1
|
Fauzia KA, Effendi WI, Alfaray RI, Malaty HM, Yamaoka Y, Mifthussurur M. Molecular Mechanisms of Biofilm Formation in Helicobacter pylori. Antibiotics (Basel) 2024; 13:976. [PMID: 39452242 PMCID: PMC11504965 DOI: 10.3390/antibiotics13100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biofilm formation in Helicobacter pylori (H. pylori) helps bacteria survive antibiotic exposure and supports bacterial colonization and persistence in the stomach. Most of the published articles have focused on one aspect of the biofilm. Therefore, we conducted the current study to better understand the mechanism of biofilm formation, how the biofilm contributes to antibiotic resistance, and how the biofilm modifies the medication delivery mechanism. METHODS We conducted a literature review analysis of the published articles on the Helicobacter pylori biofilm between 1998 and 2024 from the PubMed database to retrieve eligible articles. After applying the inclusion and exclusion criteria, two hundred and seventy-three articles were eligible for our study. RESULTS The results showed that biofilm formation starts as adhesion and progresses through micro-colonies, maturation, and dispersion in a planktonic form. Moreover, specific genes modulate each phase of biofilm formation. Few studies have shown that mechanisms, such as quorum sensing and diffusible signal factors, enhance coordination among bacteria when switching from biofilm to planktonic states. Different protein expressions were also observed between planktonic and biofilm strains, and the biofilm architecture was supported by exopolysaccharides, extracellular DNA, and outer membrane vesicles. CONCLUSIONS This infrastructure is responsible for the increased survival of bacteria, especially in harsh environments or in the presence of antibiotics. Therefore, understanding the biofilm formation for H. pylori is crucial. This study illustrates biofilm formation in H. pylori to help improve the treatment of H. pylori infection.
Collapse
Grants
- XXXX Universitas Airlangga
- DK62813 NIH HHS
- 26640114, 221S0002, 16H06279, 15H02657 and 16H05191, 18KK0266, 19H03473, 21H00346, 22H02871, and 23K24133 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- XXXXX Japan Society for the Promotion of Science Institutional Program for Young Researcher Overseas Visits and the Strategic Funds for the Promotion of Science and Technology Agency (JST)
- xxxx Japanese Government (MEXT) scholarship
- xxxx Japan Agency for Medical Research and Development (AMED) [e-ASIA JRP]
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Bogor 16915, Indonesia;
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
| | - Hoda M. Malaty
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Mifthussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
2
|
Ma C, Zhou F, Lu D, Xu S, Luo J, Gan H, Gao D, Yao Z, He W, Kurup PU, Zhu DZ. Quantification and cultivation of Helicobacter pylori (H. pylori) from various urban water environments: A comprehensive analysis of precondition methods and sample characteristics. ENVIRONMENT INTERNATIONAL 2024; 187:108683. [PMID: 38735073 DOI: 10.1016/j.envint.2024.108683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Substantial evidence suggests that all types of water, such as drinking water, wastewater, surface water, and groundwater, can be potential sources of Helicobacter pylori (H. pylori) infection. Thus, it is critical to thoroughly investigate all possible preconditioning methods to enhance the recovery of H. pylori, improve the reproducibility of subsequent detection, and optimize the suitability for various water types and different detection purposes. In this study, we proposed and evaluated five distinct preconditioning methods for treating water samples collected from multiple urban water environments, aiming to maximize the quantitative qPCR readouts and achieve effective selective cultivation. According to the experimental results, when using the qPCR technique to examine WWTP influent, effluent, septic tank, and wetland water samples, the significance of having a preliminary cleaning step becomes more evident as it can profoundly influence qPCR detection results. In contrast, the simple, straightforward membrane filtration method could perform best when isolating and culturing H. pylori from all water samples. Upon examining the cultivation and qPCR results obtained from groundwater samples, the presence of infectious H. pylori (potentially other pathogens) in aquifers must represent a pressing environmental emergency demanding immediate attention. Furthermore, we believe groundwater can be used as a medium to reflect the H. pylori prevalence in a highly populated community due to its straightforward analytical matrix, consistent detection performance, and minimal interferences from human activities, temperature, precipitation, and other environmental fluctuations.
Collapse
Affiliation(s)
- Chen Ma
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Fangyuan Zhou
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Dingnan Lu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - Shengliang Xu
- Ningbo Municipal Engineering Construction Group Co., 315000, China
| | - Jiayue Luo
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huihui Gan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Doudou Gao
- Ningbo Municipal Engineering Construction Group Co., 315000, China
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Weidong He
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Pradeep U Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
3
|
Magdy H, Rady MH, Salama MS, Sayed HAE, Hamza D, Azzam M, Essa EE. Isolation of Multidrug-Resistant Helicobacter pylori from Wild Houseflies Musca domestica with a New Perspective for the Treatment. Vector Borne Zoonotic Dis 2023; 23:63-74. [PMID: 36577051 DOI: 10.1089/vbz.2022.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: High frequency of Helicobacter pylori infection and the unknown mode of transmission prompted us to investigate H. pylori-wild housefly relationship. H. pylori causes chronic gastritis, peptic ulcers, and stomach cancer. H. pylori persists in the gut of the experimentally infected houseflies. The existence of H. pylori strains isolated from wild houseflies, on the other hand, has never been documented. Materials and Methods: In this study, 902 wild houseflies from different sites were identified as Musca domestica, then 60 flies were screened by traditional microbiological techniques and H. pylori-specific 16S rRNA gene. The antibiotic resistance (ART) was investigated phenotypically. Wild housefly gut bacterial isolates were further evaluated genotypically to have 23S rRNA gene mutation related to clarithromycin resistance. To find efficient therapeutic alternatives, the potency of three plant extracts (garlic, ginger, and lemon) and the wasp, Vespa orientalis venom was evaluated against H. pylori. The cytotoxic effect of the crude wasp venom, the most potent extract, against Vero and Colon cancer (Caco2) cell lines was investigated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: All isolates from houseflies were positive. The isolated bacteria have variable resistance to frequently used antibiotics in all isolates. Minimum inhibitory concentration values of 15.625 mg/mL for both ginger and lemon extracts, 7.8125 mg/mL for garlic extract, and 0.0313 mg/mL for wasp venom were recorded. Wasp venom has the most potent antibacterial activity compared with the four antibiotics that are currently used in therapies against H. pylori. Conclusion: We conclude that wild houseflies can play a role in disseminating H. pylori. The housefly gut may be a suitable environment for the horizontal transfer of ART genes among its associated microbiome and H. pylori. Wasp venom proved its potential activity as a new and effective anti-H. pylori drug for both therapeutic and preventative usage.
Collapse
Affiliation(s)
- Hadeer Magdy
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Magda H Rady
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed S Salama
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hayam A E Sayed
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - May Azzam
- Department of Biochemistry, Faculty of Pharmacology, Cairo University, Giza, Egypt
| | - Eman E Essa
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
5
|
Panezai S, Samad A, Naeem M, Ali H, Sadiq MB, Achakzai MS, Kakar Z, Akbar A. Antibacterial Effects of Cinnamon Extract, Clove Oil and Antibiotics against Helicobacter pylori Isolated from Stomach Biopsies. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY 2021; 64. [DOI: 10.1590/1678-4324-2021210089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | - Abdul Samad
- Sardar Bahadur Khan Women`s University, Pakistan
| | | | - Hamida Ali
- Sardar Bahadur Khan Women`s University, Pakistan
| | | | | | | | | |
Collapse
|
6
|
Hortelano I, Moreno Y, Vesga FJ, Ferrús MA. Evaluation of different culture media for detection and quantification of H. pylori in environmental and clinical samples. Int Microbiol 2020; 23:481-487. [PMID: 32607781 DOI: 10.1007/s10123-020-00135-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The objective of the present study was to establish the most suitable culture medium for the isolation of H. pylori from environmental and clinical samples. Ten different culture media were compared and evaluated. Four of them had been previously described and were modified in this study. The rest of the media were designed de novo. Three different matrices, tap water, wastewater, and feces, were inoculated with serial dilutions of H. pylori NCTC 11637 strain at a final concentration of 104 and 103 CFU/ml and the recovery rates were calculated. From inoculated tap water and wastewater samples, H. pylori colonies were recovered from four out of the analyzed culture media. When fecal samples were analyzed, the isolation of the pathogen under study was only possible from two culture media. Different optimal media were observed for each type of sample, even for wastewater and stool samples. Nevertheless, our results indicated that the combination of Dent Agar with polymyxin B sulfate did not inhibit the growth of H. pylori and was highly selective for its recovery, regardless of the sample origin. Thus, we propose the use of this medium as a diagnostic tool for the isolation of H. pylori from environmental and clinical samples, as well as for epidemiological studies.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain
| | - Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera 14, 46022, Valencia, Spain.
| | - Fidson Juarismi Vesga
- Microbiology Department, Science Faculty, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
7
|
Pomaranski EK, Soto E. The Formation, Persistence, and Resistance to Disinfectant of the Erysipelothrix piscisicarius Biofilm. JOURNAL OF AQUATIC ANIMAL HEALTH 2020; 32:44-49. [PMID: 31991024 DOI: 10.1002/aah.10097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Erysipelothrix piscisicarius is an emergent pathogen in fish aquaculture, particularly in the ornamental fish trade. Very little is known on the biology of this pathogen; however, the recurrence of infection and disease outbreaks after removing the fish from a system and disinfecting the tank suggest its environmental persistence. Moreover, biofilm lifestyle in E. piscisicarius has been suspected but not previously shown. The purpose of this study was to investigate the formation of biofilms on an abiotic surface in Erysipelothrix spp. We used hydroxyapatite-coated plastic pegs to demonstrate the attachment, growth, and persistence of E. piscisicarius on abiotic surfaces in both fresh and marine environments and to investigate the susceptibility of this pathogen to different disinfectants that are used in the aquaculture industry. E. piscisicarius formed biofilms that persisted significantly longer than planktonic cells did in both freshwater and saltwater over a period of 120 h (P = 0.004). The biofilms were also more resistant to disinfectants than the planktonic cells were. Hydrogen peroxide was the most effective disinfectant against E. piscisicarius, and it eradicated the biofilms and planktonic cells at the recommended concentrations. In contrast, Virkon and bleach were able to eradicate only the planktonic cells. This information should be taken into consideration when developing biosecurity protocols in aquaculture systems, aquariums, and private collections.
Collapse
Affiliation(s)
- Eric K Pomaranski
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, 2108 Tupper Hall, Davis, California, 95616-5270, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, 2108 Tupper Hall, Davis, California, 95616-5270, USA
| |
Collapse
|
8
|
Abstract
Water is one of the most important substances on earth and without it life cannot exist. However, poor water quality in many parts of the world has increased the number of water-related diseases, making it the leading cause of disease and death globally for both young and old. Waterborne pathogens cause diseases in humans through two major exposure pathways: drinking water and recreational waters. This chapter on waterborne pathogens will be starting with an introduction, followed by descriptions on classical waterborne pathogens; bacteria, viruses, protozoans, and helminths placing emphasis on the World Health Organization guidelines. Further to conventional waterborne pathogens, fresh organisms and new strains from already known pathogens are being identified and that present important additional challenges to both the water and public health sectors. Hence later part of the chapter focuses on the potential waterborne pathogens and will conclude with a summary of the content.
Collapse
Affiliation(s)
- D.N. Magana-Arachchi
- Molecular Microbiology & Human Diseases Unit, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - R.P. Wanigatunge
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
9
|
Hemdan BA, El-Liethy MA, ElMahdy MEI, El-Taweel GE. Metagenomics analysis of bacterial structure communities within natural biofilm. Heliyon 2019; 5:e02271. [PMID: 31485510 PMCID: PMC6716113 DOI: 10.1016/j.heliyon.2019.e02271] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
The bacterial profiles of natural household biofilm have not been widely investigated. The majorities of these bacterial lineages are not cultivable. Thus, this study aims (i) to enumerate some potential bacterial lineages using culture based method within biofilm samples and confirmed using Biolog GEN III and polymerase chain reaction (PCR). (ii) To investigate the bacterial profiles of communities in two biofilm samples using next generation sequencing (NGS). Forty biofilm samples were cultured and colonies of each selected prevailing potential lineages (E. coli, Salmonella entrica, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes) were selected for confirmation. From obtained results, the counts of the tested bacterial lineages in kitchen biofilm samples were greater than those in bathroom samples. Precision of PCR was higher than Biolog GEN III to confirm the bacterial isolates. Using NGS analysis, the results revealed that a total of 110,554 operational taxonomic units (OTUs) were obtained for two biofilm samples, representing kitchen and bathroom biofilm samples. The numbers of phyla in the kitchen biofilm sample (35 OTUs) was higher than that in bathroom sample (18 OTUs). A total of 435 genera were observed in the bathroom biofilm sample compared to only 256 in the kitchen sample. Evidences have shown that the empirical gadgets for biofilm investigation are becoming convenient and affordable. Many distinct bacterial lineages observed in biofilm are one of the most significant issues that threaten human health and lead to disease outbreaks.
Collapse
Affiliation(s)
- Bahaa A Hemdan
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - M E I ElMahdy
- Environmental Virology Lab., Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Gamila E El-Taweel
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
10
|
Colonization of Dental Unit Waterlines by Helicobacter pylori: Risk of Exposure in Dental Practices. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162981. [PMID: 31430972 PMCID: PMC6727081 DOI: 10.3390/ijerph16162981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 01/15/2023]
Abstract
Dental unit waterlines (DUWLs) can be considered one of the possible routes of H. pylori transmission, although its presence in DUWLs has not yet been investigated thoroughly. The present study aimed to discover the prevalence of H. pylori and oral streptococci (S. oralis and S. mutans) in DUWLs to evaluate the risk of exposure to human pathogens in dental practices. We collected the output water from 60 dental chair units (DCUs) in 26 private dentistry settings in Turin, searching for H. pylori and oral streptococci (OS) DNA, with a polymerase chain reaction (PCR) technique. At the same time, dentists completed a questionnaire about their DCUs, their main activities, the presence of anti-retraction devices, their attitudes about disinfection, etc. No dental chair unit tested was contaminated with H. pylori or S. mutans; only one dental chair was contaminated with S. oralis (1.7%). Considering the results, we can state that: (i) the lack of H. pylori DNA in water samples analyzed, suggests that municipal water is presumably treated with a sufficient chlorine level to inactivate DNA over time; (ii) the aspiration of oral fluids is limited by anti-retraction valves fitted distally to hand pieces; (iii) propidium monoazide qPCR (PMA-qPCR) could be a good technique to investigate and monitor potential environmental sources of infections such as DUWLs.
Collapse
|
11
|
Helicobacter pylori: History and facts in Peru. Crit Rev Oncol Hematol 2018; 134:22-30. [PMID: 30771870 DOI: 10.1016/j.critrevonc.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a cosmopolite bacteria and the main responsible for the high burden of gastric cancer in developing countries, such as Peru. In this review, we describe some historical facts in the H. Pylori discovery, the first researches of this bacterium in Peru, as well as its epidemiology, clinical characteristics, diagnosis, treatments, and outcomes. Our literature and review of real-life data suggest that several efforts should be conducted in our country to deal with antibiotic-resistance and lack of adherence to treatment in order to reduce our incidence of gastric cancer.
Collapse
|
12
|
Acosta CP, Codony F, Fittipaldi M, Sierra-Torres CH, Morató J. Monitoring levels of viable Helicobacter pylori in surface water by qPCR in Northeast Spain. JOURNAL OF WATER AND HEALTH 2018; 16:839-845. [PMID: 30285964 DOI: 10.2166/wh.2018.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Helicobacter pylori infection is a risk factor for chronic active gastritis, peptic ulcers, gastric carcinoma and lymphoma. Although the infection may be acquired through different transmission routes, the presence and viability of H. pylori in water sources are not well known. Therefore, the aim of our study was to analyse the viability of H. pylori cells in urban surface waters collected at the Vallparadís public park in Terrassa, Barcelona, Spain. The water samples were analysed by viability quantitative polymerase chain reaction (qPCR) using propidium monoazide and specific primers for the H. pylori vacuolating cytotoxin (vacA gene). Viable H. pylori were found in 91.3% of the samples analysed, with an average concentration of 3.46 ± 1.06 log cell 100 mL-1. Our work proves a quick and simple procedure for evaluating viable H. pylori cells in environmental samples by qPCR. Furthermore, the results provide evidence that urban surface waters may contain considerable levels of viable H. pylori cells, thus indicating they are a potential source of infection, which represents a public health concern.
Collapse
Affiliation(s)
- Claudia Patricia Acosta
- Laboratorio de Genética Humana, Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia and Unidad de Salud Ambiental, Fundación InnovaGen, Popayán, Colombia E-mail:
| | - Francesc Codony
- Laborati de Microbiologia Sanitària i Mediambiental (MSMLab) -Aquasoft, UNESCO Chair in Sustainability, Universitat Politècnica de Catalunya, Edifici Gala, Pg. Ernest Lluch/Rambla Sant Nebridi, Terrassa 08222, Barcelona, Spain; GenIUL R&D Laboratory, Edifici Gala, Pg. Ernest Lluch/Rambla Sant Nebridi, Terrassa, Spain
| | - Mariana Fittipaldi
- Laborati de Microbiologia Sanitària i Mediambiental (MSMLab) -Aquasoft, UNESCO Chair in Sustainability, Universitat Politècnica de Catalunya, Edifici Gala, Pg. Ernest Lluch/Rambla Sant Nebridi, Terrassa 08222, Barcelona, Spain
| | - Carlos Hernán Sierra-Torres
- Laboratorio de Genética Humana, Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia and Unidad de Salud Ambiental, Fundación InnovaGen, Popayán, Colombia E-mail:
| | - Jordi Morató
- Laborati de Microbiologia Sanitària i Mediambiental (MSMLab) -Aquasoft, UNESCO Chair in Sustainability, Universitat Politècnica de Catalunya, Edifici Gala, Pg. Ernest Lluch/Rambla Sant Nebridi, Terrassa 08222, Barcelona, Spain
| |
Collapse
|
13
|
Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis. Microbiol Mol Biol Rev 2018; 82:82/2/e00001-18. [PMID: 29743338 DOI: 10.1128/mmbr.00001-18] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori, which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence.
Collapse
|
14
|
Brauge T, Faille C, Sadovskaya I, Charbit A, Benezech T, Shen Y, Loessner MJ, Bautista JR, Midelet-Bourdin G. The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures. PLoS One 2018; 13:e0190879. [PMID: 29320565 PMCID: PMC5761963 DOI: 10.1371/journal.pone.0190879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/21/2017] [Indexed: 11/18/2022] Open
Abstract
The wall teichoic acid (WTA) is the major carbohydrate found within the extracellular matrix of the Listeria monocytogenes biofilm. We first addressed the frequency of spontaneous mutations in two genes (lmo2549 and lmo2550) responsible for the GlcNAcylation in 93 serotype 1/2a strains that were mainly isolated from seafood industries. We studied the impact of mutations in lmo2549 or lmo2550 genes on biofilm formation by using one mutant carrying a natural mutation inactivating the lmo2550 gene (DSS 1130 BFA2 strain) and two EGD-e mutants that lack respective genes by in-frame deletion of lmo2549 or lmo2550 using splicing-by-overlap-extension PCR, followed by allelic exchange mutagenesis. The lmo2550 gene mutation, occurring in around 50% isolates, caused a decrease in bacterial adhesion to stainless steel compared to wild-type EGD-e strain during the adhesion step. On the other hand, bacterial population weren't significantly different after 24h-biofilm formation. The biofilm architecture was different between the wild-type strain and the two mutants inactivated for lmo2549 or lmo2550 genes respectively with the presence of bacterial micro-colonies for mutants which were not observed in the wild-type EGD-e strain biofilm. These differences might account for the stronger hydrophilic surface exhibited by the mutant cells. Upon a water flow or to a cleaning procedure at a shear stress of 0.16 Pa, the mutant biofilms showed the higher detachment rate compared to wild-type strain. Meanwhile, an increase in the amount of residual viable but non-culturable population on stainless steel was recorded in two mutants. Our data suggests that the GlcNAc residue of WTA played a role in adhesion and biofilm formation of Listeria monocyctogenes.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for food safety, Boulogne sur Mer, France
| | - Christine Faille
- UMR UMET, INRA, CNRS, Université Lille 1, Villeneuve d’Ascq, France
| | - Irina Sadovskaya
- Université du Littoral-Côte d’Opale, Institut Charles Violette EA 7394, USC Anses, Boulogne sur Mer, France
| | | | - Thierry Benezech
- UMR UMET, INRA, CNRS, Université Lille 1, Villeneuve d’Ascq, France
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
15
|
Gong Y, Yuan Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit Rev Microbiol 2018; 44:371-392. [PMID: 29293032 DOI: 10.1080/1040841x.2017.1418285] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori drug resistance presents a significant challenge to the successful eradication of this pathogen. To find strategies to improve the eradication efficacy of H. pylori, it is necessary to clarify the resistance mechanisms involved. The mechanisms of H. pylori drug resistance can be investigated from two angles: the pathogen and the host. A comprehensive understanding of the molecular mechanisms of H. pylori resistance based on both pathogen and host would aid the implementation of precise therapy, or ideally "dual target precise therapy" (bacteria and host-specific target therapy). In recent years, with increased understanding of the mechanisms of H. pylori resistance, the focus of eradication has shifted from disease-specific to patient-specific treatment. The implementation of "precision medicine" has also provided a new perspective on the treatment of infectious diseases. In this article, we systematically review current research on H. pylori drug resistance from the perspective of both the pathogen and the host. We also review therapeutic strategies targeted to pathogen and host factors that are aimed at achieving precise treatment of H. pylori.
Collapse
Affiliation(s)
- Yuehua Gong
- a Tumor Etiology and Screening Department of Cancer Institute and General Surgery , the First Hospital of China Medical University , Shenyang , China.,b Key Laboratory of Cancer Etiology and Prevention (China Medical University) Liaoning Provincial Education Department , Shenyang , China.,c National Clinical Research Center for Digestive Diseases , Xi'an , China
| | - Yuan Yuan
- a Tumor Etiology and Screening Department of Cancer Institute and General Surgery , the First Hospital of China Medical University , Shenyang , China.,b Key Laboratory of Cancer Etiology and Prevention (China Medical University) Liaoning Provincial Education Department , Shenyang , China.,c National Clinical Research Center for Digestive Diseases , Xi'an , China
| |
Collapse
|
16
|
Fernandes RM, Silva H, Oliveira R, Almeida C, Azevedo NF, Vieira MJ. Morphological transition of Helicobacter pylori adapted to water. Future Microbiol 2017; 12:1167-1179. [DOI: 10.2217/fmb-2016-0174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: This study aims to investigate the morphological transition of Helicobacter pylori during adaptation to water. Materials & methods: Different strains were adapted to water. Changes regarding cultivability and cellular morphology were recorded. Expression of 11 genes involved in H. pylori morphological changes was evaluated by real-time PCR. Results: H. pylori presented increased cultivability in water after adaptation. The permanent loss of the spiral shape was observed, but no transition into coccoid form has occurred. Expression levels of genes involved in peptidoglycan assembly of H. pylori 26695 have shown significant changes between adapted and nonadapted strains. Conclusion: Adaption to water favors the culturable phenotype and the morphological transition to the rod shape, into a process that implicates the peptidoglycan turnover.
Collapse
Affiliation(s)
- Ricardo M Fernandes
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Hélder Silva
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Ricardo Oliveira
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Carina Almeida
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
- INIAV, IP – National Institute for Agrarian & Veterinary Research, Rua dos Lagidos, Lugar da Madalena, 4485-655 Vairão, Vila do Conde, Portugal
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Vieira
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| |
Collapse
|
17
|
Attaran B, Falsafi T. Identification of Factors Associated with Biofilm Formation Ability in the Clinical Isolates of Helicobacter pylori. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:58-66. [PMID: 28959353 PMCID: PMC5582254 DOI: 10.15171/ijb.1368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background
A few reports confirm the ability of Helicobacter pylori to form biofilm. However, conclusive data do not exist concerning the factors that favor this ability.
Objectives
Evaluation of the factors associated with the biofilm formation ability of H. pylori including bacterial, physical and chemical, and environmental factors was the research’s aim.
Materials and Methods H. pylori isolates from gastric biopsy specimens of patients infected chronically were screened for biofilm formation ability. Association of bacterial properties such as motility, auto-aggregation, cell hydrophobicity, and extracellular polymeric substances (EPS) with in vitro biofilm formation ability of H. pylori was evaluated. The effects of environmental factors such as growth-medium, temperature, oxygen-tension, pH, β-cyclodextrin, gastric secreted mucins, and sub-inhibitory concentration of amoxicillin were also evaluated.
Results
Ability of clinical H. pylori isolates to form biofilm in was quantitatively compared. The coccoid shape H. pylori cells were observed by scanning electron microscopy, the images were illustrative of the attachment of cells to form microcolony. The levels of hydrophobicity, motility and auto aggregation of two isolates with highest and lowest biofilm formation ability were the same. However, the signifi cant role of mucins (P < 0.05) in elevating the biofilm formation was observed. Other factors influencing biofilm formation were: pH, atmosphere and sub-MIC of antibiotics.
Conclusion
Mucins have a signifi cant role in elevating the biofilm formation, also pH, atmosphere and sub-MIC of antibiotics influence biofilm formation.
Collapse
Affiliation(s)
- Bahareh Attaran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak, Tehran, Iran
| | - Tahereh Falsafi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
18
|
Douterelo I, Jackson M, Solomon C, Boxall J. Spatial and temporal analogies in microbial communities in natural drinking water biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:277-288. [PMID: 28041694 DOI: 10.1016/j.scitotenv.2016.12.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
Biofilms are ubiquitous throughout drinking water distribution systems (DWDS), playing central roles in system performance and delivery of safe clean drinking water. However, little is known about how the interaction of abiotic and biotic factors influence the microbial communities of these biofilms in real systems. Results are presented here from a one-year study using in situ sampling devices installed in two operational systems supplied with different source waters. Independently of the characteristics of the incoming water and marked differences in hydraulic conditions between sites and over time, a core bacterial community was observed in all samples suggesting that internal factors (autogenic) are central in shaping biofilm formation and composition. From this it is apparent that future research and management strategies need to consider the specific microorganisms found to be able to colonise pipe surfaces and form biofilms, such that it might be possible to exclude these and hence protect the supply of safe clean drinking water.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK.
| | - M Jackson
- Wessex Water, Claverton Down Rd, Bath, Somerset BA2 7WW, UK
| | - C Solomon
- Wessex Water, Claverton Down Rd, Bath, Somerset BA2 7WW, UK
| | - J Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
19
|
Ng CG, Loke MF, Goh KL, Vadivelu J, Ho B. Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiol 2016; 62:68-76. [PMID: 27889168 DOI: 10.1016/j.fm.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment.
Collapse
Affiliation(s)
- Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Mun Fai Loke
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Precision Medicine Centre Pte Ltd, Singapore 608783, Singapore.
| |
Collapse
|
20
|
Servetas SL, Carpenter BM, Haley KP, Gilbreath JJ, Gaddy JA, Merrell DS. Characterization of Key Helicobacter pylori Regulators Identifies a Role for ArsRS in Biofilm Formation. J Bacteriol 2016; 198:2536-48. [PMID: 27432830 PMCID: PMC4999924 DOI: 10.1128/jb.00324-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Helicobacter pylori must be able to rapidly respond to fluctuating conditions within the stomach. Despite this need for constant adaptation, H. pylori encodes few regulatory proteins. Of the identified regulators, the ferric uptake regulator (Fur), the nickel response regulator (NikR), and the two-component acid response system (ArsRS) are each paramount to the success of this pathogen. While numerous studies have individually examined these regulatory proteins, little is known about their combined effect. Therefore, we constructed a series of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS. A growth curve analysis revealed minor variation in growth kinetics across the strains; these were most pronounced in the triple mutant and in strains lacking ArsS. Visual analysis showed that strains lacking ArsS formed large aggregates and a biofilm-like matrix at the air-liquid interface. Biofilm quantification using crystal violet assays and visualization via scanning electron microscopy (SEM) showed that all strains lacking ArsS or containing a nonphosphorylatable form of ArsR (ArsR-D52N mutant) formed significantly more biofilm than the wild-type strain. Molecular characterization of biofilm formation showed that strains containing mutations in the ArsRS pathway displayed increased levels of cell aggregation and adherence, both of which are key to biofilm development. Furthermore, SEM analysis revealed prevalent coccoid cells and extracellular matrix formation in the ArsR-D52N, ΔnikR ΔarsS, and Δfur ΔnikR ΔarsS mutant strains, suggesting that these strains may have an exacerbated stress response that further contributes to biofilm formation. Thus, H. pylori ArsRS has a previously unrecognized role in biofilm formation. IMPORTANCE Despite a paucity of regulatory proteins, adaptation is key to the survival of H. pylori within the stomach. While prior studies have focused on individual regulatory proteins, such as Fur, NikR, and ArsRS, few studies have examined the combined effect of these factors. Analysis of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS revealed a previously unrecognized role for the acid-responsive two-component system ArsRS in biofilm formation.
Collapse
Affiliation(s)
- Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kathryn P Haley
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Tennessee Valley Health Care Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Bai X, Xi C, Wu J. Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. JOURNAL OF WATER AND HEALTH 2016; 14:692-698. [PMID: 27441864 DOI: 10.2166/wh.2016.259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Contaminated water may play a key role in the transmission of Helicobacter pylori, resulting in gastrointestinal diseases in humans. The wastewater treatment process is an important barrier to control the transmission of H. pylori. However, the presence and viability of H. pylori in the treatment process is not well known. In this paper, the real colony morphology of H. pylori was confirmed by two types of culture media. The survival of H. pylori through the tertiary wastewater treatment process, especially UV disinfection, and in the receiving Huron River in Ann Arbor, Michigan, was investigated by plates cultivation, regular polymerase chain reaction (PCR) assays and quantitative real-time PCR from DNA. The results demonstrated that H. pylori was not only present, but also viable in all processed wastewater samples in the Ann Arbor wastewater treatment plant (WWTP). H. pylori can be found in a higher concentration in the receiving Huron River. There are many kinds of antibiotic- and UV-resistant bacteria, including H. pylori, in the final effluent of Ann Arbor WWTP.
Collapse
Affiliation(s)
- Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China E-mail:
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Ranjbar R, Khamesipour F, Jonaidi-Jafari N, Rahimi E. Helicobacter pylori in bottled mineral water: genotyping and antimicrobial resistance properties. BMC Microbiol 2016; 16:40. [PMID: 26970903 PMCID: PMC4789264 DOI: 10.1186/s12866-016-0647-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/29/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Up to now, fecal-oral and oral-oral are the most commonly known routes for transmission of H. pylori, therefore, contaminated water can play an important role in transmission of H. pylori to humans. Genotyping using virulence markers of H. pylori is one of the best approaches to study the correlations between H. pylori isolates from different samples. The present research was carried out to study the vacA, cagA, cagE, oipA, iceA and babA2 genotyping and antimicrobial resistance properties of H. pylori isolated from the bottled mineral water samples of Iran. RESULTS Of 450 samples studied, 8 samples (1.77%) were contaminated with H. pylori. Brand C of bottled mineral water had the highest prevalence of H. pylori (3.63%). The bottled mineral water samples of July month had the highest levels of H. pylori-contamination (50%). H. pylori strains had the highest levels of resistance against metronidazole (62.5%), erythromycin (62.5%), clarithromycin (62.5%), amoxicillin (62.5%) and trimethoprim (62.5%). Totally, 12.5% of strains were resistant to more than 6 antibiotics. VvacAs1a (100%), vacAm1a (87.5%), cagA (62.5%), iceA1 (62.5%), oipA (25%), babA2 (25%) and cagE (37.5%) were the most commonly detected genotypes. M1as1a (62.5%), m1as2 (37.5%), m2s2 (37.5%) and S1a/cagA+/IceA2/oipA-/babA2-/cagE- (50%) were the most commonly detected combined genotypes. CONCLUSIONS Contaminated bottled mineral water maybe the sources of virulent and resistant strains H. pylori. Careful monitoring of bottled mineral water production may reduce the risk of H. pylori transmission into the human population.
Collapse
Affiliation(s)
- Reza Ranjbar
- />Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Faham Khamesipour
- />Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Ebrahim Rahimi
- />Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
23
|
Attaran B, Falsafi T, Moghaddam AN. Study of biofilm formation in C57Bl/6J mice by clinical isolates of Helicobacter pylori. Saudi J Gastroenterol 2016; 22:161-168. [PMID: 26997224 PMCID: PMC4817301 DOI: 10.4103/1319-3767.178529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIM Despite the significant number of studies on H. pylori pathogenesis, not much data has been published concerning its ability to form biofilm in the host stomach. This study aims to evaluate the potential of clinical isolates of H. pylori to form biofilm in C57BL/6J mice model. MATERIALS AND METHODS Two strains of H. pylori were selected from a collection of clinical isolates; one (19B), an efficient biofilm producer and the other (4B), with weak biofilm-forming ability. Mice infected through gastric avages were examined after one and two weeks. Colonization was determined by CFU and urease activity; the anti-H. pylori IgA was measured by ELISA, and chronic infections were evaluated by histopathology. Bacterial communities within mucosal sections were studied by immunofluorescence and scanning electron microscopy (SEM). RESULTS Successful infection was obtained by both test strains. Strain 19B with higher ability to form biofilm in vitro also showed a higher colonization rate in the mice stomach one week after infection. Difference (P < 0.05) in IgA titers was observed between the infected mice and the controls as well as between 19B and 4B infected mice, two weeks after the last challenge. Immunofluorescence and SEM results showed tightly colonizing H. pylori in stomach mucosal sections and in squamous and glandular epithelium. CONCLUSION H. pylori is able to form biofilm in the mouse stomach and induce IgA production, reflecting the same potential as in humans. Firm attachment of coccoid form bacteria to host cells suggests the importance of this state in biofilm formation by H. pylori. Occurrence of biofilm in squamous and glandular epithelium of the mouse stomach proposes that H. pylori can all parts of the upper gastrointestinal tract.
Collapse
Affiliation(s)
- Bahareh Attaran
- Department of Microbiology, School of Biology, Alzahra University, Tehran, Iran
| | - Tahereh Falsafi
- Department of Microbiology, School of Biology, Alzahra University, Tehran, Iran
| | | |
Collapse
|
24
|
Santiago P, Moreno Y, Ferrús MA. Identification of Viable Helicobacter pylori in Drinking Water Supplies by Cultural and Molecular Techniques. Helicobacter 2015; 20:252-259. [PMID: 25655472 DOI: 10.1111/hel.12205] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Helicobacter pylori is one of the most common causes of chronic bacterial infection in humans, directly related to peptic ulcer and gastric cancer. It has been suggested that H. pylori can be acquired through different transmission routes, including water. In this study, culture and qPCR were used to detect and identify the presence of H. pylori in drinking water. Furthermore, the combined techniques PMA-qPCR and DVC-FISH were applied for detection of viable cells of H. pylori. RESULTS Among 24 drinking water samples, 16 samples were positive for the presence of H. pylori, but viable cells were only detected in six samples. Characteristic colonies, covered by a mass of bacterial unspecific growth, were observed on selective agar plates from an only sample, after enrichment. The mixed culture was submitted to DVC-FISH and qPCR analysis, followed by sequencing of the amplicons. Molecular techniques confirmed the growth of H. pylori on the agar plate. CONCLUSIONS Our results demonstrate for the first time that H. pylori can survive and be potentially infective in drinking water, showing that water distribution systems could be a potential route for H. pylori transmission.
Collapse
Affiliation(s)
- Paula Santiago
- Biotechnology Department, Polytechnic University of Valencia, 46022, Valencia, Spain
| | - Yolanda Moreno
- Research Institute of Water and Environmental Ingeneering (IIAMA), Polytechnic University of Valencia, 46022, Valencia, Spain
| | - M Antonía Ferrús
- Biotechnology Department, Polytechnic University of Valencia, 46022, Valencia, Spain
| |
Collapse
|
25
|
Ashbolt NJ. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens 2015; 4:390-405. [PMID: 26102291 PMCID: PMC4493481 DOI: 10.3390/pathogens4020390] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens.
Collapse
Affiliation(s)
- Nicholas J Ashbolt
- School of Public Health, University of Alberta, Rm 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada.
| |
Collapse
|
26
|
Saxena G, Bharagava RN, Kaithwas G, Raj A. Microbial indicators, pathogens and methods for their monitoring in water environment. JOURNAL OF WATER AND HEALTH 2015; 13:319-39. [PMID: 26042966 DOI: 10.2166/wh.2014.275] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Water is critical for life, but many people do not have access to clean and safe drinking water and die because of waterborne diseases. The analysis of drinking water for the presence of indicator microorganisms is key to determining microbiological quality and public health safety. However, drinking water-related illness outbreaks are still occurring worldwide. Moreover, different indicator microorganisms are being used in different countries as a tool for the microbiological examination of drinking water. Therefore, it becomes very important to understand the potentials and limitations of indicator microorganisms before implementing the guidelines and regulations designed by various regulatory agencies. This review provides updated information on traditional and alternative indicator microorganisms with merits and demerits in view of their role in managing the waterborne health risks as well as conventional and molecular methods proposed for monitoring of indicator and pathogenic microorganisms in the water environment. Further, the World Health Organization (WHO) water safety plan is emphasized in order to develop the better approaches designed to meet the requirements of safe drinking water supply for all mankind, which is one of the major challenges of the 21st century.
Collapse
Affiliation(s)
- Gaurav Saxena
- Department of Environmental Microbiology (DEM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025 UP, India E-mail:
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology (DEM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025 UP, India E-mail:
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences (DPS), School for Biosciences and Biotechnology (SBBT), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226 025 UP, India
| | - Abhay Raj
- Environmental Microbiology Section, CSIR-Indian Institute of Toxicology Research, Post Box 80, M.G. Marg, Lucknow 226 001 UP, India
| |
Collapse
|
27
|
Mazaheri Assadi M, Chamanrokh P, Whitehouse CA, Huq A. Methods for Detecting the Environmental Coccoid Form of Helicobacter pylori. Front Public Health 2015; 3:147. [PMID: 26075197 PMCID: PMC4446911 DOI: 10.3389/fpubh.2015.00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/08/2015] [Indexed: 12/29/2022] Open
Abstract
Helicobacter pylori is recognized as the most common pathogen to cause gastritis, peptic and duodenal ulcers, and gastric cancer. The organisms are found in two forms: (1) spiral-shaped bacillus and (2) coccoid. H. pylori coccoid form, generally found in the environment, is the transformed form of the normal spiral-shaped bacillus after exposed to water or adverse environmental conditions such as exposure to sub-inhibitory concentrations of antimicrobial agents. The putative infectious capability and the viability of H. pylori under environmental conditions are controversial. This disagreement is partially due to the fact of lack in detecting the coccoid form of H. pylori in the environment. Accurate and effective detection methods of H. pylori will lead to rapid treatment and disinfection, and less human health damages and reduction in health care costs. In this review, we provide a brief introduction to H. pylori environmental coccoid forms, their transmission, and detection methods. We further discuss the use of these detection methods including their accuracy and efficiency.
Collapse
Affiliation(s)
- Mahnaz Mazaheri Assadi
- Environmental Biotechnology Group, Biotechnology Department, Iranian Research Organization for Science and Technology , Tehran , Iran
| | - Parastoo Chamanrokh
- Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| | | | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| |
Collapse
|
28
|
Yonezawa H, Osaki T, Kamiya S. Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:914791. [PMID: 26078970 PMCID: PMC4452508 DOI: 10.1155/2015/914791] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/25/2014] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms are communities of microorganisms attached to a surface. Biofilm formation is critical not only for environmental survival but also for successful infection. Helicobacter pylori is one of the most common causes of bacterial infection in humans. Some studies demonstrated that this microorganism has biofilm forming ability in the environment and on human gastric mucosa epithelium as well as on in vitro abiotic surfaces. In the environment, H. pylori could be embedded in drinking water biofilms through water distribution system in developed and developing countries so that the drinking water may serve as a reservoir for H. pylori infection. In the human stomach, H. pylori forms biofilms on the surface of gastric mucosa, suggesting one possible explanation for eradication therapy failure. Finally, based on the results of in vitro analyses, H. pylori biofilm formation can decrease susceptibility to antibiotics and H. pylori antibiotic resistance mutations are more frequently generated in biofilms than in planktonic cells. These observations indicated that H. pylori biofilm formation may play an important role in preventing and controlling H. pylori infections. Therefore, investigation of H. pylori biofilm formation could be effective in elucidating the detailed mechanisms of infection and colonization by this microorganism.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
29
|
Falkinham JO. Common features of opportunistic premise plumbing pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:4533-45. [PMID: 25918909 PMCID: PMC4454924 DOI: 10.3390/ijerph120504533] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022]
Abstract
Recently it has been estimated that the annual cost of diseases caused by the waterborne pathogens Legionella pneumonia, Mycobacterium avium, and Pseudomonas aeruginosa is $500 million. For the period 2001-2012, the estimated cost of hospital admissions for nontuberculous mycobacterial pulmonary disease, the majority caused by M. avium, was almost $1 billion. These three waterborne opportunistic pathogens are normal inhabitants of drinking water--not contaminants--that share a number of key characteristics that predispose them to survival, persistence, and growth in drinking water distribution systems and premise plumbing. Herein, I list and describe these shared characteristics that include: disinfectant-resistance, biofilm-formation, growth in amoebae, growth at low organic carbon concentrations (oligotrophic), and growth under conditions of stagnation. This review is intended to increase awareness of OPPPs, identify emerging OPPPs, and challenge the drinking water industry to develop novel approaches toward their control.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech., 1405 Perry Street, Blacksburg, VA 24061, USA.
| |
Collapse
|
30
|
Ghosh P, Bodhankar SL. Association of smoking, alcohol and NSAIDs use with expression of cag A and cag T genes of Helicobacter pylori in salivary samples of asymptomatic subjects. Asian Pac J Trop Biomed 2015; 2:479-84. [PMID: 23569954 DOI: 10.1016/s2221-1691(12)60080-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/15/2011] [Accepted: 12/10/2011] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To determine the association of smoking, alcohol and nonsteroidal anti-inflammatory drugs (NSAIDs) use with presence and virulence of Helicobacter pylori (H. pylori) infection in a representative sample of a random adult population of asymptomatic subjects. METHODS Non virulent 16S rRNA and virulent cag A and T genes from salivary samples of 854 asymptomatic subjects were determined using polymerase chain reaction. The presence and absence of virulent and non virulent infection was statistically compared with consumption of smoking, alcohol and NSAIDs. RESULTS The prevalence of infection in male and female subjects was found to be 69.25% and 66.90%, respectively. The prevalence of infection in the population of asymptomatic subjects with respect to consumption of alcohol was as follows: current (31.22%), former (52.20%) and never (43.58%). The prevalence of infection in the population of asymptomatic subjects with respect to smoking of cigarettes was as follows: current (88.80%), former (57.14%) and never (33.33%). The prevalence of infection in the subject population consuming NSAIDs and not consuming NSAIDs frequently was found to be 82.75% and 21.16%, respectively. Virulence in male and female subjects was found to be 60.00% and 50.00%, respectively. The presence of virulent infection in the population of asymptomatic subjects with respect to consumption of alcohol was as follows: current (28.57%), former (40.15%) and never (50.00%). The prevalence of virulent infection in the population of asymptomatic subjects with respect to smoking of cigarettes was as follows: current (79.32%), former (75.00%) and never (50.00%). The prevalence of virulent infection in the subject population consuming NSAIDs and not consuming NSAIDs frequently was found to be 88.23% and 66.66%, respectively. CONCLUSIONS It can be concluded that smoking and NSAIDs consumption are aggravating factors for virulence of H. pylori and alcohol can inhibit H. pylori infection in asymptomatic subjects.
Collapse
Affiliation(s)
- Pinaki Ghosh
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, Maharashtra, 411038, India
| | | |
Collapse
|
31
|
Gião MS, Wilks SA, Keevil CW. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water. Biometals 2015; 28:329-39. [PMID: 25686789 DOI: 10.1007/s10534-015-9835-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 11/30/2022]
Abstract
Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.
Collapse
Affiliation(s)
- M S Gião
- Environmental Healthcare Unit, Centre for Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK,
| | | | | |
Collapse
|
32
|
Environmental risk factors associated with Helicobacter pylori seroprevalence in the United States: a cross-sectional analysis of NHANES data. Epidemiol Infect 2015; 143:2520-31. [DOI: 10.1017/s0950268814003938] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMMARYHelicobacter pylori imparts a considerable burden to public health. Infections are mainly acquired in childhood and can lead to chronic diseases, including gastric ulcers and cancer. The bacterium subsists in water, but the environment's role in transmission remains poorly understood. The nationally representative National Health and Nutrition Examination Survey (NHANES) was examined for environmental risk factors associated with H. pylori seroprevalence. Data from 1999–2000 were examined and weighted to represent the US population. Multivariable logistic regression estimated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for associations with seropositivity. Self-reported general health condition was inversely associated with seropositivity. Of participants aged <20 years, seropositivity was significantly associated with having a well as the source of home tap water (aOR 1·7, 95% CI 1·1–2·6) and living in a more crowded home (aOR 2·3, 95% CI 1·5–3·7). Of adults aged ⩾20 years, seropositivity was not associated with well water or crowded living conditions, but adults in soil-related occupations had significantly higher odds of seropositivity compared to those in non-soil-related occupations (aOR 1·9, 95% CI 1·2–2·9). Exposures to both well water and occupationally related soil increased the effect size of adults' odds of seropositivity compared to non-exposed adults (aOR 2·7, 95% CI 1·3-5·6). Environmental exposures (well-water usage and occupational contact with soil) play a role in H. pylori transmission. A disproportionate burden of infection is associated with poor health and crowded living conditions, but risks vary by age and race/ethnicity. These findings could help inform interventions to reduce the burden of infections in the United States.
Collapse
|
33
|
Gomes IB, Simões M, Simões LC. An overview on the reactors to study drinking water biofilms. WATER RESEARCH 2014; 62:63-87. [PMID: 24937357 DOI: 10.1016/j.watres.2014.05.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
The development of biofilms in drinking water distribution systems (DWDS) can cause pipe degradation, changes in the water organoleptic properties but the main problem is related to the public health. Biofilms are the main responsible for the microbial presence in drinking water (DW) and can be reservoirs for pathogens. Therefore, the understanding of the mechanisms underlying biofilm formation and behavior is of utmost importance in order to create effective control strategies. As the study of biofilms in real DWDS is difficult, several devices have been developed. These devices allow biofilm formation under controlled conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc), chemical (type and amount of nutrients, type of disinfectant and residuals, organic and inorganic particles, ions, etc) and biological (composition of microbial community - type of microorganism and characteristics) parameters, ensuring that the operational conditions are similar as possible to the DWDS conditions in order to achieve results that can be applied to the real scenarios. The devices used in DW biofilm studies can be divided essentially in two groups, those usually applied in situ and the bench top laboratorial reactors. The selection of a device should be obviously in accordance with the aim of the study and its advantages and limitations should be evaluated to obtain reproducible results that can be transposed into the reality of the DWDS. The aim of this review is to provide an overview on the main reactors used in DW biofilm studies, describing their characteristics and applications, taking into account their main advantages and limitations.
Collapse
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - L C Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
34
|
Roi IY, Klimenko NA, Zdorovenko GM, Goncharuk VV. Phylogenetic diversity of aqueous microorganisms separated after the advanced tertiary of tap water. J WATER CHEM TECHNO+ 2014. [DOI: 10.3103/s1063455x14040067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Percival SL, Suleman L. Biofilms and Helicobacter pylori: Dissemination and persistence within the environment and host. World J Gastrointest Pathophysiol 2014; 5:122-132. [PMID: 25133015 PMCID: PMC4133512 DOI: 10.4291/wjgp.v5.i3.122] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/23/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
The presence of viable Helicobacter pylori (H. pylori) in the environment is considered to contribute to the levels of H. pylori found in the human population, which also aids to increase its genetic variability and its environmental adaptability and persistence. H. pylori form biofilms both within the in vitro and in vivo environment. This represents an important attribute that assists the survival of this bacterium within environments that are both hostile and adverse to proliferation. It is the aim of this paper to review the ability of H. pylori to form biofilms in vivo and in vitro and to address the inherent mechanisms considered to significantly enhance its persistence within the host and in external environments. Furthermore, the dissemination of H. pylori in the external environment and within the human body and its impact upon infection control will be discussed.
Collapse
|
36
|
García A, Salas-Jara MJ, Herrera C, González C. Biofilm and Helicobacter pylori: From environment to human host. World J Gastroenterol 2014; 20:5632-5638. [PMID: 24914322 PMCID: PMC4024771 DOI: 10.3748/wjg.v20.i19.5632] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/16/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram negative pathogen that selectively colonizes the human gastric epithelium. Over 50% of the world population is infected with H. pylori reaching up to 90% of infected individuals in developing countries. Nonetheless the increased impact upon public health care, its reservoir and the transmission pathway of the species has not been clearly established yet. Molecular studies allowed the detection of H. pylori in various aquatic environments, even forming biofilm in tap water distribution systems in several countries, suggesting a role of water as a possible reservoir of the pathogen. The persistence of human infection with H. pylori and the resistance of clinical isolates to commonly used antibiotics in eradication therapy have been related to the genetic variability of the species and its ability to develop biofilm, demonstrated both in vivo and in vitro experiments. Thus, during the last years, experimental work with this pathogen has been focused in the search for biofilm inhibitors and biofilm destabilizing agents. However, only two anti- H. pylori biofilm disrupting agents have been successfully used: Curcumin - a natural dye - and N-acetyl cysteine - a mucolytic agent used in respiratory diseases. The main goal of this review was to discuss the evidences available in the literature supporting the ability of H. pylori to form biofilm upon various surfaces in aquatic environments, both in vivo and in vitro. The results published and our own observations suggest that the ability of H. pylori to form biofilm may be important for surviving under stress conditions or in the spread of the infection among humans, mainly through natural water sources and water distribution systems.
Collapse
|
37
|
Gião MS, Keevil CW. Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. MICROBIAL ECOLOGY 2014; 67:603-611. [PMID: 24452996 DOI: 10.1007/s00248-013-0364-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that can be transmitted through contaminated raw food or by ready-to-eat products that have been in contact with contaminated surfaces. Tap water (TW) is used to wash produce, as a processed food constituent and to wash processing surfaces and floors. The main aim of this work was to investigate the formation and survival of L. monocytogenes biofilms on stainless steel (SS) coupons in TW at 4, 22, 30 and 37 °C. For that, coupons with biofilm were visualised in situ while other coupons were scraped to quantify total cells by SYTO 9, cultivable numbers by plating onto brain heart infusion agar and viable numbers by the direct viable count method. Results showed that L. monocytogenes can form biofilms on SS surfaces in TW at any temperature, including at 4 °C. The number of total cells was similar for all the conditions tested while cultivable numbers varied between the level of detection (<8.3 CFU cm(-2)) and 3.5 × 10(5) CFU cm(-2), meaning between 7.0 × 10(4) and 1.1 × 10(7) cells cm(-2) have entered the viable but non-cultivable (VBNC) state. This work clearly demonstrates that L. monocytogenes can form biofilms in TW and that sessile cells can remain viable and cultivable in some conditions for at least the 48 h investigated. On the other hand, VBNC adaptation suggests that the pathogen can remain undetectable using traditional culture recovery techniques, which may give a false indication of processing surface hygiene status, leading to potential cross-contamination of food products.
Collapse
Affiliation(s)
- Maria S Gião
- Environmental Healthcare Unit, Centre for Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton, SO17 1BJ, UK,
| | | |
Collapse
|
38
|
Holman CB, Bachoon DS, Otero E, Ramsubhag A. Detection of Helicobacter pylori in the coastal waters of Georgia, Puerto Rico and Trinidad. MARINE POLLUTION BULLETIN 2014; 79:354-8. [PMID: 24332757 DOI: 10.1016/j.marpolbul.2013.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 05/02/2023]
Abstract
Fecal pollution in the coastal marine environments was assessed at eleven sampling locations along the Georgia coast and Trinidad, and nine sites from Puerto-Rico. Membrane filtration (EPA method 1604 and method 1600) was utilized for Escherichia coli and enterococci enumeration at each location. Quantitative polymerase chain reaction (qPCR) amplification of the 16S ribosomal RNA gene was used to determine the presence of the Helicobacter pylori in marine samples. There was no significant correlation between the levels of E. coli, enterococci and H. pylori in these water samples. H. pylori was detected at four of the 31 locations sampled; Oak Grove Island and Village Creek Landing in Georgia, Maracas river in Trinidad, and Ceiba Creek in Puerto Rico. The study confirms the potential public health risk to humans due to the widespread distribution of H. pylori in subtropical and tropical costal marine waters.
Collapse
Affiliation(s)
- Chelsea B Holman
- Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA 31061-0490, USA
| | - D S Bachoon
- Department of Biological and Environmental Sciences, Georgia College and State University, Campus Box 81, Milledgeville, GA 31061-0490, USA.
| | - Ernesto Otero
- Department of Marine Sciences, University of Puerto Rico, Mayaguez Campus, P.O. Box 9000, Mayaguez 00681, Puerto Rico
| | - Adesh Ramsubhag
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
39
|
Schwering M, Song J, Louie M, Turner RJ, Ceri H. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. BIOFOULING 2013; 29:917-28. [PMID: 23879183 DOI: 10.1080/08927014.2013.816298] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A model biofilm, formed of multiple species from environmental drinking water, including opportunistic pathogens, was created to explore the tolerance of multi-species biofilms to chlorine levels typical of water-distribution systems. All species, when grown planktonically, were killed by concentrations of chlorine within the World Health Organization guidelines (0.2-5.0 mg l(-1)). Higher concentrations (1.6-40-fold) of chlorine were required to eradicate biofilm populations of these strains, ~70% of biofilms tested were not eradicated by 5.0 mg l(-1) chlorine. Pathogenic bacteria within the model multi-species biofilms had an even more substantial increase in chlorine tolerance; on average ~700-1100 mg l(-1) chlorine was required to eliminate pathogens from the biofilm, 50-300-fold higher than for biofilms comprising single species. Confocal laser scanning microscopy of biofilms showed distinct 3D structures and multiple cell morphologies and arrangements. Overall, this study showed a substantial increase in the chlorine tolerance of individual species with co-colonization in a multi-species biofilm that was far beyond that expected as a result of biofilm growth on its own.
Collapse
Affiliation(s)
- Monika Schwering
- Department of Biological Sciences, Biofilm Research Group, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
40
|
Abstract
Over the preceding years and to date, the definitive mode of human infection by Helicobacter pylori has remained largely unknown and has thus gained the interest of researchers around the world. Numerous studies investigated possible sources of transmission of this emerging carcinogenic pathogen that colonizes >50% of humans, in many of which contaminated water is mentioned as a major cause. The infection rate is especially higher in developing countries, where contaminated water, combined with social hardships and poor sanitary conditions, plays a key role. Judging from the growing global population and the changing climate, the rate is expected to rise. Here, we sum up the current views of the water transmission hypothesis, and we discuss its implications.
Collapse
Affiliation(s)
- Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Radwa R Sharaf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt ; Division of Molecular Medicine, Charité Medical School, Berlin, Germany
| |
Collapse
|
41
|
Bahrami AR, Rahimi E, Ghasemian Safaei H. Detection of Helicobacter pylori in city water, dental units' water, and bottled mineral water in Isfahan, Iran. ScientificWorldJournal 2013; 2013:280510. [PMID: 23606812 PMCID: PMC3628665 DOI: 10.1155/2013/280510] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 02/03/2013] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori infection in human is one of the most common infections worldwide. However, the origin and transmission of this bacterium has not been clearly explained. One of the suggested theories is transmission via water. This study was conducted to determine the prevalence rate of H. pylori in tap water, dental units' water, and bottled mineral water in Iran. In the present study, totally 200 water samples were collected in Isfahan province and tested for H. pylori by cultural method and polymerase chain reaction (PCR) by the detection of the ureC (glmM) gene. Using cultural method totally 5 cultures were positive. Two out of 50 tap water samples (4%), 2 out of 35 dental units' water (5.8%) samples, and 1 out of 40 (2.5%) from water cooler in public places were found to be contaminated with H. pylori. H. pylori ureC gene was detected in 14 (7%) of water samples including 5 tap water (10%), 4 dental units' water (11.4%), 1 refrigerated water with filtration, and 4 (10%) water cooler in public places samples. This may be due to the coccoid form of bacteria which is detected by PCR method.
Collapse
Affiliation(s)
- Ahmad Reza Bahrami
- Faculty of Veterinary Medicine, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | - Ebrahim Rahimi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | - Hajieh Ghasemian Safaei
- Department of Microbiology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Molecular characterization of natural biofilms from household taps with different materials: PVC, stainless steel, and cast iron in drinking water distribution system. Appl Microbiol Biotechnol 2012; 97:8393-401. [DOI: 10.1007/s00253-012-4557-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 11/26/2022]
|
43
|
Farivar TN, Pahlevan A, Johari P, Safdarian F, Mehr MA, Najafipour R, Ahmadpour F. Assessment of helicobacter pylori prevalence by scorpion real-time PCR in chronic tonsillitis patients. J Glob Infect Dis 2012; 4:38-42. [PMID: 22529626 PMCID: PMC3326956 DOI: 10.4103/0974-777x.93760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Occasionally, bacteria or viruses enter the tonsils and these organs become overwhelmed by bacterial or viral infection leading to inflammation. Some studies confirmed the presence of Helicobacter pylori in tonsillar specimens of patients suffering from chronic tonsillitis and some others did not. The difference in results in various studies might be due to different laboratory methods. The aim of this study was to investigate the presence of H. pylori Deoxynucleic acid (DNA) in archival tonsillar tissues of patients with chronic tonsillitis by a rapid, sensitive, and specific technique of Scorpion real-time polymerase chain reaction (PCR). Materials and Methods: Scorpion real-time PCR and modified McMullen's staining was performed on 103 archival paraffin-embedded tonsillar samples collected from patients with chronic tonsillitis following tonsillectomy operation. Results: Our findings showed that H Cell and Molecular Research Center. pylori DNA was present in 21.35% of total specimens by using Scorpion real-time PCR. Modified McMullen's staining of paraffin-embedded sections was positive in 19 patients. Out of our 103 samples, 50 samples showed positive a rapid urease test whereas 53 samples demonstrated negative results, 20 produced positive PCR results, and 83 were negative for H. pylori. There was no significant relationship between the presence of H. pylori, sex, age, and place of residence. Conclusion: Although the existence of H. pylori in tonsillar tissue samples of patients with chronic tonsillitis is controversial, however, our results showed that in our studied specimens, a significant number of patients with chronic tonsillitis had H. pylori colonization.
Collapse
Affiliation(s)
- T Naserpour Farivar
- Cell and Molecular Research Center, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | | | | | | | | |
Collapse
|
44
|
Bodhankar SL, Ghosh P. A Cross Sectional Study to Determine Association of the Socio Demographic Risk Factors with Prevalence and Virulence of H. pylori Infection in Salivary Samples of Asymptomatic Subjects by Application of Polymerase Chain Reaction Technique. ACTA ACUST UNITED AC 2012. [DOI: 10.5567/pharmacologia.2012.481.489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Nam S, Kwon S, Kim MJ, Chae JC, Jae Maeng P, Park JG, Lee GC. Selective detection of viable Helicobacter pylori using ethidium monoazide or propidium monoazide in combination with real-time polymerase chain reaction. Microbiol Immunol 2012; 55:841-6. [PMID: 22004535 DOI: 10.1111/j.1348-0421.2011.00388.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Because Helicobacter pylori has a role in the pathogenesis of gastric cancer, chronic gastritis and peptic ulcer disease, detection of its viable form is very important. The objective of this study was to optimize a PCR method using ethidium monoazide (EMA) or propidium monoazide (PMA) for selective detection of viable H. pylori cells in mixed samples of viable and dead bacteria. Before conducting the real-time PCR using SodB primers of H. pylori, EMA or PMA was added to suspensions of viable and/or dead H. pylori cells at concentrations between 1 and 100 μM. PMA at a concentration of 50 μM induced the highest DNA loss in dead cells with little loss of genomic DNA in viable cells. In addition, selective detection of viable cells in the mixtures of viable and dead cells at various ratios was possible with the combined use of PMA and real-time PCR. In contrast, EMA penetrated the membranes of both viable and dead cells and induced degradation of their genomic DNA. The findings of this study suggest that PMA, but not EMA, can be used effectively to differentiate viable H. pylori from its dead form.
Collapse
Affiliation(s)
- Sehee Nam
- Water Analysis and Research Center, K-water, Daejeon 306-711, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Lourenço A, Ferreira A, Veiga N, Machado I, Pereira MO, Azevedo NF. BiofOmics: a Web platform for the systematic and standardized collection of high-throughput biofilm data. PLoS One 2012; 7:e39960. [PMID: 22768184 PMCID: PMC3386978 DOI: 10.1371/journal.pone.0039960] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/30/2012] [Indexed: 12/03/2022] Open
Abstract
Background Consortia of microorganisms, commonly known as biofilms, are attracting much attention from the scientific community due to their impact in human activity. As biofilm research grows to be a data-intensive discipline, the need for suitable bioinformatics approaches becomes compelling to manage and validate individual experiments, and also execute inter-laboratory large-scale comparisons. However, biofilm data is widespread across ad hoc, non-standardized individual files and, thus, data interchange among researchers, or any attempt of cross-laboratory experimentation or analysis, is hardly possible or even attempted. Methodology/Principal Findings This paper presents BiofOmics, the first publicly accessible Web platform specialized in the management and analysis of data derived from biofilm high-throughput studies. The aim is to promote data interchange across laboratories, implementing collaborative experiments, and enable the development of bioinformatics tools in support of the processing and analysis of the increasing volumes of experimental biofilm data that are being generated. BiofOmics’ data deposition facility enforces data structuring and standardization, supported by controlled vocabulary. Researchers are responsible for the description of the experiments, their results and conclusions. BiofOmics’ curators interact with submitters only to enforce data structuring and the use of controlled vocabulary. Then, BiofOmics’ search facility makes publicly available the profile and data associated with a submitted study so that any researcher can profit from these standardization efforts to compare similar studies, generate new hypotheses to be tested or even extend the conditions experimented in the study. Significance BiofOmics’ novelty lies in its support to standardized data deposition, the availability of computerizable data files and the free-of-charge dissemination of biofilm studies across the community. Hopefully, this will open promising research possibilities, namely the comparison of results between different laboratories, the reproducibility of methods within and between laboratories, and the development of guidelines and standardized protocols for biofilm formation operating procedures and analytical methods.
Collapse
Affiliation(s)
- Anália Lourenço
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Andreia Ferreira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno Veiga
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Idalina Machado
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria Olivia Pereira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Nuno F. Azevedo
- LEPAE – Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
47
|
Culture Method and PCR for the Detection of Helicobacter pylori in Drinking Water in Basrah Governorate Iraq. Gastroenterol Res Pract 2012; 2012:245167. [PMID: 22778721 PMCID: PMC3388485 DOI: 10.1155/2012/245167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 04/14/2012] [Accepted: 04/15/2012] [Indexed: 01/23/2023] Open
Abstract
Helicobacter pylori is recognized by the World Health Organization to be the primary cause of peptic ulcers, chronic gastritis, and stomach cancer, though the source of human infection is not well understood. One of the problems in understanding the source of human contamination is the difficulty in isolating the organism from the environment. However, the combination of PCR results with those of culturing of 471 drinking water samples can provide a more accurate picture of H. pylori detection. In this method 78 presumptive H. pylori colonies out of 266 tap water samples were obtained in the preliminary detection on modified Columbia agar (MCUA) slant relying on urease positivity with a rate of 29.3%. However, only 11 out of them were confirmed by Gram staining and biochemical tests reducing the rate to 4.13% whereas only 3 (1.46%) from 205 reverse osmosis (RO) water samples. Furthermore, only 6 (54.5%) out of the 11 isolates from tap water and 1 (33.3%) of the 3 RO isolates were confirmed by 16SrRNA PCR. Thus PCR confirmation reduced the rate to 2.2%. In addition, only 4 (4%) of 100 tap water samples negative for H. pylori by culture method were H. pylori positive by 16SrRNA. Water samples were collected from 24 districts of Basrah Governorate from February–December 2009. The direct recovery of H. pylori from drinking water is both alarming and scientifically exciting in terms of the investigation of its epidemiology.
Collapse
|
48
|
Determination of risk factors and transmission pathways of Helicobacter pylori in asymptomatic subjects in Western India using polymerase chain reaction. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60004-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW. Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol 2011; 11:57. [PMID: 21418578 PMCID: PMC3068934 DOI: 10.1186/1471-2180-11-57] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 03/18/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is well established that Legionella pneumophila is a waterborne pathogen; by contrast, the mode of Helicobacter pylori transmission remains unknown but water seems to play an important role. This work aims to study the influence of five microorganisms isolated from drinking water biofilms on the survival and integration of both of these pathogens into biofilms. RESULTS Firstly, both pathogens were studied for auto- and co-aggregation with the species isolated from drinking water; subsequently the formation of mono and dual-species biofilms by L. pneumophila or H. pylori with the same microorganisms was investigated. Neither auto- nor co-aggregation was observed between the microorganisms tested. For biofilm studies, sessile cells were quantified in terms of total cells by SYTO 9 staining, viable L. pneumophila or H. pylori cells were quantified using 16 S rRNA-specific peptide nucleic acid (PNA) probes and cultivable cells by standard culture techniques. Acidovorax sp. and Sphingomonas sp. appeared to have an antagonistic effect on L. pneumophila cultivability but not on the viability (as assessed by rRNA content using the PNA probe), possibly leading to the formation of viable but noncultivable (VBNC) cells, whereas Mycobacterium chelonae increased the cultivability of this pathogen. The results obtained for H. pylori showed that M. chelonae and Sphingomonas sp. help this pathogen to maintain cultivability for at least 24 hours. CONCLUSIONS It appears that M. chelonae may have an important role in the survival of both pathogens in drinking water. This work also suggests that the presence of some microorganisms can decrease the cultivability of L. pneumophila but not the viability which indicates that the presence of autochthonous microorganisms can lead to misleading results when the safety of water is assessed by cultivable methods alone.
Collapse
Affiliation(s)
- Maria S Gião
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Nuno F Azevedo
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
- LEPAE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sandra A Wilks
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Maria J Vieira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Charles W Keevil
- School of Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
50
|
Sen K, Acosta J, Lye DJ. Effects of Prolonged Chlorine Exposures upon PCR Detection of Helicobacter pylori DNA. Curr Microbiol 2010; 62:727-32. [DOI: 10.1007/s00284-010-9773-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/22/2010] [Indexed: 12/01/2022]
|