1
|
Jalessi M, Moghaddam YT, Khanmohammadi M, Hassanzadeh S, Azad Z, Farhadi M. Sustained co-release of ciprofloxacin and dexamethasone in rabbit maxillary sinus using polyvinyl alcohol-based hydrogel microparticle. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:60. [PMID: 39348071 PMCID: PMC11442669 DOI: 10.1007/s10856-024-06832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Topical delivery to paranasal sinuses through sustained-release stents is one of the new horizons in treating chronic rhinosinusitis (CRS). This study aims to introduce and evaluate sustained co-release of encapsulated ciprofloxacin (CIP) and dexamethasone (DEX) in polyvinyl alcohol-based carriers within the maxillary sinus of rabbit animals. DEX and CIP were loaded in a tyramine-substituted polyvinyl alcohol microparticle (PVATyr MP). The mechanical stability, degradability, and sustained-release patterns of both drugs as well as cellular cytocompatibility were assessed in vitro. The PVATyr MPs were then injected into the maxillary sinus of rabbits and they were monitored weekly for 21 days. Nasal endoscopy, MRI imaging, and tissue microscopy were used to follow the changes and compared them with the control condition. Also, the concentrations of drugs were evaluated in the maxillary sinus and blood samples over the study period. Produced PVA-based MPs possessed a relatively narrow particle size distribution (CV 7.7%) with proper physical stability until 30 days of incubation. The uniform-sized PVATyr MPs and their surrounding hydrogel showed sustained-release profiles for DEX and CIP for up to 32 days in vitro. The injected drugs-loaded hydrogel showed complete clearance from the maxillary sinus of rabbits within 28 days. The concentrations of DEX and CIP in mucosal remained within the therapeutic window when measured on days 7, 14, and 21, which were well above the plasma concentrations without any pathological changes in endoscopy, MRI imaging, and histological examinations. DEX/CIP loaded PVATyr MPs provided an effective, controlled, and safe sustained-drug delivery in both in vitro and in vivo analyses at therapeutic concentrations with minimal systemic absorption, suggesting a promising treatment approach for CRS.
Collapse
Affiliation(s)
- Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yasaman Tavakoli Moghaddam
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
| | - Sajad Hassanzadeh
- Eye Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
2
|
Liu H, Wang Y, Zhang Z, Qi H, Zhang Y, Li W, Shi Q, Xie X. Nutrient condition modulates the antibiotic tolerance of Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166749. [PMID: 37659534 DOI: 10.1016/j.scitotenv.2023.166749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The variation in nutrient content across diverse environments has a significant impact on the survival and metabolism of microorganisms. In this study, we examined the influence of nutrients on the antibiotic tolerance of the PAO1 strain of Pseudomonas aeruginosa. Our findings indicate that under nutrient-rich conditions, this strain exhibited relatively high tolerance to ceftazidime, chloramphenicol, and tetracycline, but not aminoglycosides and fluoroquinolones. Transcriptome analysis revealed that genes associated with antibiotic tolerance were expressed more efficiently in nutrient-rich media, including ribosomal protein genes and multidrug efflux pump genes, which conferred higher tetracycline tolerance to the strain. Furthermore, the genes responsible for translation, biosynthesis, and oxidative phosphorylation were suppressed when nutrients were limited, resulting in decreased metabolic activity and lower sensitivity to ciprofloxacin. Artificial interference with ATP synthesis utilizing arsenate confirmed that the curtailment of energy provision bolstered the observed tolerance to ciprofloxacin. In general, our results indicate that this strain of P. aeruginosa tends to activate its intrinsic resistance mechanisms in nutrient-rich environments, thereby enhancing resistance to certain antibiotics. Conversely, in nutrient-limited environments, the strain is more likely to enter a dormant state, which enables it to tolerate antibiotics to which it would otherwise be sensitive. These findings further suggest that antibiotics released in environments with varying eutrophication levels may have divergent effects on the development of bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Qi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenru Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
3
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. Microbiol Spectr 2023; 11:e0177323. [PMID: 37877708 PMCID: PMC10714928 DOI: 10.1128/spectrum.01773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Cystic fibrosis (CF) patients often experience chronic, debilitating lung infections caused by antibiotic-resistant Pseudomonas aeruginosa, contributing to antimicrobial resistance (AMR). The genetic and phenotypic diversity of P. aeruginosa populations in CF lungs raises questions about their susceptibility to non-traditional antimicrobials, like bacteriocins. In this study, we focused on R-pyocins, a type of bacteriocin with high potency and a narrow killing spectrum. Our findings indicate that a large number of infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations, supporting their potential use as therapeutic agents. The absence of a clear correlation between lipopolysaccharide (LPS) phenotypes and R-pyocin susceptibility suggests that LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Understanding the relationship between LPS phenotypes and R-pyocin susceptibility is crucial for developing effective treatments for these chronic infections.
Collapse
Affiliation(s)
- Madeline Mei
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Hastings CJ, Keledjian MV, Musselman LP, Marques CNH. Delayed host mortality and immune response upon infection with P. aeruginosa persister cells. Infect Immun 2023; 91:e0024623. [PMID: 37732789 PMCID: PMC10580972 DOI: 10.1128/iai.00246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Chronic infections are a heavy burden on healthcare systems worldwide. Persister cells are thought to be largely responsible for chronic infection due to their tolerance to antimicrobials and recalcitrance to innate immunity factors. Pseudomonas aeruginosa is a common and clinically relevant pathogen that contains stereotypical persister cells. Despite their importance in chronic infection, there have been limited efforts to study persister cell infections in vivo. Drosophila melanogaster has a well-described innate immune response similar to that of vertebrates and is a good candidate for the development of an in vivo model of infection for persister cells. Similar to what is observed in other bacterial strains, in this work we found that infection with P. aeruginosa persister cells resulted in a delayed mortality phenotype in Caenorhabditis elegans, Arabidopsis thaliana, and D. melanogaster compared to infection with regular cells. An in-depth characterization of infected D. melanogaster found that bacterial loads differed between persister and regular cells' infections during the early stages. Furthermore, hemocyte activation and antimicrobial peptide expression were delayed/reduced in persister infections over the same time course, indicating an initial suppression of, or inability to elicit, the fly immune response. Overall, our findings support the use of D. melanogaster as a model in which to study persister cells in vivo, where this bacterial subpopulation exhibits delayed virulence and an attenuated immune response.
Collapse
Affiliation(s)
- Cody J. Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Maya V. Keledjian
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | | | - Cláudia N. H. Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
5
|
Mei M, Pheng P, Kurzeja-Edwards D, Diggle SP. High prevalence of lipopolysaccharide mutants and R2-Pyocin susceptible variants in Pseudomonas aeruginosa populations sourced from cystic fibrosis lung infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538445. [PMID: 37163048 PMCID: PMC10168318 DOI: 10.1101/2023.04.26.538445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic, highly antibiotic-resistant infections in cystic fibrosis (CF) lungs contribute to increasing morbidity and mortality. Pseudomonas aeruginosa, a common CF pathogen, exhibits resistance to multiple antibiotics, contributing to antimicrobial resistance (AMR). These bacterial populations display genetic and phenotypic diversity, but it is unclear how this diversity affects susceptibility to bacteriocins. R-pyocins, i.e. bacteriocins produced by P. aeruginosa, are phage tail-like antimicrobials. R-pyocins have potential as antimicrobials, however recent research suggests the diversity of P. aeruginosa variants within CF lung infections leads to varying susceptibility to R-pyocins. This variation may be linked to changes in lipopolysaccharide (LPS), acting as the R-pyocin receptor. Currently, it is unknown how frequently R-pyocin-susceptible strains are in chronic CF lung infection, particularly when considering the heterogeneity within these strains. In this study, we tested R2-pyocin susceptibility of 139 P. aeruginosa variants from 17 sputum samples of seven CF patients and analyzed LPS phenotypes. We found that 83% of sputum samples did not have R2-pyocin-resistant variants, while nearly all samples contained susceptible variants. there was no correlation between LPS phenotype and R2-pyocin susceptibility, though we estimate that about 76% of sputum-derived variants lack an O-specific antigen, 40% lack a common antigen, and 24% have altered LPS cores. The absence of a correlation between LPS phenotype and R-pyocin susceptibility suggests LPS packing density may play a significant role in R-pyocin susceptibility among CF variants. Our research supports the potential of R-pyocins as therapeutic agents, as many infectious CF variants are susceptible to R2-pyocins, even within diverse bacterial populations.
Collapse
Affiliation(s)
- Madeline Mei
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Preston Pheng
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Detriana Kurzeja-Edwards
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Deshamukhya C, Das BJ, Paul D, Dhar Chanda D, Bhattacharjee A. Imipenem and meropenem influence the Las/Rhl quorum-sensing systems in clinical isolates of Pseudomonas aeruginosa. Lett Appl Microbiol 2023; 76:ovad084. [PMID: 37496211 DOI: 10.1093/lambio/ovad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
The present study was conducted to study the influence of imipenem and meropenem at subinhibitory concentration on the transcriptional response of Las/Rhl quorum-sensing systems in isolates of Pseudomonas aeruginosa. In the present study, six representative carbapenem nonsusceptible clinical isolates of P. aeruginosa were obtained. The agar dilution method was used to determine the minimum inhibitory concentration against imipenem and meropenem. The bacterial isolates were then cultured up to the early log phase in fresh Luria Bertani (LB) broths at 37°C with and without 2 µg mL-1 imipenem and meropenem, respectively. mRNA was then isolated from the bacterial isolates and was immediately reverse-transcribed to cDNA. The relative quantity of the expression of the lasI, lasR, rhlI, and rhlR genes was assessed by quantitative real-time Polymerase Chain Reaction (PCR) using the ΔΔCt method. The transcriptional response of the lasI and lasR genes was upregulated at subinhibitory concentration of meropenem. In contrast, the transcriptional response of the lasI, lasR, and rhlR genes was downregulated at subinhibitory concentration of imipenem as compared to the expression in untreated isolates. The data obtained in the current study showcased the ability of imipenem and meropenem to influence the response of the quorum-sensing genes at subinhibitory concentration.
Collapse
Affiliation(s)
| | - Bhaskar J Das
- Department of Microbiology, Assam University, Silchar 788011, India
| | - Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar 788011, India
| | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar 788014, India
| | | |
Collapse
|
7
|
Zina R, Cunha E, Serrano I, Silva E, Tavares L, Oliveira M. Nisin Z Potential for the Control of Diabetic Foot Infections Promoted by Pseudomonas aeruginosa Persisters. Antibiotics (Basel) 2023; 12:antibiotics12050794. [PMID: 37237697 DOI: 10.3390/antibiotics12050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus and a public health concern worldwide. The ability of P. aeruginosa to form biofilms is a key factor responsible for the chronicity of diabetic foot infections (DFIs) and frequently associated with the presence of persister cells. These are a subpopulation of phenotypic variants highly tolerant to antibiotics for which new therapeutic alternatives are urgently needed, such as those based on antimicrobial peptides. This study aimed to evaluate the inhibitory effect of nisin Z on P. aeruginosa DFI persisters. To induce the development of a persister state in both planktonic suspensions and biofilms, P. aeruginosa DFI isolates were exposed to carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ciprofloxacin, respectively. After RNA extraction from CCCP-induced persisters, transcriptome analysis was performed to evaluate the differential gene expression between the control, persisters, and persister cells exposed to nisin Z. Nisin Z presented a high inhibitory effect against P. aeruginosa persister cells but was unable to eradicate them when present in established biofilms. Transcriptome analysis revealed that persistence was associated with downregulation of genes related to metabolic processes, cell wall synthesis, and dysregulation of stress response and biofilm formation. After nisin Z treatment, some of the transcriptomic changes induced by persistence were reversed. In conclusion, nisin Z could be considered as a potential complementary therapy for treating P. aeruginosa DFI, but it should be applied as an early treatment or after wound debridement.
Collapse
Affiliation(s)
- Rafaela Zina
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Elisabete Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Hastings CJ, Himmler GE, Patel A, Marques CNH. Immune Response Modulation by Pseudomonas aeruginosa Persister Cells. mBio 2023; 14:e0005623. [PMID: 36920189 PMCID: PMC10128020 DOI: 10.1128/mbio.00056-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Bacterial persister cells-a metabolically dormant subpopulation tolerant to antimicrobials-contribute to chronic infections and are thought to evade host immunity. In this work, we studied the ability of Pseudomonas aeruginosa persister cells to withstand host innate immunity. We found that persister cells resist MAC-mediated killing by the complement system despite being bound by complement protein C3b at levels similar to regular vegetative cells, in part due to reduced bound C5b, and are engulfed at a lower rate (10- to 100-fold), even following opsonization. Once engulfed, persister cells resist killing and, contrary to regular vegetative cells which induce a M1 favored (CD80+/CD86+/CD206-, high levels of CXCL-8, IL-6, and TNF-α) macrophage polarization, they initially induce a M2 favored macrophage polarization (CD80+/CD86+/CD206+, high levels of IL-10, and intermediate levels of CXCL-8, IL-6, and TNF-α), which is skewed toward M1 favored polarization (high levels of CXCL-8 and IL-6, lower levels of IL-10) by 24 h of infection, once persister cells awaken. Overall, our findings further establish the ability of persister cells to evade the innate host response and to contribute chronic infections. IMPORTANCE Bacterial cells have a subpopulation-persister cells-that have a low metabolism. Persister cells survive antimicrobial treatment and can regrow to cause chronic and recurrent infections. Currently little is known as to whether the human immune system recognizes and responds to the presence of persister cells. In this work, we studied the ability of persister cells from Pseudomonas aeruginosa to resist the host defense system (innate immunity). We found that this subpopulation is recognized by the defense system, but it is not killed. The lack of killing likely stems from hindering the immune response regulation, resulting in a failure to distinguish whether a pathogen is present. Findings from this work increase the overall knowledge as to how chronic infections are resilient.
Collapse
Affiliation(s)
- Cody James Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Grace Elizabeth Himmler
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Arpeet Patel
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Cláudia Nogueira Hora Marques
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
9
|
Zhang Y, Gholizadeh H, Young P, Traini D, Li M, Ong HX, Cheng S. Real-time in-situ electrochemical monitoring of Pseudomonas aeruginosa biofilms grown on air-liquid interface and its antibiotic susceptibility using a novel dual-chamber microfluidic device. Biotechnol Bioeng 2023; 120:702-714. [PMID: 36408870 DOI: 10.1002/bit.28288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix that exhibit high tolerance toward environmental stress. Despite the plethora of research on biofilms, most P. aeruginosa biofilm models are cultured on a solid-liquid interface, and the longitudinal growth characteristics of P. aeruginosa biofilm are unclear. This study demonstrates the real-time and noninvasive monitoring of biofilm growth using a novel dual-chamber microfluidic device integrated with electrochemical detection capabilities to monitor pyocyanin (PYO). The growth of P. aeruginosa biofilms on the air-liquid interface (ALI) was monitored over 48 h, and its antibiotic susceptibility to 6 h exposure of 50, 400, and 1600 µg/ml of ciprofloxacin solutions was analyzed. The biofilm was treated directly on its surface and indirectly from the substratum by delivering the CIP solution to the top or bottom chamber of the microfluidic device. Results showed that P. aeruginosa biofilm developed on ALI produces PYO continuously, with the PYO production rate varying longitudinally and peak production observed between 24 and 30 h. In addition, this current study shows that the amount of PYO produced by the ALI biofilm is proportional to its viable cell numbers, which has not been previously demonstrated. Biofilm treated with ciprofloxacin solution above 400 µg/ml showed significant PYO reduction, with biofilms being killed more effectively when treatment was applied to their surfaces. The electrochemical measurement results have been verified with colony-forming unit count results, and the strong correlation between the PYO electrical signal and the viable cell number highlights the usefulness of this approach for fast and low-cost ALI biofilm study and antimicrobial tests.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Hanieh Gholizadeh
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, New South Wales, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Hastings CJ, Himmler GE, Patel A, Marques CNH. Immune response modulation by Pseudomonas aeruginosa persister cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523056. [PMID: 36711557 PMCID: PMC9881899 DOI: 10.1101/2023.01.07.523056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bacterial persister cells - a metabolically dormant subpopulation tolerant to antimicrobials - contribute to chronic infections and are thought to evade host immunity. In this work, we studied the ability of Pseudomonas aeruginosa persister cells to withstand host innate immunity. We found that persister cells resist MAC-mediated killing by the complement system despite being bound by complement protein C3b at levels similar to regular vegetative cells, in part due to reduced bound C5b - and are engulfed at a lower rate (10-100 fold), even following opsonization. Once engulfed, persister cells resist killing and, contrary to regular vegetative cells which induce a M1 favored (CD80+/CD86+/CD206-, high levels of CXCL-8, IL-6, and TNF-α) macrophage polarization, they initially induce a M2 favored macrophage polarization (CD80+/CD86+/CD206+, high levels of IL-10, and intermediate levels of CXCL-8, IL-6, and TNF-α), which is skewed towards M1 favored polarization (high levels of CXCL-8 and IL-6, lower levels of IL-10) by 24 hours of infection, once persister cells awaken. Overall, our findings further establish the ability of persister cells to evade the innate host response and to contribute chronic infections.
Collapse
Affiliation(s)
- Cody James Hastings
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
| | - Grace Elizabeth Himmler
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
| | - Arpeet Patel
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
| | - Cláudia Nogueira Hora Marques
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902
- Corresponding author:
| |
Collapse
|
11
|
Parallel Evolution to Elucidate the Contributions of PA0625 and parE to Ciprofloxacin Sensitivity in Pseudomonas aeruginosa. Microorganisms 2022; 11:microorganisms11010013. [PMID: 36677304 PMCID: PMC9860795 DOI: 10.3390/microorganisms11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous pathogen that causes a wide range of acute and chronic infections. Ciprofloxacin, one of the first-line fluoroquinolone class antibiotics, is commonly used for the treatment of P. aeruginosa infections. However, ciprofloxacin-resistant P. aeruginosa is increasingly reported worldwide, making treatment difficult. To determine resistance-related mutations, we conducted an experimental evolution using a previously identified ciprofloxacin-resistant P. aeruginosa clinical isolate, CRP42. The evolved mutants could tolerate a 512-fold higher concentration of ciprofloxacin than CRP42. Genomic DNA reference mapping was performed, which revealed mutations in genes known to be associated with ciprofloxacin resistance as well as in those not previously linked to ciprofloxacin resistance, including the ParER586W substitution and PA0625 frameshift insertion. Simulation of the ParER586W substitution and PA0625 frameshift insertion by gene editing in CRP42 and the model strain PAO1 demonstrated that while the PA0625 mutation does contribute to resistance, mutation in the ParER586W does not contribute to resistance but rather affects tolerance against ciprofloxacin. These findings advance our understanding of ciprofloxacin resistance in P. aeruginosa.
Collapse
|
12
|
Abstract
Bacteria commonly live in surface-associated communities where steep gradients of antibiotics and other chemical compounds can occur. While many bacterial species move on surfaces, we know surprisingly little about how such antibiotic gradients affect cell motility. Here, we study the behaviour of the opportunistic pathogen Pseudomonas aeruginosa in stable spatial gradients of several antibiotics by tracking thousands of cells in microfluidic devices as they form biofilms. Unexpectedly, these experiments reveal that bacteria use pili-based ('twitching') motility to navigate towards antibiotics. Our analyses suggest that this behaviour is driven by a general response to the effects of antibiotics on cells. Migrating bacteria reach antibiotic concentrations hundreds of times higher than their minimum inhibitory concentration within hours and remain highly motile. However, isolating cells - using fluid-walled microfluidic devices - reveals that these bacteria are terminal and unable to reproduce. Despite moving towards their death, migrating cells are capable of entering a suicidal program to release bacteriocins that kill other bacteria. This behaviour suggests that the cells are responding to antibiotics as if they come from a competing colony growing nearby, inducing them to invade and attack. As a result, clinical antibiotics have the potential to lure bacteria to their death.
Collapse
|
13
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
14
|
Jie LJ, Chi LZ, Wong LS, Rajamani R, Djearamane S. Antibacterial Efficacy of Zinc oxide nanoparticles against Serratia marcescens (ATCC 43862) and Enterococcus faecalis (ATCC 29121). JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:1069-1075. [DOI: 10.18006/2022.10(5).1069.1075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are a novel and alternative biomaterial for active biomedical applications among all metal and metallic oxide nanoparticles due to less toxicity and biocompatibility with human cells. In this study, we studied the growth curve of Serratia marcescens and Enterococcus faecalis to identify the mid-log phase of the bacterial growth to perform the exposure with ZnO NPs for investigating the antibacterial efficacy. The INT assay was used to determine the anti-bactericidal efficiency of ZnO NPs against S. marcescens and E. faecalis. The results showed that both the test bacteria attained the mid-log phase at the 5th hour. The determination of minimum inhibitory concentration (MIC) demonstrated a higher efficacy of ZnO NPs on the Gram-positive bacterium E. faecalis compared to the Gram-negative bacterium S. marcescens. The present study reports a higher susceptibility of Gram-positive bacterium over Gram-negative bacterium to the treatment of ZnO NPs.
Collapse
|
15
|
Wang G, Brunel JM, Preusse M, Mozaheb N, Willger SD, Larrouy-Maumus G, Baatsen P, Häussler S, Bolla JM, Van Bambeke F. The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence. Commun Biol 2022; 5:871. [PMID: 36008485 PMCID: PMC9411590 DOI: 10.1038/s42003-022-03836-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716. The polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics through permeabilizing the outer membrane and increases the activity of antibiotics on biofilms.
Collapse
Affiliation(s)
- Gang Wang
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Michel Brunel
- Aix Marseille Université, INSERM, SSA, Membranes et Cibles thérapeutiques (MCT), Marseille, France
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany
| | - Negar Mozaheb
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sven D Willger
- Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Twincore, Hannover, Germany.,Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerald Larrouy-Maumus
- Department of Life Sciences, Faculty of Natural Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Pieter Baatsen
- Electron Microscopy Platform & Bio Imaging Core, VIB & KULeuven Center for Brain & Disease Research, KULeuven, Leuven, Belgium
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmoltz Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Twincore, Hannover, Germany.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Jean-Michel Bolla
- Aix Marseille Université, INSERM, SSA, Membranes et Cibles thérapeutiques (MCT), Marseille, France
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
16
|
DNA Damage-Inducible Pyocin Expression Is Independent of RecA in xerC-Deleted Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0116722. [PMID: 35708338 PMCID: PMC9431673 DOI: 10.1128/spectrum.01167-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pyocins are interbacterial killing complexes made by Pseudomonas aeruginosa primarily to enact intraspecific competition. DNA damage and the ensuing activation of RecA initiate canonical pyocin expression. We recently discovered that deletion of xerC, which encodes a tyrosine recombinase involved in chromosome decatenation, markedly elevates basal pyocin production independently of RecA. Interestingly, the already-elevated basal pyocin expression in ΔxerC cells is substantially further increased by ciprofloxacin treatment. Here, we asked whether this further increase is due to DNA damage additionally activating the canonical RecA-dependent pyocin expression pathway. We also interrogated the relationship between XerC recombinase activity and pyocin expression. Surprisingly, we find that DNA damage-induced pyocin stimulation in ΔxerC cells is independent of RecA but dependent on PrtN, implying a RecA-independent means of DNA damage sensing that activates pyocin expression via PrtN. In sharp contrast to the RecA independence of pyocin expression in ΔxerC strains, specific mutational inactivation of XerC recombinase activity (XerCY272F) caused modestly elevated basal pyocin expression and was further stimulated by DNA-damaging drugs, but both effects were fully RecA dependent. To test whether pyocins could be induced by chemically inactivating XerC, we deployed a previously characterized bacterial tyrosine recombinase inhibitor. However, the inhibitor did not activate pyocin expression even at growth-inhibitory concentrations, suggesting that its principal inhibitory activity resembles neither XerC absence nor enzymatic inactivation. Collectively, our results imply a second function of XerC, separate from its recombinase activity, whose absence permits RecA-independent but DNA damage-inducible pyocin expression. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa produces pyocins—intraspecific, interbacterial killing complexes. The canonical pathway for pyocin production involves DNA damage and RecA activation. Pyocins are released by cell lysis, making production costly. We previously showed that cells lacking the tyrosine recombinase XerC produce pyocins independently of RecA. Here, we show that DNA-damaging agents stimulate pyocin expression in ΔxerC strains without involving RecA. However, strains mutated for XerC recombinase activity display strictly RecA-dependent pyocin production, and a known bacterial tyrosine recombinase inhibitor does not elicit pyocin expression. Our results collectively suggest that the use of XerC inhibition as an antipseudomonal strategy will require targeting the second function of XerC in regulating noncanonical pyocin production rather than targeting its recombinase activity.
Collapse
|
17
|
Secchi E, Savorana G, Vitale A, Eberl L, Stocker R, Rusconi R. The structural role of bacterial eDNA in the formation of biofilm streamers. Proc Natl Acad Sci U S A 2022; 119:e2113723119. [PMID: 35290120 PMCID: PMC8944759 DOI: 10.1073/pnas.2113723119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Across diverse habitats, bacteria are mainly found as biofilms, surface-attached communities embedded in a self-secreted matrix of extracellular polymeric substances (EPS), which enhance bacterial recalcitrance to antimicrobial treatment and mechanical stresses. In the presence of flow and geometric constraints such as corners or constrictions, biofilms can take the form of long, suspended filaments (streamers), which bear important consequences in industrial and clinical settings by causing clogging and fouling. The formation of streamers is thought to be driven by the viscoelastic nature of the biofilm matrix. Yet, little is known about the structural composition of streamers and how it affects their mechanical properties. Here, using a microfluidic platform that allows growing and precisely examining biofilm streamers, we show that extracellular DNA (eDNA) constitutes the backbone and is essential for the mechanical stability of Pseudomonas aeruginosa streamers. This finding is supported by the observations that DNA-degrading enzymes prevent the formation of streamers and clear already formed ones and that the antibiotic ciprofloxacin promotes their formation by increasing the release of eDNA. Furthermore, using mutants for the production of the exopolysaccharide Pel, an important component of P. aeruginosa EPS, we reveal an concurring role of Pel in tuning the mechanical properties of the streamers. Taken together, these results highlight the importance of eDNA and of its interplay with Pel in determining the mechanical properties of P. aeruginosa streamers and suggest that targeting the composition of streamers can be an effective approach to control the formation of these biofilm structures.
Collapse
Affiliation(s)
- Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Giovanni Savorana
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Alessandra Vitale
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
18
|
Landa KJ, Mossman LM, Whitaker RJ, Rapti Z, Clifton SM. Phage-Antibiotic Synergy Inhibited by Temperate and Chronic Virus Competition. Bull Math Biol 2022; 84:54. [PMID: 35316421 DOI: 10.1007/s11538-022-01006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
As antibiotic resistance grows more frequent for common bacterial infections, alternative treatment strategies such as phage therapy have become more widely studied in the medical field. While many studies have explored the efficacy of antibiotics, phage therapy, or synergistic combinations of phages and antibiotics, the impact of virus competition on the efficacy of antibiotic treatment has not yet been considered. Here, we model the synergy between antibiotics and two viral types, temperate and chronic, in controlling bacterial infections. We demonstrate that while combinations of antibiotic and temperate viruses exhibit synergy, competition between temperate and chronic viruses inhibits bacterial control with antibiotics. In fact, our model reveals that antibiotic treatment may counterintuitively increase the bacterial load when a large fraction of the bacteria are antibiotic resistant, and both chronic and temperate phages are present.
Collapse
Affiliation(s)
- Kylie J Landa
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA
| | - Lauren M Mossman
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sara M Clifton
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA.
| |
Collapse
|
19
|
Zhang Y, Silva DM, Young P, Traini D, Li M, Ong HX, Cheng S. Understanding the effects of aerodynamic and hydrodynamic shear forces on Pseudomonas aeruginosa biofilm growth. Biotechnol Bioeng 2022; 119:1483-1497. [PMID: 35274289 PMCID: PMC9313621 DOI: 10.1002/bit.28077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix and exhibit high tolerance towards environmental stress. Despite the plethora of research on biofilms, most biofilm models are produced using mono-interface culture in static flow conditions, and knowledge of the effects of interfaces and mechanical forces on biofilm development remains fragmentary. This study elucidated the effects of air-liquid (ALI) or liquid-liquid (LLI) interfaces and mechanical shear forces induced by airflow and hydrodynamic flow on biofilm growing using a custom-designed dual-channel microfluidic platform. Results from this study showed that comparing biofilms developed under continuous nutrient supply and shear stresses free condition to those developed with limited nutrient supply, ALI biofilms were four times thicker, 60% less permeable, and 100 times more resistant to antibiotics, while LLI biofilms were two times thicker, 20% less permeable, and 100 times more resistant to antibiotics. Subjecting the biofilms to mechanical shear stresses affected the biofilm structure across the biofilm thickness significantly, resulting in generally thinner and denser biofilm compared to their controlled biofilm cultured in the absence of shear stresses, and the ALI and LLI biofilm's morphology was vastly different. Biofilms developed under hydrodynamic shear stress also showed increased antibiotic resistance. These findings highlight the importance of investigating biofilm growth and its mechanisms in realistic environmental conditions and demonstrate a feasible approach to undertake this work using a novel platform. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ye Zhang
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, Sydney, Australia
| | - Dina M Silva
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ming Li
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
20
|
Ye Z, Silva DM, Traini D, Young P, Cheng S, Ong HX. An adaptable microreactor to investigate the influence of interfaces on Pseudomonas aeruginosa biofilm growth. Appl Microbiol Biotechnol 2022; 106:1067-1077. [PMID: 35015140 PMCID: PMC8817054 DOI: 10.1007/s00253-021-11746-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Abstract Biofilms are ubiquitous and notoriously difficult to eradicate and control, complicating human infections and industrial and agricultural biofouling. However, most of the study had used the biofilm model that attached to solid surface and developed in liquid submerged environments which generally have neglected the impact of interfaces. In our study, a reusable dual-chamber microreactor with interchangeable porous membranes was developed to establish multiple growth interfaces for biofilm culture and test. Protocol for culturing Pseudomonas aeruginosa (PAO1) on the air–liquid interface (ALI) and liquid–liquid interface (LLI) under static environmental conditions for 48 h was optimized using this novel device. This study shows that LLI model biofilms are more susceptible to physical disruption compared to ALI model biofilm. SEM images revealed a unique “dome-shaped” microcolonies morphological feature, which is more distinct on ALI biofilms than LLI. Furthermore, the study showed that ALI and LLI biofilms produced a similar amount of extracellular polymeric substances (EPS). As differences in biofilm structure and properties may lead to different outcomes when using the same eradication approaches, the antimicrobial effect of an antibiotic, ciprofloxacin (CIP), was chosen to test the susceptibility of a 48-h-old P. aeruginosa biofilms grown on ALI and LLI. Our results show that the minimum biofilm eradication concentration (MBEC) of 6-h CIP exposure for ALI and LLI biofilms is significantly different, which are 400 μg/mL and 200 μg/mL, respectively. These results highlight the importance of growth interface when developing more targeted biofilm management strategies, and our novel device provides a promising tool that enables manipulation of realistic biofilm growth. Key points • A novel dual-chamber microreactor device that enables the establishment of different interfaces for biofilm culture has been developed. • ALI model biofilms and LLI model biofilms show differences in resistance to physical disruption and antibiotic susceptibility.
Collapse
Affiliation(s)
- Zhang Ye
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, 2113, Australia
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Dina M Silva
- Woolcock Institute of Medical Research, Sydney, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2113, Australia
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, Australia
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Mechanical Engineering, Faculty of Engineering, Macquarie University, Sydney, NSW, 2113, Australia.
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, Australia.
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2113, Australia.
| |
Collapse
|
21
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Abstract
Pyocins are phage tail-like protein complexes that can be used by Pseudomonas aeruginosa to enact intraspecies competition by killing competing strains. The pyocin gene cluster also encodes holin and lysin enzymes that lyse producer cells to release the pyocins. The best-known inducers of pyocin production under laboratory conditions are DNA-damaging agents, including fluoroquinolone antibiotics, that activate the SOS response. Here, we report the discovery of an alternate, RecA-independent pathway of strong pyocin induction that is active in cells deficient for the tyrosine recombinase XerC. When ΔxerC cells were examined at the single-cell level, only a fraction of the cell population strongly expressed pyocins before explosively lysing, suggesting a that a built-in heterogenous response system protects the cell population from widespread lysis. Disabling the holin and lysin enzymes or deleting the entire pyocin gene cluster blocked explosive lysis and delayed but did not prevent the death of pyocin-producing cells, suggesting that ΔxerC cells activate other lysis pathways. Mutating XerC to abolish its recombinase activity induced pyocin expression to a lesser extent than the full deletion, suggesting that XerC has multiple functions with respect to pyocin activation. Our studies uncover a new pathway for pyocin production and highlight its response across a genetically identical population. Moreover, our finding that ΔxerC populations are hypersensitive to fluoroquinolones raises the intriguing possibility that XerC inhibition may potentiate the activity of these antibiotics against P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is a versatile and ubiquitous bacterium that frequently infects humans as an opportunistic pathogen. P. aeruginosa competes with other strains within the species by producing killing complexes termed pyocins, which are only known to be induced by cells experiencing DNA damage and the subsequent SOS response. Here, we discovered that strains lacking a recombinase enzyme called XerC strongly produce pyocins independently of the SOS response. We also show that these strains are hypersensitive to commonly used fluoroquinolone antibiotic treatment and that fluoroquinolones further stimulate pyocin production. Thus, XerC is an attractive target for future therapies that simultaneously sensitize P. aeruginosa to antibiotics and stimulate the production of bactericidal pyocins.
Collapse
|
24
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
25
|
D'Arpa P, Karna SLR, Chen T, Leung KP. Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds. Sci Rep 2021; 11:20632. [PMID: 34667187 PMCID: PMC8526614 DOI: 10.1038/s41598-021-00073-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
In burn patients Pseudomonas aeruginosa infection is a major cause of morbidity. Analysis of the pathogen's gene expression as it transitions from colonization to acute and then biofilm wound infection may provide strategies for infection control. Toward this goal, we seeded log-phase P. aeruginosa (PAO1) into 3-day-old, full-thickness excision wounds (rabbit ear) and harvested the bacteria during colonization (Hrs 2 and 6), acute infection (Hr 24), and biofilm infection (Days 5 and 9) for transcriptome analysis (RNA-Seq). After 2-6 h in the wound, genes for metabolism and cell replication were down-regulated while wound-adaptation genes were up-regulated (vs. expression in log-phase culture). As the infection progressed from acute to biofilm infection, more genes became up-regulated than down-regulated, but the down-regulated genes enriched in more pathways, likely because the genes and pathways that bacteria already colonizing wounds up-regulate to establish biofilm infection are less known. Across the stages of infection, carbon-utilization pathways shifted. During acute infection, itaconate produced by myeloid cells appears to have been a carbon source because myeloid cell infiltration and the expression of the host gene, ACOD1, for itaconate production peaked coincidently with the expression of the PAO1 genes for itaconate transport and catabolism. Additionally, branched-chain amino acids are suggested to be a carbon source in acute infection and in biofilm infection. In biofilm infection, fatty acid degradation was also up-regulated. These carbon sources feed into the glyoxylate cycle that was coincidently up-regulated, suggesting it provided the precursors for P. aeruginosa to synthesize macromolecules in establishing wound infection.
Collapse
Affiliation(s)
- Peter D'Arpa
- Combat Wound Repair Group and Tissue Regeneration Department, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA.,The Geneva Foundation, Tacoma, USA
| | - S L Rajasekhar Karna
- Combat Wound Repair Group and Tissue Regeneration Department, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, USA
| | - Kai P Leung
- Combat Wound Repair Group and Tissue Regeneration Department, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA.
| |
Collapse
|
26
|
Zhang W, Yuan Y, Li S, Deng B, Zhang J, Li Z. Comparative transcription analysis of resistant mutants against four different antibiotics in Pseudomonas aeruginosa. Microb Pathog 2021; 160:105166. [PMID: 34480983 DOI: 10.1016/j.micpath.2021.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
The emergence of antibiotic resistance has severely impaired the treatment of infections caused by Pseudomonas aeruginosa. There are few studies related to comparing the antibiotics resistance mechanisms of P. aeruginosa against different antibiotics. In this study, RNA sequencing was used to investigate the differences of transcriptome between wild strain and four antibiotics resistant strains of P. aeruginosa PAO1 (polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone). Compared to the wild strain, 1907, 495, 2402, and 116 differentially expressed genes (DEGs) were identified in polymyxin B, ciprofloxacin, doxycycline, and ceftriaxone resistant PAO1, respectively. After analysis of genes related to antimicrobial resistance, we found genes implicated in biofilm formation (pelB, pelC, pelD, pelE, pelF, pelG, algA, algF, and alg44) were significantly upregulated in polymyxin B-resistant PAO1, efflux pump genes (mexA, mexB, oprM) and biofilm formation genes (pslJ, pslK and pslN) were upregulated in ciprofloxacin-resistant PAO1; other efflux pump genes (mexC, mexD, oprJ) were upregulated in doxycycline-resistant PAO1; ampC were upregulated in ceftriaxone-resistant PAO1. As a consequence of antibiotic resistance, genes related to virulence factors such as type Ⅱ secretion system (lasA, lasB and piv) were significantly upregulated in polymyxin B-resistant PAO1, and type Ⅲ secretion system (exoS, exoT, exoY, exsA, exsB, exsC, exsD, pcrV, popB, popD, pscC, pscE, pscG, and pscJ) were upregulated in doxycycline-resistant PAO1. While, ampC were upregulated in ceftriaxone-resistant PAO1. In addition, variants were obtained in wild type and four antibiotics resistant PAO1. Our findings provide a comparative transcriptome analysis of antibiotic resistant mutants selected by different antibiotics, and might assist in identifying potential therapeutic strategies for P. aeruginosa infection.
Collapse
Affiliation(s)
- Wenlu Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yaping Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shasha Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiaming Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhongjie Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
27
|
Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 2021; 373:373/6556/eabi4882. [PMID: 34385369 DOI: 10.1126/science.abi4882] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023]
Abstract
Capturing the heterogeneous phenotypes of microbial populations at relevant spatiotemporal scales is highly challenging. Here, we present par-seqFISH (parallel sequential fluorescence in situ hybridization), a transcriptome-imaging approach that records gene expression and spatial context within microscale assemblies at a single-cell and molecule resolution. We applied this approach to the opportunistic pathogen Pseudomonas aeruginosa, analyzing about 600,000 individuals across dozens of conditions in planktonic and biofilm cultures. We identified numerous metabolic- and virulence-related transcriptional states that emerged dynamically during planktonic growth, as well as highly spatially resolved metabolic heterogeneity in sessile populations. Our data reveal that distinct physiological states can coexist within the same biofilm just several micrometers away, underscoring the importance of the microenvironment. Our results illustrate the complex dynamics of microbial populations and present a new way of studying them at high resolution.
Collapse
Affiliation(s)
- Daniel Dar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Nina Dar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
28
|
Targeting Bacterial Gyrase with Cystobactamid, Fluoroquinolone, and Aminocoumarin Antibiotics Induces Distinct Molecular Signatures in Pseudomonas aeruginosa. mSystems 2021; 6:e0061021. [PMID: 34254824 PMCID: PMC8407119 DOI: 10.1128/msystems.00610-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The design of novel antibiotics relies on a profound understanding of their mechanism of action. While it has been shown that cellular effects of antibiotics cluster according to their molecular targets, we investigated whether compounds binding to different sites of the same target can be differentiated by their transcriptome or metabolome signatures. The effects of three fluoroquinolones, two aminocoumarins, and two cystobactamids, all inhibiting bacterial gyrase, on Pseudomonas aeruginosa at subinhibitory concentrations could be distinguished clearly by RNA sequencing as well as metabolomics. We observed a strong (2.8- to 212-fold) induction of autolysis-triggering pyocins in all gyrase inhibitors, which correlated with extracellular DNA (eDNA) release. Gyrase B-binding aminocoumarins induced the most pronounced changes, including a strong downregulation of phenazine and rhamnolipid virulence factors. Cystobactamids led to a downregulation of a glucose catabolism pathway. The study implies that clustering cellular mechanisms of action according to the primary target needs to take class-dependent variances into account. IMPORTANCE Novel antibiotics are urgently needed to tackle the growing worldwide problem of antimicrobial resistance. Bacterial pathogens possess few privileged targets for a successful therapy: the majority of existing antibiotics as well as current candidates in development target the complex bacterial machinery for cell wall synthesis, protein synthesis, or DNA replication. An important mechanistic question addressed by this study is whether inhibiting such a complex target at different sites with different compounds has similar or differentiated cellular consequences. Using transcriptomics and metabolomics, we demonstrate that three different classes of gyrase inhibitors can be distinguished by their molecular signatures in P. aeruginosa. We describe the cellular effects of a promising, recently identified gyrase inhibitor class, the cystobactamids, in comparison to those of the established gyrase A-binding fluoroquinolones and the gyrase B-binding aminocoumarins. The study results have implications for mode-of-action discovery approaches based on target-specific reference compounds, as they highlight the intraclass variability of cellular compound effects.
Collapse
|
29
|
Frisch S, Boese A, Huck B, Horstmann JC, Ho DK, Schwarzkopf K, Murgia X, Loretz B, de Souza Carvalho-Wodarz C, Lehr CM. A pulmonary mucus surrogate for investigating antibiotic permeation and activity against Pseudomonas aeruginosa biofilms. J Antimicrob Chemother 2021; 76:1472-1479. [PMID: 33712824 DOI: 10.1093/jac/dkab068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/15/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pulmonary infections associated with Pseudomonas aeruginosa can be life-threatening for patients suffering from chronic lung diseases such as cystic fibrosis. In this scenario, the formation of biofilms embedded in a mucus layer can limit the permeation and the activity of anti-infectives. OBJECTIVES Native human pulmonary mucus can be isolated from endotracheal tubes, but this source is limited for large-scale testing. This study, therefore, aimed to evaluate a modified artificial sputum medium (ASMmod) with mucus-like viscoelastic properties as a surrogate for testing anti-infectives against P. aeruginosa biofilms. METHODS Bacterial growth in conventional broth cultures was compared with that in ASMmod, and PAO1-GFP biofilms were imaged by confocal microscopy. Transport kinetics of three antibiotics, tobramycin, colistin, and ciprofloxacin, through native mucus and ASMmod were studied, and their activity against PAO1 biofilms grown in different media was assessed by determination of metabolic activity and cfu. RESULTS PAO1(-GFP) cultured in human pulmonary mucus or ASMmod showed similarities in bacterial growth and biofilm morphology. A limited permeation of antibiotics through ASMmod was observed, indicating its strong barrier properties, which are comparable to those of native human mucus. Reduced susceptibility of PAO1 biofilms was observed in ASMmod compared with LB medium for tobramycin and colistin, but less for ciprofloxacin. CONCLUSIONS These findings underline the importance of mucus as a biological barrier to antibiotics. ASMmod appears to be a valuable surrogate for studying mucus permeation of anti-infectives and their efficacy against PAO1 biofilms.
Collapse
Affiliation(s)
- Sarah Frisch
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Annette Boese
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Benedikt Huck
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Justus C Horstmann
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Duy-Khiet Ho
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Konrad Schwarzkopf
- Department of Anaesthesia and Intensive Care, Klinikum Saarbrücken, Germany
| | - Xabier Murgia
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | | | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
30
|
A Novel Infection Protocol in Zebrafish Embryo to Assess Pseudomonas aeruginosa Virulence and Validate Efficacy of a Quorum Sensing Inhibitor In Vivo. Pathogens 2021; 10:pathogens10040401. [PMID: 33805384 PMCID: PMC8065929 DOI: 10.3390/pathogens10040401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.
Collapse
|
31
|
Molina Mora JA, Montero-Manso P, García-Batán R, Campos-Sánchez R, Vilar-Fernández J, García F. A first perturbome of Pseudomonas aeruginosa: Identification of core genes related to multiple perturbations by a machine learning approach. Biosystems 2021; 205:104411. [PMID: 33757842 DOI: 10.1016/j.biosystems.2021.104411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/27/2023]
Abstract
Tolerance to stress conditions is vital for organismal survival, including bacteria under specific environmental conditions, antibiotics, and other perturbations. Some studies have described common modulation and shared genes during stress response to different types of disturbances (termed as perturbome), leading to the idea of central control at the molecular level. We implemented a robust machine learning approach to identify and describe genes associated with multiple perturbations or perturbome in a Pseudomonas aeruginosa PAO1 model. Using microarray datasets from the Gene Expression Omnibus (GEO), we evaluated six approaches to rank and select genes: using two methodologies, data single partition (SP method) or multiple partitions (MP method) for training and testing datasets, we evaluated three classification algorithms (SVM Support Vector Machine, KNN K-Nearest neighbor and RF Random Forest). Gene expression patterns and topological features at the systems level were included to describe the perturbome elements. We were able to select and describe 46 core response genes associated with multiple perturbations in P. aeruginosa PAO1 and it can be considered a first report of the P. aeruginosa perturbome. Molecular annotations, patterns in expression levels, and topological features in molecular networks revealed biological functions of biosynthesis, binding, and metabolism, many of them related to DNA damage repair and aerobic respiration in the context of tolerance to stress. We also discuss different issues related to implemented and assessed algorithms, including data partitioning, classification approaches, and metrics. Altogether, this work offers a different and robust framework to select genes using a machine learning approach.
Collapse
Affiliation(s)
- Jose Arturo Molina Mora
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | | | - Raquel García-Batán
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, Costa Rica.
| | | | - Fernando García
- Centro de Investigacion en Enfermedades Tropicales (CIET) and Facultad de Microbiología, Universidad de Costa Rica, San Jose, Costa Rica.
| |
Collapse
|
32
|
Molina-Mora JA, Chinchilla-Montero D, García-Batán R, García F. Genomic context of the two integrons of ST-111 Pseudomonas aeruginosa AG1: A VIM-2-carrying old-acquaintance and a novel IMP-18-carrying integron. INFECTION GENETICS AND EVOLUTION 2021; 89:104740. [PMID: 33516973 DOI: 10.1016/j.meegid.2021.104740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa is an opportunist and versatile organism responsible for infections mainly in immunocompromised hosts. This pathogen has high intrinsic resistance to most antimicrobials. P. aeruginosa AG1 (PaeAG1) is a Costa Rican high-risk ST-111 strain with resistance to multiple antibiotics, including carbapenems, due to the activity of VIM-2 and IMP-18 metallo-β-lactamases (MBLs). These genes are harbored in two class 1 integrons located inone out of the 57 PaeAG1 genomic islands. However, the genomic context associated to these determinants in PaeAG1 and other P. aeruginosa strains is unclear. Thus, we first assessed the transcriptional activity of VIM-2 and IMP-18 genes when exposed to imipenem (a carbapenem) by RT-qPCR. To select related genomes to PaeAG1, we implemented a pan-genome analysis to define and up-date the phylogenetic relationship among complete P. aeruginosa genomes. We also studied the PaeAG1 genomic islands content in the related strains and finally we described the architecture and possible evolutionary steps of the genomic regions around the VIM-2- and IMP-18-carrying integrons. Expression of VIM-2 and IMP-18 genes was demonstrated to be induced after imipenem exposure. In a subsequent comparative genomics analysis with 211 strains, the P. aeruginosa pan-genome revealed that complete genome sequences are able to separate clones by MLST profile, including a clear ST-111 cluster with PaeAG1. The PaeAG1 genomic islands were found to define a diverse presence/absence pattern among related genomes. Finally, landscape reconstruction of genomic regions showed that VIM-2-carrying integron (In59-like) is an old-acquaintance element harbored in the same known region found in other two ST-111 strains. Also, PaeAG1 has an exclusive genomic region containing a novel IMP-18-carrying integron (registered as In1666), with an arrangement never reported before. Altogether, we provide new insights about the genomic determinants associated with the resistance to carbapenems in this high-risk P. aeruginosa using comparative genomics.
Collapse
Affiliation(s)
| | | | - Raquel García-Batán
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| | - Fernando García
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| |
Collapse
|
33
|
Jiao H, Li F, Wang T, Yam JKH, Yang L, Liang H. The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Modulation of Gac/Rsm System and c-di-GMP Signaling Pathway. Infect Immun 2021; 89:e00602-20. [PMID: 33168590 PMCID: PMC7822137 DOI: 10.1128/iai.00602-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023] Open
Abstract
In Pseudomonas aeruginosa, the second messenger cyclic-di-GMP and Gac/Rsm signaling pathways are associated with the transition from acute to chronic infection. Therefore, identification of the molecular mechanisms that govern lifestyle choice in bacteria is very important. Here, we identified a novel cyclic-di-GMP modulator, PrtR, which was shown to repress pyocin production by inhibition of PrtN and activate the type III secretion system (T3SS) through PtrB. Compared to a wild-type strain or a prtN mutant, the prtR prtN double mutant exhibited a wrinkly colony and hyperbiofilm phenotype, as well as an increase in intracellular c-di-GMP levels. Interestingly, a diguanylate cyclase (DGC) gene, siaD, was repressed by PrtR. Further experiments revealed that PrtR directly interacts with SiaD and facilitates the accumulation of c-di-GMP in cells. We also demonstrated that PrtR regulates the activity of the Gac/Rsm system, thus affecting expression of the T3SS and type VI secretion system (T6SS) and the formation of biofilm. Taken together, the present findings indicate that PrtR, as a c-di-GMP modulator, plays key roles in the adaptation to opportunistic infection of P. aeruginosa Additionally, this study revealed a novel mechanism for PrtR-mediated regulation of the lifestyle transition via the Gac/Rsm and c-di-GMP signaling networks.
Collapse
Affiliation(s)
- Hongying Jiao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Fan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, ShaanXi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Joey Kuok Hoong Yam
- School of Biological Sciences, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, ShenZhen, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| |
Collapse
|
34
|
Molina-Mora JA, García F. Molecular Determinants of Antibiotic Resistance in the Costa Rican Pseudomonas aeruginosa AG1 by a Multi-omics Approach: A Review of 10 Years of Study. PHENOMICS 2021; 1:129-142. [PMID: 35233560 PMCID: PMC8210740 DOI: 10.1007/s43657-021-00016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa AG1 (PaeAG1) is a Costa Rican strain that was isolated in 2010 in a major Hospital. This strain has resistance to multiple antibiotics such as β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones. PaeAG1 is considered critical (Priority 1) due to its resistance to carbapenems, and it was the first report of a P. aeruginosa isolate carrying both VIM-2 and IMP-18 genes encoding for metallo-β-lactamases (MBL) enzymes (both with carbapenemase activity). Owing to these traits, we have studied this model for 10 years using diverse approaches including multi-omics. In this review, we summarize the main points of the different steps that we have studied in PaeAG1: preliminary analyses of this strain at the genomic and phenomic levels revealed that this microorganism has particular features of antibiotic resistance. In the multi-omics approach, the genome assembly was the initial step to identify the genomic determinants of this strain, including virulence factors, antibiotic resistance genes, as well as a complex accessory genome. Second, a comparative genomic approach was implemented to define and update the phylogenetic relationship among complete P. aeruginosa genomes, the genomic island content in other strains, and the architecture of the two MBL-carrying integrons. Third, the proteomic profile of PaeAG1 was studied after exposure to antibiotics using 2-dimensional gel electrophoresis (2D-GE). Fourth, to study the central response to multiple perturbations in P. aeruginosa, i.e., the core perturbome, a machine learning approach was used. The analysis revealed biological functions and determinants that are shared by different disturbances. Finally, to evaluate the effects of ciprofloxacin (CIP) on PaeAG1, a growth curve comparison, differential expression analysis (RNA-Seq), and network analysis were performed. Using the results of the core perturbome (pathways that also were found in this perturbation with CIP), it was possible to identify the “exclusive” response and determinants of PaeAG1 after exposure to CIP. Altogether, after a decade of study using a multi-omics approach (at genomics, comparative genomics, perturbomics, transcriptomics, proteomics, and phenomics levels), we have provided new insights about the genomic and transcriptomic determinants associated with antibiotic resistance in PaeAG1. These results not only partially explain the high-risk condition of this strain that enables it to conquer nosocomial environments and its multi-resistance profile, but also this information may eventually be used as part of the strategies to fight this pathogen.
Collapse
Affiliation(s)
- Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fernando García
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
35
|
Snopkova K, Dufkova K, Klimesova P, Vanerkova M, Ruzicka F, Hola V. Prevalence of bacteriocins and their co-association with virulence factors within Pseudomonas aeruginosa catheter isolates. Int J Med Microbiol 2020; 310:151454. [PMID: 33068882 DOI: 10.1016/j.ijmm.2020.151454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/09/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infections represent common nosocomial infectious diseases. Bacteriocin production has been recently described as a putative virulence factor in these infections but studies focusing particularly on Pseudomonas aeruginosa are not available. Therefore, we assessed the prevalence of the bacteriocin genes, their co-occurrence and their co-association with previously detected virulence factors in a set of 135 P. aeruginosa strains from catheter-associated urinary tract infections (CAUTIs). The overall bacteriocinogeny reached 96.3 % with an average of 3.6 genes per strain. The most frequently detected determinants were the encoded pyocins S4 (76.3 %), R (69.6 %), and S2 (67.4 %). A statistically significant co-occurrence and a negative relationship were observed between several pyocin types. Particular pyocins exhibited associations with biofilm formation, production of pyochelin, pyocyanin, antibiotic-degrading enzymes, overall strain susceptibility and resistance, and motility of the strain. Co-occurrence of the pyocins S2 and S4 (p<<0.0001; Z = 13.15), both utilizating the ferripyoverdine receptor FpvAI, was found but no relation to pyoverdine production was detected. A negative association (p = 0.0047; Z=-2.83) was observed between pyochelin and pyocin S5 utilising the ferripyochelin receptor FptA. Pairwise assays resulted in 52.1 % inhibition which was equally distributed between soluble and particle types of antimicrobials. In conclusion, pyocin determinants appear to be important characteristics of CAUTI-related P. aeruginosa isolates and could contribute to their urovirulence.
Collapse
Affiliation(s)
- Katerina Snopkova
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Kristyna Dufkova
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Petra Klimesova
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martina Vanerkova
- Molecular and Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Pekarska 53, 656 91 Brno, Czech Republic
| | - Filip Ruzicka
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Veronika Hola
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
36
|
Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to ciprofloxacin identified by a top-down systems biology approach. Sci Rep 2020; 10:13717. [PMID: 32792590 PMCID: PMC7427096 DOI: 10.1038/s41598-020-70581-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in diverse environments and causes a variety of human infections. Pseudomonas aeruginosa AG1 (PaeAG1) is a high-risk sequence type 111 (ST-111) strain isolated from a Costa Rican hospital in 2010. PaeAG1 has both blaVIM-2 and blaIMP-18 genes encoding for metallo-β-lactamases, and it is resistant to β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones. Ciprofloxacin (CIP) is an antibiotic commonly used to treat P. aeruginosa infections, and it is known to produce DNA damage, triggering a complex molecular response. In order to evaluate the effects of a sub-inhibitory CIP concentration on PaeAG1, growth curves using increasing CIP concentrations were compared. We then measured gene expression using RNA-Seq at three time points (0, 2.5 and 5 h) after CIP exposure to identify the transcriptomic determinants of the response (i.e. hub genes, gene clusters and enriched pathways). Changes in expression were determined using differential expression analysis and network analysis using a top–down systems biology approach. A hybrid model using database-based and co-expression analysis approaches was implemented to predict gene–gene interactions. We observed a reduction of the growth curve rate as the sub-inhibitory CIP concentrations were increased. In the transcriptomic analysis, we detected that over time CIP treatment resulted in the differential expression of 518 genes, showing a complex impact at the molecular level. The transcriptomic determinants were 14 hub genes, multiple gene clusters at different levels (associated to hub genes or as co-expression modules) and 15 enriched pathways. Down-regulation of genes implicated in several metabolism pathways, virulence elements and ribosomal activity was observed. In contrast, amino acid catabolism, RpoS factor, proteases, and phenazines genes were up-regulated. Remarkably, > 80 resident-phage genes were up-regulated after CIP treatment, which was validated at phenomic level using a phage plaque assay. Thus, reduction of the growth curve rate and increasing phage induction was evidenced as the CIP concentrations were increased. In summary, transcriptomic and network analyses, as well as the growth curves and phage plaque assays provide evidence that PaeAG1 presents a complex, concentration-dependent response to sub-inhibitory CIP exposure, showing pleiotropic effects at the systems level. Manipulation of these determinants, such as phage genes, could be used to gain more insights about the regulation of responses in PaeAG1 as well as the identification of possible therapeutic targets. To our knowledge, this is the first report of the transcriptomic analysis of CIP response in a ST-111 high-risk P. aeruginosa strain, in particular using a top-down systems biology approach.
Collapse
|
37
|
Tran TT, Hadinoto K. Ternary nanoparticle complex of antibiotic, polyelectrolyte, and mucolytic enzyme as a potential antibiotic delivery system in bronchiectasis therapy. Colloids Surf B Biointerfaces 2020; 193:111095. [PMID: 32416520 DOI: 10.1016/j.colsurfb.2020.111095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022]
Abstract
Antibiotic-polyelectrolyte nanoparticle complex (or nanoplex in short) has been recently demonstrated as a superior antibiotic delivery system to the native antibiotic in bronchiectasis therapy owed to its ability to overcome the lung's mucus barrier and generate high localized antibiotic exposure in the infected sites. The present work aimed to further improve the mucus permeability, hence the antibacterial efficacy of the nanoplex, by incorporating mucolytic enzyme papain (PAP) at the nanoplex formation step to produce PAP-decorated antibiotic-polyelectrolyte nanoplex exhibiting built-in mucolytic capability. Ciprofloxacin (CIP) and dextran sulfate (DXT) were used as the models for antibiotics and polyelectrolyte, respectively. The results showed that the PAP inclusion had minimal effects on the physical characteristics, preparation efficiency, and dissolution of the CIP-DXT nanoplex. The optimal CIP-(DXT-PAP) nanoplex exhibited size and zeta potential of approximately 200 nm and -50 mV with CIP and PAP payloads of 60% and 32% (w/w), respectively. The nanoplex was prepared at high efficiency with larger than 80% CIP and PAP utilization rates. The CIP-(DXT-PAP) nanoplex exhibited tenfold improvement in the mucus permeability compared to its CIP-DXT nanoplex counterpart, resulting in the former's superior bactericidal activity against clinical Pseudomonas aeruginosa biofilm in the presence of mucus barrier. A trade-off, nevertheless, existed between antibacterial efficacy and cytotoxicity towards human lung epithelium cells upon the incorporation of PAP above a certain concentration threshold. Therefore, the optimal dosing of the CIP-(DXT-PAP) nanoplex must be carefully determined.
Collapse
Affiliation(s)
- The-Thien Tran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
38
|
Welp AL, Bomberger JM. Bacterial Community Interactions During Chronic Respiratory Disease. Front Cell Infect Microbiol 2020; 10:213. [PMID: 32477966 PMCID: PMC7240048 DOI: 10.3389/fcimb.2020.00213] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic respiratory diseases including chronic rhinosinusitis, otitis media, asthma, cystic fibrosis, non-CF bronchiectasis, and chronic obstructive pulmonary disease are a major public health burden. Patients suffering from chronic respiratory disease are prone to persistent, debilitating respiratory infections due to the decreased ability to clear pathogens from the respiratory tract. Such infections often develop into chronic, life-long complications that are difficult to treat with antibiotics due to the formation of recalcitrant biofilms. The microbial communities present in the upper and lower respiratory tracts change as these respiratory diseases progress, often becoming less diverse and dysbiotic, correlating with worsening patient morbidity. Those with chronic respiratory disease are commonly infected with a shared group of respiratory pathogens including Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Moraxella catarrhalis, among others. In order to understand the microbial landscape of the respiratory tract during chronic disease, we review the known inter-species interactions among these organisms and other common respiratory flora. We consider both the balance between cooperative and competitive interactions in relation to microbial community structure. By reviewing the major causes of chronic respiratory disease, we identify common features across disease states and signals that might contribute to community shifts. As microbiome shifts have been associated with respiratory disease progression, worsening morbidity, and increased mortality, these underlying community interactions likely have an impact on respiratory disease state.
Collapse
Affiliation(s)
- Allison L. Welp
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Henriksen K, Rørbo N, Rybtke ML, Martinet MG, Tolker-Nielsen T, Høiby N, Middelboe M, Ciofu O. P. aeruginosa flow-cell biofilms are enhanced by repeated phage treatments but can be eradicated by phage-ciprofloxacin combination. Pathog Dis 2020; 77:5368070. [PMID: 30821815 DOI: 10.1093/femspd/ftz011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Phage therapy has shown promising results in the treatment of Pseudomonas aeruginosa biofilm infections in animal studies and case reports. The aim of this study was to quantify effects of phage treatments on P. aeruginosa biofilm production and structure. Confocal scanning microscopy was used to follow the interaction between a cocktail of three virulent phages and P. aeruginosa flow-cell biofilms. The role of (i) biofilm age, (ii) repeated phage treatments, (iii) alginate production and (iv) the combination with sub-MIC levels of ciprofloxacin was investigated. Single phage treatment in the early biofilm stages significantly reduced P. aeruginosa PAO1 biovolume (85%-98% reduction). Repeated phage treatments increased the biovolume from 18.25 (untreated biofilm) to 22.24 and 31.07 µm3/µm2 for biofilms treated with phages twice and thrice, respectively. Alginate protected against the phage treatment as the live biovolume remained unaffected by the phage treatment in the mucoid biofilm (20.11 µm3/µm2 in untreated and 21.74 µm3/µm2 in phage-treated biofilm) but decreased in the PAO1 biofilm from 27.35 to 0.89 µm3/µm2. We show that the combination of phages with antibiotics at sub-MIC levels caused a ∼6 log units reduction in the abundance of P. aeruginosa cells in biofilms and that phage treatment increased the size of microcolonies in flow-cell system.
Collapse
Affiliation(s)
- Karoline Henriksen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Nanna Rørbo
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Morten Levin Rybtke
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Mark Grevsen Martinet
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| | - Niels Høiby
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100 , Copenhagen, Denmark
| | - Mathias Middelboe
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 N, Copenhagen, Denmark
| |
Collapse
|
40
|
Multidrug Adaptive Resistance of Pseudomonas aeruginosa Swarming Cells. Antimicrob Agents Chemother 2020; 64:AAC.01999-19. [PMID: 31844008 DOI: 10.1128/aac.01999-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 01/25/2023] Open
Abstract
Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.
Collapse
|
41
|
Lim DJ, Skinner D, Mclemore J, Rivers N, Elder JB, Allen M, Koch C, West J, Zhang S, Thompson HM, McCormick JP, Grayson JW, Cho DY, Woodworth BA. In-vitro evaluation of a ciprofloxacin and azithromycin sinus stent for Pseudomonas aeruginosa biofilms. Int Forum Allergy Rhinol 2019; 10:121-127. [PMID: 31692289 DOI: 10.1002/alr.22475] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a chronic inflammatory disease characterized by persistent inflammation and bacterial infection. Ciprofloxacin and azithromycin are commonly prescribed antibiotics for CRS, but the ability to provide targeted release in the sinuses could mitigate side effects and improve drug concentrations at the infected site. This study was aimed to evaluate the efficacy of the novel ciprofloxacin-azithromycin sinus stent (CASS) in vitro. METHODS The CASS was created by coating ciprofloxacin (hydrophilic, inner layer) and azithromycin (hydrophobic, outer layer) onto a biodegradable poly-l-lactic acid (PLLA) stent. In-vitro evaluation included: (1) assessment of drug-coating stability within the stent using scanning electron microscopy (SEM); (2) determination of ciprofloxacin and azithromycin release kinetics; and (3) assessment of anti-biofilm activities against Pseudomonas aeruginosa. RESULTS The ciprofloxacin nanoparticle suspension in the inner layer was confirmed by zeta potential. Both ciprofloxacin (60 µg) and azithromycin (3 mg) were uniformly coated on the surface of the PLLA stents. The CASS showed ciprofloxacin/azithromycin sustained release patterns, with 80.55 ± 11.61% of ciprofloxacin and 93.85 ± 6.9% of azithromycin released by 28 days. The CASS also significantly reduced P aeruginosa biofilm mass compared with bare stents and controls (relative optical density units at 590-nm optical density: CASS, 0.037 ± 0.006; bare stent, 0.911 ± 0.015; control, 1.000 ± 0.000; p < 0.001; n = 3). CONCLUSION The CASS maintains a uniform coating and sustained delivery of ciprofloxacin and azithromycin, providing anti-biofilm activities against P aeruginosa. Further studies evaluating the efficacy of CASS in a preclinical model are planned.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Skinner
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - John Mclemore
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Nick Rivers
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jeffrey Brent Elder
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Mark Allen
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Connor Koch
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - John West
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Shaoyan Zhang
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Harrison M Thompson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Justin P McCormick
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica W Grayson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Do-Yeon Cho
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
42
|
Abstract
Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship. Most bacteria and archaea are infected by latent viruses that change their physiology and responses to environmental stress. We use a population model of the bacterium-phage relationship to examine the role that latent phage play in the bacterial population over time in response to antibiotic treatment. We demonstrate that the stress induced by antibiotic administration, even if bacteria are resistant to killing by antibiotics, is sufficient to control the infection under certain conditions. This work expands the breadth of understanding of phage-antibiotic synergy to include both temperate and chronic viruses persisting in their latent form in bacterial populations. IMPORTANCE Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship.
Collapse
|
43
|
Jedrey H, Lilley KS, Welch M. Ciprofloxacin binding to GyrA causes global changes in the proteome of Pseudomonas aeruginosa. FEMS Microbiol Lett 2019; 365:5017444. [PMID: 29846552 PMCID: PMC5995189 DOI: 10.1093/femsle/fny134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/25/2018] [Indexed: 11/14/2022] Open
Abstract
Ciprofloxacin is one of the most widely-used antibiotics, and has proven especially effective at controlling infections associated with the opportunistic human pathogen, Pseudomonas aeruginosa. In this work, we show that sub-inhibitory concentrations of ciprofloxacin induce discrete changes in the intracellular proteome. Central metabolism and cell envelope-associated functions are particularly affected. In spite of the low magnitude of the intracellular proteomic changes, we found that sub-lethal concentrations of ciprofloxacin had substantial effects on motility and exoprotein secretion. Crucially, the proteomic and phenotypic modulations that we observed were absolutely dependent upon the presence of wild-type GyrA; an isogenic strain of P. aeruginosa carrying a ciprofloxacin-insensitive form of GyrA (a T83→I mutant) did not display ciprofloxacin-dependent changes unless complemented with wild-type gyrA in trans. These results show that the diverse effects of sub-inhibitory ciprofloxacin on the cell are routed through its primary target in the cell, DNA gyrase.
Collapse
Affiliation(s)
- Hannah Jedrey
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
44
|
Han Y, Zhou ZC, Zhu L, Wei YY, Feng WQ, Xu L, Liu Y, Lin ZJ, Shuai XY, Zhang ZJ, Chen H. The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28352-28360. [PMID: 31372954 DOI: 10.1007/s11356-019-05673-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
The emergence of antibiotic resistance genes (ARGs) in microbes can be largely attributed to the abuse and misuse of antibiotics and biocides. Quaternary ammonium compounds (QACs) have been used worldwide as common disinfectants and detergents; however, their potential impact on the spread and diffusion of ARGs is still unknown. In this study, we detected the QAC resistance gene (qacEΔ1), the 1 integron gene (intI1), and 12 ARGs (sul1, sul2, cfr, cml, fexA, tetA, tetG, tetQ, tetX, ermB, blaTEM, and dfrA1) in 48 water samples from three watersheds by quantitative PCR (qPCR). We investigated the evolution of bacterial antibiotic resistance under QAC and antibiotic environmental pressures by long-term continuous culture. In addition, five QACs were selected to investigate the effect of QAC on the efficiency of conjugation transfer. The changes in bacterial cell membrane and production of reactive oxygen species (ROS) were detected by flow cytometry, revealing the mechanism by which QAC affects the spread of antibiotic resistance. Our results showed that the QAC resistance gene was ubiquitous in watersheds and it had significant correlation with intI1 and seven ARGs (r = 0.999, p < 0.01). QACs could increase the resistance of bacteria to multiple antibiotics. Furthermore, all five QACs promoted the conjugation transfer of the RP4 plasmid; the optimal concentration of QACs was about 10-1-10-2 mg/L and their transfer efficiencies were between 1.33 × 10-6 and 8.87 × 10-5. QACs enhanced membrane permeability of bacterial cells and stimulated bacteria to produce ROS, which potentially promoted the transfer of plasmids between bacteria. In conclusion, this study demonstrated that QACs may facilitate the evolution and gene transfer of antibiotic resistance gene among microbiome.
Collapse
Affiliation(s)
- Yue Han
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Yuan Wei
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Qiu Feng
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan Xu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Jian Zhang
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Fan Z, Chen H, Li M, Pan X, Fu W, Ren H, Chen R, Bai F, Jin Y, Cheng Z, Jin S, Wu W. Pseudomonas aeruginosa Polynucleotide Phosphorylase Contributes to Ciprofloxacin Resistance by Regulating PrtR. Front Microbiol 2019; 10:1762. [PMID: 31417536 PMCID: PMC6682600 DOI: 10.3389/fmicb.2019.01762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes various acute and chronic infections. It is intrinsically resistant to a variety of antibiotics. However, production of pyocins during SOS response sensitizes P. aeruginosa to quinolone antibiotics by inducing cell lysis. The polynucleotide phosphorylase (PNPase) is a conserved phosphate-dependent 3′–5′ exonuclease that plays an important role in bacterial response to environmental stresses and pathogenesis by influencing mRNA and small RNA stabilities. Previously, we demonstrated that PNPase controls the type III and type VI secretion systems in P. aeruginosa. In this study, we found that mutation of the PNPase coding gene (pnp) increases the bacterial resistance to ciprofloxacin. Gene expression analyses revealed that the expression of pyocin biosynthesis genes is decreased in the pnp mutant. PrtR, a negative regulator of pyocin biosynthesis genes, is upregulated in the pnp mutant. We further demonstrated that PNPase represses the expression of PrtR on the post-transcriptional level. A fragment containing 43 nucleotides of the 5′ untranslated region was found to be involved in the PNPase mediated regulation of PrtR. Overall, our results reveled a novel layer of regulation on the pyocin biosynthesis by the PNPase in P. aeruginosa.
Collapse
Affiliation(s)
- Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mei Li
- Meishan Product Quality Supervision and Inspection Institute and National Pickle Quality Inspection Center, Meishan, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weixin Fu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
46
|
Long Y, Fu W, Li S, Ren H, Li M, Liu C, Zhang B, Xia Y, Fan Z, Xu C, Liu J, Jin Y, Bai F, Cheng Z, Liu X, Jin S, Wu W. Identification of novel genes that promote persister formation by repressing transcription and cell division in Pseudomonas aeruginosa. J Antimicrob Chemother 2019; 74:2575-2587. [DOI: 10.1093/jac/dkz214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022] Open
Abstract
AbstractObjectivesBacterial persisters are a small subpopulation of cells that are highly tolerant of antibiotics and contribute to chronic and recalcitrant infections. Global gene expression in Pseudomonas aeruginosa persister cells and genes contributing to persister formation remain largely unknown. The objective of this study was to examine the gene expression profiles of the persister cells and those that regained growth in fresh medium, as well as to identify novel genes related to persister formation.MethodsP. aeruginosa persister cells and those that regrew in fresh medium were collected and subjected to RNA sequencing analysis. Genes up-regulated in the persister cells were overexpressed to evaluate their roles in persister formation. The functions of the persister-contributing genes were assessed with pulse–chase assay, affinity chromatography, fluorescence and electron microscopy, as well as a light-scattering assay.ResultsAn operon containing PA2282–PA2287 was up-regulated in the persister cells and down-regulated in the regrowing cells. PA2285 and PA2287 play key roles in persister formation. PA2285 and PA2287 were found to bind to RpoC and FtsZ, which are involved in transcription and cell division, respectively. Pulse–chase assays demonstrated inhibitory effects of PA2285 and PA2287 on the overall transcription. Meanwhile, light-scattering and microscopy assays demonstrated that PA2285 and PA2287 interfere with cell division by inhibiting FtsZ aggregation. PA2285 and PA2287 are conserved in pseudomonads and their homologous genes in Pseudomonas putida contribute to persister formation.ConclusionsPA2285 and PA2287 are novel bifunctional proteins that contribute to persister formation in P. aeruginosa.
Collapse
Affiliation(s)
- Yuqing Long
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Weixin Fu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Huan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Mei Li
- Meishan Product Quality Supervision and Inspection Institute and National Pickle Quality Inspection Center, Meishan, P.R. China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P.R. China
| | - Yushan Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Jianfeng Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P.R. China
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, P.R. China
| |
Collapse
|
47
|
Cho DY, Lim DJ, Mackey C, Weeks CG, Garcia JAP, Skinner D, Zhang S, McCormick J, Woodworth BA. In-vitro evaluation of a ciprofloxacin- and ivacaftor-coated sinus stent against Pseudomonas aeruginosa biofilms. Int Forum Allergy Rhinol 2019; 9:486-492. [PMID: 30702211 PMCID: PMC6491263 DOI: 10.1002/alr.22285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND We recently developed a novel ciprofloxacin-coated sinus stent capable of releasing antibiotics over a sustained period of time. Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator that has synergistic bactericidal activity with ciprofloxacin and also enhances sinus mucociliary clearance. The objective of this study was to optimize and evaluate the efficacy of a ciprofloxacin- and ivacaftor-releasing biodegradable sinus stent (CISS) in vitro. METHODS A CISS was created by coating ciprofloxacin/ivacaftor-embedded nanoparticles with an acrylate and ammonium methacrylate copolymer onto a biodegradable poly-L-lactic acid stent. In-vitro evaluation of the CISS included: (1) assessment of drug stability in nanoparticles by zeta potential, and drug-coating stability within the CISS using scanning electron microscopy (SEM); (2) determination of ciprofloxacin- and ivacaftor-release kinetics; and (3) assessment of anti-Pseudomonas aeruginosa biofilm formation by calculating relative optical density units (RODUs) compared with control stents at 590-nm optical density. RESULTS The presence of drugs and a uniform coating on the stent were confirmed by zeta potential and SEM. Sustained drug release was observed through 21 days without an initial burst release. Anti-biofilm formation was observed after placing the CISS for 3 days onto a preformed 1-day P aeruginosa biofilm. The CISS significantly reduced biofilm mass compared with bare stents and controls (RODUs at 590-nm optical density; CISS, 0.31 ± 0.01; bare stent, 0.78 ± 0.12; control, 1.0 ± 0.00; p = 0.001; n = 3). CONCLUSION The CISS maintains a uniform coating and sustained delivery of drugs providing a marked reduction in P aeruginosa biofilm formation. Further studies evaluating the efficacy of CISS in a preclinical model are planned.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Calvin Mackey
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christopher G. Weeks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jaime A Peña Garcia
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Justin McCormick
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradford A. Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
48
|
Conjugation of LasR Quorum-Sensing Inhibitors with Ciprofloxacin Decreases the Antibiotic Tolerance of P. aeruginosaClinical Strains. J CHEM-NY 2019. [DOI: 10.1155/2019/8143739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosais a Gram-negative bacterium that commonly infects subjects with weakened immune system causing deadly infections above all at pulmonary level. During infection,P. aeruginosaproduces a well-organized bacterial structure, called biofilm, activating the quorum-sensing (QS) signaling, a mechanism of gene regulation. In this work, we synthesized already known QS inhibitors (QSi) designed on the scaffold of the N-(3-oxododecanoyl) homoserine lactone (3O-C12-HSL) QS molecule and conjugated them with ciprofloxacin to inhibitP. aeruginosabiofilm formation and increase the antibiotic susceptibility of clinical strains. We identified, for the first time, a QSi conjugated with ciprofloxacin (ET37), that is able to reduce the formation of biofilm and the onset of tolerant clones inP. aeruginosaclinical strains. This compound could have a wide application in clinical setting. The possibility to affect biofilm formation in chronically infected patients, such as patients affected by cystic fibrosis, and to reduce the onset of ciprofloxacin resistance would improve patient healing and allow to decrease antibiotic drug dosage.
Collapse
|
49
|
Hwang W, Yoon SS. Virulence Characteristics and an Action Mode of Antibiotic Resistance in Multidrug-Resistant Pseudomonas aeruginosa. Sci Rep 2019; 9:487. [PMID: 30679735 PMCID: PMC6345838 DOI: 10.1038/s41598-018-37422-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa displays intrinsic resistance to many antibiotics and known to acquire actively genetic mutations for further resistance. In this study, we attempted to understand genomic and transcriptomic landscapes of P. aeruginosa clinical isolates that are highly resistant to multiple antibiotics. We also aimed to reveal a mode of antibiotic resistance by elucidating transcriptional response of genes conferring antibiotic resistance. To this end, we sequenced the whole genomes and profiled genome-wide RNA transcripts of three different multi-drug resistant (MDR) clinical isolates that are phylogenetically distant from one another. Multi-layered genome comparisons with genomes of antibiotic-susceptible P. aeruginosa strains and 70 other antibiotic-resistance strains revealed both well-characterized conserved gene mutations and distinct distribution of antibiotic-resistant genes (ARGs) among strains. Transcriptions of genes involved in quorum sensing and type VI secretion systems were invariably downregulated in the MDR strains. Virulence-associated phenotypes were further examined and results indicate that our MDR strains are clearly avirulent. Transcriptions of 64 genes, logically selected to be related with antibiotic resistance in MDR strains, were active under normal growth conditions and remained unchanged during antibiotic treatment. These results propose that antibiotic resistance is achieved by a "constitutive" response scheme, where ARGs are actively expressed even in the absence of antibiotic stress, rather than a "reactive" response. Bacterial responses explored at the transcriptomic level in conjunction with their genome repertoires provided novel insights into (i) the virulence-associated phenotypes and (ii) a mode of antibiotic resistance in MDR P. aeruginosa strains.
Collapse
Affiliation(s)
- Wontae Hwang
- Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Sciences, Seoul, Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
50
|
Tognon M, Köhler T, Luscher A, van Delden C. Transcriptional profiling of Pseudomonas aeruginosa and Staphylococcus aureus during in vitro co-culture. BMC Genomics 2019; 20:30. [PMID: 30630428 PMCID: PMC6327441 DOI: 10.1186/s12864-018-5398-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Co-colonization by Pseudomonas aeruginosa and Staphylococcus aureus is frequent in cystic fibrosis patients. Polymicrobial infections involve both detrimental and beneficial interactions between different bacterial species. Such interactions potentially indirectly impact the human host through virulence, antibiosis and immunomodulation. RESULTS Here we explored the responses triggered by the encounter of these two pathogens to identify early processes that are important for survival when facing a potential competitor. Transcriptional profiles of both bacteria were obtained after 3 h co-culture and compared to the respective mono-culture using RNAseq. Global responses in both bacteria included competition for nitrogen sources, amino acids and increased tRNA levels. Both organisms also induced lysogenic mechanisms related to prophage induction (S. aureus) and R- and F- pyocin synthesis (P. aeruginosa), possibly as a response to stress resulting from nutrient limitation or cell damage. Specific responses in S. aureus included increased expression of de novo and salvation pathways for purine and pyrimidine synthesis, a switch to glucose fermentation, and decreased expression of major virulence factors and global regulators. CONCLUSIONS Taken together, transcriptomic data indicate that early responses between P. aeruginosa and S. aureus involve competition for resources and metabolic adaptations, rather than the expression of bacteria- or host-directed virulence factors.
Collapse
Affiliation(s)
- Mikaël Tognon
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland. .,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland.
| | - Alexandre Luscher
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Microbiology and Molecular Medicine, University of Geneva, 1, rue Michel Servet, CH-1211, Genève 4, Switzerland
| |
Collapse
|