1
|
Griffith DE. Mycobacterium abscessus group pulmonary disease. Curr Opin Infect Dis 2025; 38:169-175. [PMID: 39927482 DOI: 10.1097/qco.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW Mycobacterium abscessus is the second most isolated nontuberculous mycobacterial (NTM) respiratory pathogen in United States. It is also among the most difficult to treat NTM respiratory pathogens. The purpose of this review is to highlight current opportunities and limitations in the management of M. abscessus pulmonary disease and ways to optimize therapy to avoid treatment choices that make management of these patients even more difficult. RECENT FINDINGS The main themes of the manuscript emphasize recognition of M. abscessus drug resistance mechanisms and their implication for limiting M. abscessus treatment response. The dichotomy between favorable outcomes for macrolide-susceptible vs. macrolide-resistant M. abscessus isolates is discussed in detail as well as the limitations in our current in-vitro susceptibility testing of M. abscessus isolates. SUMMARY Predictably favorable treatment outcomes for patients with M. abscessus pulmonary disease remain elusive. New antibiotic combinations offer promise but await clinical testing in prohibitively expensive trials. Some new approaches such as phage therapy have been introduced, but so far, none are universally available or reliably effective. Clinicians and patients are left to struggle with imperfect treatment strategies in the hopes that some will emerge to justify larger treatment trials.
Collapse
Affiliation(s)
- David E Griffith
- Division of Mycobacterial Disease and Lung Infections, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
2
|
Terschlüsen E, Aono A, Anastasiou DM, Serio AW, Mitarai S, van Ingen J. In vitro activity of omadacycline against geographically diverse rapidly growing nontuberculous mycobacteria (NTM) clinical isolates. Diagn Microbiol Infect Dis 2025; 111:116663. [PMID: 39808861 DOI: 10.1016/j.diagmicrobio.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens with limited treatment options due to resistance to multiple antibiotic classes. This study aimed to evaluate the in vitro activity of omadacycline and comparator antibiotics against rapidly growing mycobacteria (RGM) clinical isolates. Minimum inhibitory concentration (MIC) evaluation of RGM clinical isolates was performed by two independent laboratories (EU and Japan). A total of 383 isolates (211 EU, 172 Japan) were evaluated. Omadacycline was active against all RGM species tested. For Mycobacterium abscessus subsp. abscessus, MIC50 and MIC90 values (read at 100 % inhibition) were 1 and 4 µg/mL (EU) and 0.5 and 1 µg/mL (Japan), respectively. Mycobacterium fortuitum and Mycobacterium chelonae both had MIC90 values of 0.5 µg/mL (Japan). Omadacycline has consistent, potent in vitro activity against RGM clinical isolates from 15 geographically diverse countries, and thus warrants additional studies and continued development of omadacycline as a potential treatment option for NTM-related disease.
Collapse
Affiliation(s)
- Eva Terschlüsen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akio Aono
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | | | - Alisa W Serio
- Paratek Pharmaceuticals, Inc., King of Prussia, Pennsylvania, USA.
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
File TM, Ramirez JA, Wilde AM. New Perspectives on Antimicrobial Agents: Omadacycline for community-acquired pneumonia, skin and soft tissue infections, and nontuberculous mycobacteria (focus on M. abscessus). Antimicrob Agents Chemother 2025; 69:e0108724. [PMID: 39817764 PMCID: PMC11823662 DOI: 10.1128/aac.01087-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Omadacycline is a novel antimicrobial belonging to the tetracycline class. It has the ability to evade both efflux and ribosomal methylation types of resistance and therefore has an expanded spectrum compared to other tetracycline agents. Omadacycline is active against a number of multidrug-resistant bacteria, including macrolide and doxycycline-resistant Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus, and several enteric gram-negative bacilli. It also has activity against many nontuberculous mycobacterium (NTM) species. It is available both orally and intravenously, which allows for feasible switch therapy. This review will assess the antimicrobial activity, pharmacology, safety, and clinical efficacy of omadacycline and present the opinions of the authors on where to position omadacycline for clinical practice.
Collapse
Affiliation(s)
- Thomas M. File
- Division of Infectious Disease, Summa Health, Akron, Ohio, USA
- Section of Infectious Diseases, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Julio A. Ramirez
- Division of Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
- Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky, USA
| | - Ashley M. Wilde
- Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Liu J, Phelps GA, Dunn CM, Murphy PA, Wilt LA, Loudon V, Lee RB, Fernando D, Yang L, Tran KN, Troyer BT, Obregon-Henao A, Lee RE. Development of tetracycline analogues with increased aqueous stability for the treatment of mycobacterial infections. Tuberculosis (Edinb) 2025; 150:102592. [PMID: 39708619 DOI: 10.1016/j.tube.2024.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Tetracycline analogs from the minocycline family have recently shown promise for the treatment of non-tuberculous mycobacterial infections. However, current tetracycline and minocycline therapeutics can be limited by tolerability, stability, or inactivation by TetX. In this study, a series of novel 9-heteroaryl substituted minocycline analogs were designed and synthesized, which resulted in analogs with good in vitro activity against Mycobacterium tuberculosis and Mycobacterium abscessus, stability in water for more than 7 days, avoidance of TetX inactivation in M. abscessus, and a lack of cytotoxicity in HepG2 mammalian cells. In vivo efficacy was confirmed for the tetracycline analogs in an acute model of GM-CSF KO mice infected with M. abscessus, displaying superior efficacy to standard-of-care antibiotic clarithromycin. Molecular modeling and potentiation assays demonstrate avoidance of MabTetX, and the structure-activity relationships of the series are discussed herein for M. tuberculosis and M. abscessus.
Collapse
Affiliation(s)
- Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Gregory A Phelps
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38103, USA
| | - Christine M Dunn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38103, USA
| | - Patricia A Murphy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Laura A Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Victoria Loudon
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Dinesh Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA
| | - Kristina N Tran
- NTM Center, Mycobacteria Research Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Brennen T Troyer
- NTM Center, Mycobacteria Research Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Andres Obregon-Henao
- NTM Center, Mycobacteria Research Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Sanders M, Beringer P. Immunomodulatory activity of omadacycline in vitro and in a murine model of acute lung injury. mSphere 2024; 9:e0067124. [PMID: 39475317 PMCID: PMC11580420 DOI: 10.1128/msphere.00671-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic airway obstruction, infection, and inflammation leading to progressive loss of lung function and eventual respiratory failure. Omadacycline, a tetracycline antibiotic, demonstrates in vitro activity against key CF pathogens, substantial lung penetration, and increasing clinical evidence for the treatment of lung infections in people with CF (PwCF). Preliminary in vitro data demonstrate that omadacycline exhibits anti-inflammatory activity. This study aims to determine the anti-inflammatory effects of omadacycline in vitro and in a murine model of lipopolysaccharide (LPS)-induced lung neutrophilia. In vitro, THP-1-derived macrophages were treated with omadacycline (20-100 µg/mL) 30 minutes prior to LPS stimulation. Pro-inflammatory cytokine (TNF-α, IL-1β/6), chemokine (CXCL-1/2), and MMP-9 levels were analyzed after 24 hours by ELISA. Omadacycline's effects on IL-8-induced human neutrophil chemotaxis were also investigated. In vivo, omadacycline (2.5-30 mg/kg), comparators dexamethasone (1 mg/kg), and azithromycin (30 mg/kg) were administered 1 hour before and 6 hours after intranasal LPS challenge, respectively. Leukocyte counts and differentials in bronchoalveolar lavage fluid (BALF), inflammatory mediator levels in BALF and lung homogenates, pulmonary edema markers, and the severity of lung injury were evaluated 24 hours or 48 hours post-challenge. Treatment with omadacycline in vitro resulted in significant, dose-dependent reductions in IL-6, CXCL-1, and MMP-9 expression and inhibition of IL-8-induced neutrophil chemotaxis. In vivo, omadacycline yielded protective and therapeutic effects by reducing the production of proinflammatory cytokines and chemokines and neutrophil infiltration into the lungs, along with modestly improving lung injury severity. These preclinical results suggest that omadacycline may provide dual anti-bacterial and anti-inflammatory activities relevant to chronic lung infection treatment in PwCF.IMPORTANCENontuberculous mycobacteria, particularly Mycobacterium abscessus complex (MABSC), are a major concern for people with cystic fibrosis (PwCF) due to their association with deteriorating lung function. A substantial barrier to effective treatment is the limited number of safe and effective antibiotics. Omadacycline offers a potential advancement in managing MABSC infections in cystic fibrosis due to its activity, effective penetration into pulmonary secretions, improved tolerability, and good oral bioavailability as shown in healthy volunteers. Our study is the first to explore omadacycline's effects in a model of sterile lung inflammation and acute lung injury. We found that omadacycline not only has potent anti-bacterial properties but also exhibits anti-inflammatory effects, reducing lung inflammation and injury in our preclinical models. These findings underscore omadacycline's potential as a dual-action therapy for lung infections in PwCF, indicating significant potential to improve patient outcomes and guide more effective antimicrobial therapy decisions.
Collapse
Affiliation(s)
- Madeline Sanders
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Paul Beringer
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Roberto Tavolari Jortieke C, Rocha Joaquim A, Fumagalli F. Advances in antibacterial agents for Mycobacterium fortuitum. RSC Med Chem 2024; 16:d4md00508b. [PMID: 39493226 PMCID: PMC11528911 DOI: 10.1039/d4md00508b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Mycobacterium fortuitum is an emerging human pathogen, characterized by an increase in prevalence and antibacterial resistance over the years, highlighting the need for the development of new drugs against this rapidly growing nontuberculous mycobacterium (NTM). To support this crusade, this review summarizes findings from the past two decades concerning compounds with antimycobacterial activity against M. fortuitum. It identifies the most promising and effective chemical frameworks to inspire the development of new therapeutic alternatives for infections caused by this microorganism. Most compounds effective against M. fortuitum are synthetic, with macozinone, featuring a 2-piperazine-benzothiazinone framework, standing out as a notable drug candidate. Among natural products, the polyphenolic polyketide clostrubin and the sansanmycin peptide analogs have shown efficacy against this NTM. Some compounds' mechanisms of action on M. fortuitum have been studied, including NITD-916, which acts as an enoyl-acyl carrier protein reductase inhibitor, and TBAJ-5307, which inhibits F-ATP synthase. Moreover, this review discusses the pathogenic molecular mechanisms and potential therapeutic targets within this mycobacterium.
Collapse
Affiliation(s)
| | - Angélica Rocha Joaquim
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| | - Fernando Fumagalli
- Department of Pharmacy, Health Sciences Centre, Federal University of Santa Maria Santa Maria RS Brazil +55 (55) 3220 9372
| |
Collapse
|
7
|
Ignatius EH, Rimal B, Panthi CM, Belz DC, Lippincott CK, Deck DH, Serio AW, Lamichhane G. Efficacies of omadacycline + amikacin + imipenem and an all-oral regimen omadacycline + clofazimine + linezolid in a mouse model of M. abscessus lung disease. mSphere 2024; 9:e0038124. [PMID: 38980071 PMCID: PMC11288010 DOI: 10.1128/msphere.00381-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Treatment outcomes for Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) disease are still unsatisfactory, mainly due to issues with drug toxicity, tolerability, and efficacy. Treating Mab disease is challenging due to its high baseline antibiotic resistance, initial requirement for intravenous therapy, and poor medication tolerance. Omadacycline, a new tetracycline, is active against Mab. Since any new antibiotic effective against Mab is expected to be used in combination with other antibiotics, we evaluated the efficacy of two triple-drug combinations comprising omadacycline, omadacycline + amikacin + imipenem, and omadacycline + clofazimine + linezolid against two contemporary Mab clinical isolates in a mouse model of Mab lung disease. Antibiotic administration was initiated 1-week post-infection and was given daily, with Mab burden in the lungs at treatment completion serving as the endpoint. Omadacycline alone moderately reduced Mab levels and maintained better health in mice compared to untreated ones, which typically suffered from the infection. The omadacycline + clofazimine + linezolid combination showed immediate bactericidal activity and enhanced efficacy over 6 weeks, particularly against the more resistant strain (M9507). However, the clofazimine + linezolid combination lacked early bactericidal activity. When combined with amikacin and imipenem, omadacycline did not improve the regimen's effectiveness over 4 weeks of treatment. Our study showed that omadacycline + clofazimine + linezolid exhibited significant bactericidal activity over an extended treatment duration. However, adding omadacycline to amikacin and imipenem did not improve regimen effectiveness against the evaluated clinical isolates within 4 weeks. Further research in Mab disease patients is needed to determine the most effective omadacycline-containing regimen.IMPORTANCEMycobacteroides abscessus is a common environmental bacterium that causes infections in people with compromised lung function, including those with bronchiectasis, cystic fibrosis, chronic obstructive pulmonary disease, and weakened immune systems, especially among older individuals. Treating M. abscessus disease is challenging due to the limited effectiveness and toxicity of current antibiotics, which often require prolonged use. Omadacycline, a new antibiotic, shows promise against M. abscessus. Using a mouse model that mimics M. abscessus disease in humans, we studied the effectiveness of including omadacycline with recommended antibiotics. Adding omadacycline to clofazimine and linezolid significantly improved treatment outcomes, rapidly clearing the bacteria from the lungs and maintaining effectiveness throughout. This oral combination is convenient for patients. However, adding omadacycline to amikacin and imipenem did not improve treatment effectiveness within 4 weeks. Further study with M. abscessus patients is necessary to optimize omadacycline-based treatment strategies for this disease.
Collapse
Affiliation(s)
- Elisa H. Ignatius
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Binayak Rimal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chandra M. Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel C. Belz
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher K. Lippincott
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H. Deck
- Paratek Pharmaceuticals Inc., King of Prussia, Pennsylvania, USA
| | - Alisa W. Serio
- Paratek Pharmaceuticals Inc., King of Prussia, Pennsylvania, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Boorgula GD, Gumbo T, Singh S, McShane PJ, Philley JV, Srivastava S. Omadacycline drug susceptibility testing for non-tuberculous mycobacteria using oxyrase to overcome challenges with drug degradation. Tuberculosis (Edinb) 2024; 147:102519. [PMID: 38754247 PMCID: PMC11345947 DOI: 10.1016/j.tube.2024.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Drug susceptibility testing (DST) protocol of omadacycline against non-tuberculous mycobacteria has not yet been established. We developed a method to accurately determine MIC omadacycline MIC against Mycobacterium abscessus (Mab), Mycobacterium avium-complex (MAC), and Mycobacterium kansasii (Mkn). METHODS First, we identified the oxyrase concentration not affecting Mab, MAC, and Mkn growth followed by omadacycline MIC experiments with and without oxyrase using reference and clinical strains. RESULTS Oxyrase 0.5 % (v/v) stabilized omadacycline in the culture medium. The median omadacycline MIC was 1 mg/L for Mab and 8 mg/L for Mkn. For MAC, the median omadacycline MIC was 2 mg/L for M. avium, 256 mg/L for M. intracellulare, and 4 mg/L for M. chimaera (p < 0.0001). Wilcoxon matched-pairs signed rank test revealed statistically lower MICs with oxyrase for all MAC subspecies (p < 0.0001), all Mab subspecies (p < 0.0001), and Mkn (p = 0.0002). The decrease in MICs with oxyrase was 17/18 of Mab, 14/19 of Mkn, 8/8 of M. avium, 4/5 M. chimera, but only 11/18 of M. intracellulare (p < 0.013). CONCLUSION Use of 0.5 % oxyrase could be a potential solution to reliable and reproducible omadacycline MIC of Mab. However, oxyrase demonstrated a variable effect in reducing MICs against MAC and Mkn.
Collapse
Affiliation(s)
- Gunavanthi D Boorgula
- Department of Medicine, University of Texas at Tyler School of Medicine, Tyler, TX, USA
| | - Tawanda Gumbo
- Mathematical Modeling and AI Department, Praedicare Inc., Dallas, TX, USA; Hollow Fiber System & Experimental Therapeutics Laboratories, Wet Lab Systems, Praedicare Inc., Dallas, TX, USA.
| | - Sanjay Singh
- Department of Medicine, University of Texas at Tyler School of Medicine, Tyler, TX, USA
| | - Pamela J McShane
- Department of Medicine, Section of Pulmonary and Critical Care, University of Texas at Tyler School of Medicine, Tyler, TX, USA
| | - Julie V Philley
- Department of Medicine, Section of Pulmonary and Critical Care, University of Texas at Tyler School of Medicine, Tyler, TX, USA
| | - Shashikant Srivastava
- Department of Medicine, University of Texas at Tyler School of Medicine, Tyler, TX, USA; Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA.
| |
Collapse
|
9
|
Ying C, Zhang L, Jin X, Zhu D, Wu W. Advances in diagnosis and treatment of non-tuberculous mycobacterial lung disease. Diagn Microbiol Infect Dis 2024; 109:116254. [PMID: 38492490 DOI: 10.1016/j.diagmicrobio.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The prevalence of Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is increasing worldwide. The advancement in molecular diagnostic technology has greatly promoted the rapid diagnosis of NTM-PD clinically, and the pathogenic strains can be identified to the species level through molecular typing, which provides a reliable basis for treatment. In addition to the well-known PCR and mNGS methods, there are numerous alternative methods to identify NTM to the species level. The treatment of NTM-PD remains a challenging problem. Although clinical guidelines outline several treatment options for common NTM species infections, in most cases, the therapeutic outcomes of these drugs for NTM-PD often fall short of expectations. At present, the focus of research is to find more effective and more tolerable NTM-PD therapeutic drugs and regimens. In this paper, the latest diagnostic techniques, therapeutic drugs and methods, and prevention of NTM-PD are reviewed.
Collapse
Affiliation(s)
- Chiqing Ying
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Lvjun Zhang
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Xuehang Jin
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Dan Zhu
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
10
|
Tunesi S, Zelazny A, Awad Z, Mougari F, Buyck JM, Cambau E. Antimicrobial susceptibility of Mycobacterium abscessus and treatment of pulmonary and extra-pulmonary infections. Clin Microbiol Infect 2024; 30:718-725. [PMID: 37797824 DOI: 10.1016/j.cmi.2023.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Mycobacterium abscessus (MAB) is the mycobacterial species least susceptible to antimicrobials. Infections are difficult to treat, and cure rates are below 50% even after a combination of 4-5 drugs for many months. OBJECTIVES To examine antimicrobial susceptibilities and treatment recommendations in light of what is known about mechanisms of resistance and pharmacodynamics/pharmacokinetics (PK/PD) interactions. SOURCES Original papers on the topics of 'antimicrobials', 'susceptibility', 'treatment', and 'outcome' from 2019 onwards, in the context of the evidence brought by the guidelines published in 2020 for pulmonary infections. CONTENT MAB is susceptible in vitro to only a few antimicrobials. Breakpoints were set by the Clinical and Laboratory Standards Institute and are revised by the European Committee on Antimicrobial Susceptibility Testing for epidemiological cut-off values. Innate resistance is due to multiple resistance mechanisms involving efflux pumps, inactivating enzymes, and low drug-target affinity. In addition, MAB may display acquired resistance to macrolides and amikacin through mutations in drug binding sites. Treatment outcomes are better for macrolide-based combinations and MAB subspecies massiliense. New compounds in the family of cyclines, oxazolidinones, and penem-β-lactamase inhibitor combinations (described in another paper), as well as bedaquiline, a new antituberculous agent, are promising, but their efficacy remains to be proven. PK/PD studies, which are critical for establishing optimal dosing regimens, were mainly done for monotherapy and healthy individuals. IMPLICATIONS Medical evidence is poor, and randomized clinical trials or standardized cohorts are needed to compare outcomes of patients with similar underlying disease, clinical characteristics, and identified MAB subspecies/sequevar. Microbiological diagnosis and susceptibility testing need to be harmonized to enable the comparison of agents and the testing of new compounds. Testing antimicrobial combinations requires new methods, especially for PK/PD parameters. Molecular testing may help in assessing MAB resistance prior to treatment. New antimicrobials need to be systematically tested against MAB to find an effective antimicrobial regimen.
Collapse
Affiliation(s)
- Simone Tunesi
- UOC Malattie infettive, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Adrian Zelazny
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Zeina Awad
- Service de mycobactériologie spécialisée et de référence, Laboratoire associé du CNR des mycobactéries et de la résistance des mycobactéries aux antituberculeux (CNR-MyRMA) APHP GHU Paris Nord, Hôpital Bichat, Paris, France
| | - Faiza Mougari
- Service de mycobactériologie spécialisée et de référence, Laboratoire associé du CNR des mycobactéries et de la résistance des mycobactéries aux antituberculeux (CNR-MyRMA) APHP GHU Paris Nord, Hôpital Bichat, Paris, France
| | - Julien M Buyck
- Université de Poitiers, PHAR2, Inserm UMR 1070, Poitiers, France
| | - Emmanuelle Cambau
- Service de mycobactériologie spécialisée et de référence, Laboratoire associé du CNR des mycobactéries et de la résistance des mycobactéries aux antituberculeux (CNR-MyRMA) APHP GHU Paris Nord, Hôpital Bichat, Paris, France; Université Paris Cité, IAME, Inserm UMR 1137, Paris, France.
| |
Collapse
|
11
|
Calcagno A, Coppola N, Sarmati L, Tadolini M, Parrella R, Matteelli A, Riccardi N, Trezzi M, Di Biagio A, Pirriatore V, Russo A, Gualano G, Pontali E, Surace L, Falbo E, Mencarini J, Palmieri F, Gori A, Schiuma M, Lapadula G, Goletti D. Drugs for treating infections caused by non-tubercular mycobacteria: a narrative review from the study group on mycobacteria of the Italian Society of Infectious Diseases and Tropical Medicine. Infection 2024; 52:737-765. [PMID: 38329686 PMCID: PMC11142973 DOI: 10.1007/s15010-024-02183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are generally free-living organism, widely distributed in the environment, with sporadic potential to infect. In recent years, there has been a significant increase in the global incidence of NTM-related disease, spanning across all continents and an increased mortality after the diagnosis has been reported. The decisions on whether to treat or not and which drugs to use are complex and require a multidisciplinary approach as well as patients' involvement in the decision process. METHODS AND RESULTS This review aims at describing the drugs used for treating NTM-associated diseases emphasizing the efficacy, tolerability, optimization strategies as well as possible drugs that might be used in case of intolerance or resistance. We also reviewed data on newer compounds highlighting the lack of randomised clinical trials for many drugs but also encouraging preliminary data for others. We also focused on non-pharmacological interventions that need to be adopted during care of individuals with NTM-associated diseases CONCLUSIONS: Despite insufficient efficacy and poor tolerability this review emphasizes the improvement in patients' care and the needs for future studies in the field of anti-NTM treatments.
Collapse
Affiliation(s)
- A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy.
- Stop TB Italy, Milan, Italy.
| | - N Coppola
- Infectious Diseases Unit, Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - L Sarmati
- Department of System Medicine, Tor Vergata University and Infectious Disease Clinic, Policlinico Tor Vergata, Rome, Italy
| | - M Tadolini
- Stop TB Italy, Milan, Italy
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - R Parrella
- Stop TB Italy, Milan, Italy
- Respiratory Infectious Diseases Unit, Cotugno Hospital, A. O. R. N. dei Colli, Naples, Italy
| | - A Matteelli
- Institute of Infectious and Tropical Diseases, WHO Collaborating Centre for TB Prevention, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - N Riccardi
- Stop TB Italy, Milan, Italy
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - M Trezzi
- Stop TB Italy, Milan, Italy
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - A Di Biagio
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - V Pirriatore
- Stop TB Italy, Milan, Italy
- Unit of Infectious Diseases, "DivisioneA", Ospedale Amedeo di Savoia, ASL CIttà di Torino, Turin, Italy
| | - A Russo
- Infectious Diseases Unit, Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - G Gualano
- Stop TB Italy, Milan, Italy
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - E Pontali
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - L Surace
- Stop TB Italy, Milan, Italy
- Dipartimento Di Prevenzione, Azienda Sanitaria Provinciale di Catanzaro, Centro di Medicina del Viaggiatore e delle Migrazioni, P. O. Giovanni Paolo II, Lamezia Terme, CZ, Italy
| | - E Falbo
- Stop TB Italy, Milan, Italy
- Dipartimento Di Prevenzione, Azienda Sanitaria Provinciale di Catanzaro, Centro di Medicina del Viaggiatore e delle Migrazioni, P. O. Giovanni Paolo II, Lamezia Terme, CZ, Italy
| | - J Mencarini
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - F Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - A Gori
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, ASST Fatebenefratelli Sacco-Ospedale Luigi Sacco-Polo Universitario and Università Degli Studi di Milano, Milano, Italy
| | - M Schiuma
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, ASST Fatebenefratelli Sacco-Ospedale Luigi Sacco-Polo Universitario and Università Degli Studi di Milano, Milano, Italy
| | - G Lapadula
- Infectious Diseases Unit, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - D Goletti
- Stop TB Italy, Milan, Italy
- Translational Research Unit, Epidemiology Department, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy
| |
Collapse
|
12
|
Pham J, Benefield RJ, Baker N, Lindblom S, Canfield N, Gomez CA, Fisher M. In vitro activity of omadacycline against clinical isolates of Nocardia. Antimicrob Agents Chemother 2024; 68:e0168623. [PMID: 38534103 PMCID: PMC11064614 DOI: 10.1128/aac.01686-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Nocardiosis typically requires a prolonged treatment duration of ≥6 months and initial combination therapy with 2-3 antibiotics. First-line regimens for nocardiosis are associated with considerable toxicity; therefore, alternative therapies are needed. Omadacycline is an aminomethylcycline with broad antimicrobial activity whose in vitro activity against Nocardia species has not been formally assessed. The in vitro potency of omadacycline was evaluated against 300 Nocardia clinical isolates by broth microdilution. The most common Nocardia species tested were N. cyriacigeorgica (21%), N. nova (20%), and N. farcinica (12%). The most common specimens were respiratory (178 isolates, 59%) and wound (57 isolates, 19%). Omadacycline minimum inhibitory concentrations (MICs) across all Nocardia species ranged from 0.06 µg/mL to 8 µg/mL, with an MIC50 of 2 µg/mL and MIC90 of 4 µg/mL. The lowest MICs were found among N. paucivorans (MIC50 = 0.25 µg/mL, MIC90 = 0.25 µg/mL), N. asiatica (MIC50 = 0.25 µg/mL, MIC90 = 1 µg/mL), N. abscessus complex (MIC50 = 0.5 µg/mL, MIC90 = 1 µg/mL), N. beijingensis (MIC50 = 0.5 µg/mL, MIC90 = 2 µg/mL), and N. otitidiscaviarum (MIC50 = 1 µg/mL, MIC90 = 2 µg/mL). The highest MICs were found among N. farcinica (MIC50 = 4 µg/mL, MIC90 = 8 µg/mL). In vitro potency differed by species among Nocardia clinical isolates. Further studies are warranted to evaluate the potential clinical utility of omadacycline for nocardiosis.
Collapse
Affiliation(s)
- Jonathan Pham
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Russell J. Benefield
- Department of Pharmacy, University of Utah Health, Salt Lake City, Utah, USA
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | - Natali Baker
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, Utah, USA
| | - Shane Lindblom
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, Utah, USA
| | - Nicholas Canfield
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, Utah, USA
| | - Carlos A. Gomez
- Division of Infectious Diseases, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mark Fisher
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Associated Regional and University Pathologists (ARUP) Laboratories, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
14
|
Baird T, Bell S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:847-860. [PMID: 37890921 DOI: 10.1016/j.ccm.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Non-tuberculous mycobacteria (NTM) infection is a major cause of morbidity in people with cystic fibrosis (pwCF) with rates of infection increasing worldwide. Accurate diagnosis and decisions surrounding best management remain challenging. Treatment guidelines have been developed to assist physicians in managing NTM in pwCF, but involve prolonged and complex mycobacterial regimens, often associated with significant toxicity. Fortunately, current management and outcomes of NTM in CF are likely to evolve due to improved understanding of disease acquisition, better diagnostics, emerging antimycobacterial therapies, and the widespread uptake of cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies.
Collapse
Affiliation(s)
- Timothy Baird
- Department of Respiratory Medicine, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia; Sunshine Coast Health Institute, Sunshine Coast, Queensland, Australia; University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Scott Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia; Children's Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Translational Research Institute, Brisbane, Queensland, Australia; Department of Thoracic Medicine, The Prince Charles Hospital, Chermside, Queensland, Australia
| |
Collapse
|
15
|
Ingram PR, Jones EE, Allen B, Murray RJ, Keehner TJ, Whitmore TJ. Omadacycline therapy for Mycobacterium abscessus species infections. Intern Med J 2023; 53:2257-2263. [PMID: 36917124 DOI: 10.1111/imj.16071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Antimicrobial resistance and therapy-related adverse effects make Mycobacterium abscessus treatment challenging. Omadacycline is a novel, bioavailable aminomethylcycline with favourable in vitro activity against M. abscessus. AIMS To describe a case report and review the published literature describing outcomes for M. abscessus infections treated with omadacycline. METHODS Systematic literature review. RESULTS We identified three articles that, in addition to our case report, describe 18 patients. Pulmonary infections were most frequent. Minimum inhibitory concentrations were reported for two isolates (0.25 and 0.5 mg/L). Despite half the patients starting omadacycline because of failure of prior therapy, 15 (83%) had a favourable outcome, defined as 'cure', 'improvement' or 'clinical success' as determined by the primary study authors. One patient (6%) discontinued omadacycline because of gastrointestinal intolerance. CONCLUSIONS Although the limited observational data and in vitro susceptibility results are encouraging, randomised control trials are required to determine the role of omadacycline as part of combination therapy for this most difficult-to-treat pathogen.
Collapse
Affiliation(s)
- Paul R Ingram
- Royal Perth Hospital, Perth, Western Australia, Australia
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
- University of Western Australia, Perth, Western Australia, Australia
| | - Eva E Jones
- Royal Perth Hospital, Perth, Western Australia, Australia
| | - Bethwyn Allen
- Royal Perth Hospital, Perth, Western Australia, Australia
| | - Ronan J Murray
- PathWest Laboratory Medicine, Perth, Western Australia, Australia
- University of Western Australia, Perth, Western Australia, Australia
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | | | - Timothy J Whitmore
- Royal Perth Hospital, Perth, Western Australia, Australia
- Anita Clayton Centre, Perth, Western Australia, Australia
| |
Collapse
|
16
|
Khare R, Brown-Elliott BA. Culture, Identification, and Antimicrobial Susceptibility Testing of Pulmonary Nontuberculous Mycobacteria. Clin Chest Med 2023; 44:743-755. [PMID: 37890913 DOI: 10.1016/j.ccm.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacteria (NTM) typically cause opportunistic pulmonary infections and reliable laboratory results can assist with diagnosis of disease. Microscopy can detect acid-fast bacilli from specimens though it has poor sensitivity. Solid and liquid culture are used to grow NTM, which are identified by molecular or protein-based assays. Because culture has a long turnaround time, some assays are designed to identify NTM directly from sputum specimens. When indicated, phenotypic susceptibility testing should be performed by broth microdilution as per the guidelines from the Clinical Laboratory Standards Institute. Genotypic susceptibility methods may be used to decrease the turnaround time for some antimicrobials.
Collapse
Affiliation(s)
- Reeti Khare
- Mycobacteriology Laboratory, 1400 Jackson Street, National Jewish Health, Denver, CO 80238, USA.
| | - Barbara A Brown-Elliott
- The University of TX Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, 11937 US Highway 271, Tyler, TX 75708, USA
| |
Collapse
|
17
|
Nguyen MVH, Daley CL. Treatment of Mycobacterium avium Complex Pulmonary Disease: When Should I Treat and What Therapy Should I Start? Clin Chest Med 2023; 44:771-783. [PMID: 37890915 DOI: 10.1016/j.ccm.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Treatment of M avium pulmonary disease requires a three-drug, macrolide-based regimen that is administered for 12 months beyond culture conversion. The regimen can be administered 3 days a week in non-cavitary, nodular bronchiectatic disease but should be given daily when cavitary disease is present. For treatment refractory disease, amikacin liposome inhalation suspension is added to the regimen. Parenteral amikacin or streptomycin should be administered in the setting of extensive radiographic involvement or macrolide resistance. Recurrence of disease is common and often due to reinfection. Novel and repurposed agents are being evaluated in clinical trials.
Collapse
Affiliation(s)
- Minh-Vu H Nguyen
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO 80206, USA
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
18
|
El Ghali A, Morrisette T, Alosaimy S, Lucas K, Tupayachi-Ortiz MG, Vemula R, Wadle C, Philley JV, Mejia-Chew C, Hamad Y, Stevens RW, Zeuli JD, Webb AJ, Fiske CT, Simonyan A, Cimino CL, Mammadova M, Umana VE, Hasbun R, Butt S, Molina KC, Thomas M, Kaip EA, Bouchard J, Gore TW, Howard C, Cabanilla MG, Holger DJ, Frens JJ, Barger M, Ong A, Cohen KA, Rybak MJ. Long-term evaluation of clinical success and safety of omadacycline in nontuberculous mycobacteria infections: a retrospective, multicenter cohort of real-world health outcomes. Antimicrob Agents Chemother 2023; 67:e0082423. [PMID: 37768312 PMCID: PMC10583686 DOI: 10.1128/aac.00824-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 09/29/2023] Open
Abstract
Infections due to nontuberculous mycobacteria (NTM) continue to increase in prevalence, leading to problematic clinical outcomes. Omadacycline (OMC) is an aminomethylcycline antibiotic with FDA orphan drug and fast-track designations for pulmonary NTM infections, including Mycobacteroides abscessus (MAB). This multicenter retrospective study across 16 U.S. medical institutions from January 2020 to March 2023 examined the long-term clinical success, safety, and tolerability of OMC for NTM infections. The cohort included patients aged ≥18 yr, who were clinically evaluable, and` had been treated with OMC for ≥3 mo without a previous diagnosis of cystic fibrosis. The primary outcome was 3 mo clinical success, with secondary outcomes including clinical improvement and mortality at 6- and 12 mo, persistence or reemergence of infection, adverse effects, and reasons for OMC utilization. Seventy-five patients were included in this analysis. Most patients were female (48/75, 64.0%) or Caucasian (58/75, 77.3%), with a median (IQR) age of 59 yr (49-67). Most had NTM pulmonary disease (33/75, 44.0%), skin and soft tissue disease (19/75, 25.3%), or osteomyelitis (10/75, 13.3%), and Mycobacterium abscessus (60/75, 80%) was the most commonly isolated NTM pathogen. The median (IQR) treatment duration was 6 mo (4 - 14), and the most commonly co-administered antibiotic was azithromycin (33/70, 47.1%). Three-month clinical success was observed in 80.0% (60/75) of patients, and AEs attributable to OMC occurred in 32.0% (24/75) of patients, leading to drug discontinuation in 9.3% (7/75).
Collapse
Affiliation(s)
- Amer El Ghali
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy & Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina (MUSC) Health, Charleston, South Carolina, USA
| | - Sara Alosaimy
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kristen Lucas
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Maria G. Tupayachi-Ortiz
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Raaga Vemula
- University of Texas Health Science Center, University of Texas, Tyler, Texas, USA
| | - Carly Wadle
- University of Texas Health Science Center, University of Texas, Tyler, Texas, USA
| | - Julie V. Philley
- University of Texas Health Science Center, University of Texas, Tyler, Texas, USA
| | - Carlos Mejia-Chew
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yasir Hamad
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan W. Stevens
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - John D. Zeuli
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J. Webb
- Department of Pharmacy, Mayo Clinic, Rochester, Minnesota, USA
| | - Christina T. Fiske
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anahit Simonyan
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christo L. Cimino
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mehriban Mammadova
- Division of Infectious Diseases, Department of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Virginia E. Umana
- Division of Infectious Diseases, Department of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Saira Butt
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyle C. Molina
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael Thomas
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emily A. Kaip
- Department of Pharmaceutical Services, University of California, San Francisco Medical Center, San Francisco, North Carolina, USA
| | - Jeannette Bouchard
- College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Tristan W. Gore
- College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Catessa Howard
- Department of Pharmacy, West Virginia University Medicine, Morgantown, West Virginia, USA
| | - M. Gabriela Cabanilla
- Division of Infectious Diseases, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Dana J. Holger
- Department of Pharmacy Practice, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Jeremy J. Frens
- Department of Pharmacy Services, Cone Health, Greensboro, North Carolina, USA
| | - Melissa Barger
- Department of Medicine, Ventura County Medical Center, Ventura, California, USA
| | - Aaron Ong
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Marlyand, USA
| | - Keira A. Cohen
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Marlyand, USA
| | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
| |
Collapse
|
19
|
Jahanbakhsh S, Howland J, Ndayishimiye Uwineza MO, Thwaites MT, Pillar CM, Serio AW, Anastasiou DM, Hufnagel DA. Evaluation of omadacycline against intracellular Mycobacterium abscessus in an infection model in human macrophages. JAC Antimicrob Resist 2023; 5:dlad104. [PMID: 37720564 PMCID: PMC10502775 DOI: 10.1093/jacamr/dlad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Background Omadacycline is an aminomethylcycline antibiotic in the tetracycline class that was approved by the US FDA in 2018 for the treatment of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. It is available in both IV and oral formulations. Omadacycline has broad-spectrum in vitro activity and clinical efficacy against infections caused by Gram-positive and Gram-negative pathogens. Omadacycline is being evaluated in a 3 month placebo-controlled Phase 2 clinical trial of oral omadacycline versus placebo in adults with non-tuberculous mycobacteria (NTM) pulmonary disease caused by Mycobacterium abscessus (NCT04922554). Objectives To determine if omadacycline has intracellular antimicrobial activity against NTM, bacteria that can cause chronic lung disease, in an ex vivo model of intracellular infection. Methods Two strains of M. abscessus were used to infect THP-1 macrophages. Intracellular M. abscessus was then challenged with omadacycline and control antibiotics at multiples of the MIC over time to evaluate intracellular killing. Results At 16 × the MIC at 72 h, omadacycline treatment of intracellular NTM yielded a log10 reduction in cfu of 1.1 (91.74% reduction in cfu) and 1.6 (97.65% reduction in cfu) consistent with killing observed with tigecycline, whereas amikacin and clarithromycin at 16 × the MIC did not show any reduction in cfu against the intracellular M. abscessus. Conclusions Omadacycline displayed intracellular activity against M. abscessus within macrophages. The activity was similar to that of tigecycline; as expected, intracellular killing was not observed with clarithromycin and amikacin.
Collapse
Affiliation(s)
- S Jahanbakhsh
- Microbiologics Antibiotic and Microbiome Research Center, Kalamazoo, MI, USA
| | - J Howland
- Microbiologics Antibiotic and Microbiome Research Center, Kalamazoo, MI, USA
| | | | - M T Thwaites
- Microbiologics Antibiotic and Microbiome Research Center, Kalamazoo, MI, USA
| | - C M Pillar
- Microbiologics Antibiotic and Microbiome Research Center, Kalamazoo, MI, USA
| | - A W Serio
- Paratek Pharmaceuticals, Inc., King of Prussia, PA, USA
| | | | - D A Hufnagel
- Microbiologics Antibiotic and Microbiome Research Center, Kalamazoo, MI, USA
| |
Collapse
|
20
|
Carcione D, Intra J, Andriani L, Campanile F, Gona F, Carletti S, Mancini N, Brigante G, Cattaneo D, Baldelli S, Chisari M, Piccirilli A, Di Bella S, Principe L. New Antimicrobials for Gram-Positive Sustained Infections: A Comprehensive Guide for Clinicians. Pharmaceuticals (Basel) 2023; 16:1304. [PMID: 37765112 PMCID: PMC10536666 DOI: 10.3390/ph16091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance is a public health problem with increasingly alarming data being reported. Gram-positive bacteria are among the protagonists of severe nosocomial and community infections. The objective of this review is to conduct an extensive examination of emerging treatments for Gram-positive infections including ceftobiprole, ceftaroline, dalbavancin, oritavancin, omadacycline, tedizolid, and delafloxacin. From a methodological standpoint, a comprehensive analysis on clinical trials, molecular structure, mechanism of action, microbiological targeting, clinical use, pharmacokinetic/pharmacodynamic features, and potential for therapeutic drug monitoring will be addressed. Each antibiotic paragraph is divided into specialized microbiological, clinical, and pharmacological sections, including detailed and appropriate tables. A better understanding of the latest promising advances in the field of therapeutic options could lead to the development of a better approach in managing antimicrobial therapy for multidrug-resistant Gram-positive pathogens, which increasingly needs to be better stratified and targeted.
Collapse
Affiliation(s)
- Davide Carcione
- Laboratory of Medicine and Microbiology, Busto Arsizio Hospital—ASST Valle Olona, 21052 Busto Arsizio, VA, Italy; (D.C.); (G.B.)
| | - Jari Intra
- Clinical Chemistry Laboratory, Fondazione IRCCS San Gerardo Dei Tintori, 20900 Monza, MB, Italy;
| | - Lilia Andriani
- Clinical Pathology and Microbiology Unit, Hospital of Sondrio, 23100 Sondrio, Italy;
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy;
| | - Floriana Gona
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (S.C.)
| | - Silvia Carletti
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (F.G.); (S.C.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, 21100 Varese, Italy
| | - Gioconda Brigante
- Laboratory of Medicine and Microbiology, Busto Arsizio Hospital—ASST Valle Olona, 21052 Busto Arsizio, VA, Italy; (D.C.); (G.B.)
| | - Dario Cattaneo
- Department of Infectious Diseases ASST Fatebenefratelli Sacco, 20157 Milan, Italy;
| | - Sara Baldelli
- Pharmacology Laboratory, Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Mattia Chisari
- Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical, and Health Sciences, Trieste University, 34129 Trieste, Italy;
| | - Luigi Principe
- Microbiology and Virology Unit, Great Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89100 Reggio Calabria, Italy;
| |
Collapse
|
21
|
Srivastava S, Gumbo T. Comment on "Long-term Safety and Tolerability of Omadacycline for the Treatment of Mycobacterium abscessus Infections". Open Forum Infect Dis 2023; 10:ofad423. [PMID: 37577111 PMCID: PMC10416810 DOI: 10.1093/ofid/ofad423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023] Open
Affiliation(s)
- Shashikant Srivastava
- Department of Medicine, University of Texas School of Medicine, Tyler, Texas, USA
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Tawanda Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc, Dallas, Texas, USA
- Hollow Fiber System and Experimental Therapeutics Laboratories, Praedicare Inc, Dallas, Texas, USA
| |
Collapse
|
22
|
Srivastava S. Safety and tolerability of long-term use of omadacycline in the treatment of Mycobacterium abscessus infections. IDCases 2023; 33:e01843. [PMID: 37457813 PMCID: PMC10344830 DOI: 10.1016/j.idcr.2023.e01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Shashikant Srivastava
- Correspondence to: Department of Medicine, UT Tyler School of Medicine, 11937 US Highway 271, Tyler, TX 75708, USA.
| |
Collapse
|
23
|
Hamed KA, Tillotson G. A narrative review of nontuberculous mycobacterial pulmonary disease: microbiology, epidemiology, diagnosis, and management challenges. Expert Rev Respir Med 2023; 17:973-988. [PMID: 37962332 DOI: 10.1080/17476348.2023.2283135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) are a diverse group of mycobacterial species that are ubiquitous in the environment. They are opportunistic pathogens that can cause a range of diseases, especially in individuals with underlying structural lung disease or compromised immune systems. AREAS COVERED This paper provides an in-depth analysis of NTM infections, including microbiology, environmental sources and transmission pathways, risk factors for disease, epidemiology, clinical manifestations and diagnostic approaches, guideline-based treatment recommendations, drugs under development, and management challenges. EXPERT OPINION Future approaches to the management of NTM pulmonary disease will require therapies that are well tolerated, can be taken for a shorter time period and perhaps less frequently, have few drug-drug interactions, and are active against the various strains of pathogens. As the numbers of infections increase, such therapies will be welcomed by clinicians and patients.
Collapse
|
24
|
Mingora CM, Bullington W, Faasuamalie PE, Levin A, Porter G, Stadnik R, Varley CD, Addrizzo-Harris D, Daley CL, Olivier KN, Winthrop KL, Dorman SE, Flume PA. Long-term Safety and Tolerability of Omadacycline for the Treatment of Mycobacterium abscessus Infections. Open Forum Infect Dis 2023; 10:ofad335. [PMID: 37476076 PMCID: PMC10354853 DOI: 10.1093/ofid/ofad335] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Background Mycobacterium abscessus is a virulent human pathogen. Treatment is complex and often poorly tolerated with suboptimal rates of eradication, highlighting the need for improved therapeutics. This study reports clinical experience with omadacycline for treatment of M abscessus infections at five large nontuberculous mycobacterial (NTM) disease clinics across the United States to better understand long-term safety and tolerability. Methods We conducted a multicenter retrospective chart review of adults with M abscessus infections. All patients treated with omadacycline as part of a multidrug therapeutic regimen through December 2021 were included. Clinical data from time of omadacycline initiation and up to 12 months of follow-up were collected. Descriptive statistics were performed. Results Analysis included 117 patients. Among patients with M abscessus isolate subspeciation, 58 of 71 (81.7%) were M abscessus spp abscessus. In isolates with reported drug susceptibility testing, 15 of 70 (21.4%) had confirmed susceptibility to macrolides. The most common site of infection was lungs. Median duration omadacycline treatment was 8 months (range, 0.25-33 months; interquartile range, 4-15 months). Omadacycline was discontinued in 60 patients (51.3%); 20 completed planned treatment course, 23 experienced intolerance or adverse event leading to drug cessation, and 17 stopped due to cost, death (unrelated to NTM infection or therapy), or another reason. In those with pulmonary disease, 44 of 95 (46%) had 1 or more negative cultures at time of final microbiological assessment, with 17 of 95 (18%) achieving culture conversion. Conclusions This study reports data supporting long-term safety and tolerability of omadacycline along with signal of effectiveness in treatment of M abscessus infections.
Collapse
Affiliation(s)
| | - Wendy Bullington
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Paige E Faasuamalie
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrah Levin
- National Jewish Health and University of Colorado School of Medicine,Denver, Colorado, USA
| | - Gabriella Porter
- New York University Grossman School of Medicine, New York, New York, USA
| | - Ryan Stadnik
- Oregon Health & Science University, Portland, Oregon, USA
| | - Cara D Varley
- Oregon Health & Science University, Portland, Oregon, USA
| | | | - Charles L Daley
- National Jewish Health and University of Colorado School of Medicine,Denver, Colorado, USA
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Susan E Dorman
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Patrick A Flume
- Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
25
|
Singh S, Wang JY, Heysell SK, McShane PJ, Wadle C, Shankar P, Huang HL, Pasipanodya J, Boorgula GD, Philley JV, Gumbo T, Srivastava S. Omadacycline pharmacokinetics/pharmacodynamics in the hollow fiber model and clinical validation of efficacy to treat pulmonary Mycobacterium abscessus disease. Int J Antimicrob Agents 2023; 62:106847. [PMID: 37187338 PMCID: PMC10330927 DOI: 10.1016/j.ijantimicag.2023.106847] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Guideline-based therapy (GBT) for pulmonary Mycobacterium abscessus (Mab) disease achieves sustained sputum culture conversion (SSCC) rates of 30%; this is reflected by poor efficacy of GBT in the hollow fiber system model of Mab (HFS-Mab), which killed ∼1.22 log10 CFU/mL. This study was performed to determine which clinical dose of omadacycline, a tetracycline antibiotic, should be used in combination therapy to treat pulmonary Mab disease for relapse-free cure. METHODS First, omadacycline intrapulmonary concentration-time profiles of seven daily doses were mimicked in the HFS-Mab model and exposures associated with optimal efficacy were identified. Second, 10,000 subject Monte-Carlo simulations were performed to determine whether oral omadacycline 300 mg/day achieved these optimal exposures. Third, a retrospective clinical study on omadacycline vs. primarily tigecycline-based salvage therapy was conducted to assess rates of SSCC and toxicity. Fourth, a single patient was recruited to validate the findings. RESULTS Omadacycline efficacy in the HFS-Mab was 2.09 log10 CFU/mL at exposures achieved in >99% of patients on 300 mg/day omadacycline. In the retrospective study of omadacycline 300 mg/day-based combinations vs. comparators, SSCC was achieved in 8/10 vs. 1/9 (P=0.006), symptom improvement in 8/8 vs. 5/9 (P=0.033), toxicity in 0 vs. 9/9 (P<0.001), and therapy discontinuation due to toxicity in 0 vs. 3/9 (P<0.001) cases, respectively. In one prospectively recruited patient, omadacycline 300 mg/day salvage therapy achieved SSCC and symptom-resolution in 3 months. CONCLUSION Based on the preclinical and clinical data, omadacycline 300 mg/day in combination regimens could be appropriate for testing in Phase III trials in patients with Mab pulmonary disease.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Medicine, University of Texas School of Medicine, Tyler, Texas, USA
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, USA
| | - Pamela J McShane
- Section of Pulmonary and Critical Care, University of Texas at Tyler, Tyler, Texas, USA
| | - Carly Wadle
- Section of Pulmonary and Critical Care, University of Texas at Tyler, Tyler, Texas, USA
| | - Prem Shankar
- Department of Medicine, University of Texas School of Medicine, Tyler, Texas, USA
| | - Hung-Ling Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jotam Pasipanodya
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas
| | | | - Julie V Philley
- Section of Pulmonary and Critical Care, University of Texas at Tyler, Tyler, Texas, USA
| | - Tawanda Gumbo
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, Texas; Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc, Dallas, TX
| | - Shashikant Srivastava
- Department of Medicine, University of Texas School of Medicine, Tyler, Texas, USA; Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA; Center for Biomedical Research, University of Texas Health Science Centre at Tyler, Tyler, Texas, USA.
| |
Collapse
|
26
|
Li A, He S, Li J, Zhang Z, Li B, Chu H. Omadacycline, Eravacycline, and Tigecycline Express Anti-Mycobacterium abscessus Activity In Vitro. Microbiol Spectr 2023; 11:e0071823. [PMID: 37140428 PMCID: PMC10269442 DOI: 10.1128/spectrum.00718-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Mycobacterium abscessus infections are increasing worldwide necessitating the development of new antibiotics and treatment regimens. The utility of third-generation tetracycline antibiotics was reestablished; their anti-M. abscessus activity needs further study. The activities of omadacycline (OMC), eravacycline (ERC), tigecycline (TGC), and sarecycline (SAC) were tested against two reference strains and 193 clinical M. abscessus isolates at different temperatures (30°C and 37°C). The minimum bactericidal concentrations (MBCs) of the four drugs were determined to distinguish between their bactericidal and bacteriostatic activities. The MICs of OMC, ERC, and TGC for the reference strains and clinical isolates were summarized and compared. OMC, ERC, and TGC exhibited a high level of bacteriostatic activity against M. abscessus. The MICs of OMC and ERC for M. abscess remained stable, while the MICs of TGC for the isolates/strains increased with increasing temperature. Notably, the MICs of OMC for M. abscessus isolates obtained in the United States are lower than for those obtained in China. IMPORTANCE The antimicrobial activities of four third-generation tetracycline-class drugs, omadacycline (OMC), eravacycline (ERC), tigecycline (TGC), and sarecycline (SAC), were determined for 193 M. abscessus isolates. The activities of the four drugs at two different temperatures (30°C and 37°C) were also tested. OMC, ERC, and TGC exhibited significant activity against M. abscessus. The anti-M. abscessus activity of TGC increased when the temperature was increased from 30°C to 37°C; the activities of OMC and ERC, on the other hand, remained the same. We found that in vitro MICs of OMC against Chinese and American isolates were distinct. Evaluations in in vivo models of M. abscessus disease or in the clinical setting will provide more accurate insight into potency of OMC against distinct isolates.
Collapse
Affiliation(s)
- Anqi Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jingren Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Fujiwara K, Aono A, Asami T, Morimoto K, Kamada K, Morishige Y, Igarashi Y, Chikamatsu K, Murase Y, Yamada H, Takaki A, Mitarai S. In Vitro Synergistic Effects of Omadacycline with Other Antimicrobial Agents against Mycobacterium abscessus. Antimicrob Agents Chemother 2023; 67:e0157922. [PMID: 37154742 PMCID: PMC10269086 DOI: 10.1128/aac.01579-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The clinical importance of Mycobacterium abscessus species (MABS) infections has been increasing. However, the standard treatment regimens recommended in the current guidelines often result in unfavorable outcomes. Therefore, we investigated the in vitro activity of omadacycline (OMC), a novel tetracycline, against MABS to explore its potential as a novel therapeutic option. The drug susceptibilities of 40 Mycobacterium abscessus subsp. abscessus (Mab) clinical strains obtained from the sputum of 40 patients from January 2005 to May 2014 were investigated. The MIC results for OMC, amikacin (AMK), clarithromycin (CLR), clofazimine (CLO), imipenem (IPM), rifabutin (RFB), and tedizolid (TZD) alone and their combined effects (with OMC) were examined using the checkerboard method. Additionally, we studied the differences in the effectiveness of the antibiotic combinations based on the colony morphotype of Mab. The MIC50 and MIC90 of OMC alone were 2 and 4 μg/mL, respectively. The combinations of OMC with AMK, CLR, CLO, IPM, RFB, and TZD showed synergy against 17.5%, 75.8%, 25.0%, 21.1%, 76.9%, and 34.4% of the strains, respectively. Additionally, OMC combined with CLO (47.1% versus 9.5%, P = 0.023) or TZD (60.0% versus 12.5%, P = 0.009) showed significantly higher synergy against strains with rough morphotypes than those with smooth morphotypes. In conclusion, the checkerboard analyses revealed that the synergistic effects of OMC were observed most frequently with RFB, followed by CLR, TZD, CLO, IPM, and AMK. Furthermore, OMC tended to be more effective against rough-morphotype Mab strains.
Collapse
Affiliation(s)
- Keiji Fujiwara
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takahiro Asami
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keisuke Kamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
28
|
Rimal B, Nicklas DA, Panthi CM, Lippincott CK, Belz DC, Ignatius EH, Deck DH, Serio AW, Lamichhane G. Efficacy of Omadacycline-Containing Regimen in a Mouse Model of Pulmonary Mycobacteroides abscessus Disease. mSphere 2023; 8:e0066522. [PMID: 36912629 PMCID: PMC10117123 DOI: 10.1128/msphere.00665-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Mycobacteroides abscessus is an opportunistic pathogen in people with structural lung conditions such as bronchiectasis, chronic obstructive pulmonary disease, and cystic fibrosis. Pulmonary M. abscessus infection causes progressive symptomatic and functional decline as well as diminished lung function and is often incurable with existing antibiotics. We investigated the efficacy of a new tetracycline, omadacycline, in combination with existing antibiotics recommended to treat this indication, in a mouse model of M. abscessus lung disease. Amikacin, azithromycin, bedaquiline, biapenem, cefoxitin, clofazimine, imipenem, linezolid, and rifabutin were selected as companions to omadacycline. M. abscessus burden in the lungs of mice over a 4-week treatment duration was considered the endpoint. Omadacycline in combination with linezolid, imipenem, cefoxitin, biapenem, or rifabutin exhibited early bactericidal activity compared to any single drug. Using three M. abscessus isolates, we also determined the in vitro frequency of spontaneous resistance against omadacycline to be between 1.9 × 10-10 and 6.2 × 10-10 and the frequency of persistence against omadacycline to be between 5.3 × 10-6 and 1.3 × 10-5. Based on these findings, the combination of omadacycline and select drugs that are included in the recent treatment guidelines may exhibit improved potency to treat M. abscessus lung disease. IMPORTANCE M. abscessus disease incidence is increasing in the United States. This disease is difficult to cure with existing antibiotics. In this study, we describe the efficacy of a new tetracycline antibiotic, omadacycline, in combination with an existing antibiotic to treat this disease. A mouse model of M. abscessus lung disease was used to assess the efficacies of these experimental treatment regimens. Omadacycline in combination with select existing antibiotics exhibited bactericidal activity during the early phase of treatment.
Collapse
Affiliation(s)
- Binayak Rimal
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Danielle A. Nicklas
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chandra M. Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher K. Lippincott
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel C. Belz
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elisa H. Ignatius
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H. Deck
- Paratek Pharmaceuticals, Inc., King of Prussia, Pennsylvania, USA
| | - Alisa W. Serio
- Paratek Pharmaceuticals, Inc., King of Prussia, Pennsylvania, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Nontuberculous Mycobacteria and Bronchiectasis, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Sakoulas G, Nowak M, Geriak M. Omadacycline in treating community-based infections: a review and expert perspective. Expert Rev Anti Infect Ther 2023; 21:255-265. [PMID: 36718489 DOI: 10.1080/14787210.2023.2174100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Omadacycline is approved for the treatment of community-acquired bacterial pneumonia (CABP) and acute bacterial skin and soft tissue infection (ABSSSI). The integration of newer agents into clinical use involves understanding the nuances of clinical decision-making. This review will provide an in-depth focus on omadacycline in clinical practice. AREAS COVERED Literature review of omadacycline utilizing PubMed was performed to provide a comprehensive evaluation of omadacycline pharmacology, microbiology, registrational Phase 3 clinical trials, and post-marketing clinical studies. In addition, the immunomodulatory and other attributes of tetracycline class of antibiotics, of which omadacycline is a member, are reviewed, introducing the concept of antibiotic selection with attention to the bacterial pathogen and human host relationship. EXPERT OPINION Omadacycline builds upon the favorable attributes of tetracycline antibiotics and provides very reliable empiric coverage for both Staphylococcus aureus and Streptococcus spp. Clinicians require a more robust understanding of antibiotics, including omadacycline, in order to optimize patient outcomes, streamline care, and reduce medical costs.
Collapse
Affiliation(s)
- George Sakoulas
- Division of Host-Microbe Systems & Therapeutics, Center for Immunity, Infection & Inflammation, University of California-San Diego School of Medicine, La Jolla, CA, USA.,Sharp Rees-Stealy Medical Group and Sharp Memorial Hospital, San Diego, CA, USA.,Sharp Memorial Hospital, San Diego, CA, USA
| | | | | |
Collapse
|
30
|
Fröberg G, Maurer FP, Chryssanthou E, Fernström L, Benmansour H, Boarbi S, Mengshoel AT, Keller PM, Viveiros M, Machado D, Fitzgibbon MM, Mok S, Werngren J, Cirillo DM, Alcaide F, Hyyryläinen HL, Aubry A, Andres S, Nadarajan D, Svensson E, Turnidge J, Giske CG, Kahlmeter G, Cambau E, van Ingen J, Schön T. Towards clinical breakpoints for non-tuberculous mycobacteria - Determination of epidemiological cut off values for the Mycobacterium avium complex and Mycobacterium abscessus using broth microdilution. Clin Microbiol Infect 2023:S1198-743X(23)00060-5. [PMID: 36813087 DOI: 10.1016/j.cmi.2023.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE For non-tuberculous mycobacteria (NTM), minimum inhibitory concentration (MIC) distributions of wild-type isolates have not been systematically evaluated despite their importance for establishing antimicrobial susceptibility testing (AST) breakpoints. METHODS We gathered MIC distributions for drugs used against the Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) obtained by commercial broth microdilution (SLOMYCOI and RAPMYCOI) from 12 laboratories. Epidemiological cut-off values (ECOFFs) and tentative ECOFFs (TECOFFs) were determined by EUCAST methodology including quality control (QC) strains. RESULTS The clarithromycin ECOFF was 16 mg/L for M. avium (n = 1271) whereas TECOFFs were 8 mg/L for M. intracellulare (n = 415) and 1 mg/L for MAB (n = 1014) confirmed by analysing MAB subspecies without inducible macrolide resistance (n = 235). For amikacin, the ECOFFs were 64 mg/L for MAC and MAB. For moxifloxacin, the WT spanned >8 mg/L for both MAC and MAB. For linezolid, the ECOFF and TECOFF were 64 mg/L for M. avium and M. intracellulare, respectively. Current CLSI breakpoints for amikacin (16 mg/L), moxifloxacin (1 mg/L) and linezolid (8 mg/L) divided the corresponding WT distributions. For QC M. avium and M. peregrinum, ≥95% of MIC values were well within recommended QC ranges. CONCLUSION As a first step towards clinical breakpoints for NTM, (T)ECOFFs were defined for several antimicrobials against MAC and MAB. Broad wild-type MIC distributions indicate a need for further method refinement which is now under development within the EUCAST subcommittee for anti-mycobacterial drug susceptibility testing. In addition, we showed that several CLSI NTM breakpoints are not consistent in relation to the (T)ECOFFs.
Collapse
Affiliation(s)
- Gabrielle Fröberg
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Florian P Maurer
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erja Chryssanthou
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Louise Fernström
- Department of Internal Medicine, Lycksele Hospital, Lycksele, Sweden
| | - Hanaa Benmansour
- AP-HP, GHU Nord, Service de Mycobactériologie Spécialisée et de référence, laboratoire associé au Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Université Paris Cité, Paris, France
| | - Samira Boarbi
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Anne Torunn Mengshoel
- Department of Bacteriology, Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Miguel Viveiros
- Unit of Medical Microbiology, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Diana Machado
- Unit of Medical Microbiology, Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Margaret M Fitzgibbon
- Irish Mycobacteria Reference Laboratory, St James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Simone Mok
- Irish Mycobacteria Reference Laboratory, St James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, School of Medicine, Trinity College, Dublin, Ireland
| | - Jim Werngren
- Department of Microbiology, Unit for Laboratory Surveillance of Bacterial Pathogens, Public Health Agency of Sweden, Solna, Sweden
| | | | - Fernando Alcaide
- Department of Clinical Microbiology, Bellvitge University Hospital-IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Alexandra Aubry
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Sönke Andres
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Darshaalini Nadarajan
- National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Erik Svensson
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - John Turnidge
- School of Biological Sciences and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Christian G Giske
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Kahlmeter
- The EUCAST Development Laboratory, Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - Emmanuelle Cambau
- AP-HP, GHU Nord, Service de Mycobactériologie Spécialisée et de référence, laboratoire associé au Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Université Paris Cité, Paris, France
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas Schön
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Infectious Diseases in Östergötland, Linköping University, Linköping, Sweden.
| | | |
Collapse
|
31
|
Johnson TM, Byrd TF, Drummond WK, Childs-Kean LM, Mahoney MV, Pearson JC, Rivera CG. Contemporary Pharmacotherapies for Nontuberculosis Mycobacterial Infections: A Narrative Review. Infect Dis Ther 2023; 12:343-365. [PMID: 36609820 PMCID: PMC9925655 DOI: 10.1007/s40121-022-00750-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 01/08/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are a group of atypical bacteria that may cause a spectrum of clinical manifestations, including pulmonary, musculoskeletal, skin and soft tissue, and cardiac infections. Antimycobacterial medication regimens for NTM infections require multiple agents with prolonged treatment courses and are often associated with poor tolerance in patients and suboptimal clinical outcomes. This review summarizes NTM pharmacotherapy, including treatment concepts, preferred medication regimens according to NTM species and site of infection, and emerging treatment methods for difficult-to-treat species.
Collapse
Affiliation(s)
| | - Thomas F Byrd
- Division of Infectious Diseases, University of New Mexico, Albuquerque, NM, USA
| | - Wendi K Drummond
- Division of Infectious Diseases, Providence Portland Medical Center, Portland, OR, USA
| | | | - Monica V Mahoney
- Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jeffrey C Pearson
- Department of Pharmacy Services, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
32
|
Shankar P, Singh S, Boorgula GD, Gumbo T, Heysell SK, Srivastava S. Challenges and a potential solution to perform drug susceptibility testing of omadacycline against nontuberculous mycobacteria. Tuberculosis (Edinb) 2022; 137:102269. [PMID: 36209660 PMCID: PMC10626481 DOI: 10.1016/j.tube.2022.102269] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Minimum inhibitory concentration (MIC) of slow growing mycobacteria (SGM) often do not correlate with the treatment response. Among the challenges is the identification of MIC of drugs that degrade in solution faster than the doubling time of the SGM. METHODS First, we identified the rate of omadacycline degradation in solution, and its effect on the rapidly growing methicillin resistant Staphylococcus aureus (MRSA). We then identified doubling times versus MICs for Mycobacterium abscessus, M. avium, and M. kansasii, with and without supplementation for degraded drug. RESULTS Omadacycline concentration in solution declined ∼50% over 24hr. In the MRSA experiments, omadacycline demonstrated 66.48 ± 19.38% loss in potency over 24hr, confirming the degradation rate in solution. M. abscessus had a doubling time of 8.75 ± 1.23hr and the omadacycline MIC after 24hr of incubation was 2mg/L with and without 50% daily drug supplementation, indicating that drug degradation had no effect on this rapid grower. The doubling time for M. avium was 29.52hr (95% confidence interval (CI): 23.18-33.89hr) and 31.15hr (95%CI: 19.45-38.49 hr) for M. kansasii. The M. avium MICs ±50% daily omadacycline supplementation were 1mg/L and 0.5mg/L on day 7, whereas the M. kansasii MICs ±50% daily supplementation were >128mg/L and 32mg/L on day 7. CONCLUSION Omadacycline degradation in solution leads to falsely high MICs when SGM doubling time exceed the drug degradation rates in solution. The challenge could be overcome by daily drug supplementation to account for the loss of potency, which is laborious, or perhaps stabilizing the drug from degradation.
Collapse
Affiliation(s)
- Prem Shankar
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA
| | - Sanjay Singh
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA
| | - Gunavanthi D Boorgula
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA
| | - Tawanda Gumbo
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., Dallas, TX, USA; Hollow Fiber System & Experimental Therapeutics Laboratories, Praedicare Inc, Dallas, TX, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, USA
| | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA.
| |
Collapse
|
33
|
Sriram D, Wahi R, Maggioncalda EC, Panthi CM, Lamichhane G. Clofazimine as a comparator for preclinical efficacy evaluations of experimental therapeutics against pulmonary M. abscessus infection in mice. Tuberculosis (Edinb) 2022; 137:102268. [PMID: 36228452 PMCID: PMC10739713 DOI: 10.1016/j.tube.2022.102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) can cause chronic pulmonary disease in the setting of structural lung conditions. Current treatment recommendations require at least one year of daily therapy with repurposed antibiotics. Yet these therapies are often ineffective and associated with significant adverse events. To address this challenge, research efforts are underway to develop new antibiotics and regimens. During the preclinical phase of treatment development, experimental agents require testing and comparison alongside positive controls that are known agents with clinical history. As there are no FDA approved treatments for this indication, here, we have considered repurposed antibiotics currently included in the recommendation for treating Mab disease as candidates for selection of an ideal standard comparator that can serve as a positive control in preclinical studies. Clofazimine meets the criteria for an ideal positive control as it can be administered via the least invasive route, requires only once-daily dosing, is well tolerated, and is widely available in high purity from independent sources. Using a mouse model of pulmonary Mab disease, we assessed for ideal dosages of clofazimine in C3HeB/FeJ and BALB/c mice in a six-week treatment window. Clofazimine, 25 mg/kg, once daily, produced desired reduction in Mab burden in the lungs of C3HeB/FeJ and BALB/c mice. Based on these findings, we conclude that clofazimine meets the criteria for a positive control comparator in mice for use in preclinical efficacy assessments of agents for treatment of Mab pulmonary disease. Although not included in the current standard-of-care for treating Mab disease, rifabutin, 20 mg/kg, also produced desired reduction in Mab lung burden in C3HeB/FeJ mice but not in BALB/c mice. IMPORTANCE: Mycobacteroides abscessus can cause life-threatening infections in patients with chronic lung conditions. New treatments are needed as cure rate using existing drugs is low. During pre-clinical phase of treatment development, it is important to compare the efficacy of the experimental drug against existing ones with known history. Here, we demonstrate that clofazimine, one of the antibiotics repurposed for treating Mab disease, can serve as a positive control comparator for efficacy assessments of experimental drugs and regimens to treat M. abscessus disease in mice.
Collapse
Affiliation(s)
- Divya Sriram
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Rishi Wahi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Emily C Maggioncalda
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chandra M Panthi
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
34
|
Omadacycline for management of Mycobacterium abscessus infections: a review of its effectiveness, place in therapy, and considerations for use. BMC Infect Dis 2022; 22:874. [PMID: 36419143 PMCID: PMC9682665 DOI: 10.1186/s12879-022-07857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
The Mycobacterium abscessus complex (MABC) is a group of acid-fast, rapidly dividing non-tuberculous mycobacteria (NTM) that include a number of clinically important subspecies, including M. abscessus, M. bolletii, and M. massiliense. These organisms are prevalent in the environment and are primarily associated with human pulmonary or skin and skin structure infections (SSSI) but may cause more deep-seeded disseminated infections and bacteremia in the immunocompromised. Importantly, these NTM are resistant to most first-line anti-tuberculous agents and, due to intrinsic or acquired resistance, exhibit exceedingly low, variable, and geographically distinct susceptibilities to commonly used antibacterial agents including older tetracyclines, macrolides, aminoglycosides, cephalosporins, carbapenems, and sulfamethoxazole-trimethoprim. Omadacycline is a novel third-generation member of the tetracycline family of antibacterials that has recently been demonstrated to have potent anti-NTM effects and clinical efficacy against MABC, including M. abscessus. The purpose of this review is to present a comprehensive and up-to-date assessment on the body of literature on the role of omadacycline for M. abscessus infections. Specifically, the in vitro and in vivo microbiology, mechanisms of action, mechanisms of resistance, clinical pharmacokinetics, clinical efficacy, adverse effects, dosage and administration, and place in therapy of omadacycline in management of M. abscessus infections will be detailed.
Collapse
|
35
|
Outcomes of Short-Term Tigecycline-Containing Regimens for Mycobacterium abscessus Pulmonary Disease. Antimicrob Agents Chemother 2022; 66:e0077422. [PMID: 36165626 PMCID: PMC9578423 DOI: 10.1128/aac.00774-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Short-term intravenous tigecycline therapy during a 1-month initial phase may improve early microbiological response in patients with Mycobacterium abscessus pulmonary disease (PD). However, short-term use of tigecycline did not improve the long-term culture conversion rate of M. abscessus PD. Further studies on the efficacy of prolonged intravenous tigecycline-containing regimens are needed.
Collapse
|
36
|
Omadacycline Pharmacokinetics/Pharmacodynamics in the Hollow Fiber System Model and Potential Combination Regimen for Short Course Treatment of Mycobacterium kansasii Pulmonary Disease. Antimicrob Agents Chemother 2022; 66:e0068722. [PMID: 35976006 PMCID: PMC9487483 DOI: 10.1128/aac.00687-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The 12-month therapy duration for the treatment of Mycobacterium kansasii pulmonary disease calls for more efficacious drugs for better treatment outcomes and to shorten the therapy duration. We performed (i) omadacycline MIC with M. kansasii ATCC 12478 strain and 21 clinical isolates, (ii) dose-response study in the hollow fiber system model of M. kansasii (HFS-Mkn) with six human equivalent omadacycline daily doses to determine the optimal drug exposure for the maximal kill, and (iii) a second HFS-Mkn study to determine the efficacy of omadacycline (300 mg/day) plus moxifloxacin (600 mg/day) plus tedizolid (200 mg/day) combination regimen with standard regimen as comparator. GraphPad Prism was used for data analysis and graphing. MIC of the reference strain was 4 mg/L but ranged from 8 to 32 mg/L among the 21 clinical isolates. In the HFS-Mkn, the exposure required for 50% of the maximal effect (EC50) was an omadacycline area under the concentration-time curve to MIC (AUC0-24/MIC) ratio of 1.95. The optimal exposure was an AUC0-24/MIC of 3.05, which could be achieved with 300 mg/day clinical dose. The omadacycline-moxifloxacin-tedizolid combination sterilized the HFS-Mkn in 14 days with a linear-regression based kill rate of -0.309 ± 0.044 log10 CFU/mL/day compared to the kill rate of -0.084 ± 0.036log10 CFU/mL/day with the standard regimen or 3.7-times faster. Omadacycline has efficacy against M. kansasii and could be used at 300 mg/day in combination with moxifloxacin and tedizolid for the treatment of M. kansasii pulmonary diseases with the potential to shorten the currently recommended 12-month therapy duration.
Collapse
|
37
|
In Vitro Susceptibility Testing of Eravacycline against Nontuberculous Mycobacteria. Antimicrob Agents Chemother 2022; 66:e0068922. [PMID: 35943269 PMCID: PMC9487454 DOI: 10.1128/aac.00689-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) infections are increasing worldwide. Mycobacterium avium complex (MAC) and the M. abscessus species are the most commonly cultured NTM and treatment options are limited, especially for the M. abscessus species. In this study, the in vitro activity of eravacycline, a new tetracycline derivative, was tested against 110 clinical isolates of NTM. MIC testing was performed as recommended by the Clinical and Laboratory Standards Institute against 60 isolates of rapidly growing mycobacteria (RGM), of which ~70% were tetracycline resistant. These included M. abscessus subsp. abscessus (8 isolates), M. abscessus subsp. massiliense (5), M. chelonae (10), M. immunogenum (3), M. fortuitum group (20) including 12 doxycycline-resistant isolates, and M. mucogenicum group (10) including three doxycycline-resistant isolates. Due to trailing, eravacycline MICs were read at 80% and 100% inhibition. Eravacycline was active against all RGM species, with MIC50 ranges of ≤0.015 to 0.5 and ≤0.015 to 0.12 μg/mL for 100% and 80% inhibition, respectively. For M. abscessus subsp. abscessus, MIC50 values were 0.12 and 0.03 μg/mL with 100% and 80% inhibition, respectively. MICs for tigecycline were generally within 1 to 2 dilutions of the 100%-inhibition eravacycline MIC values. Fifty isolates of slowly growing mycobacteria (SGM) species, including 16 isolates of MAC, were also tested. While there was no trailing observed in most SGM, the eravacycline MICs were higher (MIC range of >8 μg/mL), except for M. kansasii and M. marinum which had MIC50 values of 1 μg/mL. This study supports further evaluation of eravacycline, including clinical trials for the development of RGM treatment regimens, especially for M. abscessus.
Collapse
|
38
|
Duah M, Beshay M. Omadacycline in first-line combination therapy for pulmonary Mycobacterium abscessus infection: A case series. Int J Infect Dis 2022; 122:953-956. [DOI: 10.1016/j.ijid.2022.06.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
|
39
|
Kumar K, Daley CL, Griffith DE, Loebinger MR. Management of Mycobacterium avium complex and Mycobacterium abscessus pulmonary disease: therapeutic advances and emerging treatments. Eur Respir Rev 2022; 31:210212. [PMID: 35140106 PMCID: PMC9488909 DOI: 10.1183/16000617.0212-2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) remains a challenging condition to diagnose and treat effectively. Treatment of NTM-PD is prolonged, frequently associated with adverse effects and has variable success. In this review, we consider the factors influencing clinicians when treating NTM-PD and discuss outcomes from key studies on the pharmacological management of Mycobacterium avium complex pulmonary disease and M. abscessus pulmonary disease. We highlight issues relating to treatment-related toxicity and provide an overview of repurposed and emerging therapies for NTM-PD.
Collapse
Affiliation(s)
- Kartik Kumar
- National Heart and Lung Institute, Imperial College London, London, UK
- Host Defence Unit, Dept of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, Dept of Medicine, National Jewish Health, Denver, CO, USA
- School of Medicine, University of Colorado, Aurora, CO, USA
| | - David E Griffith
- Division of Mycobacterial and Respiratory Infections, Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Michael R Loebinger
- National Heart and Lung Institute, Imperial College London, London, UK
- Host Defence Unit, Dept of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
40
|
|
41
|
Chandramohan D, Javeri H, Anstead GM. Septic arthritis due to Nocardia brasiliensis and a review of nocardiosis as a cause of arthritis. IDCases 2022; 29:e01590. [PMID: 35957806 PMCID: PMC9358448 DOI: 10.1016/j.idcr.2022.e01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Nocardia are implicated in several disease processes but are a rare cause of septic arthritis. Typically, the cause of Nocardia septic arthritis is dissemination from a pulmonary infection in an immunocompromised host. Herein we present a case of a 64-year-old male who had received a long course of prednisone for membranous nephropathy and developed a septic arthritis due to Nocardia brasiliensis. He was treated sequentially with trimethoprim-sulfamethoxazole and amoxicillin-clavulanate, linezolid and amoxicillin-clavulanate, tigecycline and amoxicillin-clavulanate, and omadacycline and amoxicillin-clavulanate. To our knowledge, only two prior cases of Nocardia brasiliensis septic arthritis without antecedent trauma to the joint or local skin breakdown have been reported. A review of the literature identified 19 other cases of Nocardia septic arthritis. This case reinforces the need to consider Nocardia infection in the differential diagnosis in the immunocompromised patient with concurrent pulmonary infection and septic arthritis.
Collapse
|
42
|
Chapagain M, Pasipanodya JG, Athale S, Bernal C, Trammell R, Howe D, Gumbo T. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1694-1705. [PMID: 35257162 PMCID: PMC9155607 DOI: 10.1093/jac/dkac068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives The standard of care (SOC) for the treatment of pulmonary Mycobacterium avium complex (MAC) disease (clarithromycin, rifabutin, and ethambutol) achieves sustained sputum conversion rates of only 54%. Thus, new treatments should be prioritized. Methods We identified the omadacycline MIC against one laboratory MAC strain and calculated drug half life in solution, which we compared with measured MAC doubling times. Next, we performed an omadacycline hollow fibre system model of intracellular MAC (HFS-MAC) exposure–effect study, as well as the three-drug SOC, using pharmacokinetics achieved in patient lung lesions. Data was analysed using bacterial kill slopes (γ-slopes) and inhibitory sigmoid Emax bacterial burden versus exposure analyses. Monte Carlo experiments (MCE) were used to identify the optimal omadacycline clinical dose. Results Omadacycline concentration declined in solution with a half-life of 27.7 h versus a MAC doubling time of 16.3 h, leading to artefactually high MICs. Exposures mediating 80% of maximal effect changed up to 8-fold depending on sampling day with bacterial burden versus exposure analyses, while γ-slope-based analyses gave a single robust estimate. The highest omadacycline monotherapy γ-slope was −0.114 (95% CI: −0.141 to −0.087) (r2 = 0.98) versus −0.114 (95% CI: −0.133 to −0.094) (r2 = 0.99) with the SOC. MCEs demonstrated that 450 mg of omadacycline given orally on the first 2 days followed by 300 mg daily would achieve the AUC0-24 target of 39.67 mg·h/L. Conclusions Omadacycline may be a potential treatment option for pulmonary MAC, possibly as a back-bone treatment for a new MAC regimen and warrants future study in treatment of this disease.
Collapse
Affiliation(s)
- Moti Chapagain
- Hollow Fiber System & Experimental Therapeutics Laboratory, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
| | - Jotam G. Pasipanodya
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
| | - Shruti Athale
- Hollow Fiber System & Experimental Therapeutics Laboratory, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
| | - Claude Bernal
- Praedicare Chemistry, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
| | - Rachel Trammell
- Praedicare Chemistry, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
| | - David Howe
- Hollow Fiber System & Experimental Therapeutics Laboratory, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
- Praedicare Chemistry, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
| | - Tawanda Gumbo
- Hollow Fiber System & Experimental Therapeutics Laboratory, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
- Quantitative Preclinical & Clinical Sciences Department, Praedicare Inc., 14830 Venture Drive, Dallas, Texas, USA
- Corresponding author. E-mail:
| |
Collapse
|
43
|
Potency of omadacycline against Mycobacteroides abscessus clinical isolates in vitro and in a mouse model of pulmonary infection. Antimicrob Agents Chemother 2021; 66:e0170421. [PMID: 34662184 PMCID: PMC8765394 DOI: 10.1128/aac.01704-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The incidence of nontuberculous mycobacterial diseases in the United States is rising and has surpassed that of tuberculosis. Most notable among the nontuberculous mycobacteria is Mycobacteroides abscessus, an emerging environmental opportunistic pathogen capable of causing chronic infections. M. abscessus disease is difficult to treat, and the current treatment recommendations include repurposed antibiotics, several of which are associated with undesirable side effects. In this study, we have evaluated the activity of omadacycline, a new tetracycline derivative, against M. abscessus using in vitro and in vivo approaches. Omadacycline exhibited an MIC90 of 0.5 µg/mL against a panel of 32 contemporary M. abscessus clinical isolates, several of which were resistant to antibiotics that are commonly used for treatment of M. abscessus disease. Omadacycline combined with clarithromycin, azithromycin, cefdinir, rifabutin, or linezolid also exhibited synergism against several M. abscessus strains and did not exhibit antagonism when combined with an additional nine antibiotics also commonly considered to treat M. abscessus disease. Concentration-dependent activity of omadacycline was observed in time-kill assessments. Efficacy of omadacycline was evaluated in a mouse model of lung infection against four M. abscessus strains. A dose equivalent to the 300-mg standard oral human dose was used. Compared to the untreated control group, within 4 weeks of treatment, 1 to 3 log10 fewer M. abscessus CFU were observed in the lungs of mice treated with omadacycline. Treatment outcome was biphasic, with bactericidal activity observed after the first 2 weeks of treatment against all four M. abscessus strains.
Collapse
|