1
|
Sanz-Gaitero M, De Maesschalck V, Patel A, Longin H, Van Noort V, Rodriguez-Rubio L, van Ryne M, Danis-Wlodarczyk K, Drulis-Kawa Z, Mesnage S, van Raaij M, Lavigne R. Structural and Biochemical Characterization of a New Phage-Encoded Muramidase, KTN6 Gp46. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:53-62. [PMID: 39119210 PMCID: PMC11304755 DOI: 10.1089/phage.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background Endolysins are phage-encoded lytic enzymes that degrade bacterial peptidoglycan at the end of phage lytic cycles to release new phage particles. These enzymes are being explored as an alternative to small-molecule antibiotics. Methods The crystal structure of KTN6 Gp46 was determined and compared with a ColabFold model. Cleavage specificity was examined using a peptidoglycan digest and reversed-phase high-performance liquid chromatography coupled to mass spectrometry (HPLC/MS). Results The structure of KTN6 Gp46 could be determined at 1.4 Å resolution, and key differences in loops of the putative peptidoglycan binding domain were identified in comparison with its closest known homologue, the endolysin of phage SPN1S. Reversed-phase HPLC/MS analysis of the reaction products following peptidoglycan digestion confirmed the muramidase activity of Gp46, consistent with structural predictions. Conclusion These insights into the structure and function of endolysins further expand the toolbox for endolysin engineering and explore their potential in enzyme-based antibacterial design strategies.
Collapse
Affiliation(s)
- Marta Sanz-Gaitero
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Ankur Patel
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Hannelore Longin
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | - Vera Van Noort
- Laboratory of Computational Systems Biology, KU Leuven, Leuven, Belgium
| | | | | | - Katarzyna Danis-Wlodarczyk
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Stephane Mesnage
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Mark van Raaij
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Vander Elst N. Bacteriophage-derived endolysins as innovative antimicrobials against bovine mastitis-causing streptococci and staphylococci: a state-of-the-art review. Acta Vet Scand 2024; 66:20. [PMID: 38769566 PMCID: PMC11106882 DOI: 10.1186/s13028-024-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.
Collapse
Affiliation(s)
- Niels Vander Elst
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solnavägen 9, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
3
|
Zheng T, Zhang C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb Biotechnol 2024; 17:e14465. [PMID: 38593316 PMCID: PMC11003714 DOI: 10.1111/1751-7915.14465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophage endolysin is a novel antibacterial agent that has attracted much attention in the prevention and control of drug-resistant bacteria due to its unique mechanism of hydrolysing peptidoglycans. Although endolysin exhibits excellent bactericidal effects on Gram-positive bacteria, the presence of the outer membrane of Gram-negative bacteria makes it difficult to lyse them extracellularly, thus limiting their application field. To enhance the extracellular activity of endolysin and facilitate its crossing through the outer membrane of Gram-negative bacteria, researchers have adopted physical, chemical, and molecular methods. This review summarizes the characterization of endolysin targeting Gram-negative bacteria, strategies for endolysin modification, and the challenges and future of engineering endolysin against Gram-negative bacteria in clinical applications, to promote the application of endolysin in the prevention and control of Gram-negative bacteria.
Collapse
Affiliation(s)
- Tianyu Zheng
- Bathurst Future Agri‐Tech InstituteQingdao Agricultural UniversityQingdaoChina
| | - Can Zhang
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
4
|
Roehrig C, Huemer M, Lorgé D, Arn F, Heinrich N, Selvakumar L, Gasser L, Hauswirth P, Chang CC, Schweizer TA, Eichenseher F, Lehmann S, Zinkernagel AS, Schmelcher M. MEndoB, a chimeric lysin featuring a novel domain architecture and superior activity for the treatment of staphylococcal infections. mBio 2024; 15:e0254023. [PMID: 38275913 PMCID: PMC10865858 DOI: 10.1128/mbio.02540-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Bacterial infections are a growing global healthcare concern, as an estimated annual 4.95 million deaths are associated with antimicrobial resistance (AMR). Methicillin-resistant Staphylococcus aureus is one of the deadliest pathogens and a high-priority pathogen according to the World Health Organization. Peptidoglycan hydrolases (PGHs) of phage origin have been postulated as a new class of antimicrobials for the treatment of bacterial infections, with a novel mechanism of action and no known resistances. The modular architecture of PGHs permits the creation of chimeric PGH libraries. In this study, the chimeric enzyme MEndoB was selected from a library of staphylococcal PGHs based on its rapid and sustained activity against staphylococci in human serum. The benefit of the presented screening approach was illustrated by the superiority of MEndoB in a head-to-head comparison with other PGHs intended for use against staphylococcal bacteremia. MEndoB displayed synergy with antibiotics and rapid killing in human whole blood with complete inhibition of re-growth over 24 h at low doses. Successful treatment of S. aureus-infected zebrafish larvae with MEndoB provided evidence for its in vivo effectiveness. This was further confirmed in a lethal systemic mouse infection model in which MEndoB significantly reduced S. aureus loads and tumor necrosis factor alpha levels in blood in a dose-dependent manner, which led to increased survival of the animals. Thus, the thorough lead candidate selection of MEndoB resulted in an outstanding second-generation PGH with in vitro, ex vivo, and in vivo results supporting further development.IMPORTANCEOne of the most pressing challenges of our era is the rising occurrence of bacteria that are resistant to antibiotics. Staphylococci are prominent pathogens in humans, which have developed multiple strategies to evade the effects of antibiotics. Infections caused by these bacteria have resulted in a high burden on the health care system and a significant loss of lives. In this study, we have successfully engineered lytic enzymes that exhibit an extraordinary ability to eradicate staphylococci. Our findings substantiate the importance of meticulous lead candidate selection to identify therapeutically promising peptidoglycan hydrolases with unprecedented activity. Hence, they offer a promising new avenue for treating staphylococcal infections.
Collapse
Affiliation(s)
- Christian Roehrig
- Micreos Pharmaceuticals AG, Baar, Zug, Switzerland
- Micreos GmbH, Wädenswil, Zurich, Switzerland
| | | | | | | | | | | | - Lynn Gasser
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Patrick Hauswirth
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Steffi Lehmann
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Wädenswil, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Abbasi P, Fahimi H, Khaleghi S. Novel Chimeric Endolysin Conjugated Chitosan Nanocomplex as a Potential Inhibitor Against Gram-Positive and Gram-Negative Bacteria. Appl Biochem Biotechnol 2024; 196:478-490. [PMID: 37140784 DOI: 10.1007/s12010-023-04484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Resistance to antimicrobial agents has created potential problems in finding efficient treatments against bacteria. Thus, using new therapeutics, such as recombinant chimeric endolysin, would be more beneficial for eliminating resistant bacteria. The treatment ability of these therapeutics can be further improved if they are used with biocompatible nanoparticles like chitosan (CS). In this work, covalently conjugated chimeric endolysin to CS nanoparticles (C) and non-covalently entrapped endolysin in CS nanoparticles (NC) were effectively developed and, consequently, qualified and quantified using analytical devices, including FT-IR, dynamic light scattering, and TEM. Eighty to 150 nm and 100 nm to 200 nm in diameter were measured for CS-endolysin (NC) and CS-endolysin (C) using a TEM, respectively. The lytic activity, synergistic interaction, and biofilm reduction potency of nano-complexes were investigated on Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Pseudomonas aeruginosa (P. aeruginosa) strains. The outputs revealed a good lytic activity of nano-complexes after 24 h and 48 h of treatment, especially in P. aeruginosa (approximately 40% cell viability after 48 h of treatment with 8 ng/mL), and potential biofilm reduction performance was attained in E. coli strains (about 70% reduction after treatment with 8 ng/mL). The synergistic interaction between nano-complexes and vancomycin was exhibited in E. coli, P. aeruginosa, and S. aureus strains at 8 ng/mL concentrations, while the synergistic effects of pure endolysin and vancomycin were not remarkable in E. coli strains. These nano-complexes would be more beneficial in suppressing the bacteria with a high level of antibiotic resistance.
Collapse
Affiliation(s)
- Paria Abbasi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran.
| |
Collapse
|
6
|
Keller AP, Huemer M, Chang CC, Mairpady Shambat S, Bjurnemark C, Oberortner N, Santschi MV, Zinsli LV, Röhrig C, Sobieraj AM, Shen Y, Eichenseher F, Zinkernagel AS, Loessner MJ, Schmelcher M. Systemic application of bone-targeting peptidoglycan hydrolases as a novel treatment approach for staphylococcal bone infection. mBio 2023; 14:e0183023. [PMID: 37768041 PMCID: PMC10653945 DOI: 10.1128/mbio.01830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE The rising prevalence of antimicrobial resistance in S. aureus has rendered treatment of staphylococcal infections increasingly difficult, making the discovery of alternative treatment options a high priority. Peptidoglycan hydrolases, a diverse group of bacteriolytic enzymes, show high promise as such alternatives due to their rapid and specific lysis of bacterial cells, independent of antibiotic resistance profiles. However, using these enzymes for the systemic treatment of local infections, such as osteomyelitis foci, needs improvement, as the therapeutic distributes throughout the whole host, resulting in low concentrations at the actual infection site. In addition, the occurrence of intracellularly persisting bacteria can lead to relapsing infections. Here, we describe an approach using tissue-targeting to increase the local concentration of therapeutic enzymes in the infected bone. The enzymes were modified with a short targeting moiety that mediated accumulation of the therapeutic in osteoblasts and additionally enables targeting of intracellularly surviving bacteria.
Collapse
Affiliation(s)
- Anja P. Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Nicole Oberortner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anna M. Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Interrogation of the contribution of (endo)lysin domains to tune their bacteriolytic efficiency provides a novel clue to design superior antibacterials. Int J Biol Macromol 2022; 223:1042-1053. [PMID: 36370862 DOI: 10.1016/j.ijbiomac.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Bacteriophage-derived endolysins and bacterial autolysins (hereinafter lysins) represent a completely new class of efficient antibacterials. They prevent the development of bacterial resistance and help protect commensal microbiota, producing cell wall lysis. Here we have investigated whether the acquisition of enzymatic active domains (EADs) and cell wall binding domains (CWBDs) of balancing efficiencies could be a way of tuning natural lysin activity. The concept was applied to produce a chimeric lysin of superior antibacterial capacity using the endolysin Skl and the major pneumococcal autolysin LytA. Combination of the Skl EAD and the cell wall choline-binding domain (CBD) of LytA in the chimera QSLA increased the bacterial killing by 2 logs or more compared to parental enzymes at an equal concentration and extended the substrate range to resistant and emergent pneumococci and other pathogens of the mitis group. Contrarily, QLAS, containing LytA EAD and Skl CBD, was inactive against all tested strains, although domain structures were preserved and hydrolysis of purified cell walls maintained in both chimeras. As a whole, our study provides a novel clue to design superior lysins to fight multidrug-resistant pathogens based on domain selection, and a powerful in-vivo active lysin (QSLA) with promising therapeutic perspectives.
Collapse
|
8
|
Keller AP, Ly S, Daetwyler S, Eichenseher F, Loessner MJ, Schmelcher M. Chimeric Peptidoglycan Hydrolases Kill Staphylococcal Mastitis Isolates in Raw Milk and within Bovine Mammary Gland Epithelial Cells. Viruses 2022; 14:v14122801. [PMID: 36560804 PMCID: PMC9781970 DOI: 10.3390/v14122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a major causative agent of bovine mastitis, a disease considered one of the most economically devastating in the dairy sector. Considering the increasing prevalence of antibiotic-resistant strains, novel therapeutic approaches efficiently targeting extra- and intracellular bacteria and featuring high activity in the presence of raw milk components are needed. Here, we have screened a library of eighty peptidoglycan hydrolases (PGHs) for high activity against S. aureus in raw bovine milk, twelve of which were selected for further characterization and comparison in time-kill assays. The bacteriocins lysostaphin and ALE-1, and the chimeric PGH M23LST(L)_SH3b2638 reduced bacterial numbers in raw milk to the detection limit within 10 min. Three CHAP-based PGHs (CHAPGH15_SH3bAle1, CHAPK_SH3bLST_H, CHAPH5_LST_H) showed gradually improving activity with increasing dilution of the raw milk. Furthermore, we demonstrated synergistic activity of CHAPGH15_SH3bAle1 and LST when used in combination. Finally, modification of four PGHs (LST, M23LST(L)_SH3b2638, CHAPK_SH3bLST, CHAPGH15_SH3bAle1) with the cell-penetrating peptide TAT significantly enhanced the eradication of intracellular S. aureus in bovine mammary alveolar cells compared to the unmodified parentals in a concentration-dependent manner.
Collapse
|
9
|
Influence of NaCl and pH on lysostaphin catalytic activity, cell binding, and bacteriolytic activity. Appl Microbiol Biotechnol 2022; 106:6519-6534. [DOI: 10.1007/s00253-022-12173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
10
|
Eichenseher F, Herpers BL, Badoux P, Leyva-Castillo JM, Geha RS, van der Zwart M, McKellar J, Janssen F, de Rooij B, Selvakumar L, Röhrig C, Frieling J, Offerhaus M, Loessner MJ, Schmelcher M. Linker-Improved Chimeric Endolysin Selectively Kills Staphylococcus aureus In Vitro, on Reconstituted Human Epidermis, and in a Murine Model of Skin Infection. Antimicrob Agents Chemother 2022; 66:e0227321. [PMID: 35416713 PMCID: PMC9112974 DOI: 10.1128/aac.02273-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus causes a broad spectrum of diseases in humans and animals. It is frequently associated with inflammatory skin disorders such as atopic dermatitis, where it aggravates symptoms. Treatment of S. aureus-associated skin infections with antibiotics is discouraged due to their broad-range deleterious effect on healthy skin microbiota and their ability to promote the development of resistance. Thus, novel S. aureus-specific antibacterial agents are desirable. We constructed two chimeric cell wall-lytic enzymes, Staphefekt SA.100 and XZ.700, which are composed of functional domains from the bacteriophage endolysin Ply2638 and the bacteriocin lysostaphin. Both enzymes specifically killed S. aureus and were inactive against commensal skin bacteria such as Staphylococcus epidermidis, with XZ.700 proving more active than SA.100 in multiple in vitro activity assays. When surface-attached mixed staphylococcal cultures were exposed to XZ.700 in a simplified microbiome model, the enzyme selectively removed S. aureus and retained S. epidermidis. Furthermore, XZ.700 did not induce resistance in S. aureus during repeated rounds of exposure to sublethal concentrations. Finally, we demonstrated that XZ.700 formulated as a cream is effective at killing S. aureus on reconstituted human epidermis and that an XZ.700-containing gel significantly reduces bacterial numbers compared to an untreated control in a mouse model of S. aureus-induced skin infection.
Collapse
Affiliation(s)
- Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| | - Bjorn L. Herpers
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | - Paul Badoux
- Regional Public Health Laboratory Kennemerland, Haarlem, The Netherlands
| | | | - Raif S. Geha
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ferd Janssen
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | - Bob de Rooij
- Micreos Human Health B.V., Bilthoven, The Netherlands
| | | | | | | | | | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Micreos GmbH, Wädenswil, Switzerland
| |
Collapse
|
11
|
An Enzybiotic Regimen for the Treatment of Methicillin-Resistant Staphylococcus aureus Orthopaedic Device-Related Infection. Antibiotics (Basel) 2021; 10:antibiotics10101186. [PMID: 34680767 PMCID: PMC8533017 DOI: 10.3390/antibiotics10101186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Orthopaedic device-related infection (ODRI) presents a significant challenge to the field of orthopaedic and trauma surgery. Despite extensive treatment involving surgical debridement and prolonged antibiotic therapy, outcomes remain poor. This is largely due to the unique abilities of Staphylococcus aureus, the most common causative agent of ODRI, to establish and protect itself within the host by forming biofilms on implanted devices and staphylococcal abscess communities (SACs). There is a need for novel antimicrobials that can readily target such features. Enzybiotics are a class of antimicrobial enzymes derived from bacteria and bacteriophages, which function by enzymatically degrading bacterial polymers essential to bacterial survival or biofilm formation. Here, we apply an enzybiotic-based combination regimen to a set of in vitro models as well as in a murine ODRI model to evaluate their usefulness in eradicating established S. aureus infection, compared to classical antibiotics. We show that two chimeric endolysins previously selected for their functional efficacy in human serum in combination with a polysaccharide depolymerase reduce bacterial CFU numbers 10,000-fold in a peg model and in an implant model of biofilm. The enzyme combination also completely eradicates S. aureus in a SAC in vitro model where classical antibiotics are ineffective. In an in vivo ODRI model in mice, the antibiofilm effects of this enzyme regimen are further enhanced when combined with a classical gentamicin/vancomycin treatment. In a mouse model of methicillin-resistant S. aureus (MRSA) ODRI following a fracture repair, a combined local enzybiotic/antibiotic treatment regimen showed a significant CFU reduction in the device and the surrounding soft tissue, as well as significant prevention of weight loss. These outcomes were superior to treatment with antibiotics alone. Overall, this study demonstrates that the addition of enzybiotics, which are distinguished by their extremely rapid killing efficacy and antibiofilm activities, can enhance the treatment of severe MRSA ODRI.
Collapse
|
12
|
Lee C, Kim J, Son B, Ryu S. Development of Advanced Chimeric Endolysin to Control Multidrug-Resistant Staphylococcus aureus through Domain Shuffling. ACS Infect Dis 2021; 7:2081-2092. [PMID: 34047546 DOI: 10.1021/acsinfecdis.0c00812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The increase in the prevalence of multidrug-resistant (MDR) Staphylococcus aureus with strong biofilm-forming capacity poses a serious public health concern. Endolysins derived from bacteriophages are a promising solution for antibiotic resistance problems. However, some natural staphylococcal endolysins have several shortcomings, such as low solubility and high sequence homology among domains. To overcome these limitations, we constructed a hybrid endolysin library by swapping an enzymatically active domain (EAD) and a cell wall binding domain (CBD) of 12 natural staphylococcal endolysins. We found a novel chimeric endolysin, ClyC, which showed enhanced lytic activity against S. aureus compared to its parental endolysin forms. ClyC also exhibited strong antibacterial activity against S. aureus in various biomatrices, such as milk and blood. Moreover, the treatment of chimeric endolysin effectively eradicated biofilms of multidrug-resistant bacteria, including methicillin-resistant S. aureus (MRSA), S. epidermidis (MRSE), and S. aureus clinical isolates. In an in vivo mouse infection model, ClyC showed effective protection capability against methicillin-resistant Staphylococcus aureus (MRSA) without any toxic effects. Taken together, our data suggest that the chimeric endolysin ClyC can be considered a potential antibacterial agent against multidrug-resistant S. aureus and may have clinical relevance.
Collapse
Affiliation(s)
- Chanyoung Lee
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoo Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Shemyakin IG, Firstova VV, Fursova NK, Abaev IV, Filippovich SY, Ignatov SG, Dyatlov IA. Next-Generation Antibiotics, Bacteriophage Endolysins, and Nanomaterials for Combating Pathogens. BIOCHEMISTRY (MOSCOW) 2021; 85:1374-1388. [PMID: 33280580 DOI: 10.1134/s0006297920110085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents various strategies to fight causative agents of infectious diseases. Species-specific programmable RNA-containing antibiotics open up new possibilities for creating next-generation of personalized drugs based on microbiome editing and can serve as a new tool for selective elimination of pathogenic bacterial species while keeping intact the rest of microbiota. Another promising approach in combating bacterial infections is genome editing using the CRISPR-Cas systems. Expanding knowledge on the molecular mechanisms of innate immunity has been actively used for developing new antimicrobials. However, obvious risks of using antibiotic adjuvants aimed at activation of the host immune system include development of the autoimmune response with subsequent organ damage. To avoid these risks, it is essential to elucidate action mechanisms of the specific ligands and signal molecules used as components of the hybrid antibiotics. Bacteriophage endolysins are also considered as effective antimicrobials against antibiotic-resistant bacteria, metabolically inactive persisters, and microbial biofilms. Despite significant advances in the design of implants with antibacterial properties, the problem of postoperative infections still remains. Different nanomodifications of the implant surface have been designed to reduce bacterial contamination. Here, we review bactericidal, fungicidal, and immunomodulating properties of compounds used for the implant surface nanomodifications, such as silver, boron nitride nanomaterials, nanofibers, and nanogalvanic materials.
Collapse
Affiliation(s)
- I G Shemyakin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - V V Firstova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | - N K Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I V Abaev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - S Yu Filippovich
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - S G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| | - I A Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia
| |
Collapse
|
14
|
Staphylococcus aureus Specific Electrospun Wound Dressings: Influence of Immobilization Technique on Antibacterial Efficiency of Novel Enzybiotic. Pharmaceutics 2021; 13:pharmaceutics13050711. [PMID: 34068117 PMCID: PMC8152744 DOI: 10.3390/pharmaceutics13050711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
The spread of antimicrobial resistance requires the development of novel strategies to combat superbugs. Bacteriolytic enzymes (enzybiotics) that selectively eliminate pathogenic bacteria, including resistant strains and biofilms, are attractive alternatives to antibiotics, also as a component of a new generation of antimicrobial wound dressings. AuresinePlus is a novel, engineered enzybiotic effective against Staphylococcus aureus-one of the most common pathogenic bacteria, found in infected wounds with a very high prevalence of antibiotic resistance. We took advantage of its potent lytic activity, selectivity, and safety to prepare a set of biodegradable PLGA/chitosan fibers generated by electrospinning. Our aim was to produce antimicrobial nonwovens to deliver enzybiotics directly to the infected wound and better control its release and activity. Three different methods of enzyme immobilization were tested: physical adsorption on the previously hydrolyzed surface, and covalent bonding formation using N-hydroxysuccinimide/N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide (NHS/EDC) or glutaraldehyde (GA). The supramolecular structure and functional properties analysis revealed that the selected methods resulted in significant development of nanofibers surface topography resulting in an efficient enzybiotic attachment. Both physically adsorbed and covalently bound enzymes (by NHS/EDC method) exhibited prominent antibacterial activity. Here, we present the extensive comparison between methods for the effective attachment of the enzybiotic to the electrospun nonwovens to generate biomaterials effective against antibiotic-resistant strains. Our intention was to present a comprehensive proof-of-concept study for future antimicrobial wound dressing development.
Collapse
|
15
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
16
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
17
|
Son B, Kong M, Lee Y, Ryu S. Development of a Novel Chimeric Endolysin, Lys109 With Enhanced Lytic Activity Against Staphylococcus aureus. Front Microbiol 2021; 11:615887. [PMID: 33519773 PMCID: PMC7843465 DOI: 10.3389/fmicb.2020.615887] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/16/2020] [Indexed: 01/21/2023] Open
Abstract
As the incidence of antibiotic-resistant bacteria has become increased, phage endolysins are believed as one of the promising alternatives to antibiotics. However, the discovery of potent endolysin is still challenging because it is labor intensive and difficult to obtain a soluble form with high lytic activity. In this respect, the modular structures of Gram-positive endolysins can provide an opportunity to develop novel endolysins by domain rearrangement. In this study, a random domain swapping library of four different endolysins from phages infecting Staphylococcus aureus was constructed and screened to obtain engineered endolysins. The novel chimeric endolysin, Lys109 was selected and characterized for its staphylolytic activity. Lys109 exhibited greater bacterial cell lytic activity than its parental endolysins against staphylococcal planktonic cells and biofilms, showing highly improved activity in eliminating S. aureus from milk and on the surface of stainless steel. These results demonstrate that a novel chimeric endolysin with higher activity and solubility can be developed by random domain swapping and that this chimeric endolysin has a great potential as an antimicrobial agent.
Collapse
Affiliation(s)
- Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Minsuk Kong
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, South Korea
| | - Yoona Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Schmelcher M, Loessner MJ. Bacteriophage endolysins - extending their application to tissues and the bloodstream. Curr Opin Biotechnol 2020; 68:51-59. [PMID: 33126104 DOI: 10.1016/j.copbio.2020.09.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The rapid emergence of antibiotic-resistant bacteria and the lack of novel antibacterial agents pose a serious threat for patients and healthcare systems. Bacteriophage-encoded peptidoglycan hydrolases (endolysins) represent a promising new class of antimicrobials. Over the past two decades, research on these enzymes has evolved from basic in vitro characterization to sophisticated protein engineering approaches, including advanced preclinical and clinical testing. In recent years, increasingly specific animal models have shown efficacy of endolysins against bacterial infections of various different organs and tissues of the body. Despite these advances, some challenges with regard to systemic application of endolysins remain to be addressed. These include immunogenicity, circulation half-life, and cell and tissue-specific targeting and penetration properties.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Engineering of Long-Circulating Peptidoglycan Hydrolases Enables Efficient Treatment of Systemic Staphylococcus aureus Infection. mBio 2020; 11:mBio.01781-20. [PMID: 32963004 PMCID: PMC7512550 DOI: 10.1128/mbio.01781-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant S. aureus infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against S. aureus and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity in vivo and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against S. aureus in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant S. aureus strains, as determined by ex vivo testing in human blood. The top candidate, termed ABD_M23, was tested in vivo to treat S. aureus-induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections.IMPORTANCE Life-threatening infections with Staphylococcus aureus are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against S. aureus-induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.
Collapse
|
20
|
De Maesschalck V, Gutiérrez D, Paeshuyse J, Lavigne R, Briers Y. Advanced engineering of third-generation lysins and formulation strategies for clinical applications. Crit Rev Microbiol 2020; 46:548-564. [PMID: 32886565 DOI: 10.1080/1040841x.2020.1809346] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the possible solutions for the current antibiotic resistance crisis may be found in (often bacteriophage-derived) peptidoglycan hydrolases. The first clinical trials of these natural enzymes, coined here as first-generation lysins, are currently ongoing. Moving beyond natural endolysins with protein engineering established the second generation of lysins. In second-generation lysins, the focus lies on improving antibacterial and biochemical properties such as antimicrobial activity and stability, as well as expanding their activities towards Gram-negative pathogens. However, solutions to particular key challenges regarding clinical applications are only beginning to emerge in the third generation of lysins, in which protein and biochemical engineering efforts focus on improving properties relevant under clinical conditions. In addition, increasingly advanced formulation strategies are developed to increase the bioavailability, antibacterial activity, and half-life, and to reduce pro-inflammatory responses. This review focuses on third-generation and advanced formulation strategies that are developed to treat infections, ranging from topical to systemic applications. Together, these efforts may fully unlock the potential of lysin therapy and will propel it as a true antibiotic alternative or supplement.
Collapse
Affiliation(s)
- Vincent De Maesschalck
- Department of Biosystems, KU Leuven, Leuven, Belgium.,Department of Biotechnology, Ghent University, Gent, Belgium
| | - Diana Gutiérrez
- Department of Biotechnology, Ghent University, Gent, Belgium
| | - Jan Paeshuyse
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Yves Briers
- Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
21
|
Gerstmans H, Grimon D, Gutiérrez D, Lood C, Rodríguez A, van Noort V, Lammertyn J, Lavigne R, Briers Y. A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins. SCIENCE ADVANCES 2020; 6:eaaz1136. [PMID: 32537492 PMCID: PMC7269649 DOI: 10.1126/sciadv.aaz1136] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Health care authorities are calling for new antibacterial therapies to cope with the global emergence of antibiotic-resistant bacteria. Bacteriophage-encoded lysins are a unique class of antibacterials with promising (pre)clinical progress. Custom engineering of lysins allows for the creation of variants against potentially any bacterial pathogen. We here present a high-throughput hit-to-lead development platform for engineered lysins. The platform is driven by VersaTile, a new DNA assembly method for the rapid construction of combinatorial libraries of engineered lysins. We constructed approximately 10,000 lysin variants. Using an iterative screening procedure, we identified a lead variant with high antibacterial activity against Acinetobacter baumannii in human serum and an ex vivo pig burn wound model. This generic platform could offer new opportunities to populate the preclinical pipeline with engineered lysins for diverse (therapeutic) applications.
Collapse
Affiliation(s)
- H. Gerstmans
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - D. Grimon
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - D. Gutiérrez
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - C. Lood
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - A. Rodríguez
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain
| | - V. van Noort
- Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 Leiden, Netherlands
| | - J. Lammertyn
- Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - R. Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Y. Briers
- Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| |
Collapse
|
22
|
Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, Sobieraj AM, Zinsli LV, Mairpady Shambat S, Leimer N, Keller AP, Eichenseher F, Shen Y, Korbsrisate S, Zinkernagel AS, Loessner MJ, Schmelcher M. Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus. mBio 2020; 11:e00209-20. [PMID: 32291298 PMCID: PMC7157818 DOI: 10.1128/mbio.00209-20] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureusIMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.
Collapse
Affiliation(s)
- Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominique Lorgé
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Luterbacher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Anna M Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadja Leimer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja P Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
García-Cano I, Rocha-Mendoza D, Ortega-Anaya J, Wang K, Kosmerl E, Jiménez-Flores R. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol 2019; 103:5243-5257. [PMID: 31030287 PMCID: PMC6570704 DOI: 10.1007/s00253-019-09844-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/21/2023]
Abstract
Regular consumption of fermented dairy products helps maintain a healthy microbiota and prevent gut dysbiosis-linked diseases. The lactic acid bacteria (LAB) present in food enhance the digestibility of proteins, moderate the release of fatty acids, and support human health through inhabiting the gastrointestinal tract. These desirable properties of LAB are attributed, in part, to their metabolic processes involving enzymes such as lipases, proteases, and antibacterial proteins. The LAB strains presenting higher enzymatic activities may offer improved functionality for applications in foods. The first aim of this work was to isolate and identify LAB from diverse dairy products and select those with enhanced enzymatic activities. Secondly, this work aimed to investigate the subcellular organization and identity of these enzymes after semi-purification. Out of the total 137 LAB strains isolated and screened, 50.3% and 61.3% of the strains exhibited lipolytic and proteolytic activities, respectively. Seven strains displaying high enzymatic activities were selected and further characterized for the cellular organization of their lipases, proteases, and antibacterial proteins. The lipolytic and proteolytic activities were exhibited predominantly in the extracellular fraction; whereas, the antibacterial activities were found in various cellular fractions and were capable of inhibiting common undesirable microorganisms in foods. In total, two lipases, seven proteases, and three antibacterial proteins were identified by LC-MS/MS. Characterization of LAB strains with high enzymatic activity has potential biotechnological significance in fermentative processes and in human health as they may improve the physicochemical characteristics of foods and displace strains with weaker enzymatic activities in the human gut microbiota.
Collapse
Affiliation(s)
- Israel García-Cano
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana Rocha-Mendoza
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Karen Wang
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Erica Kosmerl
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, Parker Food Science and Technology Building, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Synergistic Removal of Static and Dynamic Staphylococcus aureus Biofilms by Combined Treatment with a Bacteriophage Endolysin and a Polysaccharide Depolymerase. Viruses 2018; 10:v10080438. [PMID: 30126174 PMCID: PMC6116285 DOI: 10.3390/v10080438] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is an important pathogen and biofilm former. Biofilms cause problems in clinics and food production and are highly recalcitrant to antibiotics and sanitizers. Bacteriophage endolysins kill bacteria by degrading their cell wall and are therefore deemed promising antimicrobials and anti-biofilm agents. Depolymerases targeting polysaccharides in the extracellular matrix have been suggested as parts of a multi-enzyme approach to eradicate biofilms. The efficacy of endolysins and depolymerases against S. aureus biofilms in static models has been demonstrated. However, there is a lack of studies evaluating their activity against biofilms grown under more realistic conditions. Here, we investigated the efficacy of the endolysin LysK and the poly-N-acetylglucosamine depolymerase DA7 against staphylococcal biofilms in static and dynamic (flow cell-based) models. LysK showed activity against multiple S. aureus strains, and both LysK and DA7 removed static and dynamic biofilms from polystyrene and glass surfaces at low micromolar and nanomolar concentrations, respectively. When combined, the enzymes acted synergistically, as demonstrated by crystal violet staining of static biofilms, significantly reducing viable cell counts compared to individual enzyme treatment in the dynamic model, and confocal laser scanning microscopy. Overall, our results suggest that LysK and DA7 are potent anti-biofilm agents, alone and in combination.
Collapse
|
25
|
Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. Antibiotics (Basel) 2018; 7:antibiotics7020029. [PMID: 29565804 PMCID: PMC6023083 DOI: 10.3390/antibiotics7020029] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022] Open
Abstract
Lytic enzymes encoded by bacteriophages have been intensively explored as alternative agents for combating bacterial pathogens in different contexts. The antibacterial character of these enzymes (enzybiotics) results from their degrading activity towards peptidoglycan, an essential component of the bacterial cell wall. In fact, phage lytic products have the capacity to kill target bacteria when added exogenously in the form of recombinant proteins. However, there is also growing recognition that the natural bactericidal activity of these agents can, and sometimes needs to be, substantially improved through manipulation of their functional domains or by equipping them with new functions. In addition, often, native lytic proteins exhibit features that restrict their applicability as effective antibacterials, such as poor solubility or reduced stability. Here, I present an overview of the engineering approaches that can be followed not only to overcome these and other restrictions, but also to generate completely new antibacterial agents with significantly enhanced characteristics. As conventional antibiotics are running short, the remarkable progress in this field opens up the possibility of tailoring efficient enzybiotics to tackle the most menacing bacterial infections.
Collapse
|