1
|
Zhang D, Xie Y, Cao J, Huang L, Fan W. Enteroviral 3C protease cleaves N4BP1 to impair the host inflammatory response. J Virol 2025; 99:e0175824. [PMID: 39655957 PMCID: PMC11784292 DOI: 10.1128/jvi.01758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025] Open
Abstract
Enteroviral 3C protease (3Cpro) is an essential enzyme for viral replication and is responsible for combating the host anti-viral immune response by targeting cellular proteins for cleavage. The identification and characterization of 3Cpro substrates will contribute to our understanding of viral pathogenesis. In this study, we performed a motif search for 3Cpro substrates in the human protein database using FIMO, which refers to a common cleavage sequence of 3Cpro. We identified and characterized NEDD4-binding protein 1 (N4BP1), a key negative regulator of the NF-κB pathway, as a novel 3Cpro substrate. N4BP1 is cleaved at residue Q816 by 3Cpro from several human enteroviruses, resulting in the loss of its ability to regulate tumor necrosis factor alpha-activated NF-κB signaling. In addition, we found that mouse N4BP1, which has a threonine at the P1' site, is resistant to human enteroviral 3Cpro cleavage. However, rodent enteroviral 3Cpro derived from encephalomyocarditis virus (EMCV) can cleave both human and mouse N4BP1 at a species-specific site. By combining bioinformatic, biochemical, and cell biological approaches, we identified and characterized N4BP1 as a novel substrate of enteroviral 3Cpro. These findings provide valuable insights into the interplay between 3Cpro, its substrates, and viral pathogenesis. IMPORTANCE Targeting cellular proteins for cleavage by enteroviral 3Cpro is a conserved strategy used by enteroviruses to promote viral replication. While the cleavage of certain host proteins by 3Cpro may not affect viral replication, it is strongly associated with the pathogenesis of viral infection. In this study, we identified and characterized N4BP1, which plays such a role, using a combination of bioinformatic, biochemical, and cell biological approaches. Our data show that multiple 3Cpros cleave N4BP1 at residue Q816 and that cleavage of endogenous N4BP1 can occur during viral infection. N4BP1 has no effect on coxsackievirus B3 replication, but 3Cpro-induced N4BP1 cleavage abolishes its regulatory function in NF-κB signaling. We also show that mouse N4bp1 resists human enteroviral 3Cpro cleavage. In contrast, rodent enteroviral EMCV 3Cpro can target human and mouse N4BP1 for cleavage at different residues, which indicates that future investigations are needed to elucidate the potential mechanisms involved.
Collapse
Affiliation(s)
- Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisu Huang
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Azzolino VN, Shaqra AM, Ali A, Kurt Yilmaz N, Schiffer CA. Structural Analysis of Inhibitor Binding to Enterovirus-D68 3C Protease. Viruses 2025; 17:75. [PMID: 39861864 PMCID: PMC11768739 DOI: 10.3390/v17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations. For other antivirals where resistance has been a challenge, we have demonstrated that the likelihood of resistance can be minimized by designing inhibitors that leverage the evolutionary constraints of the target. Here, we characterize a series of 3C inhibitors against EV68-3C protease through enzyme inhibition, protein crystallography, and structural analysis. We have determined and analyzed three high-resolution inhibitor-bound crystal structures of EV68-3C protease, which revealed possible sites of resistance mutations, a key structural water molecule conserved during ligand binding, and the conformational flexibility of the catalytic histidine H40. This structural analysis combined with enzymatic assays provides insights for the rational design of inhibitors that are robust against resistance toward developing antiviral treatments for EV68 infections.
Collapse
Affiliation(s)
| | | | | | | | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (V.N.A.); (A.M.S.); (A.A.); (N.K.Y.)
| |
Collapse
|
3
|
Kalam N, Balasubramaniam V. Emerging Therapeutics in the Fight Against EV-D68: A Review of Current Strategies. Influenza Other Respir Viruses 2024; 18:e70064. [PMID: 39702696 PMCID: PMC11659119 DOI: 10.1111/irv.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
Enterovirus-D68 (EV-D68) was first identified in 1962 in pediatric patients with acute respiratory conditions in California, USA (US). From the 1970s to 2005, EV-D68 was underestimated due to limited data and serotyping methods. In 2014, the United States experienced outbreaks of acute flaccid myelitis (AFM) in children EV-D68 positive. WIN-like compounds (pleconaril, pocapavir, and vapendavir) bind to the virus capsid and have been tested against various enteroviruses (EVs) in clinical trials. However, these compounds encountered issues with resistance and adverse effects, which impeded their approval by the Food and Drug Administration (FDA). Presently, the medical field lacks FDA-approved antiviral treatments or vaccines for EV-D68. Ongoing research efforts are dedicated to identifying viable therapeutics to address EV-D68 infections. This review explores the current advancements in antiviral therapies and potential therapeutics to mitigate the significant impact of EV-D68 infection control.
Collapse
Affiliation(s)
- Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| |
Collapse
|
4
|
Xie H, Rhoden EE, Liu HM, Ogunsemowo F, Mainou BA, Burke RM, Burns CC. Antiviral Development for the Polio Endgame: Current Progress and Future Directions. Pathogens 2024; 13:969. [PMID: 39599522 PMCID: PMC11597170 DOI: 10.3390/pathogens13110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
As the world is approaching the eradication of wild poliovirus serotype 1, the last of the three wild types, the question of how to maintain a polio-free world becomes imminent. To mitigate the risk of sporadic vaccine-associated paralytic polio (VAPP) caused by oral polio vaccines (OPVs) that are routinely used in global immunization programs, the Polio Antivirals Initiative (PAI) was established in 2006. The primary goal of the PAI is to facilitate the discovery and development of antiviral drugs to stop the excretion of immunodeficiency-associated vaccine-derived poliovirus (iVDPV) in B cell-deficient individuals. This review summarizes the major progress that has been made in the development of safe and effective poliovirus antivirals and highlights the candidates that have shown promising results in vitro, in vivo, and in clinical trials.
Collapse
Affiliation(s)
- Hang Xie
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Eric E. Rhoden
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Hong-Mei Liu
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Folake Ogunsemowo
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | - Bernardo A. Mainou
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| | | | - Cara C. Burns
- Poliovirus & Picornavirus Branch, Division of Viral Diseases, National Center for Immunization and Other Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (E.E.R.); (H.-M.L.); (F.O.); (B.A.M.); (C.C.B.)
| |
Collapse
|
5
|
Azzolino VN, Shaqra AM, Ali A, Kurt Yilmaz N, Schiffer CA. Elucidating the Substrate Envelope of Enterovirus 68-3C Protease: Structural Basis of Specificity and Potential Resistance. Viruses 2024; 16:1419. [PMID: 39339895 PMCID: PMC11437433 DOI: 10.3390/v16091419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Enterovirus-D68 (EV68) has emerged as a global health concern over the last decade with severe symptomatic infections resulting in long-lasting neurological deficits and death. Unfortunately, there are currently no FDA-approved antiviral drugs for EV68 or any other non-polio enterovirus. One particularly attractive class of potential drugs are small molecules inhibitors, which can target the conserved active site of EV68-3C protease. For other viral proteases, we have demonstrated that the emergence of drug resistance can be minimized by designing inhibitors that leverage the evolutionary constraints of substrate specificity. However, the structural characterization of EV68-3C protease bound to its substrates has been lacking. Here, we have determined the substrate specificity of EV68-3C protease through molecular modeling, molecular dynamics (MD) simulations, and co-crystal structures. Molecular models enabled us to successfully characterize the conserved hydrogen-bond networks between EV68-3C protease and the peptides corresponding to the viral cleavage sites. In addition, co-crystal structures we determined have revealed substrate-induced conformational changes of the protease which involved new interactions, primarily surrounding the S1 pocket. We calculated the substrate envelope, the three-dimensional consensus volume occupied by the substrates within the active site. With the elucidation of the EV68-3C protease substrate envelope, we evaluated how 3C protease inhibitors, AG7088 and SG-85, fit within the active site to predict potential resistance mutations.
Collapse
Affiliation(s)
| | | | | | | | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (V.N.A.); (A.M.S.); (A.A.); (N.K.Y.)
| |
Collapse
|
6
|
Hayashi T, Kobayashi S, Hirano J, Murakami K. Human norovirus cultivation systems and their use in antiviral research. J Virol 2024; 98:e0166323. [PMID: 38470106 PMCID: PMC11019851 DOI: 10.1128/jvi.01663-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of de novo HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Kim Y, Pool E, Kim E, Dampalla CS, Nguyen HN, Johnson DK, Lovell S, Groutas WC, Chang KO. Potent small molecule inhibitors against the 3C protease of foot-and-mouth disease virus. Microbiol Spectr 2024; 12:e0337223. [PMID: 38466127 PMCID: PMC10986521 DOI: 10.1128/spectrum.03372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Emma Pool
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Eunji Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
8
|
G Vishakantegowda A, Hwang D, Chakrasali P, Jung E, Lee JY, Shin JS, Jung YS. Highly potent and selective phosphatidylinositol 4-kinase IIIβ inhibitors as broad-spectrum anti-rhinoviral agents. RSC Med Chem 2024; 15:704-719. [PMID: 38389877 PMCID: PMC10880896 DOI: 10.1039/d3md00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 02/24/2024] Open
Abstract
Human rhinoviruses (hRVs) cause upper and lower respiratory tract infections and exacerbate asthma and chronic obstructive pulmonary disease. hRVs comprise more than 160 strains with considerable genetic variation. Their high diversity and strain-specific interactions with antisera hinder the development of anti-hRV therapeutic agents. Phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) is a key enzyme in the phosphoinositide signalling pathway that is crucial for the replication and survival of various viruses. We identified novel PI4KIIIβ inhibitors, N-(4-methyl-5-arylthiazol)-2-amide derivatives, by generating a hit compound, 1a, from the high-throughput screening of a chemical library, followed by the optimization study of 1a. Inhibitor 7e exhibited the highest activity (EC50 = 0.008, 0.0068, and 0.0076 μM for hRV-B14, hRV-A16, and hRV-A21, respectively) and high toxicity (CC50 = 6.1 μM). Inhibitor 7f showed good activity and low toxicity and provided the highest selectivity index (SI ≥ 4638, >3116, and >2793 for hRV-B14, hRV-A16, and hRV-A21, respectively). Furthermore, 7f showed broad-spectrum activities against various hRVs, coxsackieviruses, and other enteroviruses, such as EV-A71 and EV-D68. The binding mode of the inhibitors was investigated using 7f, and the experimental results of plaque reduction, replicon and cytotoxicity, and time-of-drug-addition assays suggested that 7f acts as a PI4KIIIβ inhibitor. The kinase inhibition activity of this series of compounds against PI4KIIIα and PI4KIIIβ was assessed, and 7f demonstrated kinase inhibition activity with an IC50 value of 0.016 μM for PI4KIIIβ, but not for PI4KIIIα (>10 μM). Therefore, 7f represents a highly potent and selective PI4KIIIβ inhibitor for the further development of antiviral therapy against hRVs or other enteroviruses.
Collapse
Affiliation(s)
- Avinash G Vishakantegowda
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| | - Dasom Hwang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University Cheongju 28644 Republic of Korea
| | - Prashant Chakrasali
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Eunhye Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Joo-Youn Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Young-Sik Jung
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology Daejeon 34113 Republic of Korea
| |
Collapse
|
9
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
10
|
Sahoo S, Lee HK, Shin D. Structure-based virtual screening and molecular dynamics studies to explore potential natural inhibitors against 3C protease of foot-and-mouth disease virus. Front Vet Sci 2024; 10:1340126. [PMID: 38298458 PMCID: PMC10827980 DOI: 10.3389/fvets.2023.1340126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly infectious animal disease caused by foot-and-mouth disease virus (FMDV) and primarily infects cloven-hoofed animals such as cattle, sheep, goats, and pigs. It has become a significant health concern in global livestock industries because of diverse serotypes, high mutation rates, and contagious nature. There is no specific antiviral treatment available for FMD. Hence, based on the importance of 3C protease in FMDV viral replication and pathogenesis, we have employed a structure-based virtual screening method by targeting 3C protease with a natural compounds dataset (n = 69,040) from the InterBioScreen database. Virtual screening results identified five potential compounds, STOCK1N-62634, STOCK1N-96109, STOCK1N-94672, STOCK1N-89819, and STOCK1N-80570, with a binding affinity of -9.576 kcal/mol, -8.1 kcal/mol, -7.744 kcal/mol, -7.647 kcal/mol, and - 7.778 kcal/mol, respectively. The compounds were further validated through physiochemical properties and density functional theory (DFT). Subsequently, the comparative 300-ns MD simulation of all five complexes exhibited overall structural stability from various MD analyses such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), H-bonds, principal component analysis (PCA), and free energy landscape (FEL). Furthermore, MM-PBSA calculation suggests that all five compounds, particularly STOCK1N-62634, STOCK1N-96109, and STOCK1N-94672, can be considered as potential inhibitors because of their strong binding affinity toward 3C protease. Thus, we hope that these identified compounds can be studied extensively to develop natural therapeutics for the better management of FMD.
Collapse
Affiliation(s)
- Sthitaprajna Sahoo
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hak-Kyo Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
11
|
Ren P, Li S, Wang S, Zhang X, Bai F. Computer-Aided Prediction of the Interactions of Viral Proteases with Antiviral Drugs: Antiviral Potential of Broad-Spectrum Drugs. Molecules 2023; 29:225. [PMID: 38202808 PMCID: PMC10780089 DOI: 10.3390/molecules29010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Human society is facing the threat of various viruses. Proteases are promising targets for the treatment of viral infections. In this study, we collected and profiled 170 protease sequences from 125 viruses that infect humans. Approximately 73 of them are viral 3-chymotrypsin-like proteases (3CLpro), and 11 are pepsin-like aspartic proteases (PAPs). Their sequences, structures, and substrate characteristics were carefully analyzed to identify their conserved nature for proposing a pan-3CLpro or pan-PAPs inhibitor design strategy. To achieve this, we used computational prediction and modeling methods to predict the binding complex structures for those 73 3CLpro with 4 protease inhibitors of SARS-CoV-2 and 11 protease inhibitors of HCV. Similarly, the complex structures for the 11 viral PAPs with 9 protease inhibitors of HIV were also obtained. The binding affinities between these compounds and proteins were also evaluated to assess their pan-protease inhibition via MM-GBSA. Based on the drugs targeting viral 3CLpro and PAPs, repositioning of the active compounds identified several potential uses for these drug molecules. As a result, Compounds 1-2, modified based on the structures of Ray1216 and Asunaprevir, indicate potential inhibition of DENV protease according to our computational simulation results. These studies offer ideas and insights for future research in the design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Pengxuan Ren
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shiwei Li
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Shihang Wang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Xianglei Zhang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
| | - Fang Bai
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (P.R.); (S.L.); (S.W.)
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
12
|
Song JH, Mun SH, Yang H, Kwon YS, Kim SR, Song MY, Ham Y, Choi HJ, Baek WJ, Cho S, Ko HJ. Antiviral Mechanisms of Saucerneol from Saururus chinensis against Enterovirus A71, Coxsackievirus A16, and Coxsackievirus B3: Role of Mitochondrial ROS and the STING/TKB-1/IRF3 Pathway. Viruses 2023; 16:16. [PMID: 38275951 PMCID: PMC10821076 DOI: 10.3390/v16010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Enterovirus A71 (EV71), coxsackievirus A16 (CVA16), and coxsackievirus B3 (CVB3) are pathogenic members of the Picornaviridae family that cause a range of diseases, including severe central nervous system complications, myocarditis, and pancreatitis. Despite the considerable public health impact of these viruses, no approved antiviral treatments are currently available. In the present study, we confirmed the potential of saucerneol, a compound derived from Saururus chinensis, as an antiviral agent against EV71, CVA16, and CVB3. In the in vivo model, saucerneol effectively suppressed CVB3 replication in the pancreas and alleviated virus-induced pancreatitis. The antiviral activity of saucerneol is associated with increased mitochondrial ROS (mROS) production. In vitro inhibition of mROS generation diminishes the antiviral efficacy of saucerneol. Moreover, saucerneol treatment enhanced the phosphorylation of STING, TBK-1, and IRF3 in EV71- and CVA16-infected cells, indicating that its antiviral effects were mediated through the STING/TBK-1/IRF3 antiviral pathway, which was activated by increased mROS production. Saucerneol is a promising natural antiviral agent against EV71, CVA16, and CVB3 and has potential against virus-induced pancreatitis and myocarditis. Further studies are required to assess its safety and efficacy, which is essential for the development of effective antiviral strategies against these viruses.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Hyeon Mun
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Heejung Yang
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Yong Soo Kwon
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Seong-Ryeol Kim
- Division of Acute Viral Diseases, Centers for Emerging Virus Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea;
| | - Min-young Song
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
| | - Youngwook Ham
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hwa-Jung Choi
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Won-Jin Baek
- Department of Beauty Art, Youngsan University, 142 Bansong Beltway, Busan 48015, Republic of Korea; (H.-J.C.); (W.-J.B.)
| | - Sungchan Cho
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (KUST), Daejeon 34113, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; (J.-H.S.); (S.-H.M.); (H.Y.); (M.-y.S.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
13
|
Doherty JS, Kirkegaard K. Differential inhibition of intra- and inter-molecular protease cleavages by antiviral compounds. J Virol 2023; 97:e0092823. [PMID: 38047713 PMCID: PMC10734437 DOI: 10.1128/jvi.00928-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Most protease-targeted antiviral development evaluates the ability of small molecules to inhibit the cleavage of artificial substrates. However, before they can cleave any other substrates, viral proteases need to cleave themselves out of the viral polyprotein in which they have been translated. This can occur either intra- or inter-molecularly. Whether this process occurs intra- or inter-molecularly has implications for the potential for precursors to accumulate and for the effectiveness of antiviral drugs. We argue that evaluating candidate antivirals for their ability to block these cleavages is vital to drug development because the buildup of uncleaved precursors can be inhibitory to the virus and potentially suppress the selection of drug-resistant variants.
Collapse
Affiliation(s)
| | - Karla Kirkegaard
- Department of Genetics, Stanford University, Palo Alto, California, USA
- Department of Microbiology and Immunology, Stanford University, Palo Alto, California, USA
| |
Collapse
|
14
|
Laajala M, Zwaagstra M, Martikainen M, Nekoua MP, Benkahla M, Sane F, Gervais E, Campagnola G, Honkimaa A, Sioofy-Khojine AB, Hyöty H, Ojha R, Bailliot M, Balistreri G, Peersen O, Hober D, Van Kuppeveld F, Marjomäki V. Vemurafenib Inhibits Acute and Chronic Enterovirus Infection by Affecting Cellular Kinase Phosphatidylinositol 4-Kinase Type IIIβ. Microbiol Spectr 2023; 11:e0055223. [PMID: 37436162 PMCID: PMC10433971 DOI: 10.1128/spectrum.00552-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Enteroviruses are one of the most abundant viruses causing mild to serious acute infections in humans and also contributing to chronic diseases like type 1 diabetes. Presently, there are no approved antiviral drugs against enteroviruses. Here, we studied the potency of vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, as an antiviral against enteroviruses. We showed that vemurafenib prevented enterovirus translation and replication at low micromolar dosage in an RAF/MEK/ERK-independent manner. Vemurafenib was effective against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect was related to a cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevented infection efficiently in acute cell models, eradicated infection in a chronic cell model, and lowered virus amounts in pancreas and heart in an acute mouse model. Altogether, instead of acting through the RAF/MEK/ERK pathway, vemurafenib affects the cellular PI4KB and, hence, enterovirus replication, opening new possibilities to evaluate further the potential of vemurafenib as a repurposed drug in clinical care. IMPORTANCE Despite the prevalence and medical threat of enteroviruses, presently, there are no antivirals against them. Here, we show that vemurafenib, an FDA-approved RAF kinase inhibitor for treating BRAFV600E mutant-related melanoma, prevents enterovirus translation and replication. Vemurafenib shows efficacy against group A, B, and C enteroviruses, as well as rhinovirus, but not parechovirus or more remote viruses such as Semliki Forest virus, adenovirus, and respiratory syncytial virus. The inhibitory effect acts through cellular phosphatidylinositol 4-kinase type IIIβ (PI4KB), which has been shown to be important in the formation of enteroviral replication organelles. Vemurafenib prevents infection efficiently in acute cell models, eradicates infection in a chronic cell model, and lowers virus amounts in pancreas and heart in an acute mouse model. Our findings open new possibilities to develop drugs against enteroviruses and give hope for repurposing vemurafenib as an antiviral drug against enteroviruses.
Collapse
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Marleen Zwaagstra
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mari Martikainen
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | | | - Mehdi Benkahla
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Emily Gervais
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Grace Campagnola
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anni Honkimaa
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Amir-Babak Sioofy-Khojine
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie Bailliot
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Olve Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France
| | - Frank Van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
15
|
von Delft A, Hall MD, Kwong AD, Purcell LA, Saikatendu KS, Schmitz U, Tallarico JA, Lee AA. Accelerating antiviral drug discovery: lessons from COVID-19. Nat Rev Drug Discov 2023; 22:585-603. [PMID: 37173515 PMCID: PMC10176316 DOI: 10.1038/s41573-023-00692-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a wave of rapid and collaborative drug discovery efforts took place in academia and industry, culminating in several therapeutics being discovered, approved and deployed in a 2-year time frame. This article summarizes the collective experience of several pharmaceutical companies and academic collaborations that were active in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral discovery. We outline our opinions and experiences on key stages in the small-molecule drug discovery process: target selection, medicinal chemistry, antiviral assays, animal efficacy and attempts to pre-empt resistance. We propose strategies that could accelerate future efforts and argue that a key bottleneck is the lack of quality chemical probes around understudied viral targets, which would serve as a starting point for drug discovery. Considering the small size of the viral proteome, comprehensively building an arsenal of probes for proteins in viruses of pandemic concern is a worthwhile and tractable challenge for the community.
Collapse
Affiliation(s)
- Annette von Delft
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, National Institute for Health Research, University of Oxford, Oxford, UK.
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | | - Alpha A Lee
- PostEra, Inc., Cambridge, MA, USA.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Zhang J, Jiang Y, Wu C, Zhou D, Gong J, Zhao T, Jin Z. Development of FRET and Stress Granule Dual-Based System to Screen for Viral 3C Protease Inhibitors. Molecules 2023; 28:molecules28073020. [PMID: 37049786 PMCID: PMC10096049 DOI: 10.3390/molecules28073020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
3C proteases (3Cpros) of picornaviruses and 3C-like proteases (3CLpros) of coronaviruses and caliciviruses represent a group of structurally and functionally related viral proteases that play pleiotropic roles in supporting the viral life cycle and subverting host antiviral responses. The design and screening for 3C/3CLpro inhibitors may contribute to the development broad-spectrum antiviral therapeutics against viral diseases related to these three families. However, current screening strategies cannot simultaneously assess a compound’s cytotoxicity and its impact on enzymatic activity and protease-mediated physiological processes. The viral induction of stress granules (SGs) in host cells acts as an important antiviral stress response by blocking viral translation and stimulating the host immune response. Most of these viruses have evolved 3C/3CLpro-mediated cleavage of SG core protein G3BP1 to counteract SG formation and disrupt the host defense. Yet, there are no SG-based strategies screening for 3C/3CLpro inhibitors. Here, we developed a fluorescence resonance energy transfer (FRET) and SG dual-based system to screen for 3C/3CLpro inhibitors in living cells. We took advantage of FRET to evaluate the protease activity of poliovirus (PV) 3Cpro and live-monitor cellular SG dynamics to cross-verify its effect on the host antiviral response. Our drug screen uncovered a novel role of Telaprevir and Trifluridine as inhibitors of PV 3Cpro. Moreover, Telaprevir and Trifluridine also modulated 3Cpro-mediated physiological processes, including the cleavage of host proteins, inhibition of the innate immune response, and consequent facilitation of viral replication. Taken together, the FRET and SG dual-based system exhibits a promising potential in the screening for inhibitors of viral proteases that cleave G3BP1.
Collapse
|
17
|
Wan L, Wang X, Wang T, Yuan X, Liu W, Huang Y, Deng C, Cao S. Comparison of Target Pocket Similarity and Progress into Research on Inhibitors of Picornavirus 3C Proteases. Chem Biodivers 2023; 20:e202201100. [PMID: 36808685 DOI: 10.1002/cbdv.202201100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/21/2023]
Abstract
The 3C protease (3C Pro) plays a significant role in the life cycle of picornaviruses from replication to translation, making it an attractive target for structure-based design of drugs against picornaviruses. The structurally related 3C-like protease (3CL Pro) is an important protein involved in the replication of coronaviruses. With the emergence of COVID-19 and consequent intensive research into 3CL Pro, development of 3CL Pro inhibitors has emerged as a popular topic. This article compares the similarities of the target pockets of various 3C and 3CL Pros from numerous pathogenic viruses. This article also reports several types of 3C Pro inhibitors that are currently undergoing extensive studies and introduces various structural modifications of 3C Pro inhibitors to provide a reference for the development of new and more effective inhibitors of 3C Pro and 3CL Pro.
Collapse
Affiliation(s)
- Li Wan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xiaobo Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Tangle Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xiaolan Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wei Liu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yan Huang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Changyong Deng
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Shuang Cao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| |
Collapse
|
18
|
Recent advances in anti-coxsackievirus A16 viral drug research. Future Med Chem 2023; 15:97-117. [PMID: 36538291 DOI: 10.4155/fmc-2022-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hand, foot and mouth disease, a childhood disorder caused by enteroviruses, is intermittently endemic in the Asia-Pacific region and endangers the lives of many infants and young children. Coxsackievirus A16 (CV-A16) is one of the major pathogens causing hand, foot, and mouth disease on occasion, resulting in catastrophic neurological sequelae and patient death. Currently, no clinical interventions are available that completely block the CV-A16 infection. Therefore, research on anti-CV-A16 treatment continues to be a significant focus of interest. This report provides a detailed background on and an introduction to CV-A16; a description of the viral gene and protein structures and a summary of the current advances in pharmaceutical targets, drug research and other related areas.
Collapse
|
19
|
Yuan X, Kadowaki T. DWV 3C Protease Uncovers the Diverse Catalytic Triad in Insect RNA Viruses. Microbiol Spectr 2022; 10:e0006822. [PMID: 35575593 PMCID: PMC9241925 DOI: 10.1128/spectrum.00068-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022] Open
Abstract
Deformed wing virus (DWV) is the most prevalent Iflavirus that is infecting honey bees worldwide. However, the mechanisms of its infection and replication in host cells are poorly understood. In this study, we analyzed the structure and function of DWV 3C protease (3Cpro), which is necessary for the cleavage of the polyprotein to synthesize mature viral proteins. Thus, it is one of the nonstructural viral proteins essential for the replication. We found that the 3Cpros of DWV and picornaviruses share common enzymatic properties, including sensitivity to the same inhibitors, such as rupintrivir. The predicted structure of DWV 3Cpro by AlphaFold2, the predicted rupintrivir binding domain, and the protease activities of mutant proteins revealed that it has a Cys-His-Asn catalytic triad. Moreover, 3Cpros of other Iflaviruses and Dicistrovirus appear to contain Asn, Ser, Asp, or Glu as the third residue of the catalytic triad, suggesting diversity in insect RNA viruses. Both precursor 3Cpro with RNA-dependent RNA polymerase and mature 3Cpro are present in DWV-infected cells, suggesting that they may have different enzymatic properties and functions. DWV 3Cpro is the first 3Cpro characterized among insect RNA viruses, and our study uncovered both the common and unique characteristics among 3Cpros of Picornavirales. Furthermore, it would be possible to use the specific inhibitors of DWV 3Cpro to control DWV infection in honey bees in future. IMPORTANCE The number of managed honey bee (Apis mellifera) colonies has considerably declined in many developed countries in the recent years. Deformed wing virus (DWV) vectored by the mites is the major threat to honey bee colonies and health. To give insight into the mechanism of DWV replication in the host cells, we studied the structure-function relationship of 3C protease (3Cpro), which is necessary to cleave a viral polyprotein at the specific sites to produce the mature proteins. We found that the overall structure, some inhibitors, and processing of 3Cpro are shared between Picornavirales; however, there is diversity in the catalytic triad. DWV 3Cpro is the first viral protease characterized among insect RNA viruses and reveals the evolutionary history of 3Cpro among Picornavirales. Furthermore, DWV 3Cpro inhibitors identified in our study could also be applied to control DWV in honey bees in future.
Collapse
Affiliation(s)
- Xuye Yuan
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Jiangsu Province, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Jiangsu Province, China
| |
Collapse
|
20
|
Qin B, Craven GB, Hou P, Chesti J, Lu X, Child ES, Morgan RML, Niu W, Zhao L, Armstrong A, Mann DJ, Cui S. Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3C and SARS-CoV-2 main protease. Acta Pharm Sin B 2022; 12:3924-3933. [PMID: 35702321 PMCID: PMC9181371 DOI: 10.1016/j.apsb.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
RNA viruses are critically dependent upon virally encoded proteases to cleave the viral polyproteins into functional proteins. Many of these proteases exhibit a similar fold and contain an essential catalytic cysteine, offering the opportunity to inhibit these enzymes with electrophilic small molecules. Here we describe the successful application of quantitative irreversible tethering (qIT) to identify acrylamide fragments that target the active site cysteine of the 3C protease (3Cpro) of Enterovirus 71, the causative agent of hand, foot and mouth disease in humans, altering the substrate binding region. Further, we re-purpose these hits towards the main protease (Mpro) of SARS-CoV-2 which shares the 3C-like fold and a similar active site. The hit fragments covalently link to the catalytic cysteine of Mpro to inhibit its activity. We demonstrate that targeting the active site cysteine of Mpro can have profound allosteric effects, distorting secondary structures to disrupt the active dimeric unit.
Collapse
Affiliation(s)
- Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, China
| | - Gregory B Craven
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Pengjiao Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, China
| | - Julian Chesti
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Xinran Lu
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - Emma S Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Rhodri M L Morgan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenchao Niu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alan Armstrong
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK
| | - David J Mann
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100076, China
| |
Collapse
|
21
|
Malik P, Jain S, Jain P, Kumawat J, Dwivedi J, Kishore D. A comprehensive update on the structure and synthesis of potential drug targets for combating the coronavirus pandemic caused by SARS-CoV-2. Arch Pharm (Weinheim) 2022; 355:e2100382. [PMID: 35040187 PMCID: PMC9011541 DOI: 10.1002/ardp.202100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023]
Abstract
The outbreak of the coronavirus pandemic COVID-19 created by its severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) variant, known for producing a very severe acute respiratory syndrome, has created an unprecedented situation by its continual assault around the world. The crisis caused by the SARS-CoV-2 variant has been a global challenge, calling to mitigate this unprecedented pandemic that has engulfed the whole world. Since the outbreak and spread of COVID-19, many researchers globally have been grappling to find new clinically trialed active drugs with anti-COVID-19 activity, from antimalarial drugs to JAK inhibitors, antiviral drugs, immune suppressants, and so forth. This article presents a brief discussion on the activity and synthesis of some active molecules such as favipiravir, hydroxychloroquine, pirfenidone, remdesivir, lopinavir, camostat, chloroquine, baricitinib, molnupiravir, and so forth, which are under trial.
Collapse
Affiliation(s)
- Prerna Malik
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Sonika Jain
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Pankaj Jain
- Department of PharmacyBanasthali VidyapithJaipurIndia
| | - Jyoti Kumawat
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Jaya Dwivedi
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | | |
Collapse
|
22
|
Sripattaraphan A, Sanachai K, Chavasiri W, Boonyasuppayakorn S, Maitarad P, Rungrotmongkol T. Computational Screening of Newly Designed Compounds against Coxsackievirus A16 and Enterovirus A71. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061908. [PMID: 35335272 PMCID: PMC8955072 DOI: 10.3390/molecules27061908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 12/20/2022]
Abstract
Outbreaks of hand, foot, and mouth disease (HFMD) that occur worldwide are mainly caused by the Coxsackievirus-A16 (CV-A16) and Enterovirus-A71 (EV-A71). Unfortunately, neither an anti-HFMD drug nor a vaccine is currently available. Rupintrivir in phase II clinical trial candidate for rhinovirus showed highly potent antiviral activities against enteroviruses as an inhibitor for 3C protease (3Cpro). In the present study, we focused on designing 50 novel rupintrivir analogs against CV-A16 and EV-A71 3Cpro using computational tools. From their predicted binding affinities, the five compounds with functional group modifications at P1′, P2, P3, and P4 sites, namely P1′-1, P2-m3, P3-4, P4-5, and P4-19, could bind with both CV-A16 and EV-A71 3Cpro better than rupintrivir. Subsequently, these five analogs were studied by 500 ns molecular dynamics simulations. Among them, P2-m3, the derivative with meta-aminomethyl-benzyl group at the P2 site, showed the greatest potential to interact with the 3Cpro target by delivering the highest number of intermolecular hydrogen bonds and contact atoms. It formed the hydrogen bonds with L127 and K130 residues at the P2 site stronger than rupintrivir, supported by significantly lower MM/PB(GB)SA binding free energies. Elucidation of designed rupintrivir analogs in our study provides the basis for developing compounds that can be candidate compounds for further HFMD treatment.
Collapse
Affiliation(s)
- Amita Sripattaraphan
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (A.S.); (K.S.)
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (A.S.); (K.S.)
| | - Warinthorn Chavasiri
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Siwaporn Boonyasuppayakorn
- Applied Medical Virology Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China;
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (A.S.); (K.S.)
- Ph.D. Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: or
| |
Collapse
|
23
|
Dai W, Jochmans D, Xie H, Yang H, Li J, Su H, Chang D, Wang J, Peng J, Zhu L, Nian Y, Hilgenfeld R, Jiang H, Chen K, Zhang L, Xu Y, Neyts J, Liu H. Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. J Med Chem 2022; 65:2794-2808. [PMID: 33872498 PMCID: PMC8084273 DOI: 10.1021/acs.jmedchem.0c02258] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 12/30/2022]
Abstract
A novel series of peptidomimetic aldehydes was designed and synthesized to target 3C protease (3Cpro) of enterovirus 71 (EV71). Most of the compounds exhibited high antiviral activity, and among them, compound 18p demonstrated potent enzyme inhibitory activity and broad-spectrum antiviral activity on a panel of enteroviruses and rhinoviruses. The crystal structure of EV71 3Cpro in complex with 18p determined at a resolution of 1.2 Å revealed that 18p covalently linked to the catalytic Cys147 with an aldehyde group. In addition, these compounds also exhibited good inhibitory activity against the 3CLpro and the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially compound 18p (IC50 = 0.034 μM, EC50 = 0.29 μM). According to our previous work, these compounds have no reasons for concern regarding acute toxicity. Compared with AG7088, compound 18p also exhibited good pharmacokinetic properties and more potent anticoronavirus activity, making it an excellent lead for further development.
Collapse
Affiliation(s)
- Wenhao Dai
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology and Immunology,
Rega Institute for Medical Research, Laboratory of Virology and
Chemotherapy, Leuven B-3000, Belgium
| | - Hang Xie
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
| | - Hang Yang
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan, Hubei 430071, China
| | - Jian Li
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- College of Pharmacy, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023,
China
| | - Haixia Su
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Di Chang
- Shanghai Key Laboratory of New Drug Design, School of
Pharmacy, East China University of Science and Technology, 130
Meilong Road, Shanghai 200237, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| | - Jingjing Peng
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of
Pharmacy, East China University of Science and Technology, 130
Meilong Road, Shanghai 200237, China
| | - Yong Nian
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- College of Pharmacy, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023,
China
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine,
University of Lübeck, 23562 Lübeck,
Germany
- German Center for Infection Research (DZIF),
University of Lübeck, 23562 Lübeck,
Germany
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan, Hubei 430071, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| | - Johan Neyts
- KU Leuven, Department of Microbiology and Immunology,
Rega Institute for Medical Research, Laboratory of Virology and
Chemotherapy, Leuven B-3000, Belgium
| | - Hong Liu
- State Key Laboratory of Drug Research, CAS Key
Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203,
China
- College of Pharmacy, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, 210023,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology,
Hangzhou Institute for Advanced Study, University of Chinese Academy of
Sciences, Hangzhou 310024, China
| |
Collapse
|
24
|
Theerawatanasirikul S, Thangthamniyom N, Kuo CJ, Semkum P, Phecharat N, Chankeeree P, Lekcharoensuk P. Natural Phytochemicals, Luteolin and Isoginkgetin, Inhibit 3C Protease and Infection of FMDV, In Silico and In Vitro. Viruses 2021; 13:2118. [PMID: 34834926 PMCID: PMC8625466 DOI: 10.3390/v13112118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth-disease virus (FMDV) is a picornavirus that causes a highly contagious disease of cloven-hoofed animals resulting in economic losses worldwide. The 3C protease (3Cpro) is the main protease essential in the picornavirus life cycle, which is an attractive antiviral target. Here, we used computer-aided virtual screening to filter potential anti-FMDV agents from the natural phytochemical compound libraries. The top 23 filtered compounds were examined for anti-FMDV activities by a cell-based assay, two of which possessed antiviral effects. In the viral and post-viral entry experiments, luteolin and isoginkgetin could significantly block FMDV growth with low 50% effective concentrations (EC50). Moreover, these flavonoids could reduce the viral load as determined by RT-qPCR. However, their prophylactic activities were less effective. Both the cell-based and the fluorescence resonance energy transfer (FRET)-based protease assays confirmed that isoginkgetin was a potent FMDV 3Cpro inhibitor with a 50% inhibition concentration (IC50) of 39.03 ± 0.05 and 65.3 ± 1.7 μM, respectively, whereas luteolin was less effective. Analyses of the protein-ligand interactions revealed that both compounds fit in the substrate-binding pocket and reacted to the key enzymatic residues of the 3Cpro. Our findings suggested that luteolin and isoginkgetin are promising antiviral agents for FMDV and other picornaviruses.
Collapse
Affiliation(s)
- Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Nattarat Thangthamniyom
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Chih-Jung Kuo
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Nantawan Phecharat
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Penpitcha Chankeeree
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.T.); (P.S.); (N.P.); (P.C.)
- Center for Advanced Studies in Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
25
|
Vuong W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby KD, Lu J, Arutyunova E, Joyce MA, Saffran HA, Shields JA, Young HS, Nieman JA, Tyrrell DL, Lemieux MJ, Vederas JC. Improved SARS-CoV-2 M pro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. Eur J Med Chem 2021; 222:113584. [PMID: 34118724 PMCID: PMC8164773 DOI: 10.1016/j.ejmech.2021.113584] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 12/31/2022]
Abstract
Replication of SARS-CoV-2, the coronavirus causing COVID-19, requires a main protease (Mpro) to cleave viral proteins. Consequently, Mpro is a target for antiviral agents. We and others previously demonstrated that GC376, a bisulfite prodrug with efficacy as an anti-coronaviral agent in animals, is an effective inhibitor of Mpro in SARS-CoV-2. Here, we report structure-activity studies of improved GC376 derivatives with nanomolar affinities and therapeutic indices >200. Crystallographic structures of inhibitor-Mpro complexes reveal that an alternative binding pocket in Mpro, S4, accommodates the P3 position. Alternative binding is induced by polar P3 groups or a nearby methyl. NMR and solubility studies with GC376 show that it exists as a mixture of stereoisomers and forms colloids in aqueous media at higher concentrations, a property not previously reported. Replacement of its Na+ counter ion with choline greatly increases solubility. The physical, biochemical, crystallographic, and cellular data reveal new avenues for Mpro inhibitor design.
Collapse
Affiliation(s)
- Wayne Vuong
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Kurtis D Willoughby
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada
| | - Jimmy Lu
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Elena Arutyunova
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Michael A Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Holly A Saffran
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Justin A Shields
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - Howard S Young
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - James A Nieman
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton AB, T6G 2R3, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton AB, T6G 2E1, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton AB, T6G 2G2, Canada.
| |
Collapse
|
26
|
Assessing In Vitro Resistance Development in Enterovirus A71 in the Context of Combination Antiviral Treatment. ACS Infect Dis 2021; 7:2801-2806. [PMID: 34529400 DOI: 10.1021/acsinfecdis.0c00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are currently no antivirals available to treat infection with enterovirus A71 (EV-A71) or any other enterovirus. The extensively studied capsid binders rapidly select for drug-resistant variants. We here explore whether the combination of two direct-acting enterovirus inhibitors with a different mechanism of action may delay or prevent resistance development to the capsid binders. To that end, the in vitro dynamics of resistance development to the capsid binder pirodavir was studied either alone or in combination with a viral 2C-targeting compound (SMSK_0213), a viral 3C-protease inhibitor (rupintrivir) or a viral RNA-dependent RNA polymerase inhibitor (7DMA). We demonstrate that combining pirodavir with either rupintrivir or 7DMA delays the development of resistance to pirodavir and that no resistance to the protease or polymerase inhibitor develops. The combination of pirodavir with the 2C inhibitor results in a double-resistant virus population, where only the minority carries the resistant mutation.
Collapse
|
27
|
Van Dycke J, Dai W, Stylianidou Z, Li J, Cuvry A, Roux E, Li B, Rymenants J, Bervoets L, de Witte P, Liu H, Neyts J, Rocha-Pereira J. A Novel Class of Norovirus Inhibitors Targeting the Viral Protease with Potent Antiviral Activity In Vitro and In Vivo. Viruses 2021; 13:v13091852. [PMID: 34578432 PMCID: PMC8472913 DOI: 10.3390/v13091852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Human noroviruses (HuNoVs) are the most common cause of viral gastroenteritis resulting annually in ~219,000 deaths and a societal cost of ~USD 60 billion, and no antivirals or vaccines are available. Here, we assess the anti-norovirus activity of new peptidomimetic aldehydes related to the protease inhibitor rupintrivir. The early hit compound 4 inhibited the replication of murine norovirus (MNV) and the HuNoV GI.1 replicon in vitro (EC50 ~1 µM) and swiftly cleared the HuNoV GI.1 replicon from the cells. Compound 4 still inhibits the proteolytic activity. We selected a resistant GI.1 replicon, with a mutation (I109V) in a highly conserved region of the viral protease, conferring a low yield of resistance against compound 4 and rupintrivir. After testing new derivatives, compound 10d was the most potent (EC50 nanomolar range). Molecular docking indicated that the aldehyde group of compounds 4 and 10d bind with Cys139 in the HuNoV 3CL protease by a covalent linkage. Finally, compound 10d inhibited the replication of HuNoV GII.4 in infected zebrafish larvae, and PK studies in mice showed an adequate profile.
Collapse
Affiliation(s)
- Jana Van Dycke
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
| | - Wenhao Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (W.D.); (J.L.); (B.L.)
| | - Zoe Stylianidou
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
| | - Jian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (W.D.); (J.L.); (B.L.)
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Arno Cuvry
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
| | - Emma Roux
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
| | - Bingqian Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (W.D.); (J.L.); (B.L.)
| | - Jasper Rymenants
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
| | - Lindsey Bervoets
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven–Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, Belgium;
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (W.D.); (J.L.); (B.L.)
- Correspondence: (H.L.); (J.R.-P.)
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
| | - Joana Rocha-Pereira
- Laboratory of Virology and Chemotherapy, KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (J.V.D.); (Z.S.); (A.C.); (E.R.); (J.R.); (L.B.); (J.N.)
- Correspondence: (H.L.); (J.R.-P.)
| |
Collapse
|
28
|
Could Probiotics and Postbiotics Function as "Silver Bullet" in the Post-COVID-19 Era? Probiotics Antimicrob Proteins 2021; 13:1499-1507. [PMID: 34386940 PMCID: PMC8360758 DOI: 10.1007/s12602-021-09833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
We are currently experiencing the realities of the most severe pandemic within living memory, with major impacts on the health and economic well-being of our planet. The scientific community has demonstrated an unprecedented mobilization capability, with the rapid development of vaccines and drugs targeting the protection of human life and palliative measures for infected individuals. However, are we adequately prepared for ongoing defense against COVID-19 and its variants in the post-pandemic world? Moreover, are we equipped to provide a satisfactory quality of life for individuals who are recovering from COVID-19 disease? What are the possibilities for the acceleration of the recovery process? Here, we give special consideration to the potential and already-demonstrated role of probiotics and traditional medical approaches to the management of current and potential future encounters with our major virus adversaries.
Collapse
|
29
|
Marjomäki V, Kalander K, Hellman M, Permi P. Enteroviruses and coronaviruses: similarities and therapeutic targets. Expert Opin Ther Targets 2021; 25:479-489. [PMID: 34253126 PMCID: PMC8330013 DOI: 10.1080/14728222.2021.1952985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Enteroviruses are common viruses causing a huge number of acute and chronic infections and producing towering economic costs. Similarly, coronaviruses cause seasonal mild infections, epidemics, and even pandemics and can lead to severe respiratory symptoms. It is important to develop broadly acting antiviral molecules to efficiently tackle the infections caused by thes.Areas covered: This review illuminates the differences and similarities between enteroviruses and coronaviruses and examines the most appealing therapeutic targets to combat both virus groups. Publications of both virus groups and deposited structures discovered through PubMed to March 2021 for viral proteases have been evaluated.Expert opinion: The main protease of coronaviruses and enteroviruses share similarities in their structure and function. These proteases process their viral polyproteins and thus drugs that bind to the active site have potential to target both virus groups. It is important to develop drugs that target more evolutionarily conserved processes and proteins. Moreover, it is a wise strategy to concentrate on processes that are similar between several virus families.
Collapse
Affiliation(s)
- Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kerttu Kalander
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Hellman
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
30
|
Coultas JA, Cafferkey J, Mallia P, Johnston SL. Experimental Antiviral Therapeutic Studies for Human Rhinovirus Infections. J Exp Pharmacol 2021; 13:645-659. [PMID: 34276229 PMCID: PMC8277446 DOI: 10.2147/jep.s255211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Rhinovirus infection is common and usually causes mild, self-limiting upper respiratory tract symptoms. Rhinoviruses can cause exacerbation of chronic respiratory diseases, such as asthma or chronic obstructive pulmonary disease, leading to a significant burden of morbidity and mortality. There has been a great deal of progress in efforts to understand the immunological basis of rhinovirus infection. However, despite a number of in vitro and in vivo attempts, there have been no effective treatments developed. This review article summarises the up to date virological and immunological understanding of these infections. We discuss the challenges researchers face, and key solutions, in their work to investigate potential therapies including in vivo rhinovirus challenge studies. Finally, we explore past and present experimental therapeutic strategies employed in the treatment of rhinovirus infections and highlight promising areas of future work.
Collapse
Affiliation(s)
- James A Coultas
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Cafferkey
- Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare Foundation Trust, London, UK
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
31
|
Synthetic and computational efforts towards the development of peptidomimetics and small-molecule SARS-CoV 3CLpro inhibitors. Bioorg Med Chem 2021; 46:116301. [PMID: 34332853 PMCID: PMC8254399 DOI: 10.1016/j.bmc.2021.116301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) is a severe febrile respiratory disease caused by the beta genus of human coronavirus, known as SARS-CoV. Last year, 2019-n-CoV (COVID-19) was a global threat for everyone caused by the outbreak of SARS-CoV-2. 3CLpro, chymotrypsin-like protease, is a major cysteine protease that substantially contributes throughout the viral life cycle of SARS-CoV and SARS-CoV-2. It is a prospective target for the development of SARS-CoV inhibitors by applying a repurposing strategy. This review focuses on a detailed overview of the chemical synthesis and computational chemistry perspectives of peptidomimetic inhibitors (PIs) and small-molecule inhibitors (SMIs) targeting viral proteinase discovered from 2004 to 2020. The PIs and SMIs are one of the primary therapeutic inventions for SARS-CoV. The journey of different analogues towards the evolution of SARS-CoV 3CLpro inhibitors and complete synthetic preparation of nineteen derivatives of PIs and ten derivatives of SMIs and their computational chemistry perspectives were reviewed. From each class of derivatives, we have identified and highlighted the most compelling PIs and SMIs for SARS-CoV 3CLpro. The protein-ligand interaction of 29 inhibitors were also studied that involved with the 3CLpro inhibition, and the frequent amino acid residues of the protease were also analyzed that are responsible for the interactions with the inhibitors. This work will provide an initiative to encourage further research for the development of effective and drug-like 3CLpro inhibitors against coronaviruses in the near future.
Collapse
|
32
|
Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. J Virol 2021; 95:e0237420. [PMID: 33910954 DOI: 10.1128/jvi.02374-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We describe a mammalian cell-based assay to identify coronavirus 3CL protease (3CLpro) inhibitors. This assay is based on rescuing protease-mediated cytotoxicity and does not require live virus. By enabling the facile testing of compounds across a range of 15 distantly related coronavirus 3CLpro enzymes, we identified compounds with broad 3CLpro-inhibitory activity. We also adapted the assay for use in compound screening and in doing so uncovered additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CLpro inhibitors. We observed strong concordance between data emerging from this assay and those obtained from live-virus testing. The reported approach democratizes the testing of 3CLpro inhibitors by developing a simplified method for identifying coronavirus 3CLpro inhibitors that can be used by the majority of laboratories, rather than the few with extensive biosafety infrastructure. We identified two lead compounds, GC376 and compound 4, with broad activity against all 3CL proteases tested, including 3CLpro enzymes from understudied zoonotic coronaviruses. IMPORTANCE Multiple coronavirus pandemics have occurred over the last 2 decades. This has highlighted a need to be proactive in the development of therapeutics that can be readily deployed in the case of future coronavirus pandemics. We developed and validated a simplified cell-based assay for the identification of chemical inhibitors of 3CL proteases encoded by a wide range of coronaviruses. This assay is reporter free, does not require specialized biocontainment, and is optimized for performance in high-throughput screening. By testing reported 3CL protease inhibitors against a large collection of 3CL proteases with variable sequence similarity, we identified compounds with broad activity against 3CL proteases and uncovered structural insights into features that contribute to their broad activity. Furthermore, we demonstrated that this assay is suitable for identifying chemical inhibitors of proteases from families other than 3CL proteases.
Collapse
|
33
|
Zhang Y, Pike A. Pyridones in drug discovery: Recent advances. Bioorg Med Chem Lett 2021; 38:127849. [DOI: 10.1016/j.bmcl.2021.127849] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
|
34
|
Anasir MI, Zarif F, Poh CL. Antivirals blocking entry of enteroviruses and therapeutic potential. J Biomed Sci 2021; 28:10. [PMID: 33451326 PMCID: PMC7811253 DOI: 10.1186/s12929-021-00708-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Viruses from the genus Enterovirus (EV) of the Picornaviridae family are known to cause diseases such as hand foot and mouth disease (HFMD), respiratory diseases, encephalitis and myocarditis. The capsid of EV is an attractive target for the development of direct-acting small molecules that can interfere with viral entry. Some of the capsid binders have been evaluated in clinical trials but the majority have failed due to insufficient efficacy or unacceptable off-target effects. Furthermore, most of the capsid binders exhibited a low barrier to resistance. Alternatively, host-targeting inhibitors such as peptides derived from the capsid of EV that can recognize cellular receptors have been identified. However, the majority of these peptides displayed low anti-EV potency (µM range) as compared to the potency of small molecule compounds (nM range). Nonetheless, the development of anti-EV peptides is warranted as they may complement the small-molecules in a drug combination strategy to treat EVs. Lastly, structure-based approach to design antiviral peptides should be utilized to unearth potent anti-EV peptides.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Faisal Zarif
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
35
|
Khanna M, Gautam A, Rajput R, Sharma L. Natural Products as a Paradigm for the Treatment of Coxsackievirus - induced Myocarditis. Curr Top Med Chem 2020; 20:607-616. [PMID: 31995007 DOI: 10.2174/1568026620666200129094516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Coxsackievirus B3 (CVB3), a member of the Picornaviridae family, is considered to be one of the most important infectious agents to cause virus-induced myocarditis. Despite improvements in studying viral pathology, structure and molecular biology, as well as diagnosis of this disease, there is still no virus-specific drug in clinical use. Structural and nonstructural proteins produced during the coxsackievirus life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, WIN (for Winthrop) compounds and application of nucleic-acid based strategies were shown to target viral capsid, entry and viral proteases, but have not reached to the clinical trials as a successful antiviral agent. There is an urgent need for diverse molecular libraries for phenotype-selective and high-throughput screening.
Collapse
Affiliation(s)
- Madhu Khanna
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| | - Anju Gautam
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| | - Roopali Rajput
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| | - Latika Sharma
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| |
Collapse
|
36
|
Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, He M, Hogan RJ, Kozminski K, Li LY, Lockner JW, Lou J, Marra MT, Mitchell LJ, Murray BW, Nieman JA, Noell S, Planken SP, Rowe T, Ryan K, Smith GJ, Solowiej JE, Steppan CM, Taggart B. Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19. J Med Chem 2020; 63:12725-12747. [PMID: 33054210 PMCID: PMC7571312 DOI: 10.1021/acs.jmedchem.0c01063] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 01/16/2023]
Abstract
The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins, which are cleaved at specific sites by a 3C-like cysteine protease (3CLpro) in a post-translational processing step that is critical for coronavirus replication. The 3CLpro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CLpro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4. Preclinical experiments reveal 4 (PF-00835231) as a potent inhibitor of CoV-2 3CLpro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19.
Collapse
Affiliation(s)
- Robert L. Hoffman
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Robert S. Kania
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Mary A. Brothers
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Jay F. Davies
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Rose A. Ferre
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Ketan S. Gajiwala
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Mingying He
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Robert J. Hogan
- Southern Research
Institute, 2000 9th Avenue South, Birmingham,
Alabama 35205 United States
| | - Kirk Kozminski
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Lilian Y. Li
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Jonathan W. Lockner
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Jihong Lou
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Michelle T. Marra
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Lennert J. Mitchell
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Brion W. Murray
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - James A. Nieman
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Stephen Noell
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Simon P. Planken
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Thomas Rowe
- Southern Research
Institute, 2000 9th Avenue South, Birmingham,
Alabama 35205 United States
| | - Kevin Ryan
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - George J. Smith
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - James E. Solowiej
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Claire M. Steppan
- Pfizer Worldwide Research
and Development, 10770 Science Center Drive, San
Diego, California 92121 United States
| | - Barbara Taggart
- Southern Research
Institute, 2000 9th Avenue South, Birmingham,
Alabama 35205 United States
| |
Collapse
|
37
|
Xie X, Muruato AE, Zhang X, Lokugamage KG, Fontes-Garfias CR, Zou J, Liu J, Ren P, Balakrishnan M, Cihlar T, Tseng CTK, Makino S, Menachery VD, Bilello JP, Shi PY. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nat Commun 2020; 11:5214. [PMID: 33060595 PMCID: PMC7567097 DOI: 10.1038/s41467-020-19055-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
A high-throughput platform would greatly facilitate coronavirus disease 2019 (COVID-19) serological testing and antiviral screening. Here we present a high-throughput nanoluciferase severe respiratory syndrome coronavirus 2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. SARS-CoV-2-Nluc can be used to measure neutralizing antibody activity in patient sera within 5 hours, and it produces results in concordance with a plaque reduction neutralization test (PRNT). Additionally, using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2), we show that the assay can be used for antiviral screening. Using the optimized SARS-CoV-2-Nluc assay, we evaluate a panel of antivirals and other anti-infective drugs, and we identify nelfinavir, rupintrivir, and cobicistat as the most selective inhibitors of SARS-CoV-2-Nluc (EC50 0.77 to 2.74 µM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 µM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.
Collapse
Grants
- R01 AI134907 NIAID NIH HHS
- R00 AG049092 NIA NIH HHS
- UL1 TR001439 NCATS NIH HHS
- U19 AI100625 NIAID NIH HHS
- TL1 TR001440 NCATS NIH HHS
- R01 AI114657 NIAID NIH HHS
- U19 AI142759 NIAID NIH HHS
- R24 AI120942 NIAID NIH HHS
- R01 AI146081 NIAID NIH HHS
- R43 AI145617 NIAID NIH HHS
- A.E.M. is supported by a Clinical and Translational Science Award NRSA (TL1) Training Core (TL1TR001440) from NIH. C.R.F.-G. is supported by the predoctoral fellowship from the McLaughlin Fellowship Endowment at UTMB. S.M. was supported by NIH grants AI114657 and AI146081. V.D.M. was supported by NIH grants U19AI100625, R00AG049092, R24AI120942, and STARs Award from the University of Texas System. P.-Y.S. was supported by NIH grants AI142759, AI134907, AI145617, and UL1TR001439, and awards from the Sealy & Smith Foundation, Kleberg Foundation, John S. Dunn Foundation, Amon G. Carter Foundation, Gilson Longenbaugh Foundation, and Summerfield Robert Foundation.
Collapse
Affiliation(s)
- Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Antonio E Muruato
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianying Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
38
|
He H, Cao R, Cao R, Liu XY, Li W, Yu D, Li Y, Liu M, Wu Y, Wu P, Yang JS, Yan Y, Yang J, Zheng ZB, Zhong W, Qin Y. A light- and heat-driven glycal diazidation approach to nitrogenous carbohydrate derivatives with antiviral activity. Org Biomol Chem 2020; 18:6155-6161. [PMID: 32716466 DOI: 10.1039/d0ob01172j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aminated mimetics of 2-keto-3-deoxy-sugar acids such as the anti-influenza clinical drugs oseltamivir (Tamiflu) and zanamivir (Relenza) are important bioactive molecules. Development of synthetic methodologies for accessing such compound collections is highly desirable. Herein, we describe a simple, catalyst-free glycal diazidation protocol enabled by visible light-driven conditions. This new method requires neither acid promoters nor transition-metal catalysts and takes place at ambient temperature within 1-2 hours. Notably, the desired transformations could be promoted by thermal conditions as well, albeit with lower efficacy compared to the light-induced conditions. Different sugar acid-derived glycal templates have been converted into a range of 2,3-diazido carbohydrate analogs by harnessing this mild and scalable approach, leading to the discovery of new antiviral agents.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Ruidi Cao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wei Li
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Di Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yuexiang Li
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Miaomiao Liu
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yanmei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pingzhou Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yunzheng Yan
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Jingjing Yang
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Zhi-Bing Zheng
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
39
|
Yuan S, Fan K, Chen Z, Sun Y, Hou H, Zhu L. Structure of the HRV-C 3C-Rupintrivir Complex Provides New Insights for Inhibitor Design. Virol Sin 2020; 35:445-454. [PMID: 32103448 PMCID: PMC7462945 DOI: 10.1007/s12250-020-00196-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/25/2019] [Indexed: 10/24/2022] Open
Abstract
Human rhinoviruses (HRVs) are the predominant infectious agents for the common cold worldwide. The HRV-C species cause severe illnesses in children and are closely related to acute exacerbations of asthma. 3C protease, a highly conserved enzyme, cleaves the viral polyprotein during replication and assists the virus in escaping the host immune system. These key roles make 3C protease an important drug target. A few structures of 3Cs complexed with an irreversible inhibitor rupintrivir have been determined. These structures shed light on the determinants of drug specificity. Here we describe the structures of HRV-C15 3C in free and inhibitor-bound forms. The volume-decreased S1' subsite and half-closed S2 subsite, which were thought to be unique features of enterovirus A 3C proteases, appear in the HRV-C 3C protease. Rupintrivir assumes an "intermediate" conformation in the complex, which might open up additional avenues for the design of potent antiviral inhibitors. Analysis of the features of the three-dimensional structures and the amino acid sequences of 3C proteases suggest new applications for existing drugs.
Collapse
Affiliation(s)
- Shuai Yuan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083, China
| | - Zhonghao Chen
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yao Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai Hou
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Ling Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
40
|
Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opin Ther Targets 2020; 24:745-757. [DOI: 10.1080/14728222.2020.1784141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
41
|
Xie X, Muruato AE, Zhang X, Lokugamage KG, Fontes-Garfias CR, Zou J, Liu J, Ren P, Balakrishnan M, Cihlar T, Tseng CTK, Makino S, Menachery VD, Bilello JP, Shi PY. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32607511 DOI: 10.1101/2020.06.22.165712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A high-throughput platform would greatly facilitate COVID-19 serological testing and antiviral screening. Here we report a nanoluciferase SARS-CoV-2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. We demonstrate that the optimized reporter virus assay in Vero E6 cells can be used to measure neutralizing antibody activity in patient sera and produces results in concordance with a plaque reduction neutralization test (PRNT). Compared with the low-throughput PRNT (3 days), the SARS-CoV-2-Nluc assay has substantially shorter turnaround time (5 hours) with a high-throughput testing capacity. Thus, the assay can be readily deployed for large-scale vaccine evaluation and neutralizing antibody testing in humans. Additionally, we developed a high-throughput antiviral assay using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2). When tested against this reporter virus, remdesivir exhibited substantially more potent activity in A549-hACE2 cells compared to Vero E6 cells (EC 50 0.115 vs 1.28 μM), while this difference was not observed for chloroquine (EC 50 1.32 vs 3.52 μM), underscoring the importance of selecting appropriate cells for antiviral testing. Using the optimized SARS-CoV-2-Nluc assay, we evaluated a collection of approved and investigational antivirals and other anti-infective drugs. Nelfinavir, rupintrivir, and cobicistat were identified as the most selective inhibitors of SARS-CoV-2-Nluc (EC 50 0.77 to 2.74 μM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 μM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.
Collapse
|
42
|
Meng B, Lan K, Xie J, Lerner RA, Wilson IA, Yang B. Inhibitory antibodies identify unique sites of therapeutic vulnerability in rhinovirus and other enteroviruses. Proc Natl Acad Sci U S A 2020; 117:13499-13508. [PMID: 32467165 PMCID: PMC7306783 DOI: 10.1073/pnas.1918844117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The existence of multiple serotypes renders vaccine development challenging for most viruses in the Enterovirus genus. An alternative and potentially more viable strategy for control of these viruses is to develop broad-spectrum antivirals by targeting highly conserved proteins that are indispensable for the virus life cycle, such as the 3C protease. Previously, two single-chain antibody fragments, YDF and GGVV, were reported to effectively inhibit human rhinovirus 14 proliferation. Here, we found that both single-chain antibody fragments target sites on the 3C protease that are distinct from its known drug site (peptidase active site) and possess different mechanisms of inhibition. YDF does not block the active site but instead noncompetitively inhibits 3C peptidase activity through an allosteric effect that is rarely seen for antibody protease inhibitors. Meanwhile, GGVV antagonizes the less-explored regulatory function of 3C in genome replication. The interaction between 3C and the viral genome 5' noncoding region has been reported to be important for enterovirus genome replication. Here, the interface between human rhinovirus 14 3C and its 5' noncoding region was probed by hydrogen-deuterium exchange coupled mass spectrometry and found to partially overlap with the interface between GGVV and 3C. Consistently, prebinding of GGVV completely abolishes interaction between human rhinovirus 14 3C and its 5' noncoding region. The epitopes of YDF and GGVV, therefore, represent two additional sites of therapeutic vulnerability in rhinovirus. Importantly, the GGVV epitope appears to be conserved across many enteroviruses, suggesting that it is a promising target for pan-enterovirus inhibitor screening and design.
Collapse
Affiliation(s)
- Bing Meng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, People's Republic of China
| | - Keke Lan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Ian A Wilson
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, People's Republic of China;
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, People's Republic of China;
| |
Collapse
|
43
|
Danov O, Lasswitz L, Obernolte H, Hesse C, Braun A, Wronski S, Sewald K. Rupintrivir reduces RV-induced T H-2 cytokine IL-4 in precision-cut lung slices (PCLS) of HDM-sensitized mice ex vivo. Respir Res 2019; 20:228. [PMID: 31640701 PMCID: PMC6805592 DOI: 10.1186/s12931-019-1175-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Antiviral drugs such as rupintrivir may have an immune-modulatory effect in experimentally induced allergic asthma with subsequent RV infection. We infected lung slices of house-dust mite (HDM)-sensitized asthmatic mice ex vivo with human rhinovirus (RV) and investigated the effect of the antiviral drug rupintrivir on RV-induced cytokine response in lung tissue of HDM-sensitized mice ex vivo. Methods Mice were sensitized with HDM. Precision-cut lung slices (PCLS) were prepared from HDM-sensitized or non-sensitized mice. Lung slices were infected ex vivo with RV or RV together with rupintrivir. Modulation of immune responses was evaluated by cytokine secretion 48 h post infection. Results In vivo HDM sensitization resulted in a TH-2/TH-17-dominated cytokine response that persisted in PCLS ex vivo. RV infection of PCLS from non-sensitized mice resulted in the induction of an antiviral and pro-inflammatory immune response, as indicated by the secretion of IFN-α, IFN-β, IFN-γ, TNF-α, MCP-1, IP-10, IL-10, and IL-17A. In contrast, PCLS from HDM-sensitized mice showed an attenuated antiviral response, but exaggerated IL-4, IL-6, and IL-10 secretion upon infection. Rupintrivir inhibited exaggerated pro-inflammatory cytokine IL-6 and TH-2 cytokine IL-4 in HDM-sensitized mice. Conclusions In summary, this study demonstrates that treatment with rupintrivir influences virus-induced IL-4 and IL-6 cytokine release under experimental conditions ex vivo. Electronic supplementary material The online version of this article (10.1186/s12931-019-1175-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Lisa Lasswitz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany.,Institute of Immunology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
44
|
Abstract
The genus Enterovirus (EV) of the family Picornaviridae includes poliovirus, coxsackieviruses, echoviruses, numbered enteroviruses and rhinoviruses. These diverse viruses cause a variety of diseases, including non-specific febrile illness, hand-foot-and-mouth disease, neonatal sepsis-like disease, encephalitis, paralysis and respiratory diseases. In recent years, several non-polio enteroviruses (NPEVs) have emerged as serious public health concerns. These include EV-A71, which has caused epidemics of hand-foot-and-mouth disease in Southeast Asia, and EV-D68, which recently caused a large outbreak of severe lower respiratory tract disease in North America. Infections with these viruses are associated with severe neurological complications. For decades, most research has focused on poliovirus, but in recent years, our knowledge of NPEVs has increased considerably. In this Review, we summarize recent insights from enterovirus research with a special emphasis on NPEVs. We discuss virion structures, host-receptor interactions, viral uncoating and the recent discovery of a universal enterovirus host factor that is involved in viral genome release. Moreover, we briefly explain the mechanisms of viral genome replication, virion assembly and virion release, and describe potential targets for antiviral therapy. We reflect on how these recent discoveries may help the development of antiviral therapies and vaccines.
Collapse
|
45
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
46
|
Fujita M, Adachi K, Nagasawa M. Development of a homogeneous time-resolved fluorescence assay for detection of viral double-stranded RNA. Anal Biochem 2019; 566:46-49. [PMID: 30352199 PMCID: PMC7172543 DOI: 10.1016/j.ab.2018.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/18/2022]
Abstract
The group of positive-sense single-stranded RNA ((+) ssRNA) viruses includes many important human pathogens. However, specific antiviral agents are not currently available for many RNA viruses. For screening of antiviral agents, methods that are simple, rapid, and compatible with high-throughput are required. Here, we describe a novel method for measurement of double-stranded RNA using a homogeneous time-resolved fluorescence assay. This method allowed detection of human rhinovirus (HRV), enterovirus, coxsackievirus, and murine norovirus. Furthermore, this method detected antiviral activity of a HRV 3C protease inhibitor. The assay may be useful for discovery of antiviral agents against (+) ssRNA viruses.
Collapse
Affiliation(s)
- Motomichi Fujita
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd, 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Koji Adachi
- Cisbio K. K., Makuhari Techno Garden, Building D 11F, 1-3 Nakase Mihama-ku, Chiba-shi, Chiba 261-8501, Japan
| | - Michiaki Nagasawa
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd, 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| |
Collapse
|
47
|
Da Costa L, Scheers E, Coluccia A, Casulli A, Roche M, Di Giorgio C, Neyts J, Terme T, Cirilli R, La Regina G, Silvestri R, Mirabelli C, Vanelle P. Structure-Based Drug Design of Potent Pyrazole Derivatives against Rhinovirus Replication. J Med Chem 2018; 61:8402-8416. [PMID: 30153009 DOI: 10.1021/acs.jmedchem.8b00931] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rhinoviruses (RVs) have been linked to exacerbations of many pulmonary diseases, thus increasing morbidity and/or mortality in subjects at risk. Unfortunately, the wide variety of RV genotypes constitutes a major hindrance for the development of Rhinovirus replication inhibitors. In the current investigation, we have developed a novel series of pyrazole derivatives that potently inhibit the Rhinovirus replication. Compounds 10e and 10h behave as early stage inhibitors of Rhinovirus infection with a broad-spectrum activity against RV-A and RV-B species (EC50 < 0.1 μM). We also evaluate the dynamics of the emerging resistance of these promising compounds and their in vitro genotoxicity. Molecular docking experiments shed light on the pharmacophoric elements interacting with residues of the drug-binding pocket.
Collapse
Affiliation(s)
- Laurène Da Costa
- Aix-Marseille Univ, Institut de Chimie Radicalaire , Laboratoire de Pharmacochimie Radicalaire , UMR 7273 CNRS, 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 05 , France
| | - Els Scheers
- KU Leuven-University of Leuven , Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , B-3000 Leuven , Belgium
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies , Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , I-00185 Rome , Italy
| | - Adriano Casulli
- WHO Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis, European Reference Laboratory for Parasites, Department of Infectious Diseases , Istituto Superiore di Sanità , Viale Regina Elena 299 , I-00161 Rome , Italy
| | - Manon Roche
- Aix-Marseille Univ, Institut de Chimie Radicalaire , Laboratoire de Pharmacochimie Radicalaire , UMR 7273 CNRS, 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 05 , France
| | - Carole Di Giorgio
- Aix-Marseille Univ, CNRS, IRD, Avignon Université, IMBE UMR 7263, Laboratoire de Mutagénèse Environnementale , 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 05 , France
| | - Johan Neyts
- KU Leuven-University of Leuven , Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , B-3000 Leuven , Belgium
| | - Thierry Terme
- Aix-Marseille Univ, Institut de Chimie Radicalaire , Laboratoire de Pharmacochimie Radicalaire , UMR 7273 CNRS, 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 05 , France
| | - Roberto Cirilli
- Centro nazionale per il controllo e la valutazione dei farmaci , Istituto Superiore di Sanità , Viale Regina Elena 299 , I-00161 Rome , Italy
| | - Giuseppe La Regina
- Department of Drug Chemistry and Technologies , Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , I-00185 Rome , Italy
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies , Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti , Piazzale Aldo Moro 5 , I-00185 Rome , Italy
| | - Carmen Mirabelli
- KU Leuven-University of Leuven , Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , B-3000 Leuven , Belgium
| | - Patrice Vanelle
- Aix-Marseille Univ, Institut de Chimie Radicalaire , Laboratoire de Pharmacochimie Radicalaire , UMR 7273 CNRS, 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 05 , France
| |
Collapse
|
48
|
Jung E, Lee JY, Kim HJ, Ryu CK, Lee KI, Kim M, Lee CK, Go YY. Identification of quinone analogues as potential inhibitors of picornavirus 3C protease in vitro. Bioorg Med Chem Lett 2018; 28:2533-2538. [PMID: 29866517 DOI: 10.1016/j.bmcl.2018.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022]
Abstract
Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ∼6000 small molecules in search of potential picornavirus 3C protease (3Cpro) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3Cpro and HRV 3Cpro with IC50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development.
Collapse
Affiliation(s)
- Eunhye Jung
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Joo-Youn Lee
- Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Ho Jeong Kim
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womens University, Seoul 03760, Republic of Korea.
| | - Chung-Kyu Ryu
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womens University, Seoul 03760, Republic of Korea.
| | - Kee-In Lee
- Green Carbon Catalysis Group, Carbon Resources Institute, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Meehyein Kim
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| | - Chong-Kyo Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | - Yun Young Go
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
49
|
Amin SA, Adhikari N, Gayen S, Jha T. First Report on the Validated Classification-Based Chemometric Modeling of Human Rhinovirus 3C Protease (HRV 3Cpro) Inhibitors. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijqspr.2018070101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human rhinoviruses (HRVs), a major cause of common cold and upper respiratory infections, may trigger severe respiratory complications like asthma and COPD. To date, no drugs are available in the market which are designed as novel HRV inhibitors despite the involvement of some pharmaceutical companies' due to economical and clinical constraints. HRV 3C protease may be a potential target for drug design as it plays crucial role in viral RNA replication and virion assembly process. Therefore, designing novel HRV 3Cpro inhibitors is necessary and demanding in the field of antiviral drug design. In this article, statistically significant and validated classification-based QSARs of a series of HRV 3Cpro inhibitors were performed for the first time as per the authors' knowledge. Results suggest that oxopyrrolidine and piperidinone rings are favored whereas carboxybenzyl and unsubstituted benzyl functions may be unfavorable. Moreover, this group, along with cyclic alkyl or aryl ring structures may favor HRV 3Cpro inhibition. These observations may be utilized for the design of a higher active anti-HRV agent in future.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
50
|
Casanova V, Sousa FH, Stevens C, Barlow PG. Antiviral therapeutic approaches for human rhinovirus infections. Future Virol 2018; 13:505-518. [PMID: 30245735 PMCID: PMC6136076 DOI: 10.2217/fvl-2018-0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
Human rhinoviruses are the primary etiological agent of the common cold. This infection can be mild and self-limiting in immunocompetent hosts, but can be associated with bronchiolitis in infants, pneumonia in the immunosuppressed and exacerbations of pre-existing pulmonary conditions such as asthma or chronic obstructive pulmonary disease. Many of these conditions can place significant economic costs upon healthcare infrastructure. There is currently no licensed vaccine for rhinovirus, as the large variety of rhinovirus serotypes has posed significant challenges for research. In this review, we discuss current knowledge around antiviral drugs and small molecule inhibitors of rhinovirus infection, as well as antiviral host defense peptides as exciting prospects to approach the development of novel therapeutics which target human rhinovirus.
Collapse
Affiliation(s)
- Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Filipa H Sousa
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, Scotland
| |
Collapse
|