1
|
Cardoso FG, dos Santos LT, Menezes SA, Rigo GV, Tasca T. In vitro co-culture model of Trichomonas vaginalis, Candida albicans, and Lactobacillus crispatus: a system for assessing antimicrobial activity and microorganism interactions in vaginitis. FRONTIERS IN PARASITOLOGY 2025; 4:1523113. [PMID: 40297512 PMCID: PMC12034676 DOI: 10.3389/fpara.2025.1523113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025]
Abstract
Trichomonas vaginalis is a flagellated protozoan causing trichomoniasis, the most common non-viral sexually transmitted infection. It is associated with various complications, particularly in asymptomatic carriers. Another major cause of vaginitis is Candida albicans, a normal member of the vaginal microbiota, which causes vulvovaginal candidiasis when immune imbalances occur, leading to recurrent infections. Treatment-resistant strains of these pathogens pose a significant challenge. Lactobacillus crispatus, a dominant species in the vaginal microbiota, produces antimicrobial compounds that help protect the vaginal mucosa. This study establishes an in vitro co-culture of T. vaginalis, C. albicans, and L. crispatus to simulate the vaginal microenvironment at the site of infection. MRS medium was chosen for the co-culture, with initial cell densities determined as follows: T. vaginalis at 1.0 × 106 trophozoites/mL (counted using a hemocytometer), 3.33 × 104 CFU/mL for C. albicans, and either 5.53 × 106 CFU/mL (for co-culture with the ATCC isolate) or 5.53 × 107 CFU/mL (for co-culture with a fresh clinical isolate) for L. crispatus. The cell densities of C. albicans and L. crispatus were quantified as colony-forming units (CFU) on selective agar. The incubation period for co-culture, ensuring optimal growth of all microorganisms, was 24 hours. In co-culture, L. crispatus at both tested densities acidified the medium. The co-culture system demonstrated lower MIC values for metronidazole (50 µM in the ATCC isolate co-culture and 25 µM with the fresh clinical isolate) and lower MFC values for fluconazole (6.25 µM), compared to monocultures of T. vaginalis (100 µM) and C. albicans (12.50 µM). Furthermore, the triple co-culture increased the cytotoxicity to vaginal cell and erythrocytes for the ATCC isolate while significantly inhibited both biofilm formation and metabolic activity of C. albicans (by up to 92% and 90%, respectively), as well as its yeast-to-hyphae transition (by up to 70%). SEM analyses highlighted the morphological differences among T. vaginalis, C. albicans, and L. crispatus, including isolate-specific size variations in the protozoan. These findings suggest that this in vitro co-culture system is a valuable tool for evaluating the antimicrobial efficacy of novel compounds against vaginitis pathogens and for studying interactions within the vaginal microenvironment.
Collapse
Affiliation(s)
| | | | | | | | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Wang X, Jin X, Zhao F, Xu Z, Tan W, Zhang J, Xu Y, Luan X, Fang M, Xie Z, Chang W, Lou H. Structure-Based Optimization of Novel Sterol 24-C-Methyltransferase Inhibitors for the Treatment of Candida albicans Infections. J Med Chem 2024; 67:9318-9341. [PMID: 38764175 DOI: 10.1021/acs.jmedchem.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Interfering with sterol biosynthesis is an important strategy for developing safe and effective antifungal drugs. We previously identified compound H55 as an allosteric inhibitor of the fungal-specific C-24 sterol methyltransferase Erg6 for treating Candida albicans infections. Herein, 62 derivatives of H55 were designed and synthesized based on target-ligand interactions to identify more active candidates. Among them, d28 displayed the most potent antivirulence ability (MHIC50 = 0.25 μg/mL) by targeting Erg6, exhibiting an 8-fold increase in potency compared with H55. Moreover, d28 significantly outperformed H55 in inhibiting cell adhesion and biofilm formation, and exhibited minimal cytotoxicity and negligible potential to induce drug resistance. Of note, the coadministration of d28 and other sterol biosynthesis inhibitors, such as tridemorph or terbinafine, demonstrated a strong synergistic antifungal action in vitro and in vivo in a murine skin infection model. These results support the potential application of d28 in the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Xue Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zejun Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenzhuo Tan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuliang Xu
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Min Fang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461002, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
3
|
Lee J, Song H, Kim K. Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari. Antibiotics (Basel) 2024; 13:434. [PMID: 38786162 PMCID: PMC11117302 DOI: 10.3390/antibiotics13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
(1) Background: Although Candida albicans accounts for the majority of fungal infections, therapeutic options are limited and require alternative antifungal agents with new targets; (2) Methods: A biofilm formation assay with RPMI1640 medium was performed with Liriope muscari extract. A combination antifungal assay, dimorphic transition assay, and adhesion assay were performed under the biofilm formation condition to determine the anti-biofilm formation effect. qRT-PCR analysis was accomplished to confirm changes in gene expression; (3) Results: L. muscari extract significantly reduces biofilm formation by 51.65% at 1.56 μg/mL use and therefore increases susceptibility to miconazole. L. muscari extract also inhibited the dimorphic transition of Candida; nearly 50% of the transition was inhibited when 1.56 μg/mL of the extract was treated. The extract of L. muscari inhibited the expression of genes related to hyphal development and extracellular matrix of 34.4% and 36.0%, respectively, as well as genes within the Ras1-cAMP-PKA, Cph2-Tec1, and MAP kinase signaling pathways of 25.58%, 7.1% and 15.8%, respectively, at 1.56 μg/mL of L. muscari extract treatment; (4) Conclusions: L. muscari extract significantly reduced Candida biofilm formation, which lead to induced antifungal susceptibility to miconazole. It suggests that L. muscari extract is a promising anti-biofilm candidate of Candida albicans since the biofilm formation of Candida albicans is an excellent target for candidiasis regulation.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Medical Science of Meridian, College of Korean Medicine, Graduate School, Kyung Hee University, Kyungheedae-ro 6-gil, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Hyunchan Song
- Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea;
| | - Kiyoung Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea;
| |
Collapse
|
4
|
Janeczko M, Kochanowicz E, Górka K, Skrzypek T. Quinalizarin as a potential antifungal drug for the treatment of Candida albicans fungal infection in cancer patients. Microbiol Spectr 2024; 12:e0365223. [PMID: 38289929 PMCID: PMC10913734 DOI: 10.1128/spectrum.03652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
This study aims to analyze the antifungal properties of quinalizarin, a plant-derived compound with proven anticancer effects. Quinalizarin exhibited antifungal activity against opportunistic pathogenic Candida species and Geotrichum capitatum. The treatment with this anthraquinone reduced hyphal growth, inhibited biofilm formation, and damaged mature Candida albicans biofilms. Real-time RT-PCR revealed that quinalizarin downregulated the expression of hyphae-related and biofilm-specific genes. The flow cytometry method used in the study showed that both apoptosis and necrosis were the physiological mechanisms of quinalizarin-induced C. albicans cell death, depending on the dose of the antifungal agent. A further study revealed an increase in the levels of intracellular reactive oxygen species and alterations in mitochondrial membrane potential after treatment with quinalizarin. Finally, quinalizarin was found to have low toxicity in a hemolytic test using human erythrocytes. In conclusion, we have identified quinalizarin as a potential antifungal compound.IMPORTANCEThis article is a study to determine the antifungal activity of quinalizarin (1,2,5,8-tetrahydroxyanthraquinone). Quinalizarin has potential antitumor properties and is effective in different types of tumor cells. The aim of the present study was to prove that quinalizarin can be used simultaneously in the treatment of cancer and in the treatment of intercurrent fungal infections. Quinalizarin was identified as a novel antifungal compound with low toxicity. These results may contribute to the development of a new drug with dual activity in the treatment of cancer-associated candidiasis.
Collapse
Affiliation(s)
- Monika Janeczko
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Kamila Górka
- Department of Molecular Biology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Tomasz Skrzypek
- Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Ali K, Chatterjee I, Panda G. Metal-free thiolation of sulfonyl hydrazone with thiophenol: synthesis of 4-thio-chroman and diarylmethyl thioethers. Org Biomol Chem 2023; 21:7447-7458. [PMID: 37667987 DOI: 10.1039/d3ob01239e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A simple, efficient, and transition metal-free approach was developed for accessing 4-thio-substituted chroman and diarylmethyl thioethers from sulfonyl hydrazones. This protocol provides straightforward access to a class of diarylmethane derivatives with good to excellent yields. This operationally simple protocol exhibited good tolerance for labile functional groups, providing biologically relevant chemical libraries. This safe and feasible route is applicable to the large-scale synthesis of 4-thio-substituted chromans, which are of great synthetic interest because of their further reaction potential.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| | - Indranil Chatterjee
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.
| | - Gautam Panda
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
6
|
Shuai MS, Guan X, Fei XH, Zhang M, Fu XZ, He B, Zhao YL. Synthesis of diarylmethyl thioethers via a DABCO-catalyzed 1,6-conjugate addition reaction of p-quinone methides with organosulfur reagents. RSC Adv 2023; 13:12982-12990. [PMID: 37124019 PMCID: PMC10132255 DOI: 10.1039/d3ra01815f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
A rapid and simple method was developed for the synthesis of diarylmethyl thioethers via a DABCO-catalyzed 1,6-conjugate addition reaction of para-quinone methides (p-QMs) with organosulfur reagents. A series of diarylmethyl thioethers were synthesized at 13-85% yields by this method. After that, the antibacterial activities of synthesized diarylmethyl thioethers and their derivatives were evaluated. The MIC range (μg mL-1) against Staphylococcus aureus ATCC 25923 and clinically isolated methicillin-resistant S. aureus was 8-128 and 64-128, respectively.
Collapse
Affiliation(s)
- Ming-Shan Shuai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiang Guan
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xing-Hai Fei
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Mao Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Xiao-Zhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| | - Yong-Long Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University Guiyang 550004 People's Republic of China
| |
Collapse
|
7
|
Targeting Virulence Factors of Candida albicans with Natural Products. Foods 2022; 11:foods11192951. [PMID: 36230026 PMCID: PMC9562657 DOI: 10.3390/foods11192951] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products derived from natural resources, including nutritional functional food, play an important role in human health. In recent years, the study of anti-fungal and other properties of agri-foods and derived functional compounds has been a hot research topic. Candida albicans is a parasitic fungus that thrives on human mucosal surfaces, which are colonized through opportunistic infection. It is the most prevalent cause of invasive fungal infection in immunocompromised individuals, resulting in a wide variety of clinical symptoms. Moreover, the efficacy of classical therapeutic medications such as fluconazole is often limited by the development of resistance. There is an ongoing need for the development of novel and effective antifungal therapy and medications. Infection of C. albicans is influenced by a great quantity of virulence factors, like adhesion, invasion-promoting enzymes, mycelial growth, and phenotypic change, and among others. Furthermore, various natural products especially from food sources that target C. albicans virulence factors have been researched, providing promising prospects for C. albicans prevention and treatment. In this review, we discuss the virulence factors of C. albicans and how functional foods and derived functional compounds affect them. Our hope is that this review will stimulate additional thoughts and suggestions regarding nutritional functional food and therapeutic development for patients afflicted with C. albicans.
Collapse
|
8
|
Synergistic Antibiofilm Effects of Pseudolaric Acid A Combined with Fluconazole against Candida albicans via Inhibition of Adhesion and Yeast-To-Hypha Transition. Microbiol Spectr 2022; 10:e0147821. [PMID: 35297651 PMCID: PMC9045105 DOI: 10.1128/spectrum.01478-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Candida albicans biofilms are resistant to several clinical antifungal agents. Thus, it is necessary to develop new antibiofilm intervention measures. Pseudolaric acid A (PAA), a diterpenoid mainly derived from the pine bark of Pseudolarix kaempferi, has been reported to have an inhibitory effect on C. albicans. The primary aim of the current study was to investigate the antibiofilm effect of PAA when combined with fluconazole (FLC) and explore the underlying mechanisms. Biofilm activity was assessed by tetrazolium {XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt]} reduction assays. PAA (4 μg/mL) combined with FLC (0.5 μg/mL) significantly inhibited early, developmental, and mature biofilm formation compared with the effect of PAA or FLC alone (P < 0.05). Furthermore, PAA (4 μg/mL) combined with FLC (0.5 μg/mL) produced a 56% reduction in C. albicans biofilm adhesion. The combination of PAA (4 μg/mL) and FLC (0.5 μg/mL) also performed well in inhibiting yeast-to-hypha transition. Transcriptome analysis using RNA sequencing and quantitative reverse transcription PCR indicated that the PAA-FLC combination treatment produced a strong synergistic inhibitory effect on the expression of genes involved in adhesion (ALS1, ALS4, and ALS2) and yeast-to-hypha transition (ECE1, PRA1, and TEC1). Notably, PAA, rather than FLC, may have a primary role in suppressing the expression of ALS1. In conclusion, these findings demonstrate, for the first time, that the combination of PAA and FLC has an improved antibiofilm effect against the formation of C. albicans biofilms by inhibiting adhesion and yeast-to-hypha transition; this may provide a novel therapeutic strategy for treating C. albicans biofilm-associated infection. IMPORTANCE Biofilms are the primary cause of antibiotic-resistant candida infections associated with medical implants and devices worldwide. Treating biofilm-associated infections is a challenge for clinicians because these infections are intractable and persistent. Candida albicans readily forms extensive biofilms on the surface of medical implants and mucosa. In this study, we demonstrated, for the first time, an inhibitory effect of pseudolaric acid A alone and in combination with fluconazole on C. albicans biofilms. Moreover, pseudolaric acid A in combination with fluconazole exerted an antibiofilm effect through multiple pathways, including inhibition of yeast-to-hypha transition and adhesion. This research not only provides new insights into the synergistic mechanisms of antifungal drug combinations but also brings new possibilities for addressing C. albicans drug resistance.
Collapse
|
9
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
10
|
Herman A, Herman AP. Could Candida Overgrowth Be Involved in the Pathophysiology of Autism? J Clin Med 2022; 11:442. [PMID: 35054136 PMCID: PMC8778531 DOI: 10.3390/jcm11020442] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of this review is to summarize the current acquiredknowledge of Candida overgrowth in the intestine as a possible etiology of autism spectrum disorder (ASD). The influence of Candida sp. on the immune system, brain, and behavior of children with ASD isdescribed. The benefits of interventions such as a carbohydrates-exclusion diet, probiotic supplementation, antifungal agents, fecal microbiota transplantation (FMT), and microbiota transfer therapy (MTT) will be also discussed. Our literature query showed that the results of most studies do not fully support the hypothesis that Candida overgrowth is correlated with gastrointestinal (GI) problems and contributes to autism behavioral symptoms occurrence. On the one hand, it was reported that the modulation of microbiota composition in the gut may decrease Candida overgrowth, help reduce GI problems and autism symptoms. On the other hand, studies on humans suggesting the beneficial effects of a sugar-free diet, probiotic supplementation, FMT and MTT treatment in ASD are limited and inconclusive. Due to the increasing prevalence of ASD, studies on the etiology of this disorder are extremely needed and valuable. However, to elucidate the possible involvement of Candida in the pathophysiology of ASD, more reliable and well-designed research is certainly required.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Health Sciences, Warsaw School of Engineering and Health, Bitwy Warszawskiej 20 18, 19 Street, 02-366 Warsaw, Poland
| | - Andrzej Przemysław Herman
- Department of Genetic Engineering, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Street, 05-110 Jabłonna, Poland;
| |
Collapse
|
11
|
Hedera rhombea inhibits the biofilm formation of Candida, thereby increases the susceptibility to antifungal agent, and reduces infection. PLoS One 2021; 16:e0258108. [PMID: 34614005 PMCID: PMC8494327 DOI: 10.1371/journal.pone.0258108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Candida is an opportunistic pathogen and a common cause of fungal infections worldwide. Anti-fungal use against Candida infections has resulted in the appearance of resistant strains. The limited choice of anti-fungal therapy means alternative strategies are needed to control fungal infectious diseases. The aim of this study was to evaluate the inhibition of Candida biofilm formation by Hedera rhombea (Korean name: songak) extract. Biofilm formation was assessed using the crystal violet assay which showed a dose dependent reduction in the presence of extract with the biofilm formation inhibitory concentration of C. albicans (IC50 = 12.5μg/ml), C. tropicalis var. tropicalis (IC50 = 25μg/ml), C. parapsilosis var. parapsilosis (IC50 = 6.25μg/ml), C. glabrata (IC50 = 6.25μg/ml), C. tropicalis (IC50 = 12.5μg/ml), and C. parapsilosis (IC50 = 12.5μg/ml) without directly reducing Candida growth. Treatment with 6.25μg/mL of extract increased the antifungal susceptibility to miconazole from 32% decreasing of fungal growth to 98.8% of that based on the fungal growth assay. Treatment of extract dose-dependently reduced the dimorphic transition of Candida based on the dimorphic transition assay and treatment of 3.125μg/mL of extract completely blocked the adherence of Candida to the HaCaT cells. To know the molecular mechanisms of biofilm formation inhibition by extract, qRT-PCR analysis was done, and the extract was found to dose dependently reduce the expression of hyphal-associated genes (ALS3, ECE1, HWP1, PGA50, and PBR1), extracellular matrix genes (GSC1, ZAP1, ADH5, and CSH1), Ras1-cAMP-PKA pathway genes (CYR1, EFG1, and RAS1), Cph2-Tec1 pathway gene (TEC1) and MAP kinases pathway gene (HST7). In this study, Hedera rhombea extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is good screen for developing the antifungal adjuvant and Hedera rhombea extract should be a good candidate against biofilm-related fungal infection.
Collapse
|
12
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Kamauchi H, Kimura Y, Ushiwatari M, Suzuki M, Seki T, Takao K, Sugita Y. Synthesis and antifungal activity of polycyclic pyridone derivatives with anti-hyphal and biofilm formation activity against Candida albicans. Bioorg Med Chem Lett 2021; 37:127845. [PMID: 33571649 DOI: 10.1016/j.bmcl.2021.127845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Thirty-five pyridone derivatives were synthesized, with derivatization conducted on polycyclic pyridone scaffolds, including cis- or trans-oxydecalin and other cyclic structures, by domino-Knoevenagel-electrocyclic reactions. The anti-fungal activities of the synthesized compounds were tested against Candida albicans. Ten compounds inhibited hyphal formation without inhibiting growth. Pyridones with anti-hyphal formation activity (4c, 6d, 12a and 12c) were tested for their ability to inhibit biofilm formation. Compound 6d showed both anti-hyphal and biofilm inhibition activity.
Collapse
Affiliation(s)
- Hitoshi Kamauchi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan.
| | - Yu Kimura
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Mikoto Ushiwatari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Mitsuaki Suzuki
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Taishi Seki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Koichi Takao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| | - Yoshiaki Sugita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyaki-dai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
14
|
Rosiana S, Zhang L, Kim GH, Revtovich AV, Uthayakumar D, Sukumaran A, Geddes-McAlister J, Kirienko NV, Shapiro RS. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans. Genetics 2021; 217:iyab003. [PMID: 33724419 PMCID: PMC8045720 DOI: 10.1093/genetics/iyab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.
Collapse
Affiliation(s)
- Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | | | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
15
|
Gómez-Garzón M, Gutiérrez-Castañeda LD, Gil C, Escobar CH, Rozo AP, González ME, Sierra EV. Inhibition of the filamentation of Candida albicans by Borojoa patinoi silver nanoparticles. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractCandida albicans is fungus capable of changing from yeast to filamentous form when it’s transformed from a normal commensal to an opportunistic pathogen. The development of alternatives that interfere with this transition could be an effective way to reduce candidiasis. In this regard, evaluate the inhibitory effect of two Borojoa patinoi silver nanoparticles (AgNPs) produced by green synthesis at 5 °C and 25 °C on the process of filamentation of Candida albicans. The percentage of inhibition of filamentous forms of C. albicans ATCC10231 and C. albicans SC5314 with AgNPs was determined. Results showed that temperature of synthesis affected both the shape and size of silver nanoparticles synthesized using Borojoa patinoi extracts. The inhibition percentage of filamentous forms of Candida albicans ATCC10231 when treated with silver nanoparticles synthesized at 5 °C was 85.9% and at 25 °C it was 40%. C. albicans SC5314 when treated with AgNP synthesized at 5 °C was 97.2% and at 25 °C it was 64%. Cell toxicity assay showed that at 100ng/ml, AgNPs synthesized at 25 °C were safe in MES-OV CRL-3272 cell line. Our results showed that the silver nanoparticles obtained from Borojoa patinoi are inhibitors of the filamentous process of C. albicans.
Collapse
|
16
|
Xiong B, Xu S, Liu Y, Tang KW, Wong WY. Metal-Free, Acid/Phosphine-Induced Regioselective Thiolation of p-Quinone Methides with Sodium Aryl/Alkyl Sulfinates. J Org Chem 2021; 86:1516-1527. [PMID: 33406835 DOI: 10.1021/acs.joc.0c02390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple and efficient method for the regioselective thiolation of p-quinone methides with sodium aryl/alkyl sulfinates has been established using an acid/phosphine-induced radical route under transition-metal-free conditions. A broad range of sodium aryl/alkyl sulfinates and p-quinone methides (p-QMs) are compatible for the reaction, giving the expected products with good to excellent yields. Control experiments were also performed to gain insights into the generation mechanism of thiyl radicals and hydrogen-atom transfer process. This protocol provides a safe and feasible way for the formation of carbon-sulfur bonds.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
17
|
Synthesis and pharmacological evaluation of childinin E and several derivatives as anti-hyphal formation inhibitors against Candida albicans. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Inhibition of Distinct Proline- or N-Acetylglucosamine-Induced Hyphal Formation Pathways by Proline Analogs in Candida albicans. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7245782. [PMID: 33274221 PMCID: PMC7695494 DOI: 10.1155/2020/7245782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
Candida albicans undergoes a yeast-to-hyphal transition that has been recognized as a virulence property as well as a turning point leading to biofilm formation associated with candidiasis. It is known that yeast-to-hyphal transition is induced under complex environmental conditions including temperature (above 35°C), pH (greater than 6.5), CO2, N-acetylglucosamine (GlcNAc), amino acids, RPMI-1640 synthetic culture medium, and blood serum. To identify the hyphal induction factor in the RPMI-1640 medium, we examined each component of RPMI-1640 and established a simple hyphal induction condition, that is, incubation in L-proline solution at 37°C. Incubation in GlcNAc solution alone, which is not contained in RPMI-1640, without any other materials was also identified as another simple hyphal induction condition. To inhibit hyphal formation, proline and GlcNAc analogs were examined. Among the proline analogs used, L-azetidine-2-carboxylic acid (AZC) inhibited hyphal induction under both induction conditions, but L-4-thiazolidinecarboxylic acid (T4C) specifically inhibited proline-induced hyphal formation only, while α-N-methyl-L-proline (mPro) selectively inhibited GlcNAc-induced hyphal formation. Hyphal formation in fetal bovine serum was also inhibited by AZC or T4C together with mPro without affecting the proliferation of yeast form. These results indicate that these proline analogs are ideal inhibitors of yeast-to-hyphal transition in C. albicans.
Collapse
|
19
|
Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, Dirks B, Krajmalnik-Brown R, Maldonado J, Guinan J, Thangamani S. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol 2020; 96:5643884. [PMID: 31769789 PMCID: PMC6934136 DOI: 10.1093/femsec/fiz187] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-induced alterations in the gut ecosystem increases the susceptibility to Candida albicans, yet the mechanisms involved remains poorly understood. Here we show that mice treated with the broad-spectrum antibiotic cefoperazone promoted the growth, morphogenesis and gastrointestinal (GI) colonization of C. albicans. Using metabolomics, we revealed that the cecal metabolic environment of the mice treated with cefoperazone showed a significant alteration in intestinal metabolites. Levels of carbohydrates, sugar alcohols and primary bile acids increased, whereas carboxylic acids and secondary bile acids decreased in antibiotic treated mice susceptible to C. albicans. Furthermore, using in-vitro assays, we confirmed that carbohydrates, sugar alcohols and primary bile acids promote, whereas carboxylic acids and secondary bile acids inhibit the growth and morphogenesis of C. albicans. In addition, in this study we report changes in the levels of gut metabolites correlated with shifts in the gut microbiota. Taken together, our in-vivo and in-vitro results indicate that cefoperazone-induced metabolome and microbiome alterations favor the growth and morphogenesis of C. albicans, and potentially play an important role in the GI colonization of C. albicans.
Collapse
Affiliation(s)
- Daniel Gutierrez
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Vijay C Antharam
- Department of Chemistry, School of Science and Human Development, Methodist University, 5400 Ramsey St, Fayetteville, NC 28311, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Blake Dirks
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA.,Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Juan Maldonado
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jack Guinan
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
20
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
21
|
Capoci IRG, Sakita KM, Faria DR, Rodrigues-Vendramini FAV, Arita GS, de Oliveira AG, Felipe MS, Maigret B, Bonfim-Mendonça PDS, Kioshima ES, Svidzinski TIE. Two New 1,3,4-Oxadiazoles With Effective Antifungal Activity Against Candida albicans. Front Microbiol 2019; 10:2130. [PMID: 31572335 PMCID: PMC6751290 DOI: 10.3389/fmicb.2019.02130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Candida infections have become a serious public health problem with high mortality rates, especially in immunocompromised patients, since Candida albicans is the major opportunistic pathogen responsible for systemic or invasive candidiasis. Commercially available antifungal agents are restricted and fungal resistance to such drugs has increased; therefore, the development of a more specific antifungal agent is necessary. Using assays for antifungal activity, here we report that two new compounds of 1,3,4-oxadiazoles class (LMM5 and LMM11), which were discovered by in silico methodologies as possible thioredoxin reductase inhibitors, were effective against C. albicans. Both compounds had in vitro antifungal activity with MIC 32 μg/ml. Cytotoxicity in vitro demonstrated that LMM5 and LMM11 were non-toxic in the cell lines evaluated. The kinetic of the time-kill curve suggested a fungistatic profile and showed an inhibitory effect of LMM5 and LMM11 in 12 h that remained for 24 and 36 h, which is better than fluconazole. In the murine systemic candidiasis model by C. albicans, the two compounds significantly reduced the renal and spleen fungal burden. According to the SEM and TEM images, we hypothesize that the mechanism of action of LMM5 and LMM11 is directly related to the inhibition of the enzyme thioredoxin reductase and internally affect the fungal cell. In view of all in vitro and in vivo results, LMM5 and LMM11 are effective therapeutic candidates for the development of new antifungal drugs addressing the treatment of human infections caused by C. albicans.
Collapse
Affiliation(s)
| | - Karina Mayumi Sakita
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | - Daniella Renata Faria
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | | - Glaucia Sayuri Arita
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | | - Maria Sueli Felipe
- Department of Cellular Biology, The University of Brasília, Brasília, Brazil
| | | | | | - Erika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, The State University of Maringá, Maringá, Brazil
| | | |
Collapse
|
22
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
23
|
Garcia C, Burgain A, Chaillot J, Pic É, Khemiri I, Sellam A. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci Rep 2018; 8:11559. [PMID: 30068935 PMCID: PMC6070544 DOI: 10.1038/s41598-018-29973-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
A poorly exploited paradigm in the antimicrobial therapy field is to target virulence traits for drug development. In contrast to target-focused approaches, antivirulence phenotypic screens enable identification of bioactive molecules that induce a desirable biological readout without making a priori assumption about the cellular target. Here, we screened a chemical library of 678 small molecules against the invasive hyphal growth of the human opportunistic yeast Candida albicans. We found that a halogenated salicylanilide (N1-(3,5-dichlorophenyl)-5-chloro-2-hydroxybenzamide) and one of its analogs, Niclosamide, an FDA-approved anthelmintic in humans, exhibited both antifilamentation and antibiofilm activities against C. albicans and the multi-resistant yeast C. auris. The antivirulence activity of halogenated salicylanilides were also expanded to C. albicans resistant strains with different resistance mechanisms. We also found that Niclosamide protected the intestinal epithelial cells against invasion by C. albicans. Transcriptional profiling of C. albicans challenged with Niclosamide exhibited a signature that is characteristic of the mitochondria-to-nucleus retrograde response. Our chemogenomic analysis showed that halogenated salicylanilides compromise the potential-dependant mitochondrial protein translocon machinery. Given the fact that the safety of Niclosamide is well established in humans, this molecule could represent the first clinically approved antivirulence agent against a pathogenic fungus.
Collapse
Affiliation(s)
- Carlos Garcia
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Inès Khemiri
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada.
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and engineering, Quebec City, QC, Canada.
| |
Collapse
|
24
|
β-lapachone and α-nor-lapachone modulate Candida albicans viability and virulence factors. J Mycol Med 2018; 28:314-319. [DOI: 10.1016/j.mycmed.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
|
25
|
Goffena J, Toenjes KA, Butler DK. Inhibition of yeast-to-filamentous growth transitions in Candida albicans by a small molecule inducer of mammalian apoptosis. Yeast 2017; 35:291-298. [PMID: 29048745 DOI: 10.1002/yea.3287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/14/2017] [Accepted: 09/23/2017] [Indexed: 01/09/2023] Open
Abstract
The opportunistic fungal pathogen of humans Candida albicans is able to grow in different morphological forms such as round or oval yeasts and filamentous hyphae and pseudohyphae. Morphogenesis, the ability to switch between the yeast and filamentous growth forms, is important for adapting to new microenvironments in the human host and for pathogenesis. The molecular pathways governing morphogenesis are complex and incompletely understood. Previously, we identified several small organic molecules that specifically inhibit the initiation of hyphal growth in C. albicans without affecting cell viability or budded growth. One molecule from that screen is known to induce apoptosis in mammalian cells. In this study, we have screened additional inducers of mammalian apoptosis and identified BH3I-1, as well as several structural derivatives of BH3I-1, that act as specific inhibitors of morphogenesis under a variety of environmental conditions. Chemical epistasis experiments suggest that BH3I-1 acts downstream of the hypha-specific gene regulators Rfg1, Nrg1 and Ume6.
Collapse
Affiliation(s)
- Joy Goffena
- Department of Biological and Physical Sciences, Montana State University - Billings, Billings, Montana, 59101, USA
| | - Kurt A Toenjes
- Department of Biological and Physical Sciences, Montana State University - Billings, Billings, Montana, 59101, USA
| | - David K Butler
- Department of Biological and Physical Sciences, Montana State University - Billings, Billings, Montana, 59101, USA
| |
Collapse
|
26
|
Bar-Yosef H, Vivanco Gonzalez N, Ben-Aroya S, Kron SJ, Kornitzer D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 2017; 7:5692. [PMID: 28720834 PMCID: PMC5515890 DOI: 10.1038/s41598-017-05741-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an opportunistic pathogen, typically found as a benign commensal yeast living on skin and mucosa, but poised to invade injured tissue to cause local infections. In debilitated and immunocompromised individuals, C. albicans may spread to cause life-threatening systemic infections. Upon contact with serum and at body temperature, C. albicans performs a regulated switch to filamentous morphology, characterized by emergence of a germ tube from the yeast cell followed by mold-like growth of branching hyphae. The ability to switch between growth morphologies is an important virulence factor of C. albicans. To identify compounds able to inhibit hyphal morphogenesis, we screened libraries of existing drugs for inhibition of the hyphal switch under stringent conditions. Several compounds that specifically inhibited hyphal morphogenesis were identified. Chemogenomic analysis suggested an interaction with the endocytic pathway, which was confirmed by direct measurement of fluid-phase endocytosis in the presence of these compounds. These results suggest that the activity of the endocytic pathway, which is known to be particularly important for hyphal growth, represents an effective target for hyphae-inhibiting drugs.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel
| | - Nora Vivanco Gonzalez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel.
| |
Collapse
|
27
|
Kurakado S, Kurogane R, Sugita T. 17β-Estradiol inhibits estrogen binding protein-mediated hypha formation in Candida albicans. Microb Pathog 2017; 109:151-155. [PMID: 28552809 DOI: 10.1016/j.micpath.2017.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/03/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022]
Abstract
Candida albicans is one of the most prevalent and clinically important fungal pathogens. The ability to change form depending on environmental stress is an important microbial virulence factor. A survey of compounds that inhibit this morphological change identified various steroids, including 17β-estradiol. Interestingly, C. albicans has proteins capable of binding to steroids, including estrogen binding protein (Ebp1). Estrogens regulate cell differentiation and proliferation in humans through estrogen receptor proteins. To determine whether EBP1 regulates a virulence factor, we investigated the effect of 17β-estradiol on the morphological transition of C. albicans using an ebp1 deletion mutant. Treatment with 10 μg/mL of 17β-estradiol inhibited hypha formation, whereas its effect on the ebp1 deletion mutant was decreased compared to that on the wild-type and revertant strains. These data suggest a new pathway for the yeast-to-hypha transition via EBP1 in C. albicans.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| | - Rie Kurogane
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
28
|
Kurakado S, Takatori K, Sugita T. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation. Jpn J Infect Dis 2017; 70:490-494. [PMID: 28367877 DOI: 10.7883/yoken.jjid.2016.369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.
Collapse
Affiliation(s)
- Sanae Kurakado
- Department of Microbiology, Meiji Pharmaceutical University
| | - Kazuhiko Takatori
- Department of Pharmaceutical Molecular Design, Meiji Pharmaceutical University
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University
| |
Collapse
|
29
|
Abstract
The high incidence and mortality of invasive fungal infections and serious drug resistance have become a global public health issue. The ability of fungal cells to form biofilms is an important reason for the emergence of severe resistance to most clinically available antifungal agents. Targeting fungal biofilm formation by small molecules represents a promising new strategy for the development of novel antifungal agents. This perspective will provide a comprehensive review of fungal biofilm inhibitors. In particular, discovery strategies, chemical structures, antibiofilm/antifungal activities, and structure-activity relationship studies will be discussed. Development of inhibitors to treat biofilm-related resistant fungal infections is a new yet clinically unexploited paradigm, and there is still a long way to go to clinical application. Better understanding of fungal biofilms in combination with systematic drug discovery efforts will pave the way for potential clinical applications.
Collapse
Affiliation(s)
- Shanchao Wu
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Na Liu
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University , 325 Guohe Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
30
|
Tobaldini-Valerio FK, Bonfim-Mendonça PS, Rosseto HC, Bruschi ML, Henriques M, Negri M, Silva S, Svidzinski TI. Propolis: a potential natural product to fight Candida species infections. Future Microbiol 2016; 11:1035-46. [PMID: 27501739 DOI: 10.2217/fmb-2015-0016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the effect of propolis against Candida species planktonic cells and its counterpart's biofilms. MATERIALS & METHODS The MIC values, time-kill curves and filamentation form inhibition were determined in Candida planktonic cells. The effect of propolis on Candida biofilms was assessed through quantification of CFUs. RESULTS MIC values, ranging from 220 to 880 µg/ml, demonstrated higher efficiency on C. albicans and C. parapsilosis than on C. tropicalis cells. In addition, propolis was able to prevent Candida species biofilm's formation and eradicate their mature biofilms, coupled with a significant reduction on C. tropicalis and C. albicans filamentation. CONCLUSION Propolis is an inhibitor of Candida virulence factors and represents an innovative alternative to fight candidiasis.
Collapse
Affiliation(s)
- Flávia K Tobaldini-Valerio
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Patricia S Bonfim-Mendonça
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Helen C Rosseto
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Marcos L Bruschi
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Mariana Henriques
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Melyssa Negri
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Sonia Silva
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Terezinha Ie Svidzinski
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil.,CEB - Centre of Biological Engineering, Universidade do Minho, Braga, Portugal.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil.,Laboratory of Research & Development of Drug Delivery Systems, Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
31
|
Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL. Targeting Candida albicans filamentation for antifungal drug development. Virulence 2016; 8:150-158. [PMID: 27268130 DOI: 10.1080/21505594.2016.1197444] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Candida albicans remains the main etiological agent of candidiasis, as this otherwise normal commensal of humans is capable of causing active infection in immune- and medically-compromised patients. The high morbidity and mortality rates associated with candidiasis, coupled with the emergence of drug resistance demand the development of novel therapeutic strategies. However, there is a paucity of selective targets that can be exploited in the development of new antifungals. Contrary to conventional antibiotics that kill or curtail growth, specifically targeting virulence mechanisms represents an attractive option for antifungal drug development. In C. albicans, a growing body of research over the last few decades has provided important insights into its virulence factors and their contribution to the pathogenesis of candidiasis. Of these, filamentation is the one that has received the most attention and perhaps shows the most promise as a target for new anti-virulence strategies to combat C. albicans infections.
Collapse
Affiliation(s)
- Taissa Vila
- a Department of Biology and South Texas Center for Emerging Infectious Diseases , The University of Texas at San Antonio , San Antonio , TX , USA
| | - Jesus A Romo
- a Department of Biology and South Texas Center for Emerging Infectious Diseases , The University of Texas at San Antonio , San Antonio , TX , USA
| | - Christopher G Pierce
- b Department of Biology , University of the Incarnate Word , San Antonio , TX , USA
| | - Stanton F McHardy
- c Department of Chemistry and Center for Innovative Drug Discovery , The University of Texas at San Antonio , San Antonio , TX , USA
| | - Stephen P Saville
- a Department of Biology and South Texas Center for Emerging Infectious Diseases , The University of Texas at San Antonio , San Antonio , TX , USA
| | - José L Lopez-Ribot
- a Department of Biology and South Texas Center for Emerging Infectious Diseases , The University of Texas at San Antonio , San Antonio , TX , USA
| |
Collapse
|
32
|
Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie 2015; 115:108-15. [DOI: 10.1016/j.biochi.2015.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
|
33
|
Sun L, Liao K, Wang D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One 2015; 10:e0117695. [PMID: 25710475 PMCID: PMC4339376 DOI: 10.1371/journal.pone.0117695] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Background The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. Methods The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Results and conclusions Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. General Significance This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection.
Collapse
Affiliation(s)
- Lingmei Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
- * E-mail: (LS); (DW)
| | - Kai Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, China
- * E-mail: (LS); (DW)
| |
Collapse
|
34
|
Stylianou M, Uvell H, Lopes JP, Enquist PA, Elofsson M, Urban CF. Novel high-throughput screening method for identification of fungal dimorphism blockers. ACTA ACUST UNITED AC 2014; 20:285-91. [PMID: 25281739 DOI: 10.1177/1087057114552954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Invasive mycoses have been increasing worldwide, with Candida spp. being the most prevalent fungal pathogen causing high morbidity and mortality in immunocompromised individuals. Only few antimycotics exist, often with severe side effects. Therefore, new antifungal drugs are urgently needed. Because the identification of antifungal compounds depends on fast and reliable assays, we present a new approach based on high-throughput image analysis to define cell morphology. Candida albicans and other fungi of the Candida clade switch between different growth morphologies, from budding yeast to filamentous hyphae. Yeasts are considered proliferative, whereas hyphae are required for invasion and dissemination. Thus, morphotype switching in many Candida spp. is connected to virulence and pathogenesis. It is, consequently, reasonable to presume that morphotype blockers interfere with the virulence, thereby preventing hazardous colonization. Our method efficiently differentiates yeast from hyphal cells using a combination of automated microscopy and image analysis. We selected the parameters length/width ratio and mean object shape to quantitatively discriminate yeasts and hyphae. Notably, Z' factor calculations for these parameters confirmed the suitability of our method for high-throughput screening. As a second stage, we determined cell viability to discriminate morphotype-switching inhibitors from those that are fungicidal. Thus, our method serves as a basis for the identification of candidates for next-generation antimycotics.
Collapse
Affiliation(s)
- Marios Stylianou
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden Umeå Centre for Microbial Research (UCMR), Umeå, Sweden Laboratory for Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Hanna Uvell
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden Department of Chemistry, Umeå University, Umeå, Sweden
| | - José Pedro Lopes
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden Umeå Centre for Microbial Research (UCMR), Umeå, Sweden Laboratory for Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Per-Anders Enquist
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden Department of Chemistry, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Umeå Centre for Microbial Research (UCMR), Umeå, Sweden Department of Chemistry, Umeå University, Umeå, Sweden
| | - Constantin F Urban
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden Umeå Centre for Microbial Research (UCMR), Umeå, Sweden Laboratory for Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Wong SSW, Samaranayake LP, Seneviratne CJ. In pursuit of the ideal antifungal agent for Candida infections: high-throughput screening of small molecules. Drug Discov Today 2014; 19:1721-1730. [PMID: 24952336 DOI: 10.1016/j.drudis.2014.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/23/2014] [Accepted: 06/12/2014] [Indexed: 01/22/2023]
Abstract
Candida infections have created a great burden on the public healthcare sector. The situation is worsened by recent epidemiological changes. Furthermore, the current arsenal of antifungal agents is limited and associated with undesirable drawbacks. Therefore, new antifungal agents that surpass the existing ones are urgently needed. High-throughput screening of small molecule libraries enables rapid hit identification and, possibly, increases hit rate. Moreover, the identified hits could be associated with unrecognized or multiple drug targets, which would provide novel insights into the biological processes of the pathogen. Hence, it is proposed that high-throughput screening of small molecules is particularly important in the pursuit of the ideal antifungal agents for Candida infections.
Collapse
Affiliation(s)
- Sarah S W Wong
- Faculty of Dentistry, University of Hong Kong, Hong Kong
| | | | - Chaminda J Seneviratne
- Faculty of Dentistry, University of Hong Kong, Hong Kong; Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Wong SSW, Kao RYT, Yuen KY, Wang Y, Yang D, Samaranayake LP, Seneviratne CJ. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One 2014; 9:e85836. [PMID: 24465737 PMCID: PMC3899067 DOI: 10.1371/journal.pone.0085836] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022] Open
Abstract
Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.
Collapse
Affiliation(s)
| | - Richard Yi Tsun Kao
- Department of Microbiology, University of Hong Kong, Hong Kong
- * E-mail: (CJS); (RYTK)
| | - Kwok Yong Yuen
- Department of Microbiology, University of Hong Kong, Hong Kong
| | - Yu Wang
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Dan Yang
- Department of Chemistry, Faculty of Science, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
37
|
Routh MM, Chauhan NM, Karuppayil SM. Cancer drugs inhibit morphogenesis in the human fungal pathogen, Candida albicans. Braz J Microbiol 2014; 44:855-9. [PMID: 24516452 PMCID: PMC3910200 DOI: 10.1590/s1517-83822013000300029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 09/10/2012] [Indexed: 11/21/2022] Open
Abstract
Candida infections are very common in cancer patients and it is a common practice to prescribe antifungal antibiotics along with anticancer drugs. Yeast to hyphal form switching is considered to be important in invasive candidiasis. Targeting morphogenetic switching may be useful against invasive candidiasis. In this study, we report the antimorphogenetic properties of thirty cancer drugs.
Collapse
Affiliation(s)
- Madhushree M Routh
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, SRTM University, MS, India
| | - Nitin M Chauhan
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, SRTM University, MS, India
| | - S Mohan Karuppayil
- DST-FIST and UGC-SAP Sponsored School of Life Sciences, SRTM University, MS, India
| |
Collapse
|
38
|
Pierce CG, Lopez-Ribot JL. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin Drug Discov 2013; 8:1117-26. [PMID: 23738751 DOI: 10.1517/17460441.2013.807245] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Targeting pathogenetic mechanisms, rather than essential processes, represents a very attractive alternative for the development of new antibiotics. This may be particularly important in the case of antimycotics, due to the urgent need for novel antifungal drugs and the paucity of selective fungal targets. The opportunistic pathogenic fungus Candida albicans is the main etiological agent of candidiasis, the most common human fungal infection. These infections carry unacceptably high mortality rates, a clear reflection of the many shortcomings of current antifungal therapy, including the limited armamentarium of antifungal agents, their toxicity and the emergence of resistance. Moreover, the antifungal pipeline is mostly dry. AREAS COVERED This review covers some of the most recent progress toward understanding C. albicans pathogenetic processes and how to harness this information for the development of anti-virulence agents. The two principal areas covered are filamentation and biofilm formation, as C. albicans pathogenicity is intimately linked to its ability to undergo morphogenetic conversions between yeast and filamentous morphologies and to its ability to form biofilms. EXPERT OPINION Filamentation and biofilm formation represent high value targets, yet are clinically unexploited, for the development of novel anti-virulence approaches against candidiasis. Although this has proved a difficult task despite increasing understanding at the molecular level of C. albicans virulence, there are some opportunities and prospects for antifungal drug development targeting these two important biological processes.
Collapse
Affiliation(s)
- Christopher G Pierce
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
39
|
Magalhães T, da Silva C, de Fátima Â, da Silva D, Modolo L, Martins C, Alves R, Ruiz A, Longato G, de Carvalho J, de Resende-Stoianoff M. Hydroxyaldimines as potent in vitro
anticryptococcal agents. Lett Appl Microbiol 2013; 57:137-43. [DOI: 10.1111/lam.12086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 12/15/2022]
Affiliation(s)
- T.F.F. Magalhães
- Departamento de Microbiologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
- Departamento de Química; ICEx; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - C.M. da Silva
- Departamento de Química; ICEx; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - Â. de Fátima
- Departamento de Química; ICEx; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - D.L. da Silva
- Departamento de Microbiologia; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
- Departamento de Química; ICEx; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - L.V. Modolo
- Departamento de Botânica; ICB; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - C.V.B. Martins
- Centro de Engenharias e Ciências Exatas; Universidade Estadual do Oeste do Paraná; Toledo PR Brazil
| | - R.B. Alves
- Departamento de Química; ICEx; Universidade Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - A.L.T.G. Ruiz
- Centro Pluridisciplinar de Pesquisas Químicas; Biológicas e Agrícolas (CPQBA); Universidade Estadual de Campinas; Paulínia SP Brazil
| | - G.B. Longato
- Centro Pluridisciplinar de Pesquisas Químicas; Biológicas e Agrícolas (CPQBA); Universidade Estadual de Campinas; Paulínia SP Brazil
| | - J.E. de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas; Biológicas e Agrícolas (CPQBA); Universidade Estadual de Campinas; Paulínia SP Brazil
| | | |
Collapse
|
40
|
Tsang PWK, Bandara HMHN, Fong WP. Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLoS One 2012; 7:e50866. [PMID: 23226409 PMCID: PMC3511323 DOI: 10.1371/journal.pone.0050866] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/29/2012] [Indexed: 12/30/2022] Open
Abstract
A striking and clinically relevant virulence trait of the human fungal pathogen Candida albicans is its ability to grow and switch reversibly among different morphological forms. Inhibition of yeast-to-hypha transition in C. albicans represents a new paradigm for antifungal intervention. We have previously demonstrated the novel antifungal activity of purpurin against Candida fungi. In this study, we extended our investigation by examining the in vitro effect of purpurin on C. albicans morphogenesis and biofilms. The susceptibility of C. albicans biofilms to purpurin was examined quantitatively by 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay. Hyphal formation and biofilm ultrastructure were examined qualitatively by scanning electron microscopy (SEM). Quantitative reverse transcription-PCR (qRT-PCR) was used to evaluate the expression of hypha-specific genes and hyphal regulator in purpurin-treated fungal cells. The results showed that, at sub-lethal concentration (3 µg/ml), purpurin blocked the yeast-to-hypha transition under hypha-inducing conditions. Purpurin also inhibited C. albicans biofilm formation and reduced the metabolic activity of mature biofilms in a concentration-dependent manner. SEM images showed that purpurin-treated C. albicans biofilms were scanty and exclusively consisted of aggregates of blastospores. qRT-PCR analyses indicated that purpurin downregulated the expression of hypha-specific genes (ALS3, ECE1, HWP1, HYR1) and the hyphal regulator RAS1. The data strongly suggested that purpurin suppressed C. albicans morphogenesis and caused distorted biofilm formation. By virtue of the ability to block these two virulence traits in C. albicans, purpurin may represent a potential candidate that deserves further investigations in the development of antifungal strategies against this notorious human fungal pathogen in vivo.
Collapse
Affiliation(s)
- Paul Wai-Kei Tsang
- Oral BioSciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | | | | |
Collapse
|
41
|
Thevissen K, de Mello Tavares P, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PWJ, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BPA. The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 2012; 84:166-80. [PMID: 22384976 DOI: 10.1111/j.1365-2958.2012.08017.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother 2011; 56:960-71. [PMID: 22143530 DOI: 10.1128/aac.00731-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Continued research toward the development of new antifungals that act via inhibition of glycosylphosphatidylinositol (GPI) biosynthesis led to the design of E1210. In this study, we assessed the selectivity of the inhibitory activity of E1210 against Candida albicans GWT1 (Orf19.6884) protein, Aspergillus fumigatus GWT1 (AFUA_1G14870) protein, and human PIG-W protein, which can catalyze the inositol acylation of GPI early in the GPI biosynthesis pathway, and then we assessed the effects of E1210 on key C. albicans virulence factors. E1210 inhibited the inositol acylation activity of C. albicans Gwt1p and A. fumigatus Gwt1p with 50% inhibitory concentrations (IC(50)s) of 0.3 to 0.6 μM but had no inhibitory activity against human Pig-Wp even at concentrations as high as 100 μM. To confirm the inhibition of fungal GPI biosynthesis, expression of ALS1 protein, a GPI-anchored protein, on the surfaces of C. albicans cells treated with E1210 was studied and shown to be significantly lower than that on untreated cells. However, the ALS1 protein levels in the crude extract and the RHO1 protein levels on the cell surface were found to be almost the same. Furthermore, E1210 inhibited germ tube formation, adherence to polystyrene surfaces, and biofilm formation of C. albicans at concentrations above its MIC. These results suggested that E1210 selectively inhibited inositol acylation of fungus-specific GPI which would be catalyzed by Gwt1p, leading to the inhibition of GPI-anchored protein maturation, and also that E1210 suppressed the expression of some important virulence factors of C. albicans, through its GPI biosynthesis inhibition.
Collapse
|
43
|
Midkiff J, Borochoff-Porte N, White D, Johnson DI. Small molecule inhibitors of the Candida albicans budded-to-hyphal transition act through multiple signaling pathways. PLoS One 2011; 6:e25395. [PMID: 21966518 PMCID: PMC3180447 DOI: 10.1371/journal.pone.0025395] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/02/2011] [Indexed: 01/08/2023] Open
Abstract
The ability of the pathogenic yeast Candida albicans to interconvert between budded and hyphal growth states, herein termed the budded-to-hyphal transition (BHT), is important for C. albicans development and virulence. The BHT is under the control of multiple cell signaling pathways that respond to external stimuli, including nutrient availability, high temperature, and pH. Previous studies identified 21 small molecules that could inhibit the C. albicans BHT in response to carbon limitation in Spider media. However, the studies herein show that the BHT inhibitors had varying efficacies in other hyphal-inducing media, reflecting their varying abilities to block signaling pathways associated with the different media. Chemical epistasis analyses suggest that most, but not all, of the BHT inhibitors were acting through either the Efg1 or Cph1 signaling pathways. Notably, the BHT inhibitor clozapine, a FDA-approved drug used to treat atypical schizophrenia by inhibiting G-protein-coupled dopamine receptors in the brain, and several of its functional analogs were shown to act at the level of the Gpr1 G-protein-coupled receptor. These studies are the first step in determining the target and mechanism of action of these BHT inhibitors, which may have therapeutic anti-fungal utility in the future.
Collapse
Affiliation(s)
- John Midkiff
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Nathan Borochoff-Porte
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Dylan White
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Douglas I. Johnson
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
44
|
Grald A, Yargosz P, Case S, Shea K, Johnson DI. Small-molecule inhibitors of biofilm formation in laboratory and clinical isolates of Candida albicans. J Med Microbiol 2011; 61:109-114. [PMID: 21903824 DOI: 10.1099/jmm.0.034124-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans cells have the ability to form biofilms on biotic and abiotic surfaces, such as indwelling medical devices. C. albicans cells can interconvert between budded and hyphal growth forms, herein termed the budded-to-hyphal transition (BHT), which is important for the formation of mature biofilms. Previous work identified 23 small organic molecules that could inhibit the BHT but did not affect C. albicans cell viability or budded cell growth. These BHT inhibitors were proposed to inhibit multiple signalling pathways regulating the BHT, many of which also regulate biofilm formation. However, only three of the BHT inhibitors, buhytrinA, ETYA and CGP-37157, were capable of inhibiting in vitro biofilm formation of wild-type laboratory C. albicans strains. When clinical C. albicans isolates were examined for their ability to form biofilms, only 11 of the 28 clinical isolates tested (39%) were capable of forming biofilms. Although buhytrinA, ETYA and CGP-37157 could inhibit the BHT of all 28 clinical isolates, they were only able to inhibit biofilm formation of a subset of these clinical isolates, with ETYA having 100% efficacy. These data indicate that the biofilm-forming capability of laboratory and clinical isolates of C. albicans, as well as the efficacy of BHT inhibitors against these different isolates, can differ dramatically. These differences between laboratory and clinical isolates should be an important aspect to consider when examining potentially new antifungal therapeutics.
Collapse
Affiliation(s)
- Ariel Grald
- Department of Microbiology and Molecular Genetics, University of Vermont, 202 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Philip Yargosz
- Department of Microbiology and Molecular Genetics, University of Vermont, 202 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Samantha Case
- Department of Microbiology and Molecular Genetics, University of Vermont, 202 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Katelyn Shea
- Department of Microbiology and Molecular Genetics, University of Vermont, 202 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Douglas I Johnson
- Department of Microbiology and Molecular Genetics, University of Vermont, 202 Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
45
|
da Silva CM, da Silva DL, Martins CVB, de Resende MA, Dias ES, Magalhães TFF, Rodrigues LP, Sabino AA, Alves RB, de Fátima Â. Synthesis of Aryl Aldimines and Their Activity against Fungi of Clinical Interest. Chem Biol Drug Des 2011; 78:810-5. [PMID: 21756287 DOI: 10.1111/j.1747-0285.2011.01185.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cleiton M da Silva
- Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Anti-Candida albicans activity, cytotoxicity and interaction with antifungal drugs of essential oils and extracts from aromatic and medicinal plants. INFECTIO 2011. [DOI: 10.1016/s0123-9392(11)70080-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
47
|
Han TL, Cannon RD, Villas-Bôas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011; 48:747-63. [DOI: 10.1016/j.fgb.2011.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
|
48
|
Modulation of morphogenesis in Candida albicans by various small molecules. EUKARYOTIC CELL 2011; 10:1004-12. [PMID: 21642508 DOI: 10.1128/ec.05030-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections.
Collapse
|
49
|
Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. EUKARYOTIC CELL 2011; 10:565-77. [PMID: 21357478 DOI: 10.1128/ec.00305-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polymorphic yeast Candida albicans exists in yeast and filamentous forms. Given that the morphogenetic switch coincides with the expression of many virulence factors, the yeast-to-hypha transition constitutes an attractive target for the development of new antifungal agents. Since an untapped therapeutic potential resides in small molecules that hinder C. albicans filamentation, we characterized the inhibitory effect of conjugated linoleic acid (CLA) on hyphal growth and addressed its mechanism of action. CLA inhibited hyphal growth in a dose-dependent fashion in both liquid and solid hypha-inducing media. The fatty acid blocked germ tube formation without affecting cellular growth rates. Global transcriptional profiling revealed that CLA downregulated the expression of hypha-specific genes and abrogated the induction of several regulators of hyphal growth, including TEC1, UME6, RFG1, and RAS1. However, neither UME6 nor RFG1 was necessary for CLA-mediated hyphal growth inhibition. Expression analysis showed that the downregulation of TEC1 expression levels by CLA depended on RAS1. In addition, while RAS1 transcript levels remained constant in CLA-treated cells, its protein levels declined with time. With the use of a strain expressing GFP-Ras1p, CLA treatment was also shown to affect Ras1p localization to the plasma membrane. These findings suggest that CLA inhibits hyphal growth by affecting the cellular localization of Ras1p and blocking the increase in RAS1 mRNA and protein levels. Combined, these effects should prevent the induction of the Ras1p signaling pathway. This study provides the biological and molecular explanations that underlie CLA's ability to inhibit hyphal growth in C. albicans.
Collapse
|
50
|
Dolan K, Montgomery S, Buchheit B, Didone L, Wellington M, Krysan DJ. Antifungal activity of tamoxifen: in vitro and in vivo activities and mechanistic characterization. Antimicrob Agents Chemother 2009; 53:3337-46. [PMID: 19487443 PMCID: PMC2715577 DOI: 10.1128/aac.01564-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/28/2009] [Accepted: 05/25/2009] [Indexed: 11/20/2022] Open
Abstract
Tamoxifen (TAM), an estrogen receptor antagonist used primarily to treat breast cancer, has well-recognized antifungal properties, but the activity of TAM has not been fully characterized using standardized (i.e., CLSI) in vitro susceptibility testing, nor has it been demonstrated in an in vivo model of fungal infection. In addition, its mechanism of action remains to be clearly defined at the molecular level. Here, we report that TAM displays in vitro activity (MIC, 8 to 64 microg/ml) against pathogenic yeasts (Candida albicans, other Candida spp., and Cryptococcus neoformans). In vivo, 200 mg/kg of body weight per day TAM reduced kidney fungal burden (-1.5 log(10) CFU per g tissue; P = 0.008) in a murine model of disseminated candidiasis. TAM is a known inhibitor of mammalian calmodulin, and TAM-treated yeast show phenotypes consistent with decreased calmodulin function, including lysis, decreased new bud formation, disrupted actin polarization, and decreased germ tube formation. The overexpression of calmodulin suppresses TAM toxicity, hypofunctional calmodulin mutants are hypersensitive to TAM, and TAM interferes with the interaction between Myo2p and calmodulin, suggesting that TAM targets calmodulin as part of its mechanism of action. Taken together, these experiments indicate that the further study of compounds related to TAM as antifungal agents is warranted.
Collapse
Affiliation(s)
- Kristy Dolan
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|