1
|
Tskhay F, Köbsch C, Elena AX, Bengtsson-Palme J, Berendonk TU, Klümper U. Fish are poor sentinels for surveillance of riverine antimicrobial resistance. One Health 2025; 20:101026. [PMID: 40236740 PMCID: PMC11999348 DOI: 10.1016/j.onehlt.2025.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Effective surveillance of antimicrobial resistance (AMR) in the environment is crucial for assessing the human and animal health risk of AMR pollution. Wastewater treatment plants (WWTPs) are one of the main sources of AMR pollutants discharged into water bodies. One important factor for assessing the risks associated with such pollution is the colonization potential of the resistant bacteria (ARB) and resistance genes (ARGs) from the environment into human or animal microbiomes upon exposure. This study explores whether fish can act as sentinels for surveillance of AMR pollution in general and specifically the human colonization potential of ARB in rivers impacted by WWTP effluents. Two riverine fish species, Brown trout, and European bullhead, were sampled up- and downstream a German WWTP. The two fish species were chosen due to their different lifestyles: Trout are mainly actively swimming in the water phase, while bullheads are sedentary and river sediment-associated. The bacterial microbiomes and resistomes of fish gills, skin, and feces were compared with those of the respective river water and sediment up- and downstream of the WWTP. Microbiomes of both fish mirrored the changes in river water and sediment downstream of the WWTP, with significant shifts in bacterial community composition, particularly an increase in Proteobacteria and Verrucomicrobia. However, increases in ARG abundances observed in water and sediment downstream of the WWTP were not reflected in any of the fish-associated resistomes. This indicates that while the fish microbiome is sensitive to environmental changes, resistomes of poikilothermic animals such as fish are less responsive to colonization by ARB originating from WWTPs and may not serve as effective sentinels for assessing AMR pollution and colonization risks in freshwater environments. This study highlights the complexity of using wildlife as indicators for environmental AMR pollution and suggests that other species are better suited for surveillance efforts.
Collapse
Affiliation(s)
- Faina Tskhay
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Christoph Köbsch
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Alan X. Elena
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Johan Bengtsson-Palme
- Division of Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenbureg, Guldhedsgatan 10A, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Sweden
| | - Thomas U. Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universität Dresden, Zellescher Weg 40, Dresden, Germany
| |
Collapse
|
2
|
de Santana CO, Spealman P, Gresham D, Dueker ME, Perron GG. Bacterial and DNA contamination of a small freshwater waterway used for drinking water after a large precipitation event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179010. [PMID: 40096758 DOI: 10.1016/j.scitotenv.2025.179010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Sewage contamination of freshwater occurs in the form of raw waste or as effluent from wastewater treatment plants (WWTP's). While raw waste (animal and human) and under-functioning WWTP's can introduce live enteric bacteria to freshwater systems, most WWTP's, even when operating correctly, do not remove bacterial genetic material from treated waste, resulting in the addition of bacterial DNA, including antibiotic resistance genes, into water columns and sediment of freshwater systems. In freshwater systems with both raw and treated waste inputs, then, there will be increased interaction between live sewage-associated bacteria (untreated sewage) and DNA contamination (from both untreated and treated wastewater effluent). To evaluate this understudied interaction between DNA and bacterial contamination in the freshwater environment, we conducted a three-month field-based study of sewage-associated bacteria and genetic material in water and sediment in a freshwater tributary of the Hudson River (NY, USA) that supplies drinking water and receives treated and untreated wastewater discharges from several municipalities. Using both DNA and culture-based bacterial analyses, we found that both treated and untreated sewage influences water and sediment bacterial communities in this tributary, and water-sediment exchanges of enteric bacteria and genetic material. Our results also indicated that the treated sewage effluent on this waterway serves as a concentrated source of intI1 (antibiotic resistance) genes, which appear to collect in the sediments below the outfall along with fecal indicator bacteria. Our work also captured the environmental impact of a large rain event that perturbed bacterial populations in sediment and water matrices, independently from the outflow. This study suggests that large precipitation events are an important cause of bacterial and DNA contamination for freshwater tributaries, with runoff from the surrounding environment being an important factor.
Collapse
Affiliation(s)
| | - Pieter Spealman
- Center for Genomics and Systems Biology, New York University, New York, NY 10114, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, NY 10114, USA
| | - M Elias Dueker
- Department of Biology, Reem-Kayden Center for Science and Computation, Bard College, Annandale-On-Hudson, NY 12504, USA.; Bard Center for Environmental Sciences and Humanities, Bard College, Annandale-On-Hudson, NY 12504, USA
| | - Gabriel G Perron
- Center for Genomics and Systems Biology, New York University, New York, NY 10114, USA; Department of Biology, Reem-Kayden Center for Science and Computation, Bard College, Annandale-On-Hudson, NY 12504, USA.; Bard Center for Environmental Sciences and Humanities, Bard College, Annandale-On-Hudson, NY 12504, USA.
| |
Collapse
|
3
|
Zeng J, Nakanishi T, Hara A, Itoh S. Influence of sewage effluent discharge on putative pathogen community in drinking water sources: insights from full-length 16S rRNA gene amplicon sequencing. JOURNAL OF WATER AND HEALTH 2025; 23:43-57. [PMID: 39882853 DOI: 10.2166/wh.2024.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
The discharge of sewage effluent is a major source of microbial contamination in drinking water sources, necessitating a comprehensive investigation of its impact on pathogenic bacterial communities. This study utilized full-length 16S rRNA gene amplicon sequencing to identify putative pathogenic bacteria and analyze their community structures in drinking water sources subjected to different levels of fecal pollution: urban rivers with low, moderate, and high sewage effluent mixing ratios, and mountain streams with minimal human impact. The sewage effluent itself was also analyzed. Mountain streams primarily harbored environmental pathogens, whereas urban rivers exhibited significantly higher concentrations of fecal indicator bacteria (FIB) (i.e., Escherichia coli and Clostridium perfringens) along with markedly more diverse enteric pathogens with a higher relative abundance. Furthermore, within urban rivers, the putative pathogen communities displayed significant variation, closely aligning with the sewage effluent mixing ratios. The effectiveness of FIBs as indicators of enteric pathogens was found to be largely dependent on the levels of fecal pollution. This study offers novel insights into the impact of sewage effluent discharge on putative pathogenic bacterial communities with enhanced species-level resolution.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Tomohiro Nakanishi
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan E-mail:
| | - Ayato Hara
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto University Katsura, Nishikyo, Kyoto 615-8540, Japan
| |
Collapse
|
4
|
Peterse IF, Hendriks L, Weideveld STJ, Smolders AJP, Lamers LPM, Lücker S, Veraart AJ. Wastewater-effluent discharge and incomplete denitrification drive riverine CO 2, CH 4 and N 2O emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175797. [PMID: 39197791 DOI: 10.1016/j.scitotenv.2024.175797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Rivers are well-known sources of the greenhouse gasses (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These emissions from rivers can increase because of anthropogenic activities, such as agricultural fertilizer input or the discharge of treated wastewater, as these often contain elevated nutrient concentrations. Yet, the specific effects of wastewater effluent discharge on river GHG emissions remain poorly understood. Here, we studied two lowland rivers which both receive municipal wastewater effluent: river Linge and river Kromme Rijn. Dissolved concentrations and fluxes of CH4, N2O and CO2 were measured upstream, downstream and at discharge locations, alongside water column properties and sediment composition. Microbial communities in the sediment and water column were analysed using 16S rRNA gene sequencing. In general, observed GHG emissions from Linge and Kromme Rijn were comparable to eutrophic rivers in urban and agricultural environments. CO2 emissions peaked at most discharge locations, likely resulting from dissolved CO2 present in the effluent. CH4 emission was highest 2 km downstream, suggesting biological production by methanogenic activity stimulated by the effluents' carbon and nutrient supply. Dissolved N2O concentrations were strongly related to NO3- content of the water column which points towards incomplete riverine denitrification. Notably, methanogenic archaea were more abundant downstream of effluent discharge locations. However, overall microbial community composition remained relatively unaffected in both rivers. In conclusion, we demonstrate a clear link between wastewater effluent discharge and enhanced downstream GHG emission of two rivers. Mitigating the impact of wastewater effluent on receiving rivers will be crucial to reduce riverine GHG contributions.
Collapse
Affiliation(s)
- Ida F Peterse
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Lisanne Hendriks
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Stefan T J Weideveld
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Alfons J P Smolders
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; B-WARE Research Centre, Radboud University, P.O. Box 6558, 6503 GB Nijmegen, the Netherlands
| | - Leon P M Lamers
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; B-WARE Research Centre, Radboud University, P.O. Box 6558, 6503 GB Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Annelies J Veraart
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Qi Y, Zhong Y, Luo L, He J, Feng B, Zhang X, Xia Y, Ren H. Feasibility analysis of reclaimed water reuse based on water quality data and microbial community structure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174781. [PMID: 39094655 DOI: 10.1016/j.scitotenv.2024.174781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
The ecological recharge of urban landscapes with reclaimed water plays a crucial role in alleviating urban water shortage. In Yinchuan, we examined the effects of recharging urban rivers with either Yellow River or reclaimed water on the abundance and diversity of microbial communities. This study aimed to support the effective utilization of reclaimed water. We monitored six sites: three in the reclaimed water recharge area (Lucaowa inlet (ZLJ), Lucaowa channel (ZLH), and Lucaowa outlet (ZLC)) and three in the Yellow River water recharge area (Ningcheng lock (FNCZ), Qingfengjie (FQFJ), and Laifosi (FLFS)). Various indicators (pH, turbidity, temperature (T), dissolved oxygen (DO), electrical conductivity (EC), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), and nitrate nitrogen (NO3-N)) were used to assess the water quality. The microbial community abundance and diversity were evaluated using 16S rRNA high-throughput sequencing. The results indicated that throughout the monitoring period, the reclaimed water recharge area exhibited increased water transparency and greater microbial community abundance and diversity than the Yellow River water recharge area. However, the reclaimed water recharge area also showed significantly higher levels of nitrogen, phosphorus, organic matter, and electrical conductivity, along with an increase in Firmicutes. Seasonal changes significantly influenced water quality factors, significantly affecting Cyanobacteria and Campylobacter populations, as demonstrated by RDA analysis, which showed a close relationship between microbial communities and environmental factors. Further comparative analysis revealed that erythrocytic bacteria were predominant in the reclaimed water recharge area, whereas Actinobacteria, Planktonia, and Aspergillus spp. were more significant in the Yellow River water recharge area. Predictive analysis of microbial functions suggested that carbon and nitrogen cycle-related functions were more abundant in the reclaimed water recharge area, indicating that reclaimed water recharge could improve the self-purification capacity of the water body.
Collapse
Affiliation(s)
- Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China.
| | - Lingling Luo
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Jing He
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Xin Zhang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yuan Xia
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Huiqin Ren
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
6
|
Regar RK, Kamthan M, Gaur VK, Singh SP, Mishra S, Dwivedi S, Mishra A, Manickam N, Nautiyal CS. Microbiome divergence across four major Indian riverine water ecosystems impacted by anthropogenic contamination: A comparative metagenomic analysis. CHEMOSPHERE 2024; 368:143672. [PMID: 39500412 DOI: 10.1016/j.chemosphere.2024.143672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/14/2024]
Abstract
Rivers are critical ecosystems that support biodiversity and local livelihoods. This study aimed to evaluate the effects of metal contamination and anthropogenic activities on microbial and phage community dynamics within major Indian river ecosystems, focusing on the Ganga, Narmada, Cauvery, and Gomti rivers -using metagenomic techniques, Biolog, and ICP-MS analysis. Significant variations in microbial communities were observed both within each river and across the four systems, influenced by ecological factors like geography and hydrology, as well as anthropogenic pressures. Downstream sites consistently exhibited higher microbial diversity, with prevalence of Acidobacteria, Actinobacteria, Verrucomicrobia, Firmicutes, and Nitrospirae dominating, while Proteobacteria and Bacteroides declined. The Ganga River showed a higher abundance of bacteriophages compared to other rivers, which gradually reduced with the increment of anthropogenic impact. Functional gene analysis revealed correlations between carbon utilization and metal resistance in contaminated sites. ICP-MS analysis indicates elevated chromium and lead levels in downstream sites of all rivers compared to upstream sites. Interestingly, pristine upstream sites in the Ganga had higher trace element levels than those in Narmada and Cauvery, likely due to its Himalayan origin. Both the Ganga and Cauvery rivers contained numerous metal resistance genes. The Alaknanda was identified as the primary source of microbial communities, bacteriophages, trace elements, and heavy metals in the Ganga. These findings offer new insights into anthropogenic influences on river microbial dynamics and highlight the need for targeted monitoring and management strategies to preserve river health.
Collapse
Affiliation(s)
- Raj Kumar Regar
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Department of Biochemistry, School of Dental Sciences, Babu Banarsi Das University, Lucknow, Uttar Pradesh, 226028, India
| | - Mohan Kamthan
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Satyendra Pratap Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Seema Mishra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sanjay Dwivedi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Aradhana Mishra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
| | - Chandra Shekhar Nautiyal
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India.
| |
Collapse
|
7
|
Hou A, Fu H, Liu L, Su X, Zhang S, Lai J, Sun F. Exploring the distribution and co-occurrence of rpf-like genes and nitrogen-cycling genes in water reservoir sediments. Front Microbiol 2024; 15:1433046. [PMID: 39104579 PMCID: PMC11298755 DOI: 10.3389/fmicb.2024.1433046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Water reservoir sediments represent a distinct habitat that harbors diverse microbial resources crucial for nitrogen cycling processes. The discovery of resuscitation promoting factor (Rpf) has been recognized as a crucial development in understanding the potential of microbial populations. However, our understanding of the relationship between microorganisms containing rpf-like genes and nitrogen-cycling functional populations remains limited. The present study explored the distribution patterns of rpf-like genes and nitrogen-cycling genes in various water reservoir sediments, along with their correlation with environmental factors. Additionally, the co-occurrence of rpf-like genes with genes associated with the nitrogen cycle and viable but non-culturable (VBNC) formation was investigated. The findings indicated the ubiquitous occurrence of Rpf-like domains and their related genes in the examined reservoir sediments. Notably, rpf-like genes were predominantly associated with Bradyrhizobium, Nitrospira, and Anaeromyxobacter, with pH emerging as the primary influencing factor for their distribution. Genera such as Nitrospira, Bradyrhizobium, Anaeromyxobacter, and Dechloromonas harbor the majority of nitrogen-cycling functional genes, particularly denitrification genes. The distribution of nitrogen-cycling microbial communities in the reservoir sediments was mainly influenced by pH and NH4 +. Notably, correlation network analysis revealed close connections between microorganisms containing rpf-like genes and nitrogen-cycling functional populations, as well as VBNC bacteria. These findings offer new insights into the prevalence of rpf-like genes in the water reservoir sediments and their correlation with nitrogen-cycling microbial communities, enhancing our understanding of the significant potential of microbial nitrogen cycling.
Collapse
Affiliation(s)
- Aiqin Hou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Huayi Fu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Leilei Liu
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Jiahou Lai
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
8
|
Li Y, Zhang R, Ma G, Shi M, Xi Y, Li X, Wang S, Zeng X, Jia Y. Bacterial community in the metal(loid)-contaminated marine vertical sediments of Jinzhou Bay: Impacts and adaptations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171180. [PMID: 38402990 DOI: 10.1016/j.scitotenv.2024.171180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Metal(loid) discharge has led to severe coastal contamination; however, there remains a significant knowledge gap regarding its impact on sediment profiles and depth-resolved bacterial communities. In this study, geochemical measurements (pH, nutrient elements, total and bioavailable metal(loid) content) consistently revealed decreasing nitrogen, phosphorus, and metal(loid) levels with sediment depth, accompanied by reduced alpha diversity. Principal coordinate analysis indicated distinct community compositions with varying sediment depths, suggesting a geochemical influence on diversity. Ecological niche width expanded with depth, favoring specialists over generalists, but both groups decreased in abundance. Taxonomic shifts emerged, particularly in phyla and families, correlated with sediment depth. Microbe-microbe interactions displayed intricate dynamics, with keystone taxa varying by sediment layer. Zinc and arsenic emerged as key factors impacting community diversity and composition using random forest, network analysis, and Mantel tests. Functional predictions revealed shifts in potential phenotypes related to mobile elements, biofilm formation, pathogenicity, N/P/S cycles, and metal(loid) resistance along sediment profiles. Neutral and null models demonstrated a transition from deterministic to stochastic processes with sediment layers. This study provides insights into the interplay between sediment geochemistry and bacterial communities across sediment depths, illuminating the factors shaping these ecosystems.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Rui Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingyi Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
9
|
Meilander J, Caporaso JG. Microbiome science of human excrement composting. THE ISME JOURNAL 2024; 18:wrae228. [PMID: 39520251 PMCID: PMC11631093 DOI: 10.1093/ismejo/wrae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Linear waste management systems are unsustainable and contribute to environmental degradation, economic inequity, and health disparities. Among the array of environmental challenges stemming from anthropogenic impacts, the management of human excrement (human feces and urine) stands as a significant concern. Over two billion people do not have access to adequate sanitation, signifying a global public health crisis. Composting is the microbial biotechnology aimed at cycling organic waste, including human excrement, for improved public health, agricultural productivity and safety, and environmental sustainability. Applications of modern microbiome omics and related technologies have the capacity to support continued advances in composting science and praxis. In this article, we review literature focused on applications of microbiome technologies to study composting systems and reactions. The studies we survey generally fall into the categories of animal manure composting, biosolids composting, and human excrement composting. We review experiments utilizing microbiome technologies to investigate strategies for enhancing pathogen suppression and accelerating the biodegradation of organic matter. Additionally, we explore studies focused on the bioengineering potential of microbes as inoculants to facilitate degradation of toxins, such as pharmaceuticals or per- and polyfluoroalkyl substances. The findings from these studies underscore the importance of advancing our understanding of composting processes through the integration of emerging microbiome omics technologies. We conclude that work to-date has demonstrated exciting basic and applied science potential from studying compost microbiomes, with promising implications for enhancing global environmental sustainability and public health.
Collapse
Affiliation(s)
- Jeff Meilander
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, United States
| | - J Gregory Caporaso
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, United States
| |
Collapse
|
10
|
de Paula M, da Costa TA, Silva, Soriano AAB, Lacorte GA. Spatial distribution of sediment bacterial communities from São Francisco River headwaters is influenced by human land-use activities and seasonal climate shifts. Braz J Microbiol 2023; 54:3005-3019. [PMID: 37910306 PMCID: PMC10689647 DOI: 10.1007/s42770-023-01150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Riverbed sediments are dynamic freshwater environments colonized by a great diversity of microorganisms which play important roles in supporting freshwater ecosystem by performing a vast array of metabolic functions. Recent evidence generated by HTS approaches has revealed that the structure of sediment microbial communities is influenced by natural seasonal variations in water such as temperature or streamflow as well by disturbances caused by local human activities. Here, a spatiotemporal analysis of sediment microbial distribution from São Francisco River headwaters section was conducted using Illumina 16S rRNA-V4 region amplicon sequencing in order to accomplish three major goals: (i) to investigate whether the diversity and composition of bacterial communities accessed in riverbed sediments vary in response to distinct land-use activities; (ii) to estimate whether the diversity patterns vary between the dry and wet seasons; and (iii) to evaluate whether the diversity of bacterial metabolic functions, predicted by PICRUSt2 approach, varies similarly to the estimated taxonomic diversity. Our findings revealed that bacterial communities in the sediment show differences in diversity and taxonomic composition according to the anthropic activities performed in the local environment. However, the patterns in which this taxonomic diversity is spatially structured show differences between the dry and wet seasons. On the other hand, the most changes in predicted bacterial metabolic functions were verified between sediment samples accessed in portions of the river located in protected and unprotected areas. Our findings contributed with new evidence about the impact of typical land-use practices conducted in countryside landscapes from developing countries on riverbed bacterial communities, both in their taxonomic and functional structure.
Collapse
Affiliation(s)
- Marcos de Paula
- Bambuí Campus, Federal Institute of Minas Gerais, Bambuí, Minas Gerais State, Brazil
| | | | - Silva
- Bambuí Campus, Federal Institute of Minas Gerais, Bambuí, Minas Gerais State, Brazil
| | | | | |
Collapse
|
11
|
Shivaram KB, Bhatt P, Verma MS, Clase K, Simsek H. Bacteriophage-based biosensors for detection of pathogenic microbes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165859. [PMID: 37516175 DOI: 10.1016/j.scitotenv.2023.165859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Wastewater is discarded from several sources, including industry, livestock, fertilizer application, and municipal waste. If the disposed of wastewater has not been treated and processed before discharge to the environment, pathogenic microorganisms and toxic chemicals are accumulated in the disposal area and transported into the surface waters. The presence of harmful microbes is responsible for thousands of human deaths related to water-born contamination every year. To be able to take the necessary step and quick action against the possible presence of harmful microorganisms and substances, there is a need to improve the effective speed of identification and treatment of these problems. Biosensors are such devices that can give quantitative information within a short period of time. There have been several biosensors developed to measure certain parameters and microorganisms. The discovered biosensors can be utilized for the detection of axenic and mixed microbial strains from the wastewaters. Biosensors can further be developed for specific conditions and environments with an in-depth understanding of microbial organization and interaction within that community. In this regard, bacteriophage-based biosensors have become a possibility to identify specific live bacteria in an infected environment. This paper has investigated the current scenario of microbial community analysis and biosensor development in identifying the presence of pathogenic microorganisms.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Mohit S Verma
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Kari Clase
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
12
|
Bergbusch NT, Wong AR, Russell JN, Swarbrick VJ, Freeman C, Bergsveinson J, Yost CK, Courtenay SC, Leavitt PR. Impact of wastewater treatment upgrade and nitrogen removal on bacterial communities and their interactions in eutrophic prairie streams. FEMS Microbiol Ecol 2023; 99:fiad142. [PMID: 37942568 PMCID: PMC10662661 DOI: 10.1093/femsec/fiad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
Eutrophication can impact bacteria by altering fluxes and processing of nutrients and organic matter. However, relatively little is known of how bacterial communities, diversity, and interactions with phytoplankton might respond to nutrient management. We used 16S rRNA amplicon sequencing to compare bacterial assemblages in the water column upstream (control) and downstream (impact) of a wastewater treatment plant (WWTP) located on a eutrophic prairie stream. Sampling occurred before (2012) and after (2018) the 2016 biological nutrient removal (BNR) upgrade that removed >90% of nitrogen (N, mainly NH4+). Multivariate ordination suggested that effluent-impacted bacterial communities were associated mainly with elevated NH4+ concentrations before the upgrade, whereas those after BNR were characteristic of reference systems (low NO3-, diverse regulation). Genera such as Betaproteobacteria and Rhodocyclacea were abundant at impacted sites in 2012, whereas Flavobacterium and a potential pathogen (Legionella) were common at impacted sites in 2018. Nitrifier bacteria (Nitrospira and Nitrosomonas) were present but rare at all sites in 2012, but recorded only downstream of the WWTP in 2018. Generalized additive models showed that BNR reduced bacterial diversity, with ∼70% of the deviance in diversity explained by hydrology, pH, nutrients, and phytoplankton abundance. Overall, NH4+ removal reduced symptoms of cultural eutrophication in microbe assemblages.
Collapse
Affiliation(s)
- Nathanael T Bergbusch
- Limnology Laboratory, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- School of Environment, Resources and Sustainability (SERS), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alicia R Wong
- School of Environment, Resources and Sustainability (SERS), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jennifer N Russell
- Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Vanessa J Swarbrick
- Limnology Laboratory, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Office of the Chief Scientist, Government of Alberta, Edmonton T5J 5C6, Canada
| | - Claire Freeman
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jordyn Bergsveinson
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Christopher K Yost
- Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Simon C Courtenay
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Peter R Leavitt
- Limnology Laboratory, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Biology Department, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
13
|
Sami AJ, Bilal S, Ahsan NUA, Hameed N, Saleem S. Rhodamine B functionalized silver nanoparticles paper discs as turn-on fluorescence sensor, coupled with a smartphone for the detection of microbial contamination in drinking water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1442. [PMID: 37945767 DOI: 10.1007/s10661-023-12077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The precise detection of pathogenic microorganisms is crucial for the reduction of water-borne diseases. Herein, a filter-paper-based florescent chemosensor was fabricated for the detection of Escherichia coli and Staphylococcus aureus contamination exploiting protein-DNA interaction between the target and a specific probe. The sensing mechanism involved the self-assembly of Rhodamine B (RhB) on silver nanoparticles (AgNPs) surface that was labeled with a single-stranded DNA probe. This causes the fluorescence quenching of RhB by a distant-dependant process. The hybridization between pathogen-specific probe and bacterial surface protein causes the release of fluorescence of RhB, which was observed under UV light. For paper-based bio-surface preparation, the mixture comprising RhB-AgNP-ssDNA was drop-casted on filter paper discs. The conditions were optimized using isolated genomic DNA of the microbes. The method was applied for E.coli detection using an eae gene-based probe targeting intimin protein and S. aureus detection using tuf gene-based probe targeting EF-tuf protein on the microbe's surface. The chemosensor had a notable specificity and selectivity for E.coli, and S. aureus, with detection limits of 0.6 × 108 and 0.37 × 103 CFU/mL respectively. Moreover, the sensor was tested on real water samples, which presented excellent reproducibility of results (RSD ≤ 0.24%). Furthermore, the gradient change of fluorescence was captured by a smartphone, which allows direct detection of pathogens in a sensitive semi-quantitative way without the need for expensive instruments. The designed chemosensor can serve as a simple, inexpensive, and rapid method for the on-site detection of microbial contamination in drinking water.
Collapse
Affiliation(s)
- Amtul Jamil Sami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
- Center for Biosensor Research and Development (CBRD), University of the Punjab, Lahore, 54590, Pakistan.
| | - Sehrish Bilal
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
- Department of Biochemistry, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Noor-Ul-Ain Ahsan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Nayyab Hameed
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Shaifa Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
14
|
Xiong W, Chen Y, Zhan A. Dominance of species sorting over dispersal at microgeographical scales in polluted lotic ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122093. [PMID: 37352962 DOI: 10.1016/j.envpol.2023.122093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Global rivers, particularly those in populated urban areas, are challenged by multiple stressors such as pollution from anthropogenic activities. Dissecting the relative role of each ecological process involved in structuring biotic communities is fundamental in both theoretical and applied ecology. The ecological niche-based species sorting and stochastic dynamics-based dispersal are two major competing processes in determining community structure. Studies have reached a common realization on the environmental gradient-geographical scale relationship (EGGSR), resulting in species sorting over dispersal in determining community structure at large geographical scales where significant environmental gradients often exist. However, this relationship has been recently challenged at fine geographical scales when significant environmental gradients are formed by local anthropogenic activities. Here, we used three receiving rivers of wastewater treatment plants (WWTPs) as the promising system to test the hypothesis that species sorting plays a dominant role over dispersal in structuring zooplankton communities at microgeographical scales (∼1.2 km). After WWTP effluent discharge, we consistently detected significant environmental changes in all three receiving rivers, leading to significant variation in both community structure and taxonomic co-occurrence networks. Variation partitioning showed that environmental variables explained higher proportions of community variation than spatial ones, supporting that species sorting played a dominant role over dispersal in structuring zooplankton communities. Thus, our findings here reject EGGSR, illustrating that the effect of species sorting has been overlooked in disturbed aquatic ecosystems at fine spatial scales. More importantly, all analyses in multiple rivers here validate the "microscale species sorting" hypothesis. The validation of such hypothesis provides a novel methodology for point source pollution management by assessing environment-community interactions and functional changes of biological communities. The differed variables underlying species sorting among three rivers illustrate that ecological management should be case-specific, with the full consideration of local water quality background and pollutant composition of each point pollution source.
Collapse
Affiliation(s)
- Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China; Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, 2 Puxin Road, Kunming Economic and Technological Development District, Yunan, 650214, China.
| |
Collapse
|
15
|
Esser M, Hoggarth C, Baulch H, Challis JK, Xie Y, Giesy JP, Hecker M, Brinkmann M. Wastewater discharges alter microbial community composition in surface waters of the canadian prairies. CHEMOSPHERE 2023; 334:138991. [PMID: 37209843 DOI: 10.1016/j.chemosphere.2023.138991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Microbial communities are an important component of freshwater biodiversity that is threatened by anthropogenic impacts. Wastewater discharges pose a particular concern by being major sources of anthropogenic contaminants and microorganisms that may influence the composition of natural microbial communities. Nevertheless, the effects of wastewater treatment plant (WWTP) effluents on microbial communities remain largely unexplored. In this study, the effects of wastewater discharges on microbial communities from five different WWTPs in Southern Saskatchewan were investigated using rRNA gene metabarcoding. In parallel, nutrient levels and the presence of environmentally relevant organic pollutants were analyzed. Higher nutrient loads and pollutant concentrations resulted in significant changes in microbial community composition. The greatest changes were observed in Wascana Creek (Regina), which was found to be heavily polluted by wastewater discharges. Several taxa occurred in greater relative abundance in the wastewater-influenced stream segments, indicating anthropogenic pollution and eutrophication, especially taxa belonging to Proteobacteria, Bacteroidota, and Chlorophyta. Strong decreases were measured within the taxa Ciliphora, Diatomea, Dinoflagellata, Nematozoa, Ochrophyta, Protalveolata, and Rotifera. Across all sample types, a significant decline in sulfur bacteria was measured, implying changes in functional biodiversity. In addition, downstream of the Regina WWTP, an increase in cyanotoxins was detected which was correlated with a significant change in cyanobacterial community composition. Overall, these data suggest a causal relationship between anthropogenic pollution and changes in microbial communities, possibly reflecting an impairment of ecosystem health.
Collapse
Affiliation(s)
- Milena Esser
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Cameron Hoggarth
- Global Institute for Water Security, University of Saskatchewan, Innovation Blvd, Saskatoon, SK S7N 3H5, Canada
| | - Helen Baulch
- Global Institute for Water Security, University of Saskatchewan, Innovation Blvd, Saskatoon, SK S7N 3H5, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, USA; Department of Zoology and Center for Integrative Toxicology, Michigan State University, 426 Auditorium Road East Lansing, MI, 48824, USA
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, SK S7N 5B3, Canada; Global Institute for Water Security, University of Saskatchewan, Innovation Blvd, Saskatoon, SK S7N 3H5, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
16
|
Vignale FA, Bernal Rey D, Pardo AM, Almasqué FJ, Ibarra JG, Fernández Do Porto D, Turjanski AG, López NI, Helman RJM, Raiger Iustman LJ. Spatial and Seasonal Variations in the Bacterial Community of an Anthropogenic Impacted Urban Stream. MICROBIAL ECOLOGY 2023; 85:862-874. [PMID: 35701635 DOI: 10.1007/s00248-022-02055-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/02/2022] [Indexed: 05/04/2023]
Abstract
Environmental changes and human activities can alter the structure and diversity of aquatic microbial communities. In this work, we analyzed the bacterial community dynamics of an urban stream to understand how these factors affect the composition of river microbial communities. Samples were taken from a stream situated in Buenos Aires, Argentina, which flows through residential, peri-urban horticultural, and industrial areas. For sampling, two stations were selected: one influenced by a series of industrial waste treatment plants and horticultural farms (PL), and the other influenced by residential areas (R). Microbial communities were analyzed by sequence analysis of 16S rRNA gene amplicons along an annual cycle. PL samples showed high nutrient content compared with R samples. The diversity and richness of the R site were more affected by seasonality than those of the PL site. At the amplicon sequence variants level, beta diversity analysis showed a differentiation between cool-season (fall and winter) and warm-season (spring and summer) samples, as well as between PL and R sites. This demonstrated that there is spatial and temporal heterogeneity in the composition of the bacterial community, which should be considered if a bioremediation strategy is applied. The taxonomic composition analysis also revealed a differential seasonal cycle of phototrophs and chemoheterotrophs between the sampling sites, as well as different taxa associated with each sampling site. This analysis, combined with a comparative analysis of global rivers, allowed us to determine the genera Arcobacter, Simplicispira, Vogesella, and Sphingomonas as potential bioindicators of anthropogenic disturbance.
Collapse
Affiliation(s)
- Federico A Vignale
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Daissy Bernal Rey
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente Y Energía (INQUIMAE)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Facundo J Almasqué
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - José G Ibarra
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Nancy I López
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Renata J Menéndez Helman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Laura J Raiger Iustman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
17
|
Zhang L, Li S, Zhang S, Cai H, Fang W, Shen Z. Recovery trajectories of the bacterial community at distances in the receiving river under wastewater treatment plant discharge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116622. [PMID: 36368207 DOI: 10.1016/j.jenvman.2022.116622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Microbes in rivers are an important part of the biogeochemical cycle in aquatic ecosystems, and understanding the major factors that influence the composition of microbial communities has an important role in assessing and improving ecosystem functioning. A high-throughput 16 S rRNA gene sequencing technique was employed to sequence bacterial communities in 21 sediment samples and 21 water samples from an urban river WWTP (wastewater treatment plant) discharge. A systematic study of changes in bacterial community composition in downstream river sediment and water was conducted. The study found that compared with the bacterial diversity in the natural upstream area of the wastewater outfall, the bacterial diversity in the sediment lower reaches decreased significantly, while the bacterial abundance and diversity in the water increased significantly. The Mantel test and redundancy analysis showed that the downstream distance and physicochemical properties were significantly related to the succession of bacterial communities in the sediment downstream of the WWTP discharge. Among them, TOC (total organic carbon) was the most important factor affecting the change in the bacterial community in the downstream sediment. The physicochemical properties were significantly correlated with the succession of bacterial communities in the water downstream of the WWTP discharge. Among them, TN (total nitrogen), PO43--P (phosphorus phosphate) and TP (total phosphorus) were the main factors that affected the change in the bacterial community in the downstream water. Key taxa in the co-occurrence network at different distances downstream reflected the depth of the effect of the WWTP effluent on the bacterial community. The bacterial community in the lower reaches of the river sediment showed a strong recovery ability under the influence of pollutants, while the bacterial community in the lower reaches of the river water was difficult to recover under the influence of pollutants. In general, pollutants contained in effluent are the key to changing the composition of bacterial communities in the lower reaches of the river, but exogenous bacteria in effluent are not. This study provides a basis for further improving the effluent discharge standards of WWTPs in the future.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China.
| | - Shuo Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Siqing Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Hua Cai
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou, 239000, China
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232000, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
18
|
Numberger D, Zoccarato L, Woodhouse J, Ganzert L, Sauer S, Márquez JRG, Domisch S, Grossart HP, Greenwood AD. Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157321. [PMID: 35839872 DOI: 10.1016/j.scitotenv.2022.157321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urbanization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sediments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urbanization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.
Collapse
Affiliation(s)
- Daniela Numberger
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany
| | - Luca Zoccarato
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Jason Woodhouse
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany
| | - Lars Ganzert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany; GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 3.7 Geomicrobiology, Telegrafenberg C-422, 14473 Potsdam, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 16775, 13125 Berlin, Germany
| | | | - Sami Domisch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstrasse 32, 14195 Berlin, Germany.
| | - Alex D Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany; Freie Universität Berlin, Department of Veterinary Medicine, Institute for Virology, Robert von Ostertag-Strasse 7-13, 14163 Berlin, Germany
| |
Collapse
|
19
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Bosworth LB, Wrighton KC, Sedlak DL, Sharp JO. Pharmaceutical Biotransformation is Influenced by Photosynthesis and Microbial Nitrogen Cycling in a Benthic Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14462-14477. [PMID: 36197061 DOI: 10.1021/acs.est.2c03566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lily B Bosworth
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
20
|
Babko R, Pliashechnyk V, Zaburko J, Danko Y, Kuzmina T, Czarnota J, Szulżyk-Cieplak J, Łagód G. Ratio of abundances of ciliates behavioral groups as an indicator of the treated wastewater impact on rivers. PLoS One 2022; 17:e0275629. [PMID: 36251723 PMCID: PMC9576108 DOI: 10.1371/journal.pone.0275629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
A method for assessing the degree of impact of wastewater treatment plant discharge on receiving rivers was proposed, based on the structural indicators of the population of ciliated protozoa. It was shown that the ratio of attached, crawling and free-swimming forms in bottom sediments changes under the influence of discharge. In the points subject to organic pollution, the share of attached filter-feeding bacteriovorous ciliates increases in the assemblage of ciliated protozoa. The proposed Attached Form Index (AFI) takes this ratio into account. The use of AFI makes it possible to assess the restructuring of the assemblage of ciliated protozoa under the influence of point sources of pollution, to establish a zone of negative influence of runoff, to assess the degree of restoration of the aquatic ecosystem, as the influence of the pollution source weakened.
Collapse
Affiliation(s)
- Roman Babko
- Department Fauna and Systematics of Invertebrates, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Jacek Zaburko
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, Lublin, Poland
| | - Yaroslav Danko
- Department of General Biology and Ecology, Sumy Makarenko State Pedagogical University, Sumy, Ukraine
| | - Tatiana Kuzmina
- Department of Ecology and Environmental Protection, Sumy State University, Sumy, Ukraine
| | - Joanna Czarnota
- Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, Rzeszów, Poland
| | | | - Grzegorz Łagód
- Department of Water Supply and Wastewater Disposal, Lublin University of Technology, Lublin, Poland
| |
Collapse
|
21
|
Bacteria communities and water quality parameters in riverine water and sediments near wastewater discharges. Sci Data 2022; 9:578. [PMID: 36130969 PMCID: PMC9492694 DOI: 10.1038/s41597-022-01686-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Wastewater treatment plant (WWTP) discharges alter water quality and microbial communities by introducing human-associated bacteria in the environment and by altering microbial communities. To fully understand this impact, it is crucial to study whether WWTP discharges affect water and sediments microbial communities in comparable ways and whether such effects depend on specific environmental variables. Here, we present a dataset investigating the impact of a WWTP on water quality and bacterial communities by comparing samples collected directly from the WWTP outflow to surface waters and sediments at two sites above and two sites below it over a period of five months. When possible, we measured five physicochemical variables (e.g., temperature, turbidity, conductivity, dissolved oxygen, and salinity), four bioindicators (e.g., Escherichia coli, total coliforms, Enterococcus sp., and endotoxins), and two molecular indicators (e.g., intI1’s relative abundance, and 16S rRNA gene profiling). Preliminary results suggest that bioindicators correlate with environmental variables and that bacterial communities present in the water tables, sediments, and treated water differ greatly in composition and structure. Measurement(s) | temperature of water • conductivity of water • dissolved oxygen in water • salinity of water • Concentration of Escherichia coli in water • Concentration of total coliforms in water • Concentration of Enterococcus sp. • Concentration of endotoxins in water • Relative abundance of integron 1 in water • Bacterial 16S RNA | Technology Type(s) | YSI field probe • Colilert dection system • Enterolert dection system • Charles River Endosafe system • quantitative PCR • Illumina Sequencing | Sample Characteristic - Organism | Bacteria | Sample Characteristic - Environment | Fresh water river | Sample Characteristic - Location | United States |
Collapse
|
22
|
Kalinowska A, Pierpaoli M, Jankowska K, Fudala-Ksiazek S, Remiszewska-Skwarek A, Łuczkiewicz A. Insights into the microbial community of treated wastewater, its year-round variability and impact on the receiver, using cultivation, microscopy and amplicon-based methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154630. [PMID: 35307432 DOI: 10.1016/j.scitotenv.2022.154630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Apart from chemical constituents, wastewater treatment plant (WWTP) effluents also release microorganisms that can be important to the receiving water bodies either from a sanitary point of view, or taking to the account the biogeochemical potential of the recipients. However, little is known about the treated wastewater microbial community, its composition, seasonal changes, functions and fate in the waters of the receiver. Thus, this study presents a synergistic approach coupling new and traditional methods: analytical chemistry, classical microbiology (cultivation- and microscopy-based methods), as well as Next Generation Sequencing and a quantitative real-time polymerase chain reaction (qPCR). The results show that in terms of bacterial community composition, treated wastewater differed from the environmental samples, irrespectively if they were related or unrelated to the WWTP effluent discharge. The canonical correspondence analysis (CCA) taking into account chemical parameters and taxonomical biodiversity indirectly confirmed the seasonal deterioration of the treated wastewater quality as a result of temperature-driven change of activated sludge community structure and biomass washout (observed also by DAPI staining). Despite seasonal fluctuations of total suspended solids and inter-related parameters (such as COD, BOD, TN, TP), the treated wastewater quality remained within current discharge limits. It was due to treatment processes intensively adjusted by WWTP operators, particularly those necessary to maintain an appropriate rate of autotrophic processes of nitrification and to support biological phosphorus removal. This can explain the observed microbiome composition similarity among WWTP effluents at high taxonomic levels. Obtained data also suggest that besides wastewater treatment efficiency, WWTP effluents are still sources of both human-related microorganisms as well as bacteria equipped in genes involved in N-cycling. Their potential of participation in nutrients cycling in the receivers is widely unknown and require critical attention and better understanding.
Collapse
Affiliation(s)
- Agnieszka Kalinowska
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Mattia Pierpaoli
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Sylwia Fudala-Ksiazek
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Anna Remiszewska-Skwarek
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
23
|
Lu Q, Mao J, Xia H, Song S, Chen W, Zhao D. Effect of wastewater treatment plant discharge on the bacterial community in a receiving river. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113641. [PMID: 35597140 DOI: 10.1016/j.ecoenv.2022.113641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The effluent of wastewater treatment plants (WWTPs) is an important water resource for some rivers in regions with relatively low precipitation, which may pose ecological risks. Various pollutants and microorganisms are discharged into rivers, along with the WWTP effluent, but this process has not been thoroughly studied. The objective of this study was to evaluate the effect of WWTP effluent on the bacterial community in the sediment and water column of an urban river and to identify the relationship between the total and active bacterial communities. Five sites were sampled in the river, including the most upstream site of the river (Up-most), 200 m upstream of the WWTP (Up-200), at the point of effluent discharge of the WWTP (Eff-pl) and 50 m (Down-50) and 1000 m (Down-1000) downstream of the WWTP. Compared with the two upstream sites (Up-most and Up-200), the bacterial species composition of Eff-pl was significantly different (p < 0.05) in both the sediment and water columns, while the bacterial species composition at Down-1000 was significantly different (p < 0.05) in the sediment but not in the water. The relative abundance of Proteobacteria, Actinobacteriota and Verrucomicrobiota was significantly different (p < 0.05) at Eff-pl in both the sediment and water columns compared with that at the upstream sites. The shared bacterial species between the DNA and RNA 16 S rRNA analyses were only 45.5-62.2% and 43.2-52.3% for the sediment and water, respectively. Accordingly, WWTP effluent drainage significantly alters (p < 0.05) the bacterial composition in the receiving river but can be recovered in water within a short distance. However, in sediment, a longer recovery space is probably needed. Analyses of the combination of total and active bacterial compositions are recommended to evaluate the ecological consequences of WWTP effluent drainage on the bacterial composition.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Biological Science and Technology, Nanjing University, Nanjing 210093, PR China
| | - Junbo Mao
- Sinohydro Bureau 11 Co., Ltd, Zhengzhou 450001, PR China
| | - Haijun Xia
- Sinohydro Bureau 11 Co., Ltd, Zhengzhou 450001, PR China
| | - Siyuan Song
- Huadong Engineering Corporation Limited, Hangzhou 311122, PR China
| | - Wenjuan Chen
- Sinohydro Bureau 11 Co., Ltd, Zhengzhou 450001, PR China
| | - Dehua Zhao
- Department of Biological Science and Technology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
24
|
Ma X, Dong X, Cai J, Fu C, Yang J, Liu Y, Zhang Y, Wan T, Lin S, Lou Y, Zheng M. Metagenomic Analysis Reveals Changes in Bacterial Communities and Antibiotic Resistance Genes in an Eye Specialty Hospital and a General Hospital Before and After Wastewater Treatment. Front Microbiol 2022; 13:848167. [PMID: 35663906 PMCID: PMC9162037 DOI: 10.3389/fmicb.2022.848167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in hospital wastewater poses a great threat to public health, and wastewater treatment plants (WWTPs) play an important role in reducing the levels of ARB and ARGs. In this study, high-throughput metagenomic sequencing was used to analyze the bacterial community composition and ARGs in two hospitals exposed to different antibiotic use conditions (an eye specialty hospital and a general hospital) before and after wastewater treatment. The results showed that there were various potential pathogenic bacteria in the hospital wastewater, and the abundance and diversity of the influent ARGs in the general hospital were higher than those in the eye hospital. The influent of the eye hospital was mainly composed of Thauera and Pseudomonas, and sul1 (sulfonamide) was the most abundant ARG. The influent of the general hospital contained mainly Aeromonas and Acinetobacter, and tet39 (tetracycline) was the most abundant ARG. Furthermore, co-occurrence network analysis showed that the main bacteria carrying ARGs in hospital wastewater varied with hospital type; the same bacteria in wastewater from different hospitals could carry different ARGs, and the same ARG could also be carried by different bacteria. The changes in the bacterial community and ARG abundance in the effluent from the two hospitals showed that the activated sludge treatment and the direct chlorination disinfection can effectively remove some bacteria and ARGs in wastewater but have limitations. The species diversity increased significantly after the activated sludge treatment, while the direct chlorination disinfection did not increase the diversity. The activated sludge treatment has a better effect on the elimination of ARGs than the direct chlorination disinfection. In summary, we investigated the differences in bacterial communities and ARGs in wastewater from two hospitals exposed to different antibiotic usage conditions, evaluated the effects of different wastewater treatment methods on the bacterial communities and ARGs in hospital wastewater, and recommended appropriate methods for certain clinical environments.
Collapse
Affiliation(s)
- Xueli Ma
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Xu Dong
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiabei Cai
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Chunyan Fu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jing Yang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yuan Liu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yan Zhang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Tian Wan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Shudan Lin
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meiqin Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Wastewater treatment plant effluent inputs influence the temporal variability of nutrient uptake in an intermittent stream. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractWastewater treatment plant (WWTP) effluents alter water chemistry and in-stream nutrient uptake rates of receiving freshwaters, thus changing the magnitude and fate of the nutrients exported. In Mediterranean regions, the dilution capacity of receiving streams can vary strongly over time due to the seasonal occurrence of floods and droughts, causing temporal variability of nutrient uptake. We assessed the temporal patterns and the controlling factors of net nutrient uptake in an intermittent Mediterranean stream receiving WWTP effluent inputs. We compiled the longitudinal concentration profiles of ambient dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) along a 800 m reach on 47 sampling dates between 2001 and 2017, encompassing a wide range of hydrological conditions. We estimated net nutrient uptake in the receiving stream. In 72% of the dates, high rates of net ammonium uptake co-occurred with net releases of either nitrate or nitrite. This pattern suggests that the receiving stream has a high nitrification capacity. Conversely, 75% of the dates did not show any longitudinal pattern in SRP concentration, suggesting that uptake and release processes for this element were either counterbalanced or both occurred at very low rates. Finally, net ammonium uptake was low when the stream had a low dilution capacity (< 40%) and ammonium concentration was high. Overall, we demonstrate that consideration of the receiving stream’s dilution capacity is imperative to the management of freshwaters to guarantee an adequate dilution of WWTP effluent inputs and avoid saturation of in-stream nutrient uptake capacity under low flow conditions in urban landscapes.
Collapse
|
26
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
27
|
Sharma P, Nanda K, Yadav M, Shukla A, Srivastava SK, Kumar S, Singh SP. Remediation of noxious wastewater using nanohybrid adsorbent for preventing water pollution. CHEMOSPHERE 2022; 292:133380. [PMID: 34953871 DOI: 10.1016/j.chemosphere.2021.133380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Removal of toxic elements from wastewater effluent has got a lot of attention because of their severe negative effects on human and environmental health. In the past few years, rapid urbanization and industrial activities in developing countries have exacerbated the destruction of the environment. Most of the wastewater effluents are discharged untreated or inadequately treated, which has become a major concern due to its impact on sustainability and the environment. This is imperative to implement, innovative and resourceful wastewater treatment technologies requiring low investment. Among the various treatment technologies, cutting-edge processes in nano-material sciences have recently piqued the interest of scientists. Nanohybrid absorbents have the potential in improving wastewater treatment and increase water supply by utilizing unconventional water resources. Carbon nanotubes, titanium oxide, manganese oxide, activated carbon (AC), magnesium oxide, graphene, ferric oxides, and zinc oxide are examples of nano-adsorbents that are used to eliminate pollutants. This also demonstrated the effective removal of contaminants along with the harmful effects of chemicals, colorants, and metals found in wastewater. The present manuscript examines potential advances in nanotechnology in wastewater treatment for the prevention of water and soil pollution. This systematic review aims to highlight the importance of nanohybrid absorbents treatment technology for wastewater treatment and to explain how nanohybrid absorbents have the potential to revolutionize industrial pollution. There are also other published review articles on this topic but the present review covers an in-depth information on nano-adsorbents and their targeted contaminants.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Kavita Nanda
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Mamta Yadav
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Ashutosh Shukla
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India
| | - Sudhir Kumar Srivastava
- Chemical Research Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440 020, India.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208 001, India.
| |
Collapse
|
28
|
Richards S, Bidgood L, Watson H, Stutter M. Biogeochemical impacts of sewage effluents in predominantly rural river catchments: Are point source inputs distinct to background diffuse pollution? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114891. [PMID: 35305367 DOI: 10.1016/j.jenvman.2022.114891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Discharge of treated sewage effluent to rivers can degrade aquatic ecosystem quality, interacting with multiple stressors in the wider catchment. In predominantly rural catchments, the river reach influence of point source effluents is unknown relative to complex background pressures. We examined water column, sediment and biofilm biogeochemical water quality parameters along river transects (200 m upstream to 1 km downstream) during summer at five wastewater treatment works (WWTW) in Scotland. Treated sewage effluent (subset, n = 3) pollutant concentrations varied between sites. Downstream concentration profiles of water and sediment biogeochemical parameters showed complex spatial changes. A hypothesised point source signature of elevated concentrations of pollution immediately downstream of WWTW then a decaying pollution 'plume' did not commonly occur. Instead, elevated soluble reactive phosphorus (SRP), ammonium and coliforms (maximum 0.23 mgP/l, 0.33 mgN/l and >2 × 106 MPN/100 ml) occurred immediately downstream of two WWTW, whereas some downstream pollutant concentrations decreased. Microbial substrate respiration responses only differed 1 km downstream. Significantly greater concentrations of sediment metal occurred >500 m downstream, likely due to the redeposition of historic contaminated sediments. Significantly lowered chlorophyll-a downstream of one WWTW coincided with elevated metals, despite water SRP and sediment P increases. Overall, stress caused to microbes and algae by effluent contaminants outweighed the subsidy effect of WWTW nutrients. We observed variable effluent flows to the rivers limited localised pollution downstream of WWTW and overall influence of arable land cover on river water quality. Together, this challenges views of consistently discharging point sources impacting low dilution sensitive rivers in summer contrasting with 'diffuse' sources. Thus, river water column and benthic compartments are altered at varying scales by point source effluents in combination with rural catchment pollution sources, both discrete (e.g. farmyards and septic tanks) and diffuse.
Collapse
Affiliation(s)
- Samia Richards
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK.
| | - Lucy Bidgood
- University of Dundee, Nethergate, Dundee, DD1 4HN, Scotland, UK
| | - Helen Watson
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Marc Stutter
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK; Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK
| |
Collapse
|
29
|
Suzzi AL, Gaston TF, McKenzie L, Mazumder D, Huggett MJ. Tracking the impacts of nutrient inputs on estuary ecosystem function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152405. [PMID: 34923003 DOI: 10.1016/j.scitotenv.2021.152405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Estuaries are one of the most impacted coastal environments globally, subjected to multiple stressors from urban, industry and coastal development. With increasing anthropogenic activity surrounding estuarine systems, sewage inputs have become a common concern. Stable isotope analysis provides a well-established tool to investigate the incorporation of nitrogen into marine organisms and identify major nutrient sources. Benthic macroinvertebrate communities are often used as bioindicators in ecological studies as they typically display predictable responses to anthropogenic pressures, however have a suite of limitations and costs associated with their use. 16S rDNA amplicon sequencing techniques allow for investigation of the microbial communities inhabiting complex environmental samples, with potential as a tool in the ecological assessment of pollution. These communities have not yet been adequately considered for ecological studies and biomonitoring, with a need to better understand interactions with environmental stressors and implications for ecosystem function. This study used a combination of stable isotope analysis to trace the uptake of anthropogenic nitrogen in biota, traditional assessment of benthic macroinvertebrate communities, and 16S rDNA genotyping of benthic microbial communities. Stable isotope analysis of seagrass and epiphytes identified multiple treated and untreated sewage inputs, ranges of 5.2-7.2‰ and 1.9-4.0‰ for δ15N respectively, as the dominant nitrogen source at specific locations. The benthic macroinvertebrate community reflected these inputs with shifts in dominant taxa and high abundances of polychaetes at some sites. Microbial communities provided a sensitive indication of impact with a breadth of information not available using traditional techniques. Composition and predicted function reflected sewage inputs, particularly within sediments, with the relative abundance of specific taxa and putative pathogens linked to these inputs. This research supports the growing body of evidence that benthic microbial communities respond rapidly to anthropogenic stressors and have potential as a monitoring tool in urban estuarine systems.
Collapse
Affiliation(s)
- Alessandra L Suzzi
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia.
| | - Troy F Gaston
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia
| | - Louise McKenzie
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia; Hunter Water Corporation, Newcastle, NSW, Australia
| | - Debashish Mazumder
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW, Australia
| | - Megan J Huggett
- College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW, Australia; Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
30
|
Millar EN, Surette MG, Kidd KA. Altered microbiomes of aquatic macroinvertebrates and riparian spiders downstream of municipal wastewater effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151156. [PMID: 34687704 DOI: 10.1016/j.scitotenv.2021.151156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 05/15/2023]
Abstract
Municipal wastewater treatment plants (WWTPs) contain numerous contaminants, including antimicrobials, that could affect the composition of the beneficial bacterial communities associated with host aquatic organisms. There is also potential for these effects to transfer to terrestrial predators. Riparian spiders and five families of aquatic macroinvertebrates were collected from sites upstream and downstream of two WWTPs, Waterloo and Kitchener, discharging to the Grand River, Ontario, Canada. Whole-body microbiota were analyzed following the extraction, PCR amplification, and sequencing of bacterial DNA using the V3-V4 hypervariable regions of the 16S rRNA genetic barcode. Changes in the relative abundance of major microbiome phyla were observed in all downstream aquatic insects except Hydropsychidae caddisflies, which exhibited little site variation. Shannon alpha diversity differed among sites for Tetragnathidae spiders, Perlidae, Hydropsychidae, and Heptageniidae. Downstream of the Waterloo WWTP alpha diversity decreased in spiders, while downstream of the Kitchener WWTP this measure decreased in Perlidae and increased in spiders. Bray-Curtis beta diversity was dissimilar among sites in all invertebrate taxa; upstream sites differed from those downstream of Waterloo in spiders, Perlidae, and Hydropsychidae, and from those downstream of Kitchener in spiders, Perlidae, and Hydropsychidae. Finally, effluent-derived bacteria were found in the microbiomes of downstream spiders and aquatic insects and not upstream. Overall, results indicated that the microbiomes of invertebrates collected downstream differed from those collected upstream of WWTPs, which has implications for altered host health and transport of WWTP-derived bacteria through aquatic ecosystems.
Collapse
Affiliation(s)
- Elise N Millar
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
31
|
Biodiversity and Sediment Contamination in Wet Stormwater Ponds Depending on Design and Catchment Characteristics. SUSTAINABILITY 2021. [DOI: 10.3390/su132111809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stormwater ponds are a common way to handle stormwater and are used to retain pollutants through sedimentation. The ponds resemble small natural lakes and will be colonized by flora and fauna. How design with respect to age, ratio between wet volume and reduced catchment area and land use influences the retention and how biodiversity is affected was examined. Age and ratio were determined in 135 and 59 ponds, respectively, and 12 of these ponds were selected for studies of dry weight (DW), organic matter (OM), total phosphorus (TP) and aluminum (Al), zinc (Zn), copper (Cu), chromium (Cr), cadmium (Cd) and lead (Pb) in the sediment. Invertebrate biodiversity was determined by Shannon–Wiener index (H’) and Pielou Evenness (J). DW, OM, TP and metals in the sediment close to the outlet of the ponds were influenced by pond age and the volume/area ratio whereas the sediment in the inlet area was more affected by the catchment type. Biodiversity increased with increasing ratio, while age had no effect on the sediment biodiversity but some effect on the water phase biodiversity. Biodiversity decreased with higher OM and TP and tend to decrease with increasing metal content. Higher volume/area ratio results in less sediment accumulation which improves the biodiversity. More pollutants are accumulating with age, which negatively affects the biodiversity. In conclusion, pond ratio, catchment type and, to some extent, age effect the load of contaminants in the sediment and the pond biodiversity. Proper design and management are recommended as a mitigating measure.
Collapse
|
32
|
Usharani B, Vasudevan N. Sewage Treatment through Constructed Wetland System Tailed by Nanocomposite Clay Filter: A Clean Green Initiative. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.18052/www.scipress.com/ilns.83.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sewage treatment through constructed wetland is an ecofriendly and sustainable approach proven effective worldwide. Constructed wetland with appropriate species is capable of eliminating all pollutants in sewage, except pathogen removal. An additional polishing treatment is required to eliminate pathogen. Optimization of HLR in CWS was executed by applying first order kinetics. Nanocomposite clay filter with economically viable materials was synthesized and disinfection ability was evaluated. A novel approach integrating constructed wetland system tailed by nanocomposite clay filter was designed. Control was setup with constructed wetland system devoid of plants integrated with clay filter devoid of nanoparticles. The constructed wetland system devoid of plants was used as plants play a vital role in the removal of pollutants. The quality of the influent for (n=20) BOD, COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron were 248, 345, 26, 4.8, 350, 450, 50, 48, 0.2, 5 mg/L respectively. The quality of effluent in the control was 145, 225, 18, 3.8, 185, 345, 31, 30, 0.6, 2 mg/L for BOD,COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron respectively. While in the test, 10, 30, 2, 1, 30, 128, 13, 12, BDL, BDL mg/L for BOD, COD, TKN, TP,TSS, TDS, SO4, Cl, lead and iron respectively. The inlet concentration of T.C, F.C and E.coli were 42.1x106-6.3x108, 4.9x105-14.4x106 and 7.8x103-3.8x105 respectively. The pathogen reduction in log removal for test and control units were 5.4 and 1.1 for T.C, 4.4 and 1.2 for F.C and 3 and 1 for E.coli. Thus it is a clean green initiative combating the limitations of disinfection surpassing the existing barriers.
Collapse
|
33
|
Usharani B, Vasudevan N. Sewage Treatment through Constructed Wetland System Tailed by Nanocomposite Clay Filter: A Clean Green Initiative. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2021. [DOI: 10.56431/p-6jwscu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sewage treatment through constructed wetland is an ecofriendly and sustainable approach proven effective worldwide. Constructed wetland with appropriate species is capable of eliminating all pollutants in sewage, except pathogen removal. An additional polishing treatment is required to eliminate pathogen. Optimization of HLR in CWS was executed by applying first order kinetics. Nanocomposite clay filter with economically viable materials was synthesized and disinfection ability was evaluated. A novel approach integrating constructed wetland system tailed by nanocomposite clay filter was designed. Control was setup with constructed wetland system devoid of plants integrated with clay filter devoid of nanoparticles. The constructed wetland system devoid of plants was used as plants play a vital role in the removal of pollutants. The quality of the influent for (n=20) BOD, COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron were 248, 345, 26, 4.8, 350, 450, 50, 48, 0.2, 5 mg/L respectively. The quality of effluent in the control was 145, 225, 18, 3.8, 185, 345, 31, 30, 0.6, 2 mg/L for BOD,COD, TKN, TP, TSS, TDS, SO4, Cl, lead and iron respectively. While in the test, 10, 30, 2, 1, 30, 128, 13, 12, BDL, BDL mg/L for BOD, COD, TKN, TP,TSS, TDS, SO4, Cl, lead and iron respectively. The inlet concentration of T.C, F.C and E.coli were 42.1x106-6.3x108, 4.9x105-14.4x106 and 7.8x103-3.8x105 respectively. The pathogen reduction in log removal for test and control units were 5.4 and 1.1 for T.C, 4.4 and 1.2 for F.C and 3 and 1 for E.coli. Thus it is a clean green initiative combating the limitations of disinfection surpassing the existing barriers.
Collapse
|
34
|
Akinwole P, Guta A, Draper M, Atkinson S. Spatio-temporal variations in the physiological profiles of streambed bacterial communities: implication of wastewater treatment plant effluents. World J Microbiol Biotechnol 2021; 37:136. [PMID: 34273007 DOI: 10.1007/s11274-021-03106-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
The effluents of wastewater treatment plants (WWTPs) represent a complex mixture of nutrients and toxic substances, thus, the potential exists for the effluents to significantly impact the biochemical characteristics and bacterial communities of the receiving water. We examined spatial and seasonal patterns, and the impact of effluents on microbial biomass, bacterial community structure, and metabolic diversity on a fourth-order stream. We took triplicate sediment samples at five different locations along a 5000 m transect over three sampling periods. We quantified bacterial community structure as community-level physiological profiles and microbial biomass with phospholipid phosphate analysis. Our findings highlight the worrisome impacts of effluents on microbial biomass and bacterial metabolic diversity on the receiving water. Microbial biomass was significantly higher at the WWTP outfall compared to upstream and downstream sites and correlated positively with sediment physicochemical parameters. Furthermore, our data revealed significant spatial differences in bacterial community structure in the context of WWTP impact. High nutrient availability (lower carbon/nitrogen ratios) at the outfall increased site-specific bacterial metabolic diversity in winter but decreased the same in fall. Seasonal changes in the sedimentary microbial biomass and bacterial carbon substrate utilization were evident regardless of the spatial variations or impacts of the wastewater effluents. Communities in fall showed more versatile substrate utilization patterns than the winter communities. These results suggest that WWTP effluents significantly increased microbial biomass and highlight its mixed effects on bacterial community structure and metabolic diversity. Also, our data underscore a close association between sedimentary physicochemical parameters and the associated microbial functional activities.
Collapse
Affiliation(s)
- Philips Akinwole
- Biology Department, DePauw University, Greencastle, IN, 46135, USA.
| | - Amerti Guta
- Biology Department, DePauw University, Greencastle, IN, 46135, USA
| | - Madeline Draper
- Biology Department, DePauw University, Greencastle, IN, 46135, USA
| | - Sophia Atkinson
- Biology Department, DePauw University, Greencastle, IN, 46135, USA
| |
Collapse
|
35
|
Assessments of Bacterial Community Shifts in Sediments along the Headwaters of São Francisco River, Brazil. CONSERVATION 2021. [DOI: 10.3390/conservation1020008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sustainable use of freshwater resources for human civilization needs requires the assessment and monitoring of freshwater health, and bacterial communities from riverbed sediments have been shown to be susceptible to chronic anthropogenic disturbances in freshwater ecosystems. Here, we took advantage of the occurrence of well-recognized adjacent sections from the Upper São Francisco River basin with well-recognized levels of anthropogenic activity intensity to test the applicability of sediment bacterial communities as bioindicators of impacts on freshwater ecosystems. We applied 16S amplicon sequencing to estimate the diversity and composition of bacterial communities from 12 sampling sites across the Upper São Francisco River basin, classified as being of no, low, or high intensity of anthropogenic activities, and used diversity metrics and LEfSe to compare the patterns of community structure. Our results revealed that accessed sediment environments associated with land areas with a high intensity of anthropogenic activities presented the lowest levels of community diversity, and the bacterial community compositions of these environments were significantly different from the other sampled areas. Our findings can be considered a source of evidence for the usefulness of bacterial community-based approaches as a tool for diagnosis and monitoring of ecosystem health in areas of vulnerable freshwater environments, and can even be incorporated into regular water quality programs.
Collapse
|
36
|
Monitoring Microbial Populations and Antibiotic Resistance Gene Enrichment Associated with Arctic Waste Stabilization Ponds. Appl Environ Microbiol 2021; 87:AEM.02914-20. [PMID: 33452030 PMCID: PMC8091602 DOI: 10.1128/aem.02914-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 01/04/2023] Open
Abstract
Given that the microbial communities of Arctic waste stabilization ponds (WSPs) are poorly studied to date, our characterization of multiple WSP systems and time points provides important baseline data that will assist with ongoing monitoring of effluent impacts on downstream aquatic ecosystems in the Arctic. This research also identifies indicator amplicon sequence variants (ASVs) of WSPs that will be helpful for future monitoring for WSP effluent attenuation and demonstrates that WSP microbial communities are enriched in antibiotic resistance genes. Wastewater management in the Canadian Arctic is challenging due to climate extremes, small population sizes, and lack of conventional infrastructure for wastewater treatment. Although many northern communities use waste stabilization ponds (WSPs) as their primary form of wastewater treatment, few studies have explored WSP microbial communities and assessed effluent impacts on receiving waters from a microbiological perspective. Here, we used 16S rRNA gene and metagenome sequencing to characterize WSP and receiving water microbial communities for two time points bracketing the spring WSP thaw in Baker Lake (Nunavut) and compared these results to other Nunavut WSPs in Cambridge Bay and Kugluktuk. Most amplicon sequence variants (ASVs) recovered from these WSP samples belonged to the phylum Proteobacteria, with considerable variation between the three locations and only six ASVs shared among the WSPs at >0.2% relative abundance. Wastewater indicator ASVs for the Baker Lake WSP were identified, and few indicator ASVs were detected in samples originating from other upstream or downstream sites. The metagenomic data revealed a strong enrichment of antibiotic resistance genes for WSP samples relative to downstream and reference samples, especially for genes associated with macrolide resistance. Together, our results provide a baseline characterization for WSP microbial communities, demonstrate how indicator ASVs can be used to monitor attenuation and dilution of effluent microorganisms, and reveal that WSPs can serve as hot spots for antibiotic resistance genes. IMPORTANCE Given that the microbial communities of Arctic waste stabilization ponds (WSPs) are poorly studied to date, our characterization of multiple WSP systems and time points provides important baseline data that will assist with ongoing monitoring of effluent impacts on downstream aquatic ecosystems in the Arctic. This research also identifies indicator amplicon sequence variants (ASVs) of WSPs that will be helpful for future monitoring for WSP effluent attenuation and demonstrates that WSP microbial communities are enriched in antibiotic resistance genes. Given operational and infrastructure changes anticipated for wastewater treatment systems in the Arctic, baseline data such as these are essential for further development of safe and effective wastewater treatment systems.
Collapse
|
37
|
Freixa A, Perujo N, Langenheder S, Romaní AM. River biofilms adapted to anthropogenic disturbances are more resistant to WWTP inputs. FEMS Microbiol Ecol 2021; 96:5884858. [PMID: 32766791 DOI: 10.1093/femsec/fiaa152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/30/2020] [Indexed: 11/14/2022] Open
Abstract
The sensitivity and spatial recovery of river sediment biofilms along 1 km after the input of two wastewater treatment plants (WWTPs) located in two river reaches with different degrees of anthropogenic influence were investigated. First, at the upper reach, we observed an inhibition of some microbial functions (microbial respiration and extracellular enzyme activities) and strong shifts in bacterial community composition (16S rRNA gene), whereas an increase in microbial biomass and activity and less pronounced effect on microbial diversity and community composition were seen at the lower reach. Second, at the lower reach we observed a quick spatial recovery (around 200 m downstream of the effluent) as most of the functions and community composition were similar to those from reference sites. On the other hand, bacterial community composition and water quality at the upper reach was still altered 1 km from the WWTP effluent. Our results indicate that biofilms in the upstream sites were more sensitive to the effect of WWTPs due to a lower degree of tolerance after a disturbance than communities located in more anthropogenically impacted sites.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research (ICRA), Girona, Spain.,GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Núria Perujo
- Catalan Institute for Water Research (ICRA), Girona, Spain.,GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | - Silke Langenheder
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| | - Anna M Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
38
|
Zhang L, Wang Z, Cai H, Lu W, Li J. Long-term agricultural contamination shaped diversity response of sediment microbiome. J Environ Sci (China) 2021; 99:90-99. [PMID: 33183720 DOI: 10.1016/j.jes.2020.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The pollution caused by agricultural production poses a threat to the ecological integrity of river ecosystems, altering the structure and function of river ecosystems. Differences in microbial community structure provide useful information about the impact of agricultural pollution on the biological integrity of ecosystems, but generally convey little information regarding ecosystem functions. In this study, using Illumina MiSeq sequencing technology based on the 16S rRNA gene, river sediment samples associated with four different types of agricultural pollution were comprehensively analyzed. The results show that the total organic carbon (TOC) content was highest at the YZS site (animal husbandry sewage) among the assayed sites, but the species richness and uniformity were lowest at this site, which may have been caused by the high nutrient source of the sewage. Furthermore, in the three YZS samples affected by the long-term discharge of aquaculture tail-water, the unique genus Dechloromonas and the genus Candidatus-Competitor were observed, which are strongly correlated with phosphorus conversion. The formation of network modules may correspond to the coexistence of functional bacteria accustomed to multiple niche combinations under different agricultural pollution conditions in river sediments. According to the PICRUSt functional prediction, the bacterial community in the agricultural polluted river sediment primarily harbored 46 subfunctions, exhibiting richness of functions. Overall, our results provide a more comprehensive understanding of the structure and ecological processes associated with the aggregation of bacterial communities, which is beneficial for the management of river environments.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China; Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Ziyin Wang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Hua Cai
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Wenxuan Lu
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230036, China
| | - Jing Li
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230036, China
| |
Collapse
|
39
|
Coll C, Bier R, Li Z, Langenheder S, Gorokhova E, Sobek A. Association between Aquatic Micropollutant Dissipation and River Sediment Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14380-14392. [PMID: 33104348 PMCID: PMC7676288 DOI: 10.1021/acs.est.0c04393] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Assessment of micropollutant biodegradation is essential to determine the persistence of potentially hazardous chemicals in aquatic ecosystems. We studied the dissipation half-lives of 10 micropollutants in sediment-water incubations (based on the OECD 308 standard) with sediment from two European rivers sampled upstream and downstream of wastewater treatment plant (WWTP) discharge. Dissipation half-lives (DT50s) were highly variable between the tested compounds, ranging from 1.5 to 772 days. Sediment from one river sampled downstream from the WWTP showed the fastest dissipation of all micropollutants after sediment RNA normalization. By characterizing sediment bacteria using 16S rRNA sequences, bacterial community composition of a sediment was associated with its capacity for dissipating micropollutants. Bacterial amplicon sequence variants of the genera Ralstonia, Pseudomonas, Hyphomicrobium, and Novosphingobium, which are known degraders of contaminants, were significantly more abundant in the sediment incubations where fast dissipation was observed. Our study illuminates the limitations of the OECD 308 standard to account for variation of dissipation rates of micropollutants due to differences in bacterial community composition. This limitation is problematic particularly for those compounds with DT50s close to regulatory persistence criteria. Thus, it is essential to consider bacterial community composition as a source of variability in regulatory biodegradation and persistence assessments.
Collapse
Affiliation(s)
- Claudia Coll
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
- Eawag, Swiss Federal Institute of Aquatic
Science and Technology, 8600 Dübendorf, Switzerland
| | - Raven Bier
- Department
of Ecology and Genetics/Limnology, Uppsala
University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- Stroud Water Research Center, AvondalePennsylvania, 19311, United States
| | - Zhe Li
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
| | - Silke Langenheder
- Department
of Ecology and Genetics/Limnology, Uppsala
University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Elena Gorokhova
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
| | - Anna Sobek
- Department
of Environmental Science (ACES), Stockholm
University, 10691 Stockholm, Sweden
| |
Collapse
|
40
|
Burdon FJ, Bai Y, Reyes M, Tamminen M, Staudacher P, Mangold S, Singer H, Räsänen K, Joss A, Tiegs SD, Jokela J, Eggen RIL, Stamm C. Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. GLOBAL CHANGE BIOLOGY 2020; 26:6363-6382. [PMID: 32881210 PMCID: PMC7692915 DOI: 10.1111/gcb.15302] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/25/2023]
Abstract
Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives.
Collapse
Affiliation(s)
- Francis J. Burdon
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Yaohui Bai
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingPeople's Republic of China
| | - Marta Reyes
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Manu Tamminen
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Present address:
Department of BiologyUniversity of TurkuTurkuFinland
| | - Philipp Staudacher
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Simon Mangold
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Present address:
AgroscopeReckenholzstrasse 191Zurich8046Switzerland
| | - Heinz Singer
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Katja Räsänen
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Adriano Joss
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Scott D. Tiegs
- Department of Biological SciencesOakland UniversityRochesterMIUSA
| | - Jukka Jokela
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Rik I. L. Eggen
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant DynamicsETH ZürichZürichSwitzerland
| | - Christian Stamm
- EawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
41
|
Burdon FJ, Bai Y, Reyes M, Tamminen M, Staudacher P, Mangold S, Singer H, Räsänen K, Joss A, Tiegs SD, Jokela J, Eggen RIL, Stamm C. Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater. GLOBAL CHANGE BIOLOGY 2020. [PMID: 32881210 DOI: 10.5061/dryad.z34tmpgb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives.
Collapse
Affiliation(s)
- Francis J Burdon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Marta Reyes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Manu Tamminen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Philipp Staudacher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Simon Mangold
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Katja Räsänen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Adriano Joss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
42
|
Pascual-Benito M, Ballesté E, Monleón-Getino T, Urmeneta J, Blanch AR, García-Aljaro C, Lucena F. Impact of treated sewage effluent on the bacterial community composition in an intermittent mediterranean stream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115254. [PMID: 32721842 DOI: 10.1016/j.envpol.2020.115254] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Water quality monitoring is essential to safeguard human and environmental health. The advent of next-generation sequencing techniques in recent years, which allow a more in-depth study of environmental microbial communities in the environment, could broaden the perspective of water quality monitoring to include impact of faecal pollution bacteria on ecosystem. In this study, 16 S rRNA amplicon sequencing was used to evaluate the impact of wastewater treatment plant (WWTP) effluent on autochthonous microbial communities of a temporary Mediterranean stream characterized by high flow seasonality (from 0.02 m3/s in winter to 0.006 m3/s in summer). Seven sampling campaigns were performed under different temperatures and streamflow conditions (winter and summer). Water samples were collected upstream (Upper) of the WWTP, the secondary effluent (EF) discharge and 75 m (P75) and 1000 m (P1000) downstream of the WWTP. A total of 5,593,724 sequences were obtained, giving rise to 20,650 amplicon sequence variants (ASV), which were further analysed and classified into phylum, class, family and genus. Each sample presented different distribution and abundance of taxa. Although taxon distribution and abundance differed in each sample, the microbial community structure of P75 resembled that of EF samples, and Upper and P1000 samples mostly clustered together. Alpha diversity showed the highest values for Upper and P1000 samples and presented seasonal differences, being higher in winter conditions of high streamflow and low temperature. Our results suggest the microbial ecology re-establishment, since autochthonous bacterial communities were able to recover from the impact of the WWTP effluent in 1 km. Alpha diversity results indicates a possible influence of environmental factors on the bacterial community structure. This study shows the potential of next-generation sequencing techniques as useful tools in water quality monitoring and management within the climate change scenario.
Collapse
Affiliation(s)
- Miriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Elisenda Ballesté
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Toni Monleón-Getino
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; BIOST3 (Research Group in Biostatistics, Bioinformatics and Data Science), GRBIO (Research Group in Biostatistics and Bioinformatics), Spain
| | - Jordi Urmeneta
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; Biodiversity Research Institute, University of Barcelona, Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain.
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| |
Collapse
|
43
|
Beattie RE, Skwor T, Hristova KR. Survivor microbial populations in post-chlorinated wastewater are strongly associated with untreated hospital sewage and include ceftazidime and meropenem resistant populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140186. [PMID: 32569917 DOI: 10.1016/j.scitotenv.2020.140186] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/21/2023]
Abstract
Wastewater treatment plant (WWTP) effluent has been implicated in the spread of antibiotic resistant bacteria (ARB), including pathogens, as the WWTP environment contains multiple selective pressures that may increase mutation rates, pathogen survivability, and induce gene transfer between bacteria. In WWTPs receiving hospital sewage, this selective effect may be more pronounced due to increased concentrations of antibiotics, ARB, and clinical pathogens from hospital sewage. To determine the extent to which hospital sewage contributes to the microbial community of disinfected wastewater which is released into the environment, we used 16S rRNA sequencing of hospital sewage, WWTP influent, primary effluent, Post-Chlorinated Effluent, and receiving sediments in a combined sewage system to track changes in microbial community composition. We also sequenced the culturable survivor community resistant to β-lactam antibiotics within disinfected effluent. Using molecular source tracking, we found that the hospital sewage microbiome contributes an average of 11.49% of the microbial community in Post-Chlorinated Effluents, suggesting microorganisms identified within hospital sewage can survive or are enriched by the chlorination disinfection process. Additionally, we identified 28 potential pathogens to the species level, seven of which remained detectable in Post-Chlorinated Effluent and environmental sediments. When Post-Chlorinated Effluents were cultured on media containing β-lactam antibiotics ceftazidime and meropenem, a diverse antibiotic resistant survivor community was identified including potential human pathogens Bacillus cereus, Bacillus pumilus, and Chryseobacterium indologenes. Together, these results indicate that although wastewater treatment does significantly reduce pathogenic loads and ARBs, their continual presence in disinfected wastewater and receiving sediments suggests additional treatment and microbial tracking systems are needed to reduce human and animal health risks.
Collapse
Affiliation(s)
- Rachelle E Beattie
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee 53233, WI, USA.
| | - Troy Skwor
- Department of Biomedical Sciences, University of Wisconsin - Milwaukee, Milwaukee 53211, WI, USA.
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University, 1428 W Clybourn Street, Milwaukee 53233, WI, USA.
| |
Collapse
|
44
|
Li D, Sharp JO, Drewes JE. Microbial genetic potential for xenobiotic metabolism increases with depth during biofiltration. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:2058-2069. [PMID: 33084698 DOI: 10.1039/d0em00254b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Water infiltration into the subsurface can result in pronounced biogeochemical depth gradients. In this study, we assess metabolic potential and properties of the subsurface microbiome during water infiltration by analyzing sediments from spatially-segmented columns. Past work in these laboratory set-ups demonstrated that removal efficiencies of trace organic pollutants were enhanced by limited availability of biodegradable dissolved organic carbon (BDOC) associated with higher humic ratios and deeper sediment regions. Distinct differences were observed in the microbial community when contrasting shallow versus deeper profile sediments. Metagenomic analyses revealed that shallow sediments contained an enriched potential for bacterial growth and division processes. In contrast, deeper sediments harbored a significant increase in genes associated with the metabolism of secondary metabolites and the biotransformation of xenobiotic water pollutants. Metatranscripts further supported this trend, with increased potential for metabolic attributes associated with the biotransformation of xenobiotics and antibiotic resistance within deeper sediments. Furthermore, increasing ratios of humics in feed solutions correlated to enhanced expression of genes associated with xenobiotic biodegradation. These results provide genetic support for the interplay of dissolved organic carbon limitation and enhanced trace organic biotransformation by the subsurface microbiome.
Collapse
Affiliation(s)
- Dong Li
- NSF Engineering Research Center ReNUWIt, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | | | | |
Collapse
|
45
|
Fernandez M, Pereira PP, Agostini E, González PS. Impact assessment of bioaugmented tannery effluent discharge on the microbiota of water bodies. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:973-986. [PMID: 32556791 DOI: 10.1007/s10646-020-02237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2020] [Indexed: 05/09/2023]
Abstract
Effluents are commonly discharged into water bodies, and in order for the process to be as environmentally sound as possible, the potential effects on native water communities must be assessed alongside the quality parameters of the effluents themselves. In the present work, changes in the bacterial diversity of streamwater receiving a tannery effluent were monitored by high-throughput MiSeq sequencing. Physico-chemical and microbiological parameters and acute toxicity were also evaluated through different bioassays. After the discharge of treated effluents that had been either naturally attenuated or bioaugmented, bacterial diversity decreased immediately in the streamwater samples, as evidenced by the over-representation of taxa such as Brachymonas, Arcobacter, Marinobacterium, Myroides, Paludibacter and Acinetobacter, typically found in tannery effluents. However, there were no remarkable changes in diversity over time (after 1 day). In terms of the physico-chemical and microbiological parameters analyzed, chemical oxygen demand and total bacterial count increased in response to discharge of the treated effluents. No lethal effects were observed in Lactuca sativa L. seeds or Rhinella arenarum embryos exposed to the streamwater that had received the treated effluents. All of these results contribute to the growing knowledge about the environmental safety of effluent discharge procedures.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Paola P Pereira
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, INBIAS-CONICET, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
46
|
Wang Q, Liang J, Zhao C, Bai Y, Liu R, Liu H, Qu J. Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114478. [PMID: 32283459 DOI: 10.1016/j.envpol.2020.114478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Currently, wastewater treatment plant (WWTP) upgrades have been implemented in various countries to improve the water quality of the receiving ecosystems and protect aquatic species from potential deleterious effects. The impact of WWTP upgrades on biological communities and functions in receiving waters is a fundamental issue that remains largely unaddressed, especially for microbial communities. Here, we selected two wastewater-dominant rivers in Beijing (China) as study sites, i.e., one river receiving water from an upgraded WWTP to explore the impacts of upgrade on aquatic ecosystems and another river receiving water from a previously upgraded WWTP as a reference. After a five-year investigation, we found that WWTP upgrade significantly decreased total organic nitrogen (N) in the receiving river. As a biological response, N-metabolism-related bacterioplankton are accordingly altered in composition and tend to intensively interact according to the network analysis. Metagenomic analysis based on the N-cycling genes and metagenomic-assembled genomes revealed that WWTP upgrade decreased the abundance of nitrifying bacteria but increased that of denitrifying and dissimilatory nitrate reduction to ammonium (DNRA) bacteria in the receiving river, according to their marker gene abundances. After calculation of the ratios between DNRA and denitrifying bacteria and quantification of genes/bacteria related to ammonium cycling, we deduced the changes in N-metabolism-related bacteria are likely an attempt to provide enough bioavailable N for plankton growth as conservation of ammonium was enhanced in receiving river after WWTP upgrade.
Collapse
Affiliation(s)
- Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinsong Liang
- Harbin Institute of Technology, School of Civil and Environmental Engineering, Shenzhen, 518055, China
| | - Chen Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
47
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. First report on polybrominated diphenyl ethers in the Iranian Coral Islands: Concentrations, profiles, source apportionment, and ecological risk assessment. CHEMOSPHERE 2020; 251:126397. [PMID: 32169708 DOI: 10.1016/j.chemosphere.2020.126397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Coral reefs are challenged by multiple stressors due to the growing industrialization. Despite that, data on their environment are still scarce, and no research is yet performed on polybrominated diphenyl ethers in the Persian Gulf area. Seeking to fill in this gap, the present study aims to determine spatio-vertical distributions, source apportionment and ecological risk of polybrominated diphenyl ethers in the sediment cores and seawater samples from ten coral reef Islands in the Persian Gulf, Iran. Σ12PBDEs concentrations ranged from 0.42 ± 0.04 to 47.14 ± 1.35 ng g-1 dw in sediments, and from 1.17 ± 0.06 to 7.21 ± 1.13 ng L-1 in seawater. The vertical polybrominated diphenyl ethers distribution varied significantly among the sampling stations and different depths with a decreasing trend towards the surface and peaks around 12-20 cm. Both in the seawater and sediment samples, elevated polybrominated diphenyl ethers loadings were observed in highly industrialized areas. Deca-bromodiphenyl ether-209 was the predominant congener along the sediment cores, whereas Tetra-bromodiphenyl ether-47 and Penta-bromodiphenyl ether-100 dominated in seawater samples. Commercial Deca-bromodiphenyl ether mixture was found to be the major source of polybrominated diphenyl ethers. Penta-bromodiphenyl ether was revealed to be the major ecological risk driver in the study area: it posed medium to high-risk quotient to sediment dwelling organisms. This study indicated that coral reefs are playing an important role in retaining polybrominated diphenyl ethers and highlighted the need to manage polybrominated diphenyl ethers contamination in the coral reef environment.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Mehdi Dashtbozorg
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
48
|
Dai T, Zhao Y, Ning D, Huang B, Mu Q, Yang Y, Wen D. Dynamics of coastal bacterial community average ribosomal RNA operon copy number reflect its response and sensitivity to ammonium and phosphate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113971. [PMID: 31972418 DOI: 10.1016/j.envpol.2020.113971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The nutrient-rich effluent from wastewater treatment plants (WWTPs) constitutes a significant disturbance to coastal microbial communities, which in turn affect ecosystem functioning. However, little is known about how such disturbance could affect the community's stability, an important knowledge gap for predicting community response to future disturbances. Here, we examined dynamics of coastal sediment microbial communities with and without a history of WWTP's disturbances (named H1 and H0 hereafter) after simulated nutrient input loading at the low level (5 mg L-1 NH4+-N and 0.5 mg L-1 PO43--P) or high level (50 mg L-1 NH4+-N and 5.0 mg L-1 PO43--P) for 28 days. H0 community was highly sensitive to both low and high nutrient loading, showing a faster community turnover than H1 community. In contrast, H1 community was more efficient in nutrient removal. To explain it, we found that H1 community constituted more abundant and diversified r-strategists, known to be copiotrophic and fast in growth and reproduction, than H0 community. As nutrient was gradually consumed, both communities showed a succession of decreasing r-strategists. Accordingly, there was a decrease in community average ribosomal RNA operon (rrn) copy number, a recently established functional trait of r-strategists. Remarkably, the average rrn copy number of H0 communities was strongly correlated with NH4+-N (R2 = 0.515, P = 0.009 for low nutrient loading; R2 = 0.749, P = 0.001 for high nutrient loading) and PO43--P (R2 = 0.378, P = 0.034 for low nutrient loading; R2 = 0.772, P = 0.001 for high nutrient loading) concentrations, while that of H1 communities was only correlated with NH4+-N at high nutrient loading (R2 = 0.864, P = 0.001). Our results reveal the potential of using rrn copy number to evaluate the community sensitivity to nutrient disturbances, but community's historical contingency need to be taken in account.
Collapse
Affiliation(s)
- Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yanan Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Daliang Ning
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, And School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK, USA; Consolidated Core Laboratory, University of Oklahoma, Norman, OK, USA
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
49
|
Makowska N, Philips A, Dabert M, Nowis K, Trzebny A, Koczura R, Mokracka J. Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome. WATER RESEARCH 2020; 170:115277. [PMID: 31756613 DOI: 10.1016/j.watres.2019.115277] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 05/06/2023]
Abstract
The emergence and spread of resistance to antibiotics among bacteria is the most serious global threat to public health in recent and coming decades. In this study, we characterized qualitatively and quantitatively β-lactamase and carbapenemase genes in the wastewater resistome of Central Wastewater Treatment Plant in Koziegłowy, Poland. The research concerns determination of the frequency of genes conferring resistance to β-lactam and carbapenem antibiotics in the genomes of culturable bacteria, as well as in the wastewater metagenome at three stages of treatment: raw sewage, aeration tank, and final effluent. In the final effluent we found bacteria with genes that pose the greatest threat to public health, including genes of extended spectrum β-lactamases - blaCTX-M, carbapenemases - blaNDM, blaVIM, blaGES, blaOXA-48, and showed that during the wastewater treatment their frequency increased. Moreover, the wastewater treatment process leads to significant increase in the relative abundance of blaTEM and blaGES genes and tend to increase the relative abundance of blaCTX-M, blaSHV and blaOXA-48 genes in the effluent metagenome. The biodiversity of bacterial populations increased during the wastewater treatment and there was a correlation between the change in the composition of bacterial populations and the variation of relative abundance of β-lactamase and carbapenemase genes. PCR-based quantitative metagenomic analysis combined with analyses based on culture methods provided significant information on the routes of ARBs and ARGs spread through WWTP. The limited effectiveness of wastewater treatment processes in the elimination of antibiotic-resistant bacteria and resistance genes impose the need to develop an effective strategy and implement additional methods of wastewater disinfection, in order to limit the increase and the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Nicoletta Makowska
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Anna Philips
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mirosława Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Katarzyna Nowis
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Ryszard Koczura
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Joanna Mokracka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.
| |
Collapse
|
50
|
Gu N, Song Q, Yang X, Yu X, Li X, Li G. Fluorescence characteristics and biodegradability of dissolved organic matter (DOM) leached from non-point sources in southeastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113807. [PMID: 31875571 DOI: 10.1016/j.envpol.2019.113807] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Under the increasingly intensive measures for surface water restoration in China, point source discharge has been strictly regulated; however, for non-point sources, which constitute a large part of surface water pollutants, effective control has been difficult to reach. A comprehensive understanding of the characteristics of non-point source pollutants is essential for surface water improvement programs of cities such as Ningbo, on the southeast coast of China. Ningbo has made tremendous efforts in the past few years to control point source pollutants, but available data and management strategies on the non-point source pollutants are still limited. To this end, leachates of representative non-point source samples from the territory of Ningbo, including cropland and wetland soil, urban channel sediment, and poultry manure, were examined and compared focusing on the fluorescence characteristics and biodegradability of the dissolved organic matter (DOM). Results indicated that biodegradable dissolved organic carbon (BDOC) accounting for the total DOC was 46.7 ± 0.7% for cropland, wetland (56.3 ± 6.8%), non-sewage channel (60.1 ± 0.4%), sewage channel (74.5 ± 1.1%), and poultry manure (62.7 ± 4.5%). The leachates of the studied samples showed significant differences in both the amount and composition of DOM. However, a fluorescence component representing tryptophan-like substances identified by the excitation-emission matrix (EEM) combined with parallel factor (PARAFAC) analysis effectively predicted the BDOC variations among the studied samples. Moreover, under the studied nutrient concentrations, which were equivalent to Grade III water quality in China, nutrient limitation of microbial degradation was not observed. Threats to water quality, especially excessive consumption of dissolved oxygen, could be posed by the non-point source leachates due to their high bioavailability, large distribution, and weak nutrient restraint. Further investigations, including a quantitative evaluation of the non-point source pollution contribution, and pollutant blocking techniques are required.
Collapse
Affiliation(s)
- Nitao Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Qingbin Song
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xueling Yang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| | - XiaoMing Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| |
Collapse
|