1
|
Zhang J, Yang X, Qiu J, Zhang W, Yang J, Han J, Ni L. The Characterization, Biological Activities, and Potential Applications of the Antimicrobial Peptides Derived from Bacillus spp.: A Comprehensive Review. Probiotics Antimicrob Proteins 2025; 17:1624-1647. [PMID: 39739161 DOI: 10.1007/s12602-024-10447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
This paper provides a comprehensive review of antimicrobial peptides (AMPs) derived from Bacillus spp. The classification and structure of Bacillus-derived AMPs encompass a diverse range. There are 89 documented Bacillus-derived AMPs, which exhibit varied sources, amino acid sequences, and molecular structures. These AMPs can be categorized into classes I, Ia, IIa, IIb, IIc, and IId. The synthesis pathway of the AMPs primarily involves either ribosomally synthesized or non-ribosomally synthesized approaches. Additionally, the antimicrobial activity of these AMPs is versatile, targeting bacteria, fungi, and viruses, through disrupting intracellular DNA and the cell wall and membrane, as well as modulating immune responses. Moreover, the Bacillus-derived AMPs demonstrate promising application in the pharmaceutical industry, environmental protection, food preservation, and bio-control in agriculture. The commonly employed strategies for enhancing the production of Bacillus-derived AMPs involve optimizing cultivation conditions, implementing systems metabolic engineering, employing genome shuffling techniques, optimizing promoters, and improving expression host optimization. This review can provide a valuable reference for comprehending the current research status on advancements and sustainable production of Bacillus-derived AMPs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Xinmiao Yang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Jiajia Qiu
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
| | - Wen Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Jinzhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, 362200, Fujian, China.
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
2
|
Jayawardena A, Hung A, Qiao G, Hajizadeh E. Molecular Dynamics Simulations of Structurally Nanoengineered Antimicrobial Peptide Polymers Interacting with Bacterial Cell Membranes. J Phys Chem B 2025; 129:250-259. [PMID: 39686718 DOI: 10.1021/acs.jpcb.4c06691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Multidrug resistance (MDR) to conventional antibiotics is one of the most urgent global health threats, necessitating the development of effective and biocompatible antimicrobial agents that are less inclined to provoke resistance. Structurally nanoengineered antimicrobial peptide polymers (SNAPPs) are a novel and promising class of such alternatives. These star-shaped polymers are made of a dendritic core with multiple arms made of copeptides with varying amino acid sequences. Through a comprehensive set of in vivo experiments, we previously showed that SNAPPs with arms made of random blocks of lysine (K) and valine (V) residues exhibit sub-μM efficacy against Gram-negative and Gram-positive bacteria tested. Cryo-TEM images suggested pore formation by a SNAPP with random block copeptide arms as one of their modes of actions. However, the molecular mechanisms responsible for this mode of action of SNAPPs are not fully understood. To address this gap, we employed an atomistic molecular dynamics simulation technique to investigate the influence of three different sequences of amino acids, namely (1) alt-block KKV, (2) ran-block, and (3) diblock motifs on the secondary structure of their arms and SNAPP's overall configuration as well as their interactions with lipid bilayer. We, for the first time, identified a step-by-step mechanism through which alt-block and random SNAPPs interact with lipid bilayer and lead to "pore formation", hence, cell death. These insights provide a strong foundation for further optimization of the chemical structure of SNAPPs for maximum performance against MDR bacteria, therefore offering a promising avenue for addressing antibiotic resistance and the development of effective antibacterial agents.
Collapse
Affiliation(s)
- Amal Jayawardena
- Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Greg Qiao
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Elnaz Hajizadeh
- Soft Matter Informatics Research Group, Department of Mechanical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Wu Z, Cai Y, Han Y, Su Y, Zhang T, Wang X, Yan A, Wang L, Wu S, Wang G, Zhang Z. Development of α-Helical Antimicrobial Peptides with Imperfect Amphipathicity for Superior Activity and Selectivity. J Med Chem 2024; 67:19561-19572. [PMID: 39484706 DOI: 10.1021/acs.jmedchem.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The advancement of antimicrobial peptides (AMPs) as therapeutic agents is hindered by their poor selectivity. Recent evidence indicates that controlled disruption of the amphipathicity of α-helical AMPs may increase the selectivity. This study investigated the role of imperfect amphipathicity in optimizing AMPs with varied sequences to enhance their activity and selectivity. Among these, the lead peptide RI-18, characterized by an imperfectly amphipathic α-helical structure, demonstrated potent and broad-spectrum antibacterial activity without inducing hemolytic or cytotoxic effects. RI-18 effectively eliminated planktonic and biofilm-associated bacteria as well as persister cells and exhibited high bacterial plasma membrane affinity, inducing rapid membrane permeabilization and rupture. Notably, RI-18 significantly reduced bacterial loads without promoting bacterial resistance, highlighting its therapeutic potential. Overall, this study identified RI-18 as a promising antimicrobial candidate. The rational strategy of tuning imperfect amphipathicity to enhance the AMP activity and selectivity may facilitate the design and development of AMPs.
Collapse
Affiliation(s)
- Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Ying Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Yajun Han
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunhan Su
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Tianyu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Xingyu Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - An Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Liunan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| | - Sijing Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Gan Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Zhiye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650031, China
| |
Collapse
|
4
|
Wang S, Ong ZY, Qu S, Wang Y, Xin J, Zheng Z, Wu H. Omiganan-Based Synthetic Antimicrobial Peptides for the Healthcare of Infectious Endophthalmitis. ACS Biomater Sci Eng 2024; 10:7217-7226. [PMID: 39449570 DOI: 10.1021/acsbiomaterials.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Bacterial endophthalmitis is a severe infection of the aqueous or vitreous humor of the eye that can lead to permanent vision loss. Due to the rapid emergence of antibiotic resistance and dose-limiting toxicities, the standard treatment of bacterial endophthalmitis via the intravitreal injection of broad-spectrum antibiotics remains inadequate. Membrane active cationic antimicrobial peptides (AMPs) have emerged as a promising class of effective and broad-spectrum antimicrobial agents with potential to overcome antibiotic resistance. In this work, we investigate, for the first time, the use of omiganan (IK-12), a 12-amino acid indolicidin derivative for the treatment of bacterial endophthalmitis. Additionally, IK-12 was used as a template to perform amino acid rearrangements, without altering the length or type of amino acids, to yield a series of new derivative AMPs with varying extents of secondary structure formation under membrane mimicking conditions. IK-12 and its derivatives demonstrated strong and broad-spectrum antibacterial activities against a panel of clinically isolated Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus commonly implicated in bacterial endophthalmitis. Interestingly, two of the new IK-12 derivatives, IP-12 and WP-12, showed lower geometric mean minimum inhibitory concentration and higher 50% hemolysis concentration values, which effectively translated into 2- to 3.4-fold higher bacterial selectivity than the parent IK-12. Furthermore, the intravitreal injection of IK-12, IP-12, and WP-12 in a rabbit model of MRSA-induced endophthalmitis led to considerably improved clinical presentation and reduced recruitment of inflammatory cells. In all, these results demonstrate the potential of IK-12 and its derivatives, IP-12 and WP-12, as promising candidates for the treatment of bacterial endophthalmitis.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhan Yuin Ong
- School of Physics and Astronomy and Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheng Qu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, The First Hospital of Jilin University, Changchun 130021, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, The First Hospital of Jilin University, Changchun 130021, China
| | - Hong Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
5
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
6
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
7
|
Shao C, Wang Y, Li G, Guan H, Zhu Y, Zhang L, Dong N, Shan A. Novel design of simplified β-hairpin antimicrobial peptide as a potential food preservative based on Trp-pocket backbone. Food Chem 2024; 448:139128. [PMID: 38574714 DOI: 10.1016/j.foodchem.2024.139128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Food contamination from microbial deterioration requires the development of potent antimicrobial peptides (AMPs). The deployment of approved AMPs as dietary preservatives is limited due to barriers such as instability, toxicity, and high synthetic costs. This exploration utilizes the primary structural elements of the Trp-pocket backbone to engineer a series of β-hairpin AMPs (XWRWRPGXKXXR-NH2, X representing I, V, F, and/or L). Peptides WpLF, with Phe as X and Leu arranged at the 11th position, demonstrated exceptional selectivity index (SI = 123.08) and sterilization effects both in vitro and in vivo. WpLF consistently exhibited stable bacteriostasis, regardless of physiological salts, serum, and extreme pH. Mechanistic analysis indicated that the peptide penetrates microbial cell membranes, inducing membrane disruption, thereby impeding drug resistance evolution. Conclusively, AMPs engineered by the Trp-pocket skeleton hold substantial potential as innovative biological preservatives in food preservation, providing valuable insights for sustainable and safe peptide-based food preservatives.
Collapse
Affiliation(s)
- Changxuan Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuanmengxue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Guoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongrui Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongjie Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Chaudhary S, Ali Z, Mahfouz M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2282-2300. [PMID: 38685599 PMCID: PMC11258990 DOI: 10.1111/pbi.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
9
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
10
|
Qu H, Yao Q, Chen T, Wu H, Liu Y, Wang C, Dong A. Current status of development and biomedical applications of peptide-based antimicrobial hydrogels. Adv Colloid Interface Sci 2024; 325:103099. [PMID: 38330883 DOI: 10.1016/j.cis.2024.103099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Microbial contamination poses a serious threat to human life and health. Through the intersection of material science and modern medicine, advanced bionic hydrogels have shown great potential for biomedical applications due to their unique bioactivity and ability to mimic the extracellular matrix environment. In particular, as a promising antimicrobial material, the synthesis and practical biomedical applications of peptide-based antimicrobial hydrogels have drawn increasing research interest. The synergistic effect of peptides and hydrogels facilitate the controlled release of antimicrobial agents and mitigation of their biotoxicity while achieving antimicrobial effects and protecting the active agents from degradation. This review reports on the progress and trends of researches in the last five years and provides a brief outlook, aiming to provide theoretical background on peptide-based antimicrobial hydrogels and make suggestions for future related work.
Collapse
Affiliation(s)
- Huihui Qu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Quanfu Yao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China; College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, People's Republic of China
| | - Ting Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's Republic of China.
| | - Cong Wang
- Center of Experimental Instrument, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
11
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
12
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
13
|
You Y, Liu H, Zhu Y, Zheng H. Rational design of stapled antimicrobial peptides. Amino Acids 2023; 55:421-442. [PMID: 36781451 DOI: 10.1007/s00726-023-03245-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The global increase in antimicrobial drug resistance has dramatically reduced the effectiveness of traditional antibiotics. Structurally diverse antibiotics are urgently needed to combat multiple-resistant bacterial infections. As part of innate immunity, antimicrobial peptides have been recognized as the most promising candidates because they comprise diverse sequences and mechanisms of action and have a relatively low induction rate of resistance. However, because of their low chemical stability, susceptibility to proteases, and high hemolytic effect, their usage is subject to many restrictions. Chemical modifications such as D-amino acid substitution, cyclization, and unnatural amino acid modification have been used to improve the stability of antimicrobial peptides for decades. Among them, a side-chain covalent bridge modification, the so-called stapled peptide, has attracted much attention. The stapled side-chain bridge stabilizes the secondary structure, induces protease resistance, and increases cell penetration and biological activity. Recent progress in computer-aided drug design and artificial intelligence methods has also been used in the design of stapled antimicrobial peptides and has led to the successful discovery of many prospective peptides. This article reviews the possible structure-activity relationships of stapled antimicrobial peptides, the physicochemical properties that influence their activity (such as net charge, hydrophobicity, helicity, and dipole moment), and computer-aided methods of stapled peptide design. Antimicrobial peptides under clinical trial: Pexiganan (NCT01594762, 2012-05-07). Omiganan (NCT02576847, 2015-10-13).
Collapse
Affiliation(s)
- YuHao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - HongYu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - YouZhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
14
|
Mulkern AJ, Oyama LB, Cookson AR, Creevey CJ, Wilkinson TJ, Olleik H, Maresca M, da Silva GC, Fontes PP, Bazzolli DMS, Mantovani HC, Damaris BF, Mur LAJ, Huws SA. Microbiome-derived antimicrobial peptides offer therapeutic solutions for the treatment of Pseudomonas aeruginosa infections. NPJ Biofilms Microbiomes 2022; 8:70. [PMID: 36038584 PMCID: PMC9424236 DOI: 10.1038/s41522-022-00332-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Microbiomes are rife for biotechnological exploitation, particularly the rumen microbiome, due to their complexicity and diversity. In this study, antimicrobial peptides (AMPs) from the rumen microbiome (Lynronne 1, 2, 3 and P15s) were assessed for their therapeutic potential against seven clinical strains of Pseudomonas aeruginosa. All AMPs exhibited antimicrobial activity against all strains, with minimum inhibitory concentrations (MICs) ranging from 4–512 µg/mL. Time-kill kinetics of all AMPs at 3× MIC values against strains PAO1 and LES431 showed complete kill within 10 min to 4 h, although P15s was not bactericidal against PAO1. All AMPs significantly inhibited biofilm formation by strains PAO1 and LES431, and induction of resistance assays showed no decrease in activity against these strains. AMP cytotoxicity against human lung cells was also minimal. In terms of mechanism of action, the AMPs showed affinity towards PAO1 and LES431 bacterial membrane lipids, efficiently permeabilising the P. aeruginosa membrane. Transcriptome and metabolome analysis revealed increased catalytic activity at the cell membrane and promotion of β-oxidation of fatty acids. Finally, tests performed with the Galleria mellonella infection model showed that Lynronne 1 and 2 were efficacious in vivo, with a 100% survival rate following treatment at 32 mg/kg and 128 mg/kg, respectively. This study illustrates the therapeutic potential of microbiome-derived AMPs against P. aeruginosa infections.
Collapse
Affiliation(s)
- Adam J Mulkern
- IBERS, Aberystwyth University, Aberystwyth, SY23 3DA, Wales, UK. .,TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.
| | - Linda B Oyama
- Institute for Global Food Security, 19 Chlorine Gardens, Queen's University of Belfast, Belfast, Northern Ireland, BT9 5DP, UK
| | - Alan R Cookson
- IBERS, Aberystwyth University, Aberystwyth, SY23 3DA, Wales, UK
| | - Christopher J Creevey
- Institute for Global Food Security, 19 Chlorine Gardens, Queen's University of Belfast, Belfast, Northern Ireland, BT9 5DP, UK
| | - Toby J Wilkinson
- IBERS, Aberystwyth University, Aberystwyth, SY23 3DA, Wales, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Roslin, Edinburgh, EH25 9RG, UK
| | - Hamza Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Giarla C da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Patricia P Fontes
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Denise M S Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Hilario C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Bamu F Damaris
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luis A J Mur
- IBERS, Aberystwyth University, Aberystwyth, SY23 3DA, Wales, UK
| | - Sharon A Huws
- Institute for Global Food Security, 19 Chlorine Gardens, Queen's University of Belfast, Belfast, Northern Ireland, BT9 5DP, UK.
| |
Collapse
|
15
|
Sansi MS, Iram D, Zanab S, Vij S, Puniya AK, Singh A, Ashutosh, Meena S. Antimicrobial bioactive peptides from goat Milk proteins: In silico prediction and analysis. J Food Biochem 2022; 46:e14311. [PMID: 35789493 DOI: 10.1111/jfbc.14311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 01/15/2023]
Abstract
The main goal of this study was to assess the potential proteins of goat milk (i.e. α-s1-casein, α-s2-casein, β-casein, κ-casein, α-lactoglobulin and β-lactalbumin) as precursors of antimicrobial peptides (AMPs). Bioinformatics tools such as BIOPEP-UWM (enzyme action) were used for the in silico gastrointestinal digestion via a cocktail of pepsin, trypsin, and chymotrypsin A. The antimicrobial activity of peptides was predicted by using four algorithms, including Random Forest, Support Vector Machines, Artificial Neural Network and Discriminant Analysis on CAMPR3 online server, which works on Hidden Markov Models. Different online tools predicted the physiochemical properties, allergenicity, and toxicity of peptides as well. In silico gastrointestinal digestion simulation of proteins by enzymes cocktail yielded a total of 83 potential AMPs, with thirteen peptides being confident by all four algorithms. More AMPs were released from β-casein (21) than from β-lactoglobulin (16), α-s1-casein (15), α-s2-casein (12), κ-casein (11) and α-lactalbumin (9). A total of 17 peptides were cationic, and the majority of the peptides were extended AMPs. These peptides were released from α-s1-casein (SGK, IQK), α-s2-casein (SIR, AIH, TQPK), β-casein (GPVR, AVPQR, AIAR, GVPK, SQPK, PVPQK, IH, VPK), k-casein (AIPPK, QQR, IAK, TVPAK). All of the AMPs were anticipated to be non-toxic, and 54 of the 83 peptides were confirmed to be non-allergic, with the remaining 29 suspected of being allergenic and 31 to be predicted to have good water solubility. Further the molecular docking was used to evaluate the potent dihydropteroate synthase (DHPS) inhibitors. On the basis of ligand binding energy, 17 predicted AMPs were selected and then analyzed by AutoDock tools. Among the 17 AMPs, 3 AMPs were predicted as high-potent antimicrobial. Based on these findings, in silico investigations reveal that proteins of goat milk are a potential source of AMPs. These peptides can be synthesized and improved for use in the food sector. PRACTICAL APPLICATIONS: Goat milk is regarded as a high-quality milk protein source. According to this study, goat milk protein is a possible source of AMPs, and therefore, most important AMPs can be synthesized and developed for use in the food sector.
Collapse
Affiliation(s)
- Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sameena Zanab
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Anil Kumar Puniya
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Ajeet Singh
- Quality and Basic Sciences, Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Ashutosh
- Animal Physiology Division, Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
16
|
Wen Q, Liu R, Ouyang Z, He T, Zhang W, Chen X. Identification of a New Antifungal Peptide W1 From a Marine Bacillus amyloliquefaciens Reveals Its Potential in Controlling Fungal Plant Diseases. Front Microbiol 2022; 13:922454. [PMID: 35774453 PMCID: PMC9237960 DOI: 10.3389/fmicb.2022.922454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
A bacterium, Bacillus amyloliquefaciens W0101, isolated from the Arctic Ocean, showed potent antifungal activity against several plant pathogenic fungi. An antifungal peptide W1, with a molecular weight of approximately 2.4 kDa, was purified from the culture supernatant of the strain W0101 using ion-exchange chromatography and high-performance liquid chromatography. By analysis of Liquid Chromatograph-Mass Spectrometer, the peptide W1 was identified as a new antifungal peptide derived from the fragment of preprotein translocase subunit YajC. Further analysis revealed that W1 could disrupt the hyphae and spores of Sclerotinia sclerotiorum and inhibit its growth. W1 suppressed S. sclerotiorum and Fusarium oxysporum at a minimum inhibitory concentration of 140 and 58 μg/ml, respectively. The antifungal activity of W1 remained stable at 20-80°C or pH 6-11, with reduced activity at 100-110°C and pH 4-5, and under three protease treatments. Additionally, W1 also had a certain extent of metal ion resistance. These results therefore suggest that the peptide W1 from marine B. amyloliquefaciens W0101 may represent a new antifungal peptide with potential application in the biocontrol of plant diseases.
Collapse
Affiliation(s)
- Qiao Wen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruizhe Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenxiao Ouyang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianliang He
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
17
|
Wang X, Li S, Du M, Liu N, Shan Q, Zou Y, Wang J, Zhu Y. A Novel β-Hairpin Peptide Z-d14CFR Enhances Multidrug-Resistant Bacterial Clearance in a Murine Model of Mastitis. Int J Mol Sci 2022; 23:ijms23094617. [PMID: 35563007 PMCID: PMC9105976 DOI: 10.3390/ijms23094617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
The widespread prevalence of antimicrobial resistance has spawned the development of novel antimicrobial agents. Antimicrobial peptides (AMPs) have gained comprehensive attention as one of the major alternatives to antibiotics. However, low antibacterial activity and high-cost production have limited the applications of natural AMPs. In this study, we successfully expressed recombinant Zophobas atratus (Z. atratus) defensin for the first time. In order to increase the antimicrobial activity of peptide, we designed 5 analogues derived from Z. atratus defensin, Z-d13, Z-d14C, Z-d14CF, Z-d14CR and Z-d14CFR. Our results showed that Z-d14CFR (RGCRCNSKSFCVCR-NH2) exhibited a broad-spectrum antimicrobial activity to both Gram-positive bacteria and Gram-negative bacteria, including multidrug-resistant bacteria. It possessed less than 5% hemolysis and 10% cytotoxicity, even at a high concentration of 1 mg/mL. Antimicrobial mechanism studies indicated that Z-d14CFR performed antimicrobial effect via inhibiting biofilm formation, disrupting bacterial membrane integrity and inducing cellular contents release. Furthermore, Z-d14CFR showed a great therapeutic effect on the treatment of multidrug-resistant Escherichia coli (E. coli) infection by enhancing bacterial clearance, decreasing neutrophils infiltration and the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in a murine model of mastitis. Our findings suggest that Z-d14CFR could be a promising candidate against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Shuxian Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Mengze Du
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China;
| | - Ning Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Yunjing Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.W.); (S.L.); (N.L.); (Q.S.); (Y.Z.); (J.W.)
- Correspondence: ; Tel.: +86-010-6273-1094
| |
Collapse
|
18
|
Li B, Ouyang X, Ba Z, Yang Y, Zhang J, Liu H, Zhang T, Zhang F, Zhang Y, Gou S, Ni J. Novel β-Hairpin Antimicrobial Peptides Containing the β-Turn Sequence of -RRRF- Having High Cell Selectivity and Low Incidence of Drug Resistance. J Med Chem 2022; 65:5625-5641. [DOI: 10.1021/acs.jmedchem.1c02140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Beibei Li
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yinyin Yang
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianyue Zhang
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031445. [PMID: 35163367 PMCID: PMC8836030 DOI: 10.3390/ijms23031445] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides are a group of biological molecules that are normally buried in the structure of parent proteins and become active after the cleavage of the proteins. Another group of peptides is actively produced and found in many microorganisms and the body of organisms. Today, many groups of bioactive peptides have been marketed chemically or recombinantly. This article reviews the various production methods and sources of these important/ubiquitous and useful biomolecules. Their applications, such as antimicrobial, antihypertensive, antioxidant activities, blood-lipid-lowering effect, opioid role, antiobesity, ability to bind minerals, antidiabetic, and antiaging effects, will be explored. The types of pathways proposed for bioactive applications will be in the next part of the article, and at the end, the future perspectives of bioactive peptides will be reviewed. Reading this article is recommended for researchers interested in various fields of physiology, microbiology, biochemistry, and nanotechnology and food industry professionals.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ali Khani
- Department of Radiation Sciences, Faculty of Applied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sara Eghbalpour
- Department of Obstetrics and Gynecology Surgery, Babol University of Medical Sciences, Babol 4717647745, Iran;
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-974-5816
| |
Collapse
|
20
|
Matthyssen T, Li W, Holden JA, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. The Potential of Modified and Multimeric Antimicrobial Peptide Materials as Superbug Killers. Front Chem 2022; 9:795433. [PMID: 35083194 PMCID: PMC8785218 DOI: 10.3389/fchem.2021.795433] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are found in nearly all living organisms, show broad spectrum antibacterial activity, and can modulate the immune system. Furthermore, they have a very low level of resistance induction in bacteria, which makes them an ideal target for drug development and for targeting multi-drug resistant bacteria 'Superbugs'. Despite this promise, AMP therapeutic use is hampered as typically they are toxic to mammalian cells, less active under physiological conditions and are susceptible to proteolytic degradation. Research has focused on addressing these limitations by modifying natural AMP sequences by including e.g., d-amino acids and N-terminal and amino acid side chain modifications to alter structure, hydrophobicity, amphipathicity, and charge of the AMP to improve antimicrobial activity and specificity and at the same time reduce mammalian cell toxicity. Recently, multimerisation (dimers, oligomer conjugates, dendrimers, polymers and self-assembly) of natural and modified AMPs has further been used to address these limitations and has created compounds that have improved activity and biocompatibility compared to their linear counterparts. This review investigates how modifying and multimerising AMPs impacts their activity against bacteria in planktonic and biofilm states of growth.
Collapse
Affiliation(s)
- Tamara Matthyssen
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Wenyi Li
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - James A. Holden
- Centre for Oral Health Research, The University of Melbourne, Melbourne Dental School, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Jason C. Lenzo
- Centre for Oral Health Research, The University of Melbourne, Melbourne Dental School, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Sara Hadjigol
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Zhang H, Chen J, Liu Y, Xu Q, Inam M, He C, Jiang X, Jia Y, Ma H, Kong L. Discovery of a novel antibacterial protein CB6-C to target methicillin-resistant Staphylococcus aureus. Microb Cell Fact 2022; 21:4. [PMID: 34983528 PMCID: PMC8725309 DOI: 10.1186/s12934-021-01726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Given a serious threat of multidrug-resistant bacterial pathogens to global healthcare, there is an urgent need to find effective antibacterial compounds to treat drug-resistant bacterial infections. In our previous studies, Bacillus velezensis CB6 with broad-spectrum antibacterial activity was obtained from the soil of Changbaishan, China. In this study, with methicillin-resistant Staphylococcus aureus as an indicator bacterium, an antibacterial protein was purified by ammonium sulfate precipitation, Sephadex G-75 column, QAE-Sephadex A 25 column and RP-HPLC, which demonstrated a molecular weight of 31.405 kDa by SDS-PAGE. LC–MS/MS analysis indicated that the compound was an antibacterial protein CB6-C, which had 88.5% identity with chitosanase (Csn) produced by Bacillus subtilis 168. An antibacterial protein CB6-C showed an effective antimicrobial activity against gram-positive bacteria (in particular, the MIC for MRSA was 16 μg/mL), low toxicity, thermostability, stability in different organic reagents and pH values, and an additive effect with conventionally used antibiotics. Mechanistic studies showed that an antibacterial protein CB6-C exerted anti-MRSA activity through destruction of lipoteichoic acid (LTA) on the cell wall. In addition, an antibacterial protein CB6-C was efficient in preventing MRSA infections in in vivo models. In conclusion, this protein CB6-C is a newly discovered antibacterial protein and has the potential to become an effective antibacterial agent due to its high therapeutic index, safety, nontoxicity and great stability.
Collapse
Affiliation(s)
- Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Yuehua Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Qijun Xu
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Muhammad Inam
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Chengguang He
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Xiuyun Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,Changchun Sci-Tech University, Shuangyang District, Changchun, 130600, China
| | - Yu Jia
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| |
Collapse
|
22
|
Antibacterial alkylguanidino ureas: Molecular simplification approach, searching for membrane-based MoA. Eur J Med Chem 2022; 231:114158. [DOI: 10.1016/j.ejmech.2022.114158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022]
|
23
|
Hernández-Aristizábal I, Ocampo-Ibáñez ID. Antimicrobial Peptides with Antibacterial Activity against Vancomycin-Resistant Staphylococcus aureus Strains: Classification, Structures, and Mechanisms of Action. Int J Mol Sci 2021; 22:7927. [PMID: 34360692 PMCID: PMC8347216 DOI: 10.3390/ijms22157927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of bacteria resistant to conventional antibiotics is of great concern in modern medicine because it renders ineffectiveness of the current empirical antibiotic therapies. Infections caused by vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-intermediate S. aureus (VISA) strains represent a serious threat to global health due to their considerable morbidity and mortality rates. Therefore, there is an urgent need of research and development of new antimicrobial alternatives against these bacteria. In this context, the use of antimicrobial peptides (AMPs) is considered a promising alternative therapeutic strategy to control resistant strains. Therefore, a wide number of natural, artificial, and synthetic AMPs have been evaluated against VRSA and VISA strains, with great potential for clinical application. In this regard, we aimed to present a comprehensive and systematic review of research findings on AMPs that have shown antibacterial activity against vancomycin-resistant and vancomycin-intermediate resistant strains and clinical isolates of S. aureus, discussing their classification and origin, physicochemical and structural characteristics, and possible action mechanisms. This is the first review that includes all peptides that have shown antibacterial activity against VRSA and VISA strains exclusively.
Collapse
Affiliation(s)
| | - Iván Darío Ocampo-Ibáñez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
24
|
Zhang Y, Liu Y, Tang Y, Zhang D, He H, Wu J, Zheng J. Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection. Chem Sci 2021; 12:9124-9139. [PMID: 34276942 PMCID: PMC8261786 DOI: 10.1039/d1sc01133b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new "anti-amyloid and antimicrobial hypothesis" to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University Zhejiang China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University Zhejiang China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| |
Collapse
|
25
|
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Front Chem 2021; 9:691532. [PMID: 34222199 PMCID: PMC8249576 DOI: 10.3389/fchem.2021.691532] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid rise of antimicrobial resistance against conventional antimicrobials, resurgence of multidrug resistant microbes and the slowdown in the development of new classes of antimicrobials, necessitates the urgent development of alternate classes of therapeutic molecules. Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature that provide defense against microbial infections. They have been effective components of the host defense system for a very long time. The fact that the development of resistance by the microbes against the AMPs is relatively slower or delayed compared to that against the conventional antibiotics, makes them prospective alternative therapeutics of the future. Several thousands of AMPs have been isolated from various natural sources like microorganisms, plants, insects, crustaceans, animals, humans, etc. to date. However, only a few of them have been translated commercially to the market so far. This is because of some inherent drawbacks of the naturally obtained AMPs like 1) short half-life owing to the susceptibility to protease degradation, 2) inactivity at physiological salt concentrations, 3) cytotoxicity to host cells, 4) lack of appropriate strategies for sustained and targeted delivery of the AMPs. This has led to a surge of interest in the development of synthetic AMPs which would retain or improve the antimicrobial potency along with circumventing the disadvantages of the natural analogs. The development of synthetic AMPs is inspired by natural designs and sequences and strengthened by the fusion with various synthetic elements. Generation of the synthetic designs are based on various strategies like sequence truncation, mutation, cyclization and introduction of unnatural amino acids and synthons. In this review, we have described some of the AMPs isolated from the vast repertoire of natural sources, and subsequently described the various synthetic designs that have been developed based on the templates of natural AMPs or from de novo design to make commercially viable therapeutics of the future. This review entails the journey of the AMPs from their natural sources to the laboratory.
Collapse
Affiliation(s)
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
26
|
Li T, Li L, Du F, Sun L, Shi J, Long M, Chen Z. Activity and Mechanism of Action of Antifungal Peptides from Microorganisms: A Review. Molecules 2021; 26:molecules26113438. [PMID: 34198909 PMCID: PMC8201221 DOI: 10.3390/molecules26113438] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Harmful fungi in nature not only cause diseases in plants, but also fungal infection and poisoning when people and animals eat food derived from crops contaminated with them. Unfortunately, such fungi are becoming increasingly more resistant to traditional synthetic antifungal drugs, which can make prevention and control work increasingly more difficult to achieve. This means they are potentially very harmful to human health and lifestyle. Antifungal peptides are natural substances produced by organisms to defend themselves against harmful fungi. As a result, they have become an important research object to help deal with harmful fungi and overcome their drug resistance. Moreover, they are expected to be developed into new therapeutic drugs against drug-resistant fungi in clinical application. This review focuses on antifungal peptides that have been isolated from bacteria, fungi, and other microorganisms to date. Their antifungal activity and factors affecting it are outlined in terms of their antibacterial spectra and effects. The toxic effects of the antifungal peptides and their common solutions are mentioned. The mechanisms of action of the antifungal peptides are described according to their action pathways. The work provides a useful reference for further clinical research and the development of safe antifungal drugs that have high efficiencies and broad application spectra.
Collapse
Affiliation(s)
- Tianxi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Lulu Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Fangyuan Du
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
| | - Lei Sun
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China;
| | - Jichao Shi
- Liaoning Agricultural Development Service Center, Shenyang 110032, China;
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
- Correspondence: (M.L.); (Z.C.)
| | - Zeliang Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.L.); (L.L.); (F.D.)
- Correspondence: (M.L.); (Z.C.)
| |
Collapse
|
27
|
Using an Ensemble to Identify and Classify Macroalgae Antimicrobial Peptides. Interdiscip Sci 2021; 13:321-333. [PMID: 33978916 DOI: 10.1007/s12539-021-00435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
The rapid spread of multi-drug resistant microbes has lead researchers to discover natural alternative remedies such as antimicrobial peptides (AMPs). In the first line of defense, AMPs display a broad spectrum of potent activity against multi-resistant pathogenic bacteria, viruses, fungi, and even cancer. AMPs can be further characterised into families according to amino acid composition, secondary structure, and function. However, despite recent advancements in rapid computational methods for AMP prediction from various mammalian, aquatic, and terrestrial species, there is limited information regarding their presence, functional roles, and family type from marine macroalgae. In this paper, we present a promising two-tier ensemble of heterogeneous machine learning models that integrates seven well-known machine learning classifiers to predict AMPs from macroalgae. The first tier of the ensemble consists of a suite of binary classifiers that identify AMPs from protein sequence data which are then forwarded to a second-tier multi-class ensemble to characterise their functional family type. The two-tier ensemble was successfully used to identify 39 putative AMP sequences in 12 macroalgae species from three different phyla groups. The approach we describe is not limited to AMPs and can also be applied to search sequence data for other types of proteins.
Collapse
|
28
|
Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-Nunez C. Synthetic Biology and Computer-Based Frameworks for Antimicrobial Peptide Discovery. ACS NANO 2021; 15:2143-2164. [PMID: 33538585 PMCID: PMC8734659 DOI: 10.1021/acsnano.0c09509] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Antibiotic resistance is one of the greatest challenges of our time. This global health problem originated from a paucity of truly effective antibiotic classes and an increased incidence of multi-drug-resistant bacterial isolates in hospitals worldwide. Indeed, it has been recently estimated that 10 million people will die annually from drug-resistant infections by the year 2050. Therefore, the need to develop out-of-the-box strategies to combat antibiotic resistance is urgent. The biological world has provided natural templates, called antimicrobial peptides (AMPs), which exhibit multiple intrinsic medical properties including the targeting of bacteria. AMPs can be used as scaffolds and, via engineering, can be reconfigured for optimized potency and targetability toward drug-resistant pathogens. Here, we review the recent development of tools for the discovery, design, and production of AMPs and propose that the future of peptide drug discovery will involve the convergence of computational and synthetic biology principles.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jicong Cao
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 70790160, Brazil
- S-inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS 79117010, Brazil
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Shao C, Zhu Y, Jian Q, Lai Z, Tan P, Li G, Shan A. Cross-Strand Interaction, Central Bending, and Sequence Pattern Act as Biomodulators of Simplified β-Hairpin Antimicrobial Amphiphiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003899. [PMID: 33354914 DOI: 10.1002/smll.202003899] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Novel antimicrobial peptides (AMPs) have revolutionarily evolved into formidable candidates for antibiotic substitute materials against pathogenic infections. However, cost, lability, disorderly sequences, systemic toxicology, and biological profiles have plagued the perennial search. Here, a progressive β-hairpin solution with the simplest formulation is implanted into an AMP-based therapeutic strategy to systematically reveal the complex balance between function and toxicity of structural moieties, including cationicity, hydrophobicity, cross-strand interactions, center bending, and sequence pattern. Comprehensive implementation of structural identification, ten microorganisms, eleven in vitro barriers, four mammalian cells, and a diversified membrane operation setup led to the emergence of β-hairpin prototypes from a 24-member library. Lead amphiphiles, WKF-PG and WRF-NG, can tackle bacterial infection through direct antimicrobial efficacy and potential inflammation-limiting capabilities, such as an Escherichia coli challenge in a mouse peritonitis-sepsis model, without observed toxicity after systemic administration. Their optimal states with dissimilar modulators and the unavailable drug resistance related to membrane lytic mechanisms, also provide an usher for renewed innovation among β-sheet peptide-based antimicrobial biomaterials.
Collapse
Affiliation(s)
- Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yongjie Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qiao Jian
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Peng Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Guoyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
30
|
Tryptic Stability and Antimicrobial Activity of the Derivatives of Polybia-CP with Fine-Tuning Modification in the Side Chain of Lysine. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
32
|
Nam HY, Choi J, Kumar SD, Nielsen JE, Kyeong M, Wang S, Kang D, Lee Y, Lee J, Yoon MH, Hong S, Lund R, Jenssen H, Shin SY, Seo J. Helicity Modulation Improves the Selectivity of Antimicrobial Peptoids. ACS Infect Dis 2020; 6:2732-2744. [PMID: 32865961 DOI: 10.1021/acsinfecdis.0c00356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modulation of conformational flexibility in antimicrobial peptides (AMPs) has been investigated as a strategy to improve their efficacy against bacterial pathogens while reducing their toxicity. Here, we synthesized a library of helicity-modulated antimicrobial peptoids by the position-specific incorporation of helix-inducing monomers. The peptoids displayed minimal variations in hydrophobicity, which permitted the specific assessment of the effect of conformational differences on antimicrobial activity and selectivity. Among the moderately helical peptoids, the most dramatic increase in selectivity was observed in peptoid 17, providing more than a 20-fold increase compared to fully helical peptoid 1. Peptoid 17 had potent broad-spectrum antimicrobial activity that included clinically isolated multi-drug-resistant pathogens. Compared to pexiganan AMP, 17 showed superior metabolic stability, which could potentially reduce the dosage needed, alleviating toxicity. Dye-uptake assays and high-resolution imaging revealed that the antimicrobial activity of 17 was, as with many AMPs, mainly due to membrane disruption. However, the high selectivity of 17 reflected its unique conformational characteristics, with differential interactions between bacterial and erythrocyte membranes. Our results suggest a way to distinguish different membrane compositions solely by helicity modulation, thereby improving the selectivity toward bacterial cells with the maintenance of potent and broad-spectrum activity.
Collapse
Affiliation(s)
| | | | - S. Dinesh Kumar
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | | | | | | | | | | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | | | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| | - Song Yub Shin
- Department of Biomedical Science, Graduate School, and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | | |
Collapse
|
33
|
High Cell Selectivity and Bactericidal Mechanism of Symmetric Peptides Centered on d-Pro-Gly Pairs. Int J Mol Sci 2020; 21:ijms21031140. [PMID: 32046328 PMCID: PMC7037546 DOI: 10.3390/ijms21031140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) have a unique action mechanism that can help to solve global problems in antibiotic resistance. However, their low therapeutic index and poor stability seriously hamper their development as therapeutic agents. In order to overcome these problems, we designed peptides based on the sequence template XXRXXRRzzRRXXRXX-NH2, where X represents a hydrophobic amino acid like Phe (F), Ile (I), and Leu (L), while zz represents Gly-Gly (GG) or d-Pro-Gly (pG). Showing effective antimicrobial activity against Gram-negative bacteria and low toxicity, designed peptides had a tendency to form an α-helical structure in membrane-mimetic environments. Among them, peptide LRpG (X: L, zz: pG) showed the highest geometric mean average treatment index (GMTI = 73.1), better salt, temperature and pH stability, and an additive effect with conventional antibiotics. Peptide LRpG played the role of anti-Gram-negative bacteria through destroying the cell membrane. In addition, peptide LRpG also exhibited an anti-inflammatory activity by effectively neutralizing endotoxin. Briefly, peptide LRpG has the potential to serve as a therapeutic agent to reduce antibiotic resistance owing to its high therapeutic index and great stability.
Collapse
|
34
|
Dong N, Wang C, Zhang T, Zhang L, Xue C, Feng X, Bi C, Shan A. Bioactivity and Bactericidal Mechanism of Histidine-Rich β-Hairpin Peptide Against Gram-Negative Bacteria. Int J Mol Sci 2019; 20:ijms20163954. [PMID: 31416220 PMCID: PMC6718988 DOI: 10.3390/ijms20163954] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Antibacterial peptides (APMs) are a new type of antibacterial substance. The relationship between their structure and function remains indistinct; in particular, there is a lack of a definitive and fixed template for designing new antimicrobial peptides. Previous studies have shown that porcine Protegrin-1 (PG-1) exhibits considerable antimicrobial activity and cytotoxicity. In this study, to reduce cytotoxicity and increase cell selectivity, we designed histidine-rich peptides based on the sequence template RR(XY)2XDPGX(YX)2RR-NH2, where X represents I, W, V, and F. The results showed that the peptides form more β-hairpin structures in a lipid-rich environment that mimics cell membranes. Among them, the antimicrobial peptide HV2 showed strong antibacterial activity against Gram-negative strains and almost no toxicity to normal cells. The results of our analysis of its antibacterial mechanism showed that peptide HV2 acts on the bacterial cell membrane to increase its permeability, resulting in cell membrane disruption and death. Furthermore, peptide HV2 inhibited bacterial movement in a concentration-dependent manner and had a more robust anti-inflammatory effect by inhibiting the production of TNF-α. In summary, peptide HV2 exhibits high bactericidal activity and cell selectivity, making it a promising candidate for future use as an antibiotic.
Collapse
Affiliation(s)
- Na Dong
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chensi Wang
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zhang
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xinjun Feng
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Chongpeng Bi
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity. The Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
35
|
Torres MD, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide Design Principles for Antimicrobial Applications. J Mol Biol 2019; 431:3547-3567. [DOI: 10.1016/j.jmb.2018.12.015] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 02/08/2023]
|
36
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
37
|
Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, Vaden TD, Caputo GA. Activity and characterization of a pH-sensitive antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182984. [PMID: 31075228 DOI: 10.1016/j.bbamem.2019.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. Previous work showed that when Histidine was incorporated into the peptide C18G it lost antimicrobial activity. The role of pH on activity and biophysical properties of the peptide was investigated to explain this phenomenon. Minimal inhibitory concentration (MIC) results demonstrated that decreased media pH increased antimicrobial activity. Trichloroethanol (TCE) quenching and red-edge excitation spectroscopy (REES) showed a clear pH dependence on peptide aggregation in solution. Trp fluorescence was used to monitor binding to lipid vesicles and demonstrated the peptide binds to anionic bilayers at all pH values tested, however, binding to zwitterionic bilayers was enhanced at pH 7 and 8 (above the His pKa). Dual Quencher Analysis (DQA) confirmed the peptide inserted more deeply in PC:PG and PE:PG membranes, but could insert into PC bilayers at pH conditions above the His pKa. Bacterial membrane permeabilization assays which showed enhanced membrane permeabilization at pH 5 and 6 but vesicle leakage assays indicate enhanced permeabilization of PC and PC:PG bilayers at neutral pH. The results indicate the ionization of the His side chain affects the aggregation state of the peptide in solution and the conformation the peptide adopts when bound to bilayers, but there are likely more subtle influences of lipid composition and properties that impact the ability of the peptide to form pores in membranes.
Collapse
Affiliation(s)
- Morgan A Hitchner
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Luis E Santiago-Ortiz
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Matthew R Necelis
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - David J Shirley
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Thaddeus J Palmer
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Katharine E Tarnawsky
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Timothy D Vaden
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America
| | - Gregory A Caputo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America; Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States of America.
| |
Collapse
|
38
|
Irazazabal LN, Porto WF, Fensterseifer IC, Alves ES, Matos CO, Menezes AC, Felício MR, Gonçalves S, Santos NC, Ribeiro SM, Humblot V, Lião LM, Ladram A, Franco OL. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:178-190. [DOI: 10.1016/j.bbamem.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
|
39
|
Lee MR, Raman N, Ortiz-Bermúdez P, Lynn DM, Palecek SP. 14-Helical β-Peptides Elicit Toxicity against C. albicans by Forming Pores in the Cell Membrane and Subsequently Disrupting Intracellular Organelles. Cell Chem Biol 2018; 26:289-299.e4. [PMID: 30581136 DOI: 10.1016/j.chembiol.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/16/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Synthetic peptidomimetics of antimicrobial peptides (AMPs) are promising antimicrobial drug candidates because they promote membrane disruption and exhibit greater structural and proteolytic stability than natural AMPs. We previously reported selective antifungal 14-helical β-peptides, but the mechanism of antifungal toxicity of β-peptides remains unknown. To provide insight into the mechanism, we studied antifungal β-peptide binding to artificial membranes and living Candida albicans cells. We investigated the ability of β-peptides to interact with and permeate small unilamellar vesicle models of fungal membranes. The partition coefficient supported a pore-mediated mechanism characterized by the existence of a critical β-peptide concentration separating low- and high-partition coefficient regimes. Live cell intracellular tracking of β-peptides showed that β-peptides translocated into the cytoplasm, and then disrupted the nucleus and vacuole sequentially, leading to cell death. This understanding of the mechanisms of antifungal activity will facilitate design and development of peptidomimetic AMPs, including 14-helical β-peptides, for antifungal applications.
Collapse
Affiliation(s)
- Myung-Ryul Lee
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Namrata Raman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patricia Ortiz-Bermúdez
- Department of Chemical Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
40
|
Torres MDT, Pedron CN, Higashikuni Y, Kramer RM, Cardoso MH, Oshiro KGN, Franco OL, Silva Junior PI, Silva FD, Oliveira Junior VX, Lu TK, de la Fuente-Nunez C. Structure-function-guided exploration of the antimicrobial peptide polybia-CP identifies activity determinants and generates synthetic therapeutic candidates. Commun Biol 2018; 1:221. [PMID: 30534613 PMCID: PMC6286318 DOI: 10.1038/s42003-018-0224-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) constitute promising alternatives to classical antibiotics for the treatment of drug-resistant infections, which are a rapidly emerging global health challenge. However, our understanding of the structure-function relationships of AMPs is limited, and we are just beginning to rationally engineer peptides in order to develop them as therapeutics. Here, we leverage a physicochemical-guided peptide design strategy to identify specific functional hotspots in the wasp-derived AMP polybia-CP and turn this toxic peptide into a viable antimicrobial. Helical fraction, hydrophobicity, and hydrophobic moment are identified as key structural and physicochemical determinants of antimicrobial activity, utilized in combination with rational engineering to generate synthetic AMPs with therapeutic activity in a mouse model. We demonstrate that, by tuning these physicochemical parameters, it is possible to design nontoxic synthetic peptides with enhanced sub-micromolar antimicrobial potency in vitro and anti-infective activity in vivo. We present a physicochemical-guided rational design strategy to generate peptide antibiotics.
Collapse
Affiliation(s)
- Marcelo D. T. Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Cibele N. Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Yasutomi Higashikuni
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Robin M. Kramer
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Marlon H. Cardoso
- Programa de Pós-Gradução em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF 70297400 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 71966700 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Karen G. N. Oshiro
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Octávio L. Franco
- Programa de Pós-Gradução em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF 70297400 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF 71966700 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117010 Brazil
| | - Pedro I. Silva Junior
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP 05503900 Brazil
| | - Fernanda D. Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Vani X. Oliveira Junior
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210580 Brazil
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
41
|
Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L, Li W, Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med Res Rev 2018; 39:831-859. [PMID: 30353555 DOI: 10.1002/med.21542] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs), critical components of the innate immune system, are widely distributed throughout the animal and plant kingdoms. They can protect against a broad array of infection-causing agents, such as bacteria, fungi, parasites, viruses, and tumor cells, and also exhibit immunomodulatory activity. AMPs exert antimicrobial activities primarily through mechanisms involving membrane disruption, so they have a lower likelihood of inducing drug resistance. Extensive studies on the structure-activity relationship have revealed that net charge, hydrophobicity, and amphipathicity are the most important physicochemical and structural determinants endowing AMPs with antimicrobial potency and cell selectivity. This review summarizes the recent advances in AMPs development with respect to characteristics, structure-activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xiujing Dou
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jing Song
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Zhu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Lin Xu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weizhong Li
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
42
|
Pasero C, D'Agostino I, De Luca F, Zamperini C, Deodato D, Truglio GI, Sannio F, Del Prete R, Ferraro T, Visaggio D, Mancini A, Guglielmi MB, Visca P, Docquier JD, Botta M. Alkyl-guanidine Compounds as Potent Broad-Spectrum Antibacterial Agents: Chemical Library Extension and Biological Characterization. J Med Chem 2018; 61:9162-9176. [PMID: 30265809 DOI: 10.1021/acs.jmedchem.8b00619] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nowadays, the increasing of multidrug-resistant pathogenic bacteria represents a serious threat to public health, and the lack of new antibiotics is becoming a global emergency. Therefore, research in antibacterial fields is urgently needed to expand the currently available arsenal of drugs. We have recently reported an alkyl-guanidine derivative (2), characterized by a symmetrical dimeric structure, as a good candidate for further developments, with a high antibacterial activity against both Gram-positive and Gram-negative strains. In this study, starting from its chemical scaffold, we synthesized a small library of analogues. Moreover, biological and in vitro pharmacokinetic characterizations were conducted on some selected derivatives, revealing notable properties: broad-spectrum profile, activity against resistant clinical isolates, and appreciable aqueous solubility. Interestingly, 2 seems neither to select for resistant strains nor to macroscopically alter the membranes, but further studies are required to determine the mode of action.
Collapse
Affiliation(s)
- Carolina Pasero
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Filomena De Luca
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy
| | - Claudio Zamperini
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy.,Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy
| | - Davide Deodato
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Giuseppina I Truglio
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | - Filomena Sannio
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy
| | - Rosita Del Prete
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy
| | - Teresa Ferraro
- Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy
| | - Daniela Visaggio
- Department of Sciences , Roma Tre University , Rome 00146 , Italy
| | - Arianna Mancini
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy
| | | | - Paolo Visca
- Department of Sciences , Roma Tre University , Rome 00146 , Italy
| | - Jean-Denis Docquier
- Department of Medical Biotechnology , University of Siena , I-53100 Siena , Italy.,Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry, and Pharmacy , University of Siena , I-53100 Siena , Italy.,Lead Discovery Siena s.r.l. , Via Vittorio Alfieri 31 , I-53019 Castelnuovo Berardenga , Italy.,Sbarro Institute for Cancer Research and Molecular Medicine , Temple University , BioLife Science Building, Suite 333, 1900 North 12th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
43
|
Irani N, Basardeh E, Samiee F, Fateh A, Shooraj F, Rahimi A, Shahcheraghi F, Vaziri F, Masoumi M, Pazhouhandeh M, Siadat SD, Kazemi-Lomedasht F, Jamnani FR. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii. Microb Pathog 2018; 121:310-317. [PMID: 29859290 DOI: 10.1016/j.micpath.2018.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
The emergence of extensively drug-resistant (XDR) Acinetobacter baumannii strains and the limited number of efficacious antibiotics demonstrate an urgent need to develop novel agents to treat infections caused by this dangerous pathogen. To find antimicrobial peptides against A. baumannii growing either in planktonic or in biofilm mode, biopanning was carried out with a peptide library on five XDR A. baumannii strains grown in the medium containing human blood (blood biopanning) and biofilms formed by these strains (biofilm biopanning). Two groups of peptides were identified, among which two peptides N10 (from blood biopanning) and NB2 (from biofilm biopanning) were selected and synthesized for more assessments. The selected peptides showed significant binding to A. baumannii rather than to the human cell line Caco-2. Both peptides were effective against A. baumannii and showed antibacterial activities (minimum inhibitory concentration (MIC) 500 μg/ml). In the biofilm inhibition assay, NB2 reduced biofilm more efficiently (75%) than N10 (50%). The combination of the two peptides could function better than each peptide alone to prevent biofilm formation by A. baumannii. Supplementation of conventional therapy with a mixture of peptides targeting A. baumannii or using peptides to deliver antibiotics specifically to the site of infection may be promising to control A. baumannii-related diseases.
Collapse
Affiliation(s)
- Nazanin Irani
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran; Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eilnaz Basardeh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Samiee
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fahimeh Shooraj
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ayoub Rahimi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
44
|
Sivanesam K, Kier BL, Whedon SD, Chatterjee C, Andersen NH. Biological consequences of improving the structural stability of hairpins that have antimicrobial activity. J Pept Sci 2018; 23:899-906. [PMID: 29193517 DOI: 10.1002/psc.3054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 11/11/2022]
Abstract
Designing new antimicrobial peptides (AMPs) focuses heavily on the activity of the peptide and less on the elements that stabilize the secondary structure of these peptides. Studies have shown that improving the structure of naturally occurring AMPs can affect activity and so here we explore the relationship between structure and activity of two non-naturally occurring AMPs. We have used a backbone-cyclized peptide as a template and designed an uncyclized analogue of this peptide that has antimicrobial activity. We focused on beta-hairpin-like structuring features. Improvements to the structure of this peptide reduced the activity of the peptide against gram-negative, Escherichia coli but improved the activity against gram-positive, Corynebacterium glutamicum. Distinctions in structuring effects on gram-negative versus gram-positive activity were also seen in a second peptide system. Structural improvements resulted in a peptide that was more active than the native against gram-positive bacterium but less active against gram-negative bacterium. Our results show that there is not always a correlation between improved hairpin-structuring and activity. Other factors such as the type of bacteria being targeted as well as net positive charge can play a role in the potency of AMPs. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kalkena Sivanesam
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Brandon L Kier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samuel D Whedon
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
45
|
Shao C, Tian H, Wang T, Wang Z, Chou S, Shan A, Cheng B. Central β-turn increases the cell selectivity of imperfectly amphipathic α-helical peptides. Acta Biomater 2018; 69:243-255. [PMID: 29355714 DOI: 10.1016/j.actbio.2018.01.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/19/2022]
Abstract
Although membrane lytic antimicrobial peptides (AMPs) show enormous potential for addressing mounting global antibiotic resistance, therapeutic applications are hindered by their weak antimicrobial activity, high toxicity, salt sensitivity and poor understanding of structure-activity relationships. To investigate the effects of different parameters on the biological activities of AMPs, a rational approach was adopted to design a series of short cationic α-helical peptides comprising the Ac-WxKyWxzzyKxWyK-NH2 sequence, where x: cationic residues (Arg or Lys), y: hydrophobic residues (Ala, Val, Ile or Leu), and zz: β-turn (rigid D-Pro-Gly turn or flexible Gly-Gly turn). The peptides showed a more helical structure as the concentration of membrane-mimetic solution increased. The peptide RL with a central D-Pro-Gly turn (x: Arg, y: Lys, zz = D-Pro-Gly) exhibited broad-spectrum antimicrobial activities (2-8 μM) against ten types of clinically relevant microorganisms and even maintained its activity in the presence of physiological salts and showed excellent selectivity toward bacterial cells over human red blood cells and mammalian cells. However, the toxicity was increased after the removal of D-Pro-Gly turn. Additionally, the bactericidal activity was reduced when the D-Pro-Gly turn was replaced by a Gly-Gly turn. Fluorescence spectroscopy and electron microscopy analyses indicated that RL and its derivatives killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. In conclusion, these findings clearly generalized a potential method for designing or optimizing AMPs, and the peptide RL is a promising therapeutic candidate to combat antibiotic resistance. STATEMENT OF SIGNIFICANCE We proposed a rational approach to design imperfectly amphiphilic peptides and identified RL (Ac-WRKLWRpGLKRWLK-NH2) in particular that shows strong antibacterial properties, low toxicity and high salt resistance. The β-turn unit inserted into the central position of cationic α-helical peptides, especially the D-Pro-Gly turn, significantly increase the cell selectivity of the synthetic amphiphiles. The findings demonstrate a potential method for designing and/or optimizing AMPs, which would facilitate the development of strategies to design peptide-based antimicrobial biomaterials in a variety of biotechnological and clinical applications.
Collapse
|
46
|
Chalasani AG, Roy U, Nema S. Purification and characterisation of a novel antistaphylococcal peptide (ASP-1) from Bacillus sp. URID 12.1. Int J Antimicrob Agents 2018; 51:89-97. [DOI: 10.1016/j.ijantimicag.2017.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/17/2017] [Accepted: 08/26/2017] [Indexed: 11/24/2022]
|
47
|
Rothan HA, Ambikabothy J, Ramasamy TS, Rashid NN, Yusof R. A Preliminary Study in Search of Potential Peptide Candidates for a Combinational Therapy with Cancer Chemotherapy Drug. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9646-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Alvares DS, Viegas TG, Ruggiero Neto J. Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides. Biophys Rev 2017; 9:669-682. [PMID: 28853007 PMCID: PMC5662038 DOI: 10.1007/s12551-017-0296-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
The indiscriminate use of conventional antibiotics is leading to an increase in the number of resistant bacterial strains, motivating the search for new compounds to overcome this challenging problem. Antimicrobial peptides, acting only in the lipid phase of membranes without requiring specific membrane receptors as do conventional antibiotics, have shown great potential as possible substituents of these drugs. These peptides are in general rich in basic and hydrophobic residues forming an amphipathic structure when in contact with membranes. The outer leaflet of the prokaryotic cell membrane is rich in anionic lipids, while the surface of the eukaryotic cell is zwitterionic. Due to their positive net charge, many of these peptides are selective to the prokaryotic membrane. Notwithstanding this preference for anionic membranes, some of them can also act on neutral ones, hampering their therapeutic use. In addition to the electrostatic interaction driving peptide adsorption by the membrane, the ability of the peptide to perturb lipid packing is of paramount importance in their capacity to induce cell lysis, which is strongly dependent on electrostatic and hydrophobic interactions. In the present research, we revised the adsorption of antimicrobial peptides by model membranes as well as the perturbation that they induce in lipid packing. In particular, we focused on some peptides that have simultaneously acidic and basic residues. The net charges of these peptides are modulated by pH changes and the lipid composition of model membranes. We discuss the experimental approaches used to explore these aspects of lipid membranes using lipid vesicles and lipid monolayer as model membranes.
Collapse
Affiliation(s)
- Dayane S Alvares
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - Taisa Giordano Viegas
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil
| | - João Ruggiero Neto
- Department of Physics, UNESP - São Paulo State University, IBILCE, R. Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP 15054-000, Brazil.
| |
Collapse
|
49
|
Zhong G, Cheng J, Liang ZC, Xu L, Lou W, Bao C, Ong ZY, Dong H, Yang YY, Fan W. Short Synthetic β-Sheet Antimicrobial Peptides for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Burn Wound Infections. Adv Healthc Mater 2017; 6. [PMID: 28135045 DOI: 10.1002/adhm.201601134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/12/2016] [Indexed: 12/28/2022]
Abstract
Pseudomonas aeruginosa is often implicated in burn wound infections; its inherent drug resistance often renders these infections extremely challenging to treat. This is further compounded by the problem of emerging drug resistance and the dearth of novel antimicrobial drug discovery in recent years. In the perennial search for effective antimicrobial compounds, the authors identify short synthetic β-sheet folding peptides, IRIKIRIK (IK8L), IRIkIrIK (IK8-2D), and irikirik (IK8D) as prime candidates owing to their high potency against Gram-negative bacteria. In this study, the peptides are first assayed against 20 clinically isolated multidrug-resistant P. aeruginosa strains in comparison with the conventional antibiotics imipenem and ceftazidime, and IK8L is demonstrated to be the most effective. IK8L also exhibits superior antibacterial killing kinetics compared to imipenem and ceftazidime. From transmission electron microscopy, confocal microscopy, and protein release analyses, IK8L shows membrane-lytic antimicrobial mechanism. Repeated use of IK8L does not induce drug resistance, while the bacteria develop resistance against the antibiotics after several times of treatment at sublethal doses. Analysis of mouse blood serum chemistry reveals that peptide does not induce systemic toxicity. The potential utility of IK8L in the in vivo treatment of P. aeruginosa-infected burn wounds is further demonstrated in a mouse model.
Collapse
Affiliation(s)
- Guansheng Zhong
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Junchi Cheng
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Liang Xu
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Weiyang Lou
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Chang Bao
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Zhan Yuin Ong
- School of Physics and Astronomy and Leeds Institute of Biomedical and Clinical Sciences; University of Leeds; Leeds LS2 9JT UK
| | - Huihui Dong
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Weimin Fan
- Program of Innovative Therapeutics; Division of Hepatobiliary and Pancreatic Surgery; Department of Surgery; First Affiliated Hospital; School of Medicine; Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation; Ministry of Public Health; Key Laboratory of Organ Transplantation; Zhejiang Province Hangzhou 310003 China
| |
Collapse
|
50
|
Tan T, Wu D, Li W, Zheng X, Li W, Shan A. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7. Int J Mol Sci 2017; 18:E339. [PMID: 28178190 PMCID: PMC5343874 DOI: 10.3390/ijms18020339] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023] Open
Abstract
Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.
Collapse
Affiliation(s)
- Tingting Tan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Di Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Weizhong Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Weifen Li
- Institute of Animal Nutrition and Feed Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|