant recipients. Am J Transplant 2022; 22:2675-2681. [PMID: 35713984 PMCID: PMC9350296 DOI: 10.1111/ajt.17121] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023]
Abstract
The cilgavimab-tixagevimab combination retains a partial in vitro neutralizing activity against the current SARS-CoV-2 variants of concern (omicron BA.1, BA.1.1, and BA.2). Here, we examined whether preexposure prophylaxis with cilgavimab-tixagevimab can effectively protect kidney transplant recipients (KTRs) against the omicron variant. Of the 416 KTRs who received intramuscular prophylactic injections of 150 mg tixagevimab and 150 mg cilgavimab, 39 (9.4%) developed COVID-19. With the exception of one case, all patients were symptomatic. Hospitalization and admission to an intensive care unit were required for 14 (35.9%) and three patients (7.7%), respectively. Two KTRs died of COVID-19-related acute respiratory distress syndrome. SARS-CoV-2 sequencing was carried out in 15 cases (BA.1, n = 5; BA.1.1, n = 9; BA.2, n = 1). Viral neutralizing activity of the serum against the BA.1 variant was negative in the 12 tested patients, suggesting that this prophylactic strategy does not provide sufficient protection against this variant of concern. In summary, preexposure prophylaxis with cilgavimab-tixagevimab at the dose of 150 mg of each antibody does not adequately protect KTRs against omicron. Further clarification of the optimal dosing can assist in our understanding of how best to harness its protective potential.
Collapse
Affiliation(s)
- Ilies Benotmane
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France,Inserm UMR S1109 Labex Transplantex Fédération de Médecine Translationnelle, Strasbourg University Strasbourg France,Ilies Benotmane, Department of Nephrology, Dialysis and Transplantation, Strasbourg University Hospital, 1 place de l’hôpital, Strasbourg 67091, France.
| | - Aurélie Velay
- Inserm UMR S1109 Labex Transplantex Fédération de Médecine Translationnelle, Strasbourg University Strasbourg France,Department of Virology Strasbourg University Hospital Strasbourg France
| | - Gabriela Gautier-Vargas
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Jérôme Olagne
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Augustin Obrecht
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Noëlle Cognard
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Françoise Heibel
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Laura Braun-Parvez
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Nicolas Keller
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Jonas Martzloff
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Peggy Perrin
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Romain Pszczolinski
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France
| | - Bruno Moulin
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France,Inserm UMR S1109 Labex Transplantex Fédération de Médecine Translationnelle, Strasbourg University Strasbourg France
| | - Samira Fafi-Kremer
- Inserm UMR S1109 Labex Transplantex Fédération de Médecine Translationnelle, Strasbourg University Strasbourg France,Department of Virology Strasbourg University Hospital Strasbourg France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology Hospices Civils de Lyon, Edouard Herriot Hospital Lyon France
| | - Sophie Caillard
- Department of Nephrology, Dialysis and Transplantation Strasbourg University Hospital Strasbourg France,Inserm UMR S1109 Labex Transplantex Fédération de Médecine Translationnelle, Strasbourg University Strasbourg France
| |
Collapse
|
39
|
Kim WJ, Choi SH, Park JY, Song JS, Chung JW, Choi ST. SARS-CoV-2 Omicron escapes mRNA vaccine booster-induced antibody neutralisation in patients with autoimmune rheumatic diseases: an observational cohort study. Ann Rheum Dis 2022; 81:1585-1593. [PMID: 35878999 DOI: 10.1136/ard-2022-222689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study investigates whether COVID-19 vaccines can elicit cross-reactive antibody responses against the Omicron variant in patients with autoimmune rheumatic diseases (ARDs). METHODS This observational cohort study comprised 149 patients with ARDs and 94 healthcare workers (HCWs). Blood samples were obtained at enrolment, a median of 15 weeks after the second vaccine dose or 8 weeks after the third dose. The functional cross-neutralisation capacity of sera was measured using the Omicron variant receptor-binding domain-ACE2 binding inhibition assay. We assessed the incidence of breakthrough infections and the potential correlation with neutralising responses in participants after receiving third doses. The association of time-from-vaccine and neutralising responses in sera was predicted using linear regression analysis. RESULTS The mean cross-neutralising responses against the Omicron variant developed after the second dose was 11.5% in patients with ARDs and 18.1% in HCWs (p=0.007). These responses were significantly lower in patients with ARDs than in HCWs after the third dose (26.8% vs 50.3%, p<0.0001). Only 39.2% of the patient sera showed functional neutralisation capacity to the Omicron variant and cross-neutralising responses were shown to be poorly correlated with anti-spike immunoglobulin G titres. Within 6 weeks of immunological assessments, significantly lower Omicron-neutralising responses were detected in sera from patients with ARDs who developed breakthrough infections compared with those who did not (p=0.018). Additionally, a relative decline was implied in neutralising responses against the Omicron variant as a reference to the wild-type virus during 120 days since the third vaccination, with a predicted decay rate of -0.351%/day (95% CI, -0.559 to -0.144, p=0.001). CONCLUSIONS Striking antibody evasion manifested by the Omicron variant in patients with ARDs and current vaccine-induced immunity may not confer broad protection from Omicron breakthrough infection, highlighting the need for further research on vaccine effectiveness in patients with immune dysfunctions.
Collapse
Affiliation(s)
- Woo-Joong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea (the Republic of)
| | - Seong-Ho Choi
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea (the Republic of)
| | - Ji Young Park
- Department of Pediatrics, Chung-Ang University College of Medicine, Seoul, Korea (the Republic of)
| | - Jung Soo Song
- Division of Rheumatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea (the Republic of)
| | - Jin-Won Chung
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea (the Republic of)
| | - Sang Tae Choi
- Division of Rheumatology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
40
|
Gallais F, Renaud-Picard B, Solis M, Laugel E, Soulier E, Caillard S, Kessler R, Fafi-Kremer S. Torque teno virus DNA load as a predictive marker of antibody response to a three-dose regimen of COVID-19 mRNA-based vaccine in lung transplant recipients. J Heart Lung Transplant 2022; 41:1429-1439. [PMID: 35953352 PMCID: PMC9287579 DOI: 10.1016/j.healun.2022.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Previous studies have reported that lung transplant recipients (LTR) develop a poor response to two doses of COVID-19 vaccine, but data regarding the third dose are lacking. We investigated the antibody response after three doses of mRNA vaccine in LTR and its predictive factors. METHODS A total of 136 LTR, including 10 LTR previously infected and 126 COVID-19-naive LTR, were followed during and after three doses of mRNA vaccine. We retrospectively measured anti-receptor-binding domain (RBD) IgG response and neutralizing antibodies. In a posthoc analysis, we used a multivariate logistic regression model to assess the association between vaccine response and patient characteristics, including viral DNA load (VL) of the ubiquitous Torque teno virus (TTV) (optimal cut-off set by ROC curve analysis), which reflects the overall immunosuppression. RESULTS After 3 doses, 47/126 (37.3%) COVID-19-naive LTR had positive anti-RBD IgG (responders) and 14/126 (11.1%) had antibody titers above 264 Binding Antibody Units/mL. None neutralized the omicron variant versus 7 of the 10 previously infected LTR. Nonresponse was associated with TTV VL ≥6.2 log10 copies/mL before vaccination (Odds Ratio (OR) = 17.87, 95% confidence interval (CI95) = 3.02-105.72), mycophenolate treatment (OR = 4.73, CI95 = 1.46-15.34) and BNT162b2 (n = 34; vs mRNA-1273, n = 101) vaccine (OR = 6.72, CI95 = 1.75-25.92). In second dose non-responders, TTV VL ≥6.2 or <3.2 log10 copies/mL before the third dose was associated with low (0/19) and high (9/10) rates of seroconversion. CONCLUSION COVID-19-naive LTR respond poorly to three doses of mRNA vaccine, especially those with high TTV VL. Future studies could further evaluate this biomarker as a guide for vaccine strategies.
Collapse
Affiliation(s)
- Floriane Gallais
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Benjamin Renaud-Picard
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
| | - Morgane Solis
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Elodie Laugel
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Eric Soulier
- Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France
| | - Sophie Caillard
- Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France,Department of Nephrology and Transplantation, Strasbourg University Hospital, Strasbourg, France
| | - Romain Kessler
- Department of Pneumology, Strasbourg Lung Transplant Program, Strasbourg University Hospital, Strasbourg, France
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospital, Strasbourg, France,Strasbourg University, INSERM, IRM UMR-S 1109, Strasbourg, France,Reprint requests: Samira Fafi-Kremer, PharmD, PhD. Virology Laboratory and INSERM UMR_S 1109, LabEx TRANSPLANTEX, Strasbourg University Hospital, 3 rue Koeberlé, 67000 Strasbourg, France. Telephone: (+33) 3-69-55-14-38. Fax: (+33) 3-68-85-37-50
| |
Collapse
|
41
|
Tauzin A, Beaudoin-Bussières G, Gong SY, Chatterjee D, Gendron-Lepage G, Bourassa C, Goyette G, Racine N, Khrifi Z, Turgeon J, Tremblay C, Martel-Laferrière V, Kaufmann DE, Cardinal H, Cloutier M, Bazin R, Duerr R, Dieudé M, Hébert MJ, Finzi A. Humoral immune responses against SARS-CoV-2 Spike variants after mRNA vaccination in solid organ transplant recipients. iScience 2022; 25:104990. [PMID: 36035196 PMCID: PMC9395219 DOI: 10.1016/j.isci.2022.104990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
Although SARS-CoV-2 mRNA vaccination has been shown to be safe and effective in the general population, immunocompromised solid organ transplant recipients (SOTRs) were reported to have impaired immune responses after one or two doses of vaccine. In this study, we examined humoral responses induced after the second and the third dose of mRNA vaccine in different SOTR (kidney, liver, lung, and heart). Compared to a cohort of SARS-CoV-2 naïve immunocompetent health care workers (HCWs), the second dose induced weak humoral responses in SOTRs, except for the liver recipients. The third dose boosted these responses but they did not reach the same level as in HCW. Interestingly, although the neutralizing activity against Delta and Omicron variants remained very low after the third dose, Fc-mediated effector functions in SOTR reached similar levels as in the HCW cohort. Whether these responses will suffice to protect SOTR from severe outcome remains to be determined.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | | | - Normand Racine
- Institut Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada
| | - Zineb Khrifi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Julie Turgeon
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Daniel E. Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Héloïse Cardinal
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
| | - Marc Cloutier
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Mélanie Dieudé
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Marie-Josée Hébert
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL T6G 2E1, Canada
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
42
|
Naylor KL, Kim SJ, Smith G, McArthur E, Kwong JC, Dixon SN, Treleaven D, Knoll GA. Effectiveness of first, second, and third COVID-19 vaccine doses in solid organ transplant recipients: A population-based cohort study from Canada. Am J Transplant 2022; 22:2228-2236. [PMID: 35578576 PMCID: PMC9347443 DOI: 10.1111/ajt.17095] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
Limited data exists on the effectiveness of a third COVID-19 vaccine dose in solid organ transplant recipients. We conducted a population-based cohort study using linked healthcare databases from Ontario, Canada to answer this question. We included solid organ transplant recipients (n = 12,842) as of December 14, 2020, with follow-up until November 28, 2021. We used an extended Cox proportional hazards model with vaccination status, including BNT162b2, mRNA-1273, and ChAdOx1 vaccines, modeled as a time-dependent exposure. Individuals started in the unvaccinated category (reference) and could contribute person-time to first, second, and third doses. Over a median follow-up of 349 days, 12.7% (n = 1632) remained unvaccinated, 54.1% (n = 6953) received 3 doses, and 488 (3.8%) tested positive for SARS-CoV-2 (of which 260 [53.3%] had a clinically important outcome [i.e., hospitalization or death]). Adjusted vaccine effectiveness against infection was 31% (95% CI: 2, 51%), 46% (95% CI: 21, 63%), and 72% (95% CI: 43, 86%) for one, two, and three doses. Vaccine effectiveness against clinically important outcomes was 38% (95% CI: 4, 61%), 54% (95% CI: 23, 73%), and 67% (95% CI: 11, 87%). Vaccine effectiveness in solid organ transplant recipients is lower than the general population, however, vaccine effectiveness improved following a third dose.
Collapse
Affiliation(s)
- Kyla L. Naylor
- ICES Ontario Canada,Department of Epidemiology and Biostatistics Western University London, Ontario Canada,Lawson Health Research Institute, London Health Sciences Centre London, Ontario Canada
| | - Sang Joseph Kim
- ICES Ontario Canada,Division of Nephrology University Health Network, University of Toronto Toronto, Ontario Canada,Institute of Health Policy, Management and Evaluation University of Toronto Toronto, Ontario Canada
| | - Graham Smith
- ICES Ontario Canada,Lawson Health Research Institute, London Health Sciences Centre London, Ontario Canada
| | - Eric McArthur
- ICES Ontario Canada,Lawson Health Research Institute, London Health Sciences Centre London, Ontario Canada
| | - Jeffrey C. Kwong
- ICES Ontario Canada,Institute of Health Policy, Management and Evaluation University of Toronto Toronto, Ontario Canada,Public Health Ontario Toronto, Ontario Canada,Department of Family and Community Medicine and Dalla Lana School of Public Health University of Toronto Toronto, Ontario Canada
| | - Stephanie N. Dixon
- ICES Ontario Canada,Department of Epidemiology and Biostatistics Western University London, Ontario Canada,Lawson Health Research Institute, London Health Sciences Centre London, Ontario Canada
| | - Darin Treleaven
- Transplantation, Trillium Gift of Life Network, Ontario Health Ontario Canada
| | - Gregory A. Knoll
- Department of Medicine (Nephrology) University of Ottawa and the Ottawa Hospital Research Institute Ottawa, Ontario Canada,Gregory A. Knoll, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
43
|
Khomane P, Meshram HS, Banerjee S, Tambi P, Patel H, Patel A, Makwana MJ, Sharma S, Mishra V, Kute VB. COVID-19 Vaccination in Solid-Organ Transplant: A Real-World Multicenter Experience. EXP CLIN TRANSPLANT 2022; 20:805-810. [PMID: 36169102 DOI: 10.6002/ect.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES India ranks third globally in organ procurement and transplant and has the second highest COVID-19 incidence rate, but data regarding COVID-19 vaccination in solid-organ transplant patients are scarce. MATERIALS AND METHODS We created a cross-sectional, anonymous, online questionnaire and sentinvitations to several transplant centers in India. We surveyed vaccine mandates, immunization coverage and side effects, administration timing, infection severity among solid-organ transplant recipients, and booster dosage recommendations. RESULTS The survey results showedthat vaccinepolicy is heterogeneous among centers; vaccination is voluntary at some centers (44.7%), but some centers have established COVID-19 vaccination as a requirement for transplant candidates (44.6%). CoviShield was the most common vaccine administered (89.3%), and more than 50% of transplant recipients and donors were fully vaccinated. Survey results showed that the pretransplant wait time after full vaccination (both doses) is 2 to 4 weeks (48.9%), and the optimal time for vaccination after transplant is 3 to 6 months (59.3%). For vaccinated transplant patients, 89.4% of respondents reported an incidence rate for posttransplant breakthrough infection of less than 25%. For unvaccinated patients, 38.3% ofrespondents reported a 25% to 50% incidence rate of posttransplant COVID- 19 infection. Booster doses are recommended at many transplant centers in India, as reported by 89.4% of survey respondents. CONCLUSIONS The results of the survey suggested that there are no substantial safety concerns Future targets should include increasing efficacy and increasing booster doses of the COVID-19 vaccine.
Collapse
Affiliation(s)
- Pritam Khomane
- From the Department of Nephrology, Institute of Kidney Disease and Research Center, Institute of Transplantation Sciences, Ahmedabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
SARS-CoV-2 Vaccination in Solid-Organ Transplant Recipients. Vaccines (Basel) 2022; 10:vaccines10091430. [PMID: 36146506 PMCID: PMC9503203 DOI: 10.3390/vaccines10091430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has posed significant global challenges for solid organ transplant (SOT) recipients. Mortality rates of COVID-19 in this patient population remain high, despite new available therapeutic options and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccination. Priority access to SARS-CoV-2 vaccination for waitlisted candidates and for SOT patients and their family members is recommended since the advantage from vaccination reduces the risk of COVID-19-related complications. However, immunogenicity and efficacy of COVID-19 vaccines are lower in waitlisted candidates and SOT recipients than in the general population. Routine systematic assessment of humoral and cellular immune responses after SARS-CoV-2 vaccination is controversial, although highly recommended for investigation and improvement of knowledge. SOT recipients should continue to adhere to preventive protective measures despite vaccination and may undergo passive antibody prophylaxis. This article seeks to provide an update on SARS-CoV-2 vaccination and preventive measures in SOT recipients based on existing literature and international guidelines.
Collapse
|
45
|
Chang CC, Vlad G, Vasilescu ER, Li P, Husain SA, Silvia EA, Cohen DJ, Ratner LE, Sun WZ, Mohan S, Suciu-Foca N. Previous SARS-CoV-2 infection or a third dose of vaccine elicited cross-variant neutralising antibodies in vaccinated solid-organ transplant recipients. Clin Transl Immunology 2022; 11:e1411. [PMID: 35979345 PMCID: PMC9371857 DOI: 10.1002/cti2.1411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives The SARS‐CoV‐2 pandemic poses a great threat to global health, particularly in solid organ transplant recipients (SOTRs). A 3‐dose mRNA vaccination protocol has been implemented for the majority of SOTRs, yet their immune responses are less effective compared to healthy controls (HCs). Methods We analyzed the humoral immune responses against the vaccine strain and variants of concern (VOC), including the highly mutated‐omicron variant in 113 SOTRs, of whom 44 had recovered from COVID‐19 (recovered‐SOTRs) and 69 had not contracted the virus (COVID‐naïve). In addition, 30 HCs, 8 of whom had recovered from COVID‐19, were also studied. Results Here, we report that three doses of the mRNA vaccine had only a modest effect in eliciting anti‐viral antibodies against all viral strains in the fully vaccinated COVID‐naive SOTRs (n = 47). Only 34.0% of this group of patients demonstrated both detectable anti‐RBD IgG with neutralization activities against alpha, beta, and delta variants, and only 8.5% of them showed additional omicron neutralizing capacities. In contrast, 79.5% of the recovered‐SOTRs who received two doses of vaccine demonstrated both higher anti‐RBD IgG levels and neutralizing activities against all VOC, including omicron. Conclusion These findings illustrate a significant impact of previous infection on the development of anti‐SARS‐CoV‐2 immune responses in vaccinated SOTRs and highlight the need for alternative strategies to protect a subset of a lesser‐vaccine responsive population.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY USA
| | - George Vlad
- Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY USA
| | - Elena Rodica Vasilescu
- Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY USA
| | - Ping Li
- Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY USA
| | - Syed A Husain
- Division of Nephrology, Department of Medicine Columbia University Irving Medical Center New York NY USA.,The Columbia University Renal Epidemiology (CURE) Group New York NY USA
| | - Elaine A Silvia
- Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY USA
| | - David J Cohen
- Division of Nephrology, Department of Medicine Columbia University Irving Medical Center New York NY USA.,The Columbia University Renal Epidemiology (CURE) Group New York NY USA
| | - Lloyd E Ratner
- Department of Surgery Columbia University Irving Medical Center New York NY USA
| | - Wei-Zen Sun
- Department of Anesthesiology National Taiwan University Hospital Taipei Taiwan
| | - Sumit Mohan
- Division of Nephrology, Department of Medicine Columbia University Irving Medical Center New York NY USA.,The Columbia University Renal Epidemiology (CURE) Group New York NY USA
| | - Nicole Suciu-Foca
- Department of Pathology and Cell Biology Columbia University Irving Medical Center New York NY USA
| |
Collapse
|
46
|
Ferreira VH, Solera JT, Hu Q, Hall VG, Arbol BG, Rod Hardy W, Samson R, Marinelli T, Ierullo M, Virk AK, Kurtesi A, Mavandadnejad F, Majchrzak-Kita B, Kulasingam V, Gingras AC, Kumar D, Humar A. Homotypic and heterotypic immune responses to Omicron variant in immunocompromised patients in diverse clinical settings. Nat Commun 2022; 13:4489. [PMID: 35927279 PMCID: PMC9352686 DOI: 10.1038/s41467-022-32235-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Immunocompromised patients are predisposed to severe COVID-19. Here we compare homotypic and heterotypic humoral and cellular immune responses to Omicron BA.1 in organ transplant patients across a diverse clinical spectrum. We perform variant-specific pseudovirus neutralization assays for D614G, and Omicron-BA.1, -BA.2, and Delta variants. We also measure poly-and monofunctional T-cell responses to BA.1 and ancestral SARS-CoV-2 peptide pools. We identify that partially or fully-vaccinated transplant recipients after infection with Omicron BA.1 have the greatest BA.1 neutralizing antibody and BA.1-specific polyfunctional CD4+ and CD8+ T-cell responses, with potent cross-neutralization against BA.2. In these patients, the magnitude of the BA.1-directed response is comparable to immunocompetent triple-vaccinated controls. A subset of patients with pre-Omicron infection have heterotypic responses to BA.1 and BA.2, whereas uninfected transplant patients with three doses of vaccine demonstrate the weakest comparative responses. These results have implications for risk of infection, re-infection, and disease severity among immune compromised hosts with Omicron infection. Immunocompromised individuals are predisposed to severe SARS-CoV-2 infection, with transplant recipients typically displaying impaired immune response to pathogens, due to typical life-long immunosuppressive treatment. In this work, the authors evaluate the immune response to Omicron subvariants BA.1 and BA.2 in organ transplant recipients across a diverse clinical spectrum.
Collapse
Affiliation(s)
- Victor H Ferreira
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Javier T Solera
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Victoria G Hall
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Berta G Arbol
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - W Rod Hardy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Tina Marinelli
- Department of Medicine, University Health Network, Toronto, ON, Canada.,Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Matthew Ierullo
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Avneet Kaur Virk
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Alexandra Kurtesi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | | | | | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Deepali Kumar
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Atul Humar
- Department of Medicine, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
47
|
Niesen MJM, Murugadoss K, Lenehan PJ, Marchler-Bauer A, Wang J, Connor R, Brister JR, Venkatakrishnan AJ, Soundararajan V. Quantifying the immunological distinctiveness of emerging SARS-CoV-2 variants in the context of prior regional herd exposure. PNAS NEXUS 2022; 1:pgac105. [PMID: 35899067 PMCID: PMC9308564 DOI: 10.1093/pnasnexus/pgac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
The COVID-19 pandemic has seen the persistent emergence of immune-evasive SARS-CoV-2 variants under the selection pressure of natural and vaccination-acquired immunity. However, it is currently challenging to quantify how immunologically distinct a new variant is compared to all the prior variants to which a population has been exposed. Here, we define "Distinctiveness" of SARS-CoV-2 sequences based on a proteome-wide comparison with all prior sequences from the same geographical region. We observe a correlation between Distinctiveness relative to contemporary sequences and future change in prevalence of a newly circulating lineage (Pearson r = 0.75), suggesting that the Distinctiveness of emergent SARS-CoV-2 lineages is associated with their epidemiological fitness. We further show that the average Distinctiveness of sequences belonging to a lineage, relative to the Distinctiveness of other sequences that occur at the same place and time (n = 944 location/time data points), is predictive of future increases in prevalence (Area Under the Curve, AUC = 0.88 [95% confidence interval 0.86 to 0.90]). By assessing the Delta variant in India versus Brazil, we show that the same lineage can have different Distinctiveness-contributing positions in different geographical regions depending on the other variants that previously circulated in those regions. Finally, we find that positions that constitute epitopes contribute disproportionately (20-fold higher than the average position) to Distinctiveness. Overall, this study suggests that real-time assessment of new SARS-CoV-2 variants in the context of prior regional herd exposure via Distinctiveness can augment genomic surveillance efforts.
Collapse
Affiliation(s)
| | | | | | - Aron Marchler-Bauer
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jiyao Wang
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ryan Connor
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
48
|
Firinu D, Fenu G, Sanna G, Costanzo GA, Perra A, Campagna M, Littera R, Locci C, Marongiu A, Cappai R, Melis M, Orrù G, Del Giacco S, Coghe F, Manzin A, Chessa L. Evaluation of humoral and cellular response to third dose of BNT162b2 mRNA COVID-19 vaccine in patients treated with B-cell depleting therapy. J Autoimmun 2022; 131:102848. [PMID: 35714496 PMCID: PMC9189114 DOI: 10.1016/j.jaut.2022.102848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE to investigate the responses to mRNA COVID-19 vaccines in a cohort of immunosuppressed patients affected by immune-mediated inflammatory diseases (IMID). METHODS we have measured humoral and cellular immunity using quantitative IgG anti-SARS-CoV-2 Spike antibody (anti-S-IgG), neutralization assays and specific interferon-gamma (IFN-g) release assay (IGRA) before and after the third dose of BNT162b2. The response of those on anti-CD20 (n = 18) was then compared with healthy controls (HC, n = 18) and IMID naïve to anti-CD20 drugs (n = 13). RESULTS a third BNT162b2 dose is highly immunogenic in IMID patients naïve to anti-CD20, as 100% of the subjects seroconverted compared to the 55% in anti-CD20. The rate of IGRA response was of 79% in anti-CD20, 50% in IMID naïve to anti-CD20, 100% in HC. Among those who have seroconverted, IMID patients had significantly reduced anti-S-IgG and neutralization titers compared to HC, whereas no significant difference was observed when comparing anti-CD20 and HC. Furthermore, 13% of anti-CD20 and 7.7% of IMID were simultaneously negative for both neutralizing antibodies and IGRA after three doses. CONCLUSION these data draw attention to the immunogenicity of COVID-19 vaccination in treated IMID, taking specific groups into consideration for vaccination program.
Collapse
Affiliation(s)
- Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari. and Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy.
| | - Giuseppe Fenu
- Department of Neuroscience, ARNAS Brotzu, 09100, Cagliari, Italy
| | - Giuseppina Sanna
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Giulia A Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari. and Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Andrea Perra
- Oncology and Molecular Pathology Unit, Department of Biomedical Sciences, University of Cagliari, 09100, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari. and Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Roberto Littera
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Carlotta Locci
- Department of Medical Sciences and Public Health, University of Cagliari. and Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Alessandra Marongiu
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Riccardo Cappai
- Laboratory Clinical Chemical Analysis and Microbiology, University Hospital of Cagliari, 09042, Monserrato, Italy
| | - Maurizio Melis
- Department of Neuroscience, ARNAS Brotzu, 09100, Cagliari, Italy
| | - Germano Orrù
- Department of Medical Sciences and Public Health, University of Cagliari. and Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari. and Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| | - Ferdinando Coghe
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, 09100, Cagliari, Italy
| | - Aldo Manzin
- Microbiology and Virology Unit, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Luchino Chessa
- Department of Medical Sciences and Public Health, University of Cagliari. and Unit of Internal Medicine, Policlinico Universitario - AOU di Cagliari, Azienda Ospedaliero Universitaria, SS 554-Bivio Sestu, 09042, Monserrato, CA, Italy
| |
Collapse
|
49
|
Arenas-De Larriva M, Rodríguez-Perálvarez ML. Mycophenolate and SARS-CoV-2 vaccination: Mixing oil and water. Liver Int 2022; 42:1218-1221. [PMID: 35678038 DOI: 10.1111/liv.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/13/2023]
Affiliation(s)
- Marisol Arenas-De Larriva
- Department of Interventional Pulmonology, Hospital Universitario Reina Sofía, IMIBIC, Córdoba, Spain
| | - Manuel L Rodríguez-Perálvarez
- Department of Hepatology and Liver Transplantation, Hospital Universitario Reina Sofía, Universidad de Córdoba, IMIBIC, Córdoba, Spain
- CIBER de enfermedades hepáticas y digestivas, Madrid, Spain
| |
Collapse
|
50
|
Pre-exposure prophylaxis with 300 mg Evusheld™ elicits limited neutralizing activity against the Omicron variant. Kidney Int 2022; 102:442-444. [PMID: 35618094 PMCID: PMC9126611 DOI: 10.1016/j.kint.2022.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022]
|