1
|
de Lima Bessa G, Vitor RWDA, Lobo LMS, Rêgo WMF, de Souza GCA, Lopes REN, Costa JGL, Martins-Duarte ES. In vitro and in vivo susceptibility to sulfadiazine and pyrimethamine of Toxoplasma gondii strains isolated from Brazilian free wild birds. Sci Rep 2023; 13:7359. [PMID: 37147353 PMCID: PMC10162961 DOI: 10.1038/s41598-023-34502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023] Open
Abstract
Little is known about the existence of drug-resistant Toxoplasma gondii strains and their possible impact on clinic outcomes. To expand our knowledge about the existence of natural variations on drug susceptibility of T. gondii strains in Brazil, we evaluated the in vitro and in vivo susceptibility to sulfadiazine (SDZ) and pyrimethamine (PYR) of three atypical strains (Wild2, Wild3, and Wild4) isolated from free-living wild birds. In vitro susceptibility assay showed that the three strains were equally susceptible to SDZ and PYR but variations in the susceptibility were observed to SDZ plus PYR treatment. Variations in the proliferation rates in vitro and spontaneous conversion to bradyzoites were also accessed for all strains. Wild2 showed a lower cystogenesis capacity compared to Wild3 and Wild4. The in vivo analysis showed that while Wild3 was highly susceptible to all SDZ and PYR doses, and their combination, Wild2 and Wild4 showed low susceptibility to the lower doses of SDZ or PYR. Interestingly, Wild2 presented low susceptibility to the higher doses of SDZ, PYR and their combination. Our results suggest that the variability in treatment response by T. gondii isolates could possibly be related not only to drug resistance but also to the strain cystogenesis capacity.
Collapse
Affiliation(s)
- Gabriella de Lima Bessa
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luana Margarida Sabino Lobo
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wagner Martins Fontes Rêgo
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Carolina Alves de Souza
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rosálida Estevam Nazar Lopes
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Gatti Ladeia Costa
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Universidade Do Estado de Minas Gerais, Unidade Ibirité, Minas Gerais, Brazil
| | - Erica S Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
2
|
Prins HAB, Crespo R, Lungu C, Rao S, Li L, Overmars RJ, Papageorgiou G, Mueller YM, Stoszko M, Hossain T, Kan TW, Rijnders BJA, Bax HI, van Gorp ECM, Nouwen JL, de Vries-Sluijs TEMS, Schurink CAM, de Mendonça Melo M, van Nood E, Colbers A, Burger D, Palstra RJ, van Kampen JJA, van de Vijver DAMC, Mesplède T, Katsikis PD, Gruters RA, Koch BCP, Verbon A, Mahmoudi T, Rokx C. The BAF complex inhibitor pyrimethamine reverses HIV-1 latency in people with HIV-1 on antiretroviral therapy. SCIENCE ADVANCES 2023; 9:eade6675. [PMID: 36921041 PMCID: PMC10017042 DOI: 10.1126/sciadv.ade6675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Reactivation of the latent HIV-1 reservoir is a first step toward triggering reservoir decay. Here, we investigated the impact of the BAF complex inhibitor pyrimethamine on the reservoir of people living with HIV-1 (PLWH). Twenty-eight PLWH on suppressive antiretroviral therapy were randomized (1:1:1:1 ratio) to receive pyrimethamine, valproic acid, both, or no intervention for 14 days. The primary end point was change in cell-associated unspliced (CA US) HIV-1 RNA at days 0 and 14. We observed a rapid, modest, and significant increase in (CA US) HIV-1 RNA in response to pyrimethamine exposure, which persisted throughout treatment and follow-up. Valproic acid treatment alone did not increase (CA US) HIV-1 RNA or augment the effect of pyrimethamine. Pyrimethamine treatment did not result in a reduction in the size of the inducible reservoir. These data demonstrate that the licensed drug pyrimethamine can be repurposed as a BAF complex inhibitor to reverse HIV-1 latency in vivo in PLWH, substantiating its potential advancement in clinical studies.
Collapse
Affiliation(s)
- Henrieke A. B. Prins
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cynthia Lungu
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Letao Li
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ronald J. Overmars
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tanvir Hossain
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bart J. A. Rijnders
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hannelore I. Bax
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan L. Nouwen
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Theodora E. M. S. de Vries-Sluijs
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carolina A. M. Schurink
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mariana de Mendonça Melo
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Els van Nood
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - David Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Thibault Mesplède
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rob A. Gruters
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Birgit C. P. Koch
- Department of Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, University Medical Center, Utrecht, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
3
|
Bekier A, Węglińska L, Paneth A, Paneth P, Dzitko K. 4-Arylthiosemicarbazide derivatives as a new class of tyrosinase inhibitors and anti- Toxoplasma gondii agents. J Enzyme Inhib Med Chem 2021; 36:1145-1164. [PMID: 34074198 PMCID: PMC8174488 DOI: 10.1080/14756366.2021.1931164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report herein anti-proliferation effects of 4-arylthiosemicarbazides, with a cyclopentane substitution at N1 position, on highly virulent RH strain of Toxoplasma gondii. Among them, the highest in vitro anti-Toxoplasma activity was found with the meta-iodo derivative. Further experiments demonstrated inhibitory effects of thiosemicarbazides on tyrosinase (Tyr) activity, and good correlation was found between percentage of Tyr inhibition and IC50Tg. To confirm the concept that thiosemicarbazides are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites, the most potent Tyr inhibitors were tested for their efficacy of T. gondii growth inhibition. All of them significantly reduced the number of tachyzoites in the parasitophorous vacuoles (PVs) compared to untreated cells, as well as inhibited tachyzoites growth by impeding cell division. Collectively, these results indicate that compounds with the thiosemicarbazide scaffold are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites by deregulation of their crucial enzyme tyrosine hydroxylase (TyrH).
Collapse
Affiliation(s)
- Adrian Bekier
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Lidia Węglińska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland.,Institute Center for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Inhibitors of the Transcription Factor STAT3 Decrease Growth and Induce Immune Response Genes in Models of Malignant Pleural Mesothelioma (MPM). Cancers (Basel) 2020; 13:cancers13010007. [PMID: 33374980 PMCID: PMC7792575 DOI: 10.3390/cancers13010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma (MPM) is characterized by the lack of effective long-term treatments and highly prevalent drug resistance. The paucity of potential therapeutic targets has led to dismal prognosis. We have examined the functional role of the signal transducer and activator of transcription 3 (STAT3) transcription factor in MPM. Even though highly specific STAT3 inhibitors have not yet come to fruition, we performed experiments targeting STAT3 expression and subsequently supported these experiments with small molecule drugs that were previously validated to target STAT3-dependent activation mechanisms. These drugs are United States Food and Drug Administration (FDA)-approved and showed efficacy in preclinical models of MPM at concentrations that can safely be achieved in humans. We also identified genes that strongly support the essential role of STAT3 in cell growth and are consistent with a role of STAT3 in immune suppression. Overall, the results establish a central role for STAT3 in tumor growth and encourage further expedient development of STAT3 pathway inhibitors for clinical use. Abstract Malignant pleural mesothelioma (MPM) is an aggressive cancer defined by loss-of-function mutations with few therapeutic options. We examined the contribution of the transcription factor Signal transducer and activator of transcription 3 (STAT3) to cell growth and gene expression in preclinical models of MPM. STAT3 is activated in a variety of tumors and is thought to be required for the maintenance of cancer stem cells. Targeting STAT3 using specific small hairpin RNAs (shRNAs) or with the pharmacologic inhibitors atovaquone or pyrimethamine efficiently reduced cell growth in established cell lines and primary-derived lines while showing minimal effects in nontransformed LP9 mesothelial cells. Moreover, atovaquone significantly reduced viability and tumor growth in microfluidic cultures of primary MPM as well as in an in vivo xenotransplant model. Biological changes were linked to modulation of gene expression associated with STAT3 signaling, including cell cycle progression and altered p53 response. Reflecting the role of STAT3 in inducing localized immune suppression, using both atovaquone and pyrimethamine resulted in the modulation of immunoregulatory genes predicted to enhance an immune response, including upregulation of ICOSLG (Inducible T-Cell Costimulator Ligand or B7H2). Thus, our data strongly support a role for STAT3 inhibitors as anti-MPM therapeutics.
Collapse
|
5
|
Reiter-Owona I, Hlobil H, Enders M, Klarmann-Schulz U, Gruetzmacher B, Rilling V, Hoerauf A, Garweg JG. Sulfadiazine plasma concentrations in women with pregnancy-acquired compared to ocular toxoplasmosis under pyrimethamine and sulfadiazine therapy: a case-control study. Eur J Med Res 2020; 25:59. [PMID: 33228795 PMCID: PMC7686675 DOI: 10.1186/s40001-020-00458-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Dosing recommendations for the treatment of pregnancy-acquired toxoplasmosis are empirical and widely based on experimental data. There are no pharmacological data on pregnant women with acute Toxoplasma gondii infection under treatment with pyrimethamine (PY) and sulfadiazine (SA) and our study intends to tighten this gap. Methods In this retrospective case–control study, we included 89 pregnant women with primary Toxoplasma infection (PT) treated with PY (50 mg first dose, then 25 mg/day), SA (50 mg/kg of body weight/day), and folinic acid (10–15 mg per week). These were compared to a group of 17 women with acute ocular toxoplasmosis (OT) treated with an initial PY dose of 75 mg, thereafter 25 mg twice a day but on the same SA and folinic acid regimen. The exact interval between drug intake and blood sampling and co-medication had not been recorded. Plasma levels of PY and SA were determined 14 ± 4 days after treatment initiation using liquid chromatography–mass spectrometry and compared using the Mann–Whitney U test at a p < 0.05 level. Results In 23 PT patients (26%), SA levels were below 20 mg/l. Fifteen of these 23 patients (17% of all patients) in parallel presented with PY levels below 700 µg/l. Both drug concentrations differed remarkably between individuals and groups (PY: PT median 810 µg/l, 95% CI for the median [745; 917] vs. OT 1230 µg/l [780; 1890], p = 0.006; SA: PT 46.2 mg/l [39.9; 54.4] vs. OT 70.4 mg/l [52.4; 89], p = 0.015) despite an identical SA dosing scheme. Conclusions SA plasma concentrations were found in the median 34% lower in pregnant women with PT compared to OT patients and fell below a lower reference value of 50 mg/l in a substantial portion of PT patients. The interindividual variability of plasma concentrations in combination with systematically lower drug levels and possibly a lower compliance in pregnant women may thus account for a still not yet supportable transmission risk. Systematic drug-level testing in PT under PY/SA treatment deserves to be considered.
Collapse
Affiliation(s)
- Ingrid Reiter-Owona
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | | | - Martin Enders
- Labor Prof. Gisela Enders Und Kollegen, Stuttgart, Germany
| | - Ute Klarmann-Schulz
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Institute for Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany.,Deutsches Zentrum Für Infektionsforschung (DZIF) E. V., Braunschweig, Germany
| | - Barbara Gruetzmacher
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | | | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Deutsches Zentrum Für Infektionsforschung (DZIF) E. V., Braunschweig, Germany
| | - Justus G Garweg
- Swiss Eye Institute, Berner Augenklinik am Lindenhofspital, Bremgartenstrasse 119, CH-3012, Bern, Switzerland. .,Department of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Abstract
About one-sixth of the world's population is affected by a neglected tropical disease as defined by the World Health Organization and Center for Disease Control. Parasitic diseases comprise most of the neglected tropical disease list and they are causing enormous amounts of disability, morbidity, mortality, and healthcare costs worldwide. The burden of disease of the top five parasitic diseases has been estimated to amount to a total 23 million disability-adjusted life-years. Despite the massive health and economic impact, most drugs currently used for the treatment of parasitic diseases have been developed decades ago and insufficient novel drugs are being developed. The current review provides a compilation of the systemic and target-site pharmacokinetics of established antiparasitic drugs. Knowledge of the pharmacokinetic profile of drugs allows for the examination and possibly optimization of existing dosing schemes. Many symptoms of parasitic diseases are caused by parasites residing in different host tissues. Penetration of the antiparasitic drug into these tissues, the target site of infection, is a prerequisite for a successful treatment of the disease. Therefore, for the examination and improvement of established dosing regimens, not only the plasma but also the tissue pharmacokinetics of the drug have to be considered. For the current paper, almost 7000 scientific articles were identified and screened from which 429 were reviewed in detail and 100 were included in this paper. Systemic pharmacokinetics are available for most antiparasitic drugs but in many cases, not for all the relevant patient populations and only for single- or multiple-dose administration. Systemic pharmacokinetic data in patients with organ impairment and target-site pharmacokinetic data for relevant tissues and body fluids are mostly lacking. To improve the treatment of patients with parasitic diseases, research in these areas is urgently needed.
Collapse
Affiliation(s)
- Valentin Al Jalali
- Department of Clinical Pharmacology, Vienna University Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Vienna University Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Discovery of Potent and Selective Halogen-Substituted Imidazole-Thiosemicarbazides for Inhibition of Toxoplasma gondii Growth In Vitro via Structure-Based Design. Molecules 2019; 24:molecules24081618. [PMID: 31022878 PMCID: PMC6514996 DOI: 10.3390/molecules24081618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Employing a simple synthetic protocol, a series of highly effective halogen-substituted imidazole-thiosemicarbazides with anti-Toxoplasma gondii effects against the RH tachyzoites, much better than sulfadiazine, were obtained (IC50s 10.30—113.45 µg/mL vs. ~2721.45 µg/mL). The most potent of them, 12, 13, and 15, blocked the in vitro proliferation of T. gondii more potently than trimethoprim (IC50 12.13 µg/mL), as well. The results of lipophilicity studies collectively suggest that logP would be a rate-limiting factor for the anti-Toxoplasma activity of this class of compounds.
Collapse
|
8
|
Paneth A, Węglińska L, Bekier A, Stefaniszyn E, Wujec M, Trotsko N, Dzitko K. Systematic Identification of Thiosemicarbazides for Inhibition of Toxoplasma gondii Growth In Vitro. Molecules 2019; 24:molecules24030614. [PMID: 30744161 PMCID: PMC6384730 DOI: 10.3390/molecules24030614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/24/2023] Open
Abstract
One of the key stages in the development of new therapies in the treatment of toxoplasmosis is the identification of new non-toxic small molecules with high specificity to Toxoplasma gondii. In the search for such structures, thiosemicarbazide-based compounds have emerged as a novel and promising leads. Here, a series of imidazole-thiosemicarbazides with suitable properties for CNS penetration was evaluated to determine the structural requirements needed for potent anti-Toxoplasma gondii activity. The best 4-arylthiosemicarbazides 3 and 4 showed much higher potency when compared to sulfadiazine at concentrations that are non-toxic to the host cells, indicating a high selectivity of their anti-toxoplasma activity.
Collapse
Affiliation(s)
- Agata Paneth
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Lidia Węglińska
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Adrian Bekier
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Edyta Stefaniszyn
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Monika Wujec
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Nazar Trotsko
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
9
|
Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Tanzifi A, Aghayan SA, Daryani A. Drug Resistance in Toxoplasma gondii. Front Microbiol 2018; 9:2587. [PMID: 30420849 PMCID: PMC6215853 DOI: 10.3389/fmicb.2018.02587] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is a global protozoan parasite infecting up to one-third of the world population. Pyrimethamine (PYR) and sulfadiazine (SDZ) are the most widely used drugs for treatment of toxoplasmosis; however, several failure cases have been recorded as well; suggesting the existence of drug resistant strains. This review aims to give a systematic and comprehensive understanding of drug resistance in T. gondii including mechanisms of resistance and sites of drug action in parasite. Analogous amino acid substitutions in the Toxoplasma enzyme were identified to confer PYR resistance. Moreover, resistance to clindamycin, spiramycin, and azithromycin is encoded in the rRNA genes of T. gondii. However, T. gondii SDZ resistance mechanism has not been proved yet. Recently there has been a slight increase in SDZ resistance. That is why the majority of studies were carried out using SDZ. Six strains resistant to SDZ were found in clinical cases between 2013 and 2017 which among Brazilian T. gondii isolates, TgCTBr11, Ck3, and Pg1 were identified in human toxoplasmosis, as well as in livestock intended for human consumption. In conclusion, recent experimental studies in clinical cases have clearly shown that drug resistance in Toxoplasma is ongoing. Thus, establishing a more effective therapeutic scheme in the treatment of toxoplasmosis is critically needed. The emergence of T. gondii strains resistant to current drugs, reviewed here, represents a concern not only for treatment failure but also for increased clinical severity in immunocompromised patients. To improve the therapeutic outcome in patients, a greater understanding of the exact mechanisms of drug resistance in T. gondii should be developed. Thus, monitoring the presence of resistant parasites, in food products, would seem a prudent public health program.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asal Tanzifi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sargis A Aghayan
- Laboratory of Zoology, Research Institute of Biology, Yerevan State University, Yerevan, Armenia
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Rutaganira FU, Barks J, Dhason MS, Wang Q, Lopez MS, Long S, Radke JB, Jones NG, Maddirala AR, Janetka JW, El Bakkouri M, Hui R, Shokat KM, Sibley LD. Inhibition of Calcium Dependent Protein Kinase 1 (CDPK1) by Pyrazolopyrimidine Analogs Decreases Establishment and Reoccurrence of Central Nervous System Disease by Toxoplasma gondii. J Med Chem 2017; 60:9976-9989. [PMID: 28933846 DOI: 10.1021/acs.jmedchem.7b01192] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium dependent protein kinase 1 (CDPK1) is an essential enzyme in the opportunistic pathogen Toxoplasma gondii. CDPK1 controls multiple processes that are critical to the intracellular replicative cycle of T. gondii including secretion of adhesins, motility, invasion, and egress. Remarkably, CDPK1 contains a small glycine gatekeeper residue in the ATP binding pocket making it sensitive to ATP-competitive inhibitors with bulky substituents that complement this expanded binding pocket. Here we explored structure-activity relationships of a series of pyrazolopyrimidine inhibitors of CDPK1 with the goal of increasing selectivity over host enzymes, improving antiparasite potency, and improving metabolic stability. The resulting lead compound 24 exhibited excellent enzyme inhibition and selectivity for CDPK1 and potently inhibited parasite growth in vitro. Compound 24 was also effective at treating acute toxoplasmosis in the mouse, reducing dissemination to the central nervous system, and decreasing reactivation of chronic infection in severely immunocompromised mice. These findings provide proof of concept for the development of small molecule inhibitors of CDPK1 for treatment of CNS toxoplasmosis.
Collapse
Affiliation(s)
- Florentine U Rutaganira
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - Jennifer Barks
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Mary Savari Dhason
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Michael S Lopez
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - Shaojun Long
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Amarendar R Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| | - Majida El Bakkouri
- Structural Genomics Consortium, University of Toronto , MaRS South Tower, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Raymond Hui
- Structural Genomics Consortium, University of Toronto , MaRS South Tower, 101 College St, Toronto, ON M5G 1L7, Canada.,Toronto General Hospital Research Institute , 200 Elizabeth St., Toronto, ON M5G 2C4, Canada
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco , San Francisco, California 94158, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine , St. Louis, Missouri 63130, United States
| |
Collapse
|
11
|
Wohlfert EA, Blader IJ, Wilson EH. Brains and Brawn: Toxoplasma Infections of the Central Nervous System and Skeletal Muscle. Trends Parasitol 2017; 33:519-531. [PMID: 28483381 PMCID: PMC5549945 DOI: 10.1016/j.pt.2017.04.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is a widespread parasitic pathogen that infects over a third of the world's population. Following an acute infection, the parasite can persist within its mammalian host as intraneuronal or intramuscular cysts. Cysts will occasionally reactivate, and - depending on the host's immune status and site of reactivation - encephalitis or myositis can develop. Because these diseases have high levels of morbidity and can be lethal, it is important to understand how Toxoplasma traffics to these tissues, how the immune response controls parasite burden and contributes to tissue damage, and what mechanisms underlie neurological and muscular pathologies that toxoplasmosis patients present with. This review aims to summarize recent important developments addressing these critical topics.
Collapse
Affiliation(s)
- Elizabeth A Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
12
|
Kikuchi R, Peterkin VC, Chiou WJ, de Morais SM, Bow DAJ. Validation of a total IC50 method which enables in vitro assessment of transporter inhibition under semi-physiological conditions. Xenobiotica 2016; 47:825-832. [DOI: 10.1080/00498254.2016.1233372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ryota Kikuchi
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, IL, USA
| | - Vincent C. Peterkin
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, IL, USA
| | - William J. Chiou
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, IL, USA
| | - Sonia M. de Morais
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, IL, USA
| | - Daniel A. J. Bow
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc, North Chicago, IL, USA
| |
Collapse
|
13
|
Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Sci Rep 2016; 6:34448. [PMID: 27678060 PMCID: PMC5039622 DOI: 10.1038/srep34448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Aminopeptidases have emerged as new promising drug targets for the development of novel anti-parasitic drugs. An aspartyl aminopeptidase-like gene has been identified in the Toxoplasma gondii genome (TgAAP), although its function remains unknown. In this study, we characterized TgAAP and performed functional analysis of the gene product. Firstly, we expressed a functional recombinant TgAAP (rTgAAP) protein in Escherichia coli, and found that it required metal ions for activity and showed a substrate preference for N-terminal acidic amino acids Glu and Asp. Then, we evaluated the function and drug target potential of TgAAP using the CRISPR/Cas9 knockout system. Western blotting demonstrated the deletion of TgAAP in the knockout strain. Indirect immunofluorescence analysis showed that TgAAP was localized in the cytoplasm of the wild-type parasite, but was not expressed in the knockout strain. Phenotype analysis revealed that TgAAP knockout inhibited the attachment/invasion, replication, and substrate-specific activity in T. gondii. Finally, the activity of drug CID 23724194, previously described as targeting Plasmodium and malarial parasite AAP, was tested against rTgAAP and the parasite. Overall, TgAAP knockout affected the growth of T. gondii but did not completely abolish parasite replication and growth. Therefore, TgAAP may comprise a useful adjunct drug target of T. gondii.
Collapse
|
14
|
Morais FB, Arantes TEFE, Muccioli C. Current Practices in Ocular Toxoplasmosis: A Survey of Brazilian Uveitis Specialists. Ocul Immunol Inflamm 2016; 26:317-323. [PMID: 27598330 DOI: 10.1080/09273948.2016.1215471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To describe treatment practices for ocular toxoplasmosis among members of the Brazilian Uveitis Society. METHODS An online questionnaire sent to specialists, between October 2014 and March 2015. RESULTS Most respondents (67.9%) treat all active cases. Most specialists consider visual acuity <20/200 (88.2%), severe vitreous inflammation (94.1%), and ocular disease during acquired infection (88.2%) as absolute indications for treatment. Systemic steroids are associated with anti-toxoplasmic therapy in most cases by 50.9% of the respondents. For immunocompetent individuals, 57.4% of the respondents chose trimethoprim/sulfamethoxazole. Classical therapy (sulfadiazine/pyrimethamine) is preferred most for patients with central lesions (70.4%), immunosuppression (68.4%), acquired infection (70.4%), and atypical forms (74.1%). For patients with frequent relapses, 84.9% of the respondents preferred antibiotic prophylaxis. CONCLUSIONS Treatment patterns of ocular toxoplasmosis are not uniform among Brazilian specialists. Most specialists treat all cases of active retinochoroiditis. Typical cases are more frequently treated with trimethoprim/sulfamethoxazole. However, classical therapy is the regimen of choice when lesions are considered more severe.
Collapse
Affiliation(s)
- Fábio Barreto Morais
- a Universidade Federal de São Paulo - UNIFESP , Department of Ophthalmology , São Paulo , São Paulo , Brazil
| | | | - Cristina Muccioli
- a Universidade Federal de São Paulo - UNIFESP , Department of Ophthalmology , São Paulo , São Paulo , Brazil
| |
Collapse
|
15
|
Tommasino C, Gambardella L, Buoncervello M, Griffin RJ, Golding BT, Alberton M, Macchia D, Spada M, Cerbelli B, d'Amati G, Malorni W, Gabriele L, Giammarioli AM. New derivatives of the antimalarial drug Pyrimethamine in the control of melanoma tumor growth: an in vitro and in vivo study. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:137. [PMID: 27599543 PMCID: PMC5013574 DOI: 10.1186/s13046-016-0409-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/17/2016] [Indexed: 11/17/2022]
Abstract
Background The antimalarial drug Pyrimethamine has been suggested to exert an antitumor activity by inducing apoptotic cell death in cancer cells, including metastatic melanoma cells. However, the dose of Pyrimethamine to be considered as an anticancer agent appears to be significantly higher than the maximum dose used as an antiprotozoal drug. Methods Hence, a series of Pyrimethamine analogs has been synthesized and screened for their apoptosis induction in two cultured metastatic melanoma cell lines. One of these analogs, the Methylbenzoprim, was further analyzed to evaluate cell-cycle and the mechanisms of cell death. The effects of Methylbenzoprim were also analyzed in a severe combined immunodeficiency (SCID)-mouse xenotransplantation model. Results Low dose of Methylbenzoprim was capable of inducing cytotoxic activity and a potent growth-inhibitory effect by arresting cell cycle in S-phase in melanoma cells. Methylbenzoprim was also detected as powerful antineoplastic agents in SCID-mouse although used at very low dose and as a single agent. Conclusions Our screening approach led to the identification of a “low cost” newly synthesized drug (methylbenzoprim), which is able to act as an antineoplastic agent in vitro and in vivo, inhibiting melanoma tumor growth at very low concentrations. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0409-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiara Tommasino
- Department of Therapeutic Research and Medicine Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanita, 00161, Rome, Italy
| | - Lucrezia Gambardella
- Department of Therapeutic Research and Medicine Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanita, 00161, Rome, Italy
| | - Maria Buoncervello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roger J Griffin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Bernard T Golding
- Newcastle Cancer Centre, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Manuela Alberton
- Department of Therapeutic Research and Medicine Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanita, 00161, Rome, Italy
| | - Daniele Macchia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicine Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanita, 00161, Rome, Italy.
| | - Lucia Gabriele
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Giammarioli
- Department of Therapeutic Research and Medicine Evaluation, Section of Cell Aging and Degeneration, Istituto Superiore di Sanita, 00161, Rome, Italy
| |
Collapse
|
16
|
Oh J, Chung H, Park SI, Yi SJ, Jang K, Kim AH, Yoon J, Cho JY, Yoon SH, Jang IJ, Yu KS, Chung JY. Inhibition of the multidrug and toxin extrusion (MATE) transporter by pyrimethamine increases the plasma concentration of metformin but does not increase antihyperglycaemic activity in humans. Diabetes Obes Metab 2016; 18:104-8. [PMID: 26381793 DOI: 10.1111/dom.12577] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/29/2022]
Abstract
We hypothesized that the pharmacodynamic (PD) characteristics of metformin would change with inhibition of the multidrug and toxin extrusion (MATE) transporter, which mediates renal elimination of metformin. Twenty healthy male subjects received two doses (750/500 mg) of metformin, with and without 50 mg of pyrimethamine (a potent MATE inhibitor), with 1 week of washout in between each dose. The PD characteristics of metformin were assessed using oral glucose tolerance tests (OGTTs) before and after the metformin dose. Metformin concentrations in plasma and urine were determined using liquid chromatography-electrospray ionization-tandem mass spectrometry. When metformin was co-administered with pyrimethamine, its area under the concentration-time curve from 0 to 12 h was 2.58-fold greater (p < 0.05), whereas the antihyperglycaemic effects of metformin were decreased. The mean differences (90% confidence interval) in mean and maximum serum glucose concentrations and in 2-h-post-OGTT serum glucose concentration were -0.6 (-1, -0.2), -0.9 (-1.6, -0.3) and -0.5 (-1.1, 0.1) mmol/l, respectively. These findings indicate that the response to metformin is not only related to the plasma exposure of metformin but is also related to other factors, such as inhibition of uptake transporters and the gastrointestinal-based pharmacology of metformin.
Collapse
Affiliation(s)
- J Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - H Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - S-I Park
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - S J Yi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - K Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - A H Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - J Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - J-Y Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - S H Yoon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - I-J Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - K-S Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - J-Y Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
17
|
Pantothenic acid biosynthesis in the parasite Toxoplasma gondii: a target for chemotherapy. Antimicrob Agents Chemother 2014; 58:6345-53. [PMID: 25049241 DOI: 10.1128/aac.02640-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a major food pathogen and neglected parasitic infection that causes eye disease, birth defects, and fetal abortion and plays a role as an opportunistic infection in AIDS. In this study, we investigated pantothenic acid (vitamin B5) biosynthesis in T. gondii. Genes encoding the full repertoire of enzymes for pantothenate synthesis and subsequent metabolism to coenzyme A were identified and are expressed in T. gondii. A panel of inhibitors developed to target Mycobacterium tuberculosis pantothenate synthetase were tested and found to exhibit a range of values for inhibition of T. gondii growth. Two inhibitors exhibited lower effective concentrations than the currently used toxoplasmosis drug pyrimethamine. The inhibition was specific for the pantothenate pathway, as the effect of the pantothenate synthetase inhibitors was abrogated by supplementation with pantothenate. Hence, T. gondii encodes and expresses the enzymes for pantothenate synthesis, and this pathway is essential for parasite growth. These promising findings increase our understanding of growth and metabolism in this important parasite and highlight pantothenate synthetase as a new drug target.
Collapse
|
18
|
Hooft van Huijsduijnen R, Guy RK, Chibale K, Haynes RK, Peitz I, Kelter G, Phillips MA, Vennerstrom JL, Yuthavong Y, Wells TNC. Anticancer properties of distinct antimalarial drug classes. PLoS One 2013; 8:e82962. [PMID: 24391728 PMCID: PMC3877007 DOI: 10.1371/journal.pone.0082962] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022] Open
Abstract
We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.
Collapse
Affiliation(s)
| | - R. Kiplin Guy
- St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kelly Chibale
- Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | | | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jonathan L. Vennerstrom
- Department of Pharmaceutical Sciences, Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yongyuth Yuthavong
- BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | | |
Collapse
|
19
|
|
20
|
Larson ET, Ojo KK, Murphy RC, Johnson SM, Zhang Z, Kim JE, Leibly DJ, Fox AMW, Reid MC, Dale EJ, Perera BGK, Kim J, Hewitt SN, Hol WGJ, Verlinde CLMJ, Fan E, Van Voorhis WC, Maly DJ, Merritt EA. Multiple determinants for selective inhibition of apicomplexan calcium-dependent protein kinase CDPK1. J Med Chem 2012; 55:2803-10. [PMID: 22369268 DOI: 10.1021/jm201725v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diseases caused by the apicomplexan protozoans Toxoplasma gondii and Cryptosporidium parvum are a major health concern. The life cycle of these parasites is regulated by a family of calcium-dependent protein kinases (CDPKs) that have no direct homologues in the human host. Fortuitously, CDPK1 from both parasites contains a rare glycine gatekeeper residue adjacent to the ATP-binding pocket. This has allowed creation of a series of C3-substituted pyrazolopyrimidine compounds that are potent inhibitors selective for CDPK1 over a panel of human kinases. Here we demonstrate that selectivity is further enhanced by modification of the scaffold at the C1 position. The explanation for this unexpected result is provided by crystal structures of the inhibitors bound to CDPK1 and the human kinase c-SRC. Furthermore, the insight gained from these studies was applied to transform an alternative ATP-competitive scaffold lacking potency and selectivity for CDPK1 into a low nanomolar inhibitor of this enzyme with no activity against SRC.
Collapse
Affiliation(s)
- Eric T Larson
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ojo KK, Larson ET, Keyloun KR, Castaneda LJ, Derocher AE, Inampudi KK, Kim JE, Arakaki TL, Murphy RC, Zhang L, Napuli AJ, Maly DJ, Verlinde CLMJ, Buckner FS, Parsons M, Hol WGJ, Merritt EA, Van Voorhis WC. Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors. Nat Struct Mol Biol 2010; 17:602-7. [PMID: 20436472 PMCID: PMC2896873 DOI: 10.1038/nsmb.1818] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 03/05/2010] [Indexed: 11/09/2022]
Abstract
New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to BKIs. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable.
Collapse
Affiliation(s)
- Kayode K Ojo
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
In vitro susceptibility of various genotypic strains of Toxoplasma gondii to pyrimethamine, sulfadiazine, and atovaquone. Antimicrob Agents Chemother 2008; 52:1269-77. [PMID: 18212105 DOI: 10.1128/aac.01203-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfadiazine, pyrimethamine, and atovaquone are widely used for the treatment of severe toxoplasmosis. Their in vitro activities have been almost exclusively demonstrated on laboratory strains belonging to genotype I. We determined the in vitro activities of these drugs against 17 strains of Toxoplasma gondii belonging to various genotypes and examined the correlations among 50% inhibitory concentrations (IC50s), growth kinetics, strain genotypes, and mutations on drug target genes. Growth kinetics were determined in THP-1 cell cultures using real-time PCR. IC50s were determined in MRC-5 cell cultures using a T. gondii-specific enzyme-linked immunosorbent assay performed on cultures. Mutations in dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and cytochrome b genes were determined by sequencing. Pyrimethamine IC50s ranged between 0.07 and 0.39 mg/liter, with no correlation with the strain genotype but a significant correlation with growth kinetics. Several mutations found on the DHFR gene were not linked to lower susceptibility. Atovaquone IC50s were in a narrow range of concentrations (mean, 0.06 +/- 0.02 mg/liter); no mutation was found on the cytochrome b gene. IC50s for sulfadiazine ranged between 3 and 18.9 mg/liter for 13 strains and were >50 mg/liter for three strains. High IC50s were not correlated to strain genotypes or growth kinetics. A new mutation of the DHPS gene was demonstrated in one of these strains. In conclusion, we found variability in the susceptibilities of T. gondii strains to pyrimethamine and atovaquone, with no evidence of drug resistance. A higher variability was found for sulfadiazine, with a possible resistance of three strains. No relationship was found between drug susceptibility and strain genotype.
Collapse
|
23
|
Corvaisier S, Charpiat B, Mounier C, Wallon M, Leboucher G, Al Kurdi M, Chaulet JF, Peyron F. Population pharmacokinetics of pyrimethamine and sulfadoxine in children treated for congenital toxoplasmosis. Antimicrob Agents Chemother 2004; 48:3794-800. [PMID: 15388436 PMCID: PMC521916 DOI: 10.1128/aac.48.10.3794-3800.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The population pharmacokinetics of pyrimethamine (PYR) and sulfadoxine (SDX) for a group of 32 children with congenital toxoplasmosis was investigated by nonparametric modeling analysis. A one-compartment model was used as the structural model, and individual pharmacokinetic parameters were estimated by Bayesian modeling. PYR (1.25 mg/kg of body weight) and SDX (25 mg/kg) were administered orally every 10 days for 1 year, with adjustment of the dose to body weight every 3 months. Drug concentrations were measured by high-performance liquid chromatography. A total of 101 measurements in serum were available for both drugs. Mean absorption rate constants, volumes of distribution, elimination rate constants, and half-lives were 0.915 h(-1), 4.379 liters/kg, 0.00839 h(-1), and 5.5 days for PYR and 1.659 h(-1), 0.392 liters/kg, 0.00526 h(-1), and 6.6 days for SDX, respectively. Wide interindividual variability was observed. The estimated minimum and maximum concentrations of PYR in serum differed 8- and 25-fold among patients, respectively, and those of SDX differed 4- and 5-fold, respectively. Increases in the concentration of PYR were observed for eight children, and increases in the SDX concentration were observed for seven children. Serum PYR-SDX concentrations are unpredictable even when the dose is standardized for body weight. The concentrations of the PYR-SDX combination that are most efficacious for children have not yet been established. A model such as ours, associated with long-term follow-up, is needed to study the correlation between exposure to these two drugs and clinical outcome in children.
Collapse
Affiliation(s)
- Stéphane Corvaisier
- Department of Pharmacy, Croix-Rousse Hospital, 103 Grande Rue de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Reynolds MG, Oh J, Roos DS. In vitro generation of novel pyrimethamine resistance mutations in the Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother 2001; 45:1271-7. [PMID: 11257045 PMCID: PMC90454 DOI: 10.1128/aac.45.4.1271-1277.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrimethamine is a potent inhibitor of dihydrofolate reductase and is widely used in the treatment of opportunistic infections caused by the protozoan parasite Toxoplasma gondii. In order to assess the potential role of dhfr sequence polymorphisms in drug treatment failures, we examined the dhfr-ts genes of representative isolates for T. gondii virulence types I, II, and III. These strains exhibit differences in their sensitivities to pyrimethamine but no differences in predicted dhfr-ts protein sequences. To assess the potential for pyrimethamine-resistant dhfr mutants to emerge, three drug-sensitive variants of the T. gondii dhfr-ts gene (the wild-type T. gondii sequence and two mutants engineered to reflect polymorphisms observed in drug-sensitive Plasmodium falciparum) were subjected to random mutagenesis and transfected into either wild-type T. gondii parasites or dhfr-deficient Saccharomyces cerevisiae under pyrimethamine selection. Three resistance mutations were identified, at amino acid residues 25 (Trp-->Arg), 98 (Leu-->Ser), and 134 (Leu-->His).
Collapse
Affiliation(s)
- M G Reynolds
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|