1
|
Son Y, Yang J, Kim W, Park W. Advanced bacteria-based biomaterials for environmental applications. BIORESOURCE TECHNOLOGY 2024; 414:131646. [PMID: 39419409 DOI: 10.1016/j.biortech.2024.131646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
A large amount of anthropogenic CO2 emissions are derived from Portland cement production, contributing to global warming, which threatens human health and exposes flora and fauna to ecological imbalance. With concerns about the high maintenance and repair costs of concrete, the development of microbially induced calcium carbonate precipitation (MICP)-based self-healing concrete has been extensively examined. Bacterial carriers for microcrack healing could enhance the concrete's self-healing capacity by maintaining bacterial activity and viability. To reduce cement consumption, the development of sustainable engineered living materials (ELMs) based on MICP has become a promising new research topic that combines synthetic biology and material science, and they can potentially serve as alternatives to traditional construction materials. This review aims to describe bacterial carriers and the ongoing development of advanced ELMs based on MICP. We also highlight the emerging issues linked to applying MICP technology at the commercial scale, including economic challenges and environmental concerns.
Collapse
Affiliation(s)
- Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Vásquez-Castro F, Wicki-Emmenegger D, Fuentes-Schweizer P, Nassar-Míguez L, Rojas-Gätjens D, Rojas-Jimenez K, Chavarría M. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001513. [PMID: 39530301 PMCID: PMC11555687 DOI: 10.1099/mic.0.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family Pseudomonadaceae being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera Lysobacter, Streptomyces, Pseudomonas, Brevundimonas and Bacillus. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.
Collapse
Affiliation(s)
- Felipe Vásquez-Castro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Daniela Wicki-Emmenegger
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- CELEQ, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Layla Nassar-Míguez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
3
|
Seixas MH, Munroe JS, Eggleston EM. Bacterial diversity and geomicrobiology of Winter Wonderland ice cave, Utah, USA. Microbiologyopen 2024; 13:e1426. [PMID: 38995161 PMCID: PMC11241547 DOI: 10.1002/mbo3.1426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
The Winter Wonderland ice cave, located at an elevation of 3140 m above sea level in the Uinta Mountains of northern Utah, USA, maintains a constant sub-zero temperature. Seasonal snowmelt and rain enter the cave, freeze on the surface of the existing ice, and contribute to a 3-m-thick layered ice mass. This ice mass contains organic matter and cryogenic cave carbonates (CCCs) that date back centuries. In this study, samples of ice, liquid water, and exposed CCCs were collected to examine the bacterial communities within the cave and to determine if these communities vary spatially and between sample types. Flow cytometry showed that cell counts are an order of magnitude higher in liquid water samples than in ice. Epifluorescence microscopy and scanning electron microscopy imaging revealed potential coccoid and bacillus microbial morphologies in water samples and putative cells or calcite spherules in the CCCs. The diversity of bacteria associated with soil, identified through sequence-based analysis, supports the hypothesis that water enters the cave by filtering through soil and bedrock. A differential abundance of bacterial taxa was observed between sample types, with the greatest diversity found in CCCs. This supports a geomicrobiological framework where microbes aggregate in the water, sink into a concentrated layer, and precipitate out of the ice with the CCCs, thereby reducing the cell counts in the ice. These CCCs may provide essential nutrients for the bacteria or could themselves be products of biomineralization.
Collapse
Affiliation(s)
- Miranda Herschel Seixas
- Department of Earth and Climate SciencesMiddlebury CollegeMiddleburyVermontUSA
- Biology DepartmentMiddlebury CollegeMiddleburyVermontUSA
| | - Jeffrey S. Munroe
- Department of Earth and Climate SciencesMiddlebury CollegeMiddleburyVermontUSA
| | | |
Collapse
|
4
|
Guido A, Calcagnile M, Talà A, Tredici SM, Belmonte G, Alifano P. Microbial consortium involved in ferromanganese and francolite biomineralization in an anchialine environment (Zinzulùsa Cave, Castro, Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173423. [PMID: 38797412 DOI: 10.1016/j.scitotenv.2024.173423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Tidally-influenced subterranean settings represent natural geomicrobiological laboratories, relatively unexplored, that facilitate the investigation of new biomineralization processes. The unusual water chemistry of Zinzulùsa Cave and its oligotrophic and aphotic conditions have allowed the development of a unique ecosystem in which complex bacterial activities induce rare biomineralization processes. A diversified microbial community develops on centimeter-thick crusts that form in the submerged part of the cave. The crusts are formed of Ca-phosphate minerals, mostly carbonate-fluoroapatite (francolite), covered by a black crust, few microns in thickness, composed of ferromanganiferous oxides (hematite and vernadite). Diffuse coccoidal and filamentous bacteria and amorphous organic matter are mixed with the minerals. The micromorphologies and comparative 16S rRNA gene-based metabarcoding analyses identify a "core microbiota" also common to other natural environments characterized by FeMn and Ca-phosphate mineralization. The microbiota is characterized by nitrifying, sulfide/sulfur/thiosulfate-oxidizing and sulfate/thiosulfate/sulfur-reducing bacteria. In addition, manganese-oxidizing bacteria include the recently described "Ca. Manganitrophus noduliformans" and an abundance of bacteria belonging to the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum, as well as Haliangiales (fruiting body-forming bacteria) and Hyphomicrobiales (stalked and budding bacteria) that are known to produce extracellular polymers that trap iron and manganese oxides. 16S rRNA gene metabarcoding analysis showed the presence of bacteria able to utilize many organic P substrates, including Ramlibacter, and SEM images revealed traces of fossilized microorganisms resembling "cable bacteria", which may play a role in Ca-phosphate biomineralization. Overall, the data indicate biomineralization processes induced by microbial metabolic activities for both ferromanganiferous oxide and francolite components of these crusts.
Collapse
Affiliation(s)
- Adriano Guido
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Cosenza, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | | | - Genuario Belmonte
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Lecce, Italy.
| |
Collapse
|
5
|
Martin-Pozas T, Fernandez-Cortes A, Cuezva S, Jurado V, Gonzalez-Pimentel JL, Hermosin B, Ontañon R, Arias P, Cañaveras JC, Sanchez-Moral S, Saiz-Jimenez C. Microclimate, airborne particles, and microbiological monitoring protocol for conservation of rock-art caves: The case of the world-heritage site La Garma cave (Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119762. [PMID: 38081083 DOI: 10.1016/j.jenvman.2023.119762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Cave heritage is often threatened by tourism or even scientific activities, which can lead to irreversible deterioration. We present a preventive conservation monitoring protocol to protect caves with rock art, focusing on La Garma Cave (Spain), a World Heritage Site with valuable archaeological materials and Palaeolithic paintings. This study assessed the suitability of the cave for tourist use through continuous microclimate and airborne particles monitoring, biofilm analysis, aerobiological monitoring and experimental visits. Our findings indicate several factors that make it inadvisable to adapt the cave for tourist use. Human presence and transit within the cave cause cumulative effects on the temperature of environmentally very stable and fragile sectors and significant resuspension of particles from the cave sediments. These environmental perturbations represent severe impacts as they affect the natural aerodynamic control of airborne particles and determine bacterial dispersal throughout the cave. This monitoring protocol provides part of the evidence to design strategies for sustainable cave management.
Collapse
Affiliation(s)
| | | | - Soledad Cuezva
- Departamento de Geologia, Geografia y Medio Ambiente, Universidad de Alcala, 28805, Madrid, Spain
| | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012, Sevilla, Spain
| | - Jose Luis Gonzalez-Pimentel
- Departamento de Genetica, Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Bernardo Hermosin
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012, Sevilla, Spain
| | - Roberto Ontañon
- Museo de Prehistoria y Arqueologia de Cantabria - Cuevas Prehistoricas de Cantabria, 39009, Santander, Spain
| | - Pablo Arias
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC). Universidad de Cantabria, 39009, Santander, Spain
| | - Juan Carlos Cañaveras
- Departmento de Ciencias de la Tierra y Medio Ambiente, Universida de Alicante, 03690, Alicante, Spain
| | | | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012, Sevilla, Spain
| |
Collapse
|
6
|
Carter MS, Tuttle MJ, Mancini JA, Martineau R, Hung CS, Gupta MK. Microbially Induced Calcium Carbonate Precipitation by Sporosarcina pasteurii: a Case Study in Optimizing Biological CaCO 3 Precipitation. Appl Environ Microbiol 2023; 89:e0179422. [PMID: 37439668 PMCID: PMC10467343 DOI: 10.1128/aem.01794-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Current production of traditional concrete requires enormous energy investment that accounts for approximately 5 to 8% of the world's annual CO2 production. Biocement is a building material that is already in industrial use and has the potential to rival traditional concrete as a more convenient and more environmentally friendly alternative. Biocement relies on biological structures (enzymes, cells, and/or cellular superstructures) to mineralize and bind particles in aggregate materials (e.g., sand and soil particles). Sporosarcina pasteurii is a workhorse organism for biocementation, but most research to date has focused on S. pasteurii as a building material rather than a biological system. In this review, we synthesize available materials science, microbiology, biochemistry, and cell biology evidence regarding biological CaCO3 precipitation and the role of microbes in microbially induced calcium carbonate precipitation (MICP) with a focus on S. pasteurii. Based on the available information, we provide a model that describes the molecular and cellular processes involved in converting feedstock material (urea and Ca2+) into cement. The model provides a foundational framework that we use to highlight particular targets for researchers as they proceed into optimizing the biology of MICP for biocement production.
Collapse
Affiliation(s)
- Michael S. Carter
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Matthew J. Tuttle
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Joshua A. Mancini
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Rhett Martineau
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- Biological and Nanoscale Technologies Division, UES, Inc., Dayton, Ohio, USA
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate Air Force Research Lab, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| |
Collapse
|
7
|
Navarro A, Sanseverino I, Cappelli F, Lahm A, Niegowska M, Fabbri M, Paracchini V, Petrillo M, Skejo H, Valsecchi S, Pedraccini R, Guglielmetti S, Frattini S, Villani G, Lettieri T. Study of antibiotic resistance in freshwater ecosystems with low anthropogenic impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159378. [PMID: 36272475 DOI: 10.1016/j.scitotenv.2022.159378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the bacterial diversity and the background level of antibiotic resistance in two freshwater ecosystems with low anthropogenic impact in order to evaluate the presence of natural antimicrobial resistance in these areas and its potential to spread downstream. Water samples from a pre-Alpine and an Apennine river (Variola and Tiber, respectively) were collected in three different sampling campaigns and bacterial diversity was assessed by 16S sequencing, while the presence of bacteria resistant to five antibiotics was screened using a culturable approach. Overall bacterial load was higher in the Tiber River compared with the Variola River. Furthermore, the study revealed the presence of resistant bacteria, especially the Tiber River showed, for each sampling, the presence of resistance to all antibiotics tested, while for the Variola River, the detected resistance was variable, comprising two or more antibiotics. Screening of two resistance genes on a total of one hundred eighteen bacterial isolates from the two rivers showed that blaTEM, conferring resistance to β-lactam antibiotics, was dominant and present in ~58 % of isolates compared to only ~9 % for mefA/E conferring resistance to macrolides. Moreover, β-lactam resistance was detected in various isolates showing also resistance to additional antibiotics such as macrolides, aminoglycosides and tetracyclines. These observations would suggest the presence of co-resistant bacteria even in non-anthropogenic environments and this resistance may spread from the environment to humans and/or animals.
Collapse
Affiliation(s)
- Anna Navarro
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Isabella Sanseverino
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Francesca Cappelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy
| | - Armin Lahm
- Bioinformatic project support, P.za S.M. Liberatrice 18, 00153 Roma, Italy
| | - Magdalena Niegowska
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Marco Fabbri
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Valentina Paracchini
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | | | - Helle Skejo
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Sara Valsecchi
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy
| | | | | | | | - Gabriella Villani
- Energy and Sustainable Economic Development (ENEA), Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Teresa Lettieri
- European Commission Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
8
|
Impact of a biorepair treatment on the diversity of calcifying bacterial communities at the surface of cracked concrete walls. Appl Microbiol Biotechnol 2022; 107:187-200. [DOI: 10.1007/s00253-022-12313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
|
9
|
Calcareous deposit formation under cathodic polarization and marine biocalcifying bacterial activity. Bioelectrochemistry 2022; 148:108271. [DOI: 10.1016/j.bioelechem.2022.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
|
10
|
Ahamada Rachid N, Doğruöz Güngör N. Major impacts of caving activities on cave microbial diversity: case study of Morca Cave, Turkey. Int Microbiol 2022; 26:179-190. [PMID: 36331653 DOI: 10.1007/s10123-022-00287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Some of microorganisms identified in cave ecosystems have been reported to play a permanent and strategic role for maintaining life of these environments. Human entrance into caves can induce some changes of cave physicochemical parameters which ultimately impacts the living organisms. In these facts, for the first time, Morca Cave was explored in a purpose to evaluate the impacts that can be caused by the human activities on microbial diversity in a limited period of time. Morca is a karts cave located in the Taşeli Plateau in the Middle Taurus mountains in Turkey. The first entrance into this cave was in 2018, and expeditors reached to - 500 m. During the second expedition in 2019, a camp was established at the - 1040-m depth during 4 days. In order to evaluate the human impacts in a new explored cave, this camping depth is chosen to be our studied area because it was its first entrance. Before the installation and at the end of the camp, sediments and surface samples were taken from different points of the camp area and around. Sequencing of 16 s rRNA of each sample to isolate DNA by using the next-generation sequencing (NGS) method was performed. The profile of the microbial diversity before the camping revealed that the class Thermoplasmata was dominated the archaea group and Gammaproteobacteria and Alphaproteobacteria were the most dominant bacterial classes. After the camp, most studied sites were noted with a decrease of microbial diversity especially the previous cited classes strains. Bacteria belonging to Bacilli class have increased after the camp. Increase of bacteria that are belonging to Bacteroidia has also observed in the most active areas. This present study highlight how cave microbial diversity can respond to the human activities within a short period inside a closed cave. Furthermore, it may constitute a solid basis and support on the improvement of techniques for cave management and expedition planning for the conservation of cave nature.
Collapse
Affiliation(s)
- Nahdhoit Ahamada Rachid
- Institute of Graduate Studies in Sciences, Istanbul University, 34134 Vezneciler Fatih, Istanbul, Turkey
| | - Nihal Doğruöz Güngör
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler Fatih, Istanbul, Turkey.
| |
Collapse
|
11
|
Ghezzi D, Foschi L, Firrincieli A, Hong PY, Vergara F, De Waele J, Sauro F, Cappelletti M. Insights into the microbial life in silica-rich subterranean environments: microbial communities and ecological interactions in an orthoquartzite cave (Imawarì Yeuta, Auyan Tepui, Venezuela). Front Microbiol 2022; 13:930302. [PMID: 36212823 PMCID: PMC9537377 DOI: 10.3389/fmicb.2022.930302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Microbial communities inhabiting caves in quartz-rich rocks are still underexplored, despite their possible role in the silica cycle. The world’s longest orthoquartzite cave, Imawarì Yeuta, represents a perfect arena for the investigation of the interactions between microorganisms and silica in non-thermal environments due to the presence of extraordinary amounts of amorphous silica speleothems of different kinds. In this work, the microbial diversity of Imawarì Yeuta was dissected by analyzing nineteen samples collected from different locations representative of different silica amorphization phases and types of samples. Specifically, we investigated the major ecological patterns in cave biodiversity, specific taxa enrichment, and the main ecological clusters through co-occurrence network analysis. Water content greatly contributed to the microbial communities’ composition and structures in the cave leading to the sample clustering into three groups DRY, WET, and WATER. Each of these groups was enriched in members of Actinobacteriota, Acidobacteriota, and Gammaproteobacteria, respectively. Alpha diversity analysis showed the highest value of diversity and richness for the WET samples, while the DRY group had the lowest. This was accompanied by the presence of correlation patterns including either orders belonging to various phyla from WET samples or orders belonging to the Actinobacteriota and Firmicutes phyla from DRY group samples. The phylogenetic analysis of the dominant species in WET and DRY samples showed that Acidobacteriota and Actinobacteriota strains were affiliated with uncultured bacteria retrieved from various oligotrophic and silica/quartz-rich environments, not only associated with subterranean sites. Our results suggest that the water content greatly contributes to shaping the microbial diversity within a subterranean quartzite environment. Further, the phylogenetic affiliation between Imawarì Yeuta dominant microbes and reference strains retrieved from both surface and subsurface silica- and/or CO2/CO-rich environments, underlines the selective pressure applied by quartz as rock substrate. Oligotrophy probably in association with the geochemistry of silica/quartz low pH buffering activity and alternative energy sources led to the colonization of specific silica-associated microorganisms. This study provides clues for a better comprehension of the poorly known microbial life in subsurface and surface quartz-dominated environments.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Daniele Ghezzi,
| | - Lisa Foschi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pei-Ying Hong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Freddy Vergara
- Teraphosa Exploring Team, Puerto Ordaz, Venezuela
- La Venta Geographic Explorations Association, Treviso, Italy
| | - Jo De Waele
- La Venta Geographic Explorations Association, Treviso, Italy
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Francesco Sauro
- Teraphosa Exploring Team, Puerto Ordaz, Venezuela
- La Venta Geographic Explorations Association, Treviso, Italy
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Martina Cappelletti,
| |
Collapse
|
12
|
Mudgil D, Paul D, Baskar S, Baskar R, Shouche YS. Cultivable microbial diversity in speleothems using MALDI-TOF spectrometry and DNA sequencing from Krem Soitan, Krem Lawbah, Krem Mawpun, Khasi Hills, Meghalaya, India. Arch Microbiol 2022; 204:495. [PMID: 35842875 PMCID: PMC9288962 DOI: 10.1007/s00203-022-02916-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 11/02/2022]
Abstract
AbstractThe microbial diversity in the Indian caves is inadequately characterized. This study reports on the culturable microbial communities in caves from the Indian sub-continent. This study aims to expand the current understanding of bacterial diversity in the speleothems and wall deposits from Krem Soitan, Krem Lawbah, Krem Mawpun in Khasi Hills, Meghalaya, India. A culture-dependent approach was employed for elucidating the community structure in the caves using MALDI-TOF spectrometry and 16S rRNA gene sequencing. A high bacterial diversity and a greater bacterial taxonomic diversity is reported using MALDI-TOF spectrometry and 16S rRNA gene sequencing. High microbial enumerations were observed on dilute nutrient agar (5.3 × 103 to 8.8 × 105) followed by M9 minimal medium (4 × 104 to 1.7 × 105) and R2A medium (1.0 × 104 to 5.7 × 105). A total of 826 bacterial isolates were selected and preserved for the study. 295 bacterial isolates were identified using MALDI-TOF spectrometry and the isolates which showed no reliable peaks were further identified by 16S rRNA gene sequencing. A total 91% of the bacterial diversity was dominated by Proteobacteria (61%) and Actinobacteria (30%). In addition, bacterial phyla include Firmicutes (7.45%), Deinococcus-Thermus (0.33%) and Bacteroidetes (0.67%) were found in the samples. At the genus level, Pseudomonas (55%) and Arthrobacter (23%) were ubiquitous followed by Acinetobacter, Bacillus, Brevundimonas, Deinococcus, Flavobacterium, Paenibacillus, Pseudarthrobacter. Multivariate statistical analysis indicated that the bacterial genera formed separate clusters depending on the geochemical constituents in the spring waters suitable for their growth and metabolism. To the best of our knowledge, there are no previous geomicrobiological investigations in these caves and this study is a pioneering culture dependent study of the microbial community with many cultured isolates.
Collapse
|
13
|
Šovljanski O, Tomić A, Markov S. Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials. Microorganisms 2022; 10:microorganisms10071399. [PMID: 35889117 PMCID: PMC9322135 DOI: 10.3390/microorganisms10071399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 02/07/2023] Open
Abstract
The civil research community has been attracted to self-healing bacterial-based concrete as a potential solution in the economy 4.0 era. This concept provides more sustainable material with a longer lifetime due to the reduction of crack appearance and the need for anthropogenic impact. Regardless of the achievements in this field, the gap in the understanding of the importance of the bacterial role in self-healing concrete remains. Therefore, understanding the bacterial life cycle in the self-healing effect of cement-based materials and selecting the most important relationship between bacterial contribution, self-healing effect, and material characteristics through the process of microbiologically (bacterially) induced carbonate precipitation is just the initial phase for potential applications in real environmental conditions. The concept of this study offers the possibility to recognize the importance of the bacterial life cycle in terms of application in extreme conditions of cement-based materials and maintaining bacterial roles during the self-healing effect.
Collapse
|
14
|
Bontemps Z, Alonso L, Pommier T, Hugoni M, Moënne-Loccoz Y. Microbial ecology of tourist Paleolithic caves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151492. [PMID: 34793801 DOI: 10.1016/j.scitotenv.2021.151492] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms colonize caves extensively, and in caves open for tourism they may cause alterations on wall surfaces. This is a major concern in caves displaying Paleolithic art, which is usually fragile and may be irremediably damaged by microbial alterations. Therefore, many caves were closed for preservation purposes, e.g. Lascaux (France), Altamira (Spain), while others were never opened to the public to avoid microbial contamination, e.g. Chauvet Cave (France), etc. The recent development of high-throughput sequencing technologies allowed several descriptions of cave microbial diversity and prompted the writing of this review, which focuses on the cave microbiome for the three domains of life (Bacteria, Archaea, microeukaryotes), the impact of tourism-related anthropization on microorganisms in Paleolithic caves, and the development of microbial alterations on the walls of these caves. This review shows that the microbial phyla prevalent in pristine caves are similar to those evidenced in water, soil, plant and metazoan microbiomes, but specificities at lower taxonomic levels remain to be clarified. Most of the data relates to Bacteria and Fungi, while other microeukaryotes and Archaea are poorly documented. Tourism may cause shifts in the microbiota of Paleolithic caves, but larger-scale investigation are required as these shifts may differ from one cave to the next. Finally, different types of alterations can occur in caves, especially in Paleolithic caves. Many microorganisms potentially involved have been identified, but diversity analyses of these alterations have not always included a comparison with neighboring unaltered zones as controls, making such associations uncertain. It is expected that omics technologies will also allow a better understanding of the functional diversities of the cave microbiome. This will be needed to decipher microbiome dynamics in response to touristic frequentation, to guide cave management, and to identify the most appropriate reclamation approaches to mitigate microbial alterations in tourist Paleolithic caves.
Collapse
Affiliation(s)
- Zélia Bontemps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Lise Alonso
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Thomas Pommier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Mylène Hugoni
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France.
| |
Collapse
|
15
|
Puglisi E, Squartini A, Terribile F, Zaccone C. Pedosedimentary and microbial investigation of a karst sequence record. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151297. [PMID: 34756896 DOI: 10.1016/j.scitotenv.2021.151297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
A 3-m thick sediment sequence, found in a limestone mine located in the south of Italy at a depth of ca. 25-30 m from the current ground level, was investigated. Samples from 5 layers were analysed by X-ray diffraction, elemental analysis, Inductively Coupled Plasma Mass Spectrometry and micromorphology. Microbial DNA was analysed by 16S rRNA gene metabarcoding. The main mineral compounds found in the 5 layers were calcite (70-80%) and clay minerals in layers #1 and #5, goethite (75%) and hematite in layer #2, manganese (66%) and iron oxides in layer #3, and almost exclusively goethite in layer #4. Micromorphology data allowed to shed light in understanding whether these sediments formed by subsequent weathering of carbonates and silicates or by migration of soil sediments from the surface, or also by the accumulation of shallow marine sediments occurring between the middle Pliocene and the lower Pleistocene, when the extreme western sector of this area underwent strong subsidence. From the microbiological point of view, upon the 16S rRNA gene analysis, these 5 layers appear to cluster in three groups. Overall, such a distribution suggests that, both in the top (#1) and in bottom layers (#4 and #5), different communities would have undergone in situ reproduction and colonization exploiting metabolically the substrate, whereas the two mid layers would have received bacterial convection by passive transport of percolating waters. At the same time, micromorphological data show that each layer preserved its distinct features to be related to the environmental condition at the time of deposition. The chemical, mineralogical and micromorphological features of the layers and the known physiology of the microbial taxa thereby encountered highlight the possible role of the latter in elucidating the occurrence of certain mineral species as well as the biogeochemistry of elements like Mn and Fe in sediment layers.
Collapse
Affiliation(s)
- Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy.
| | - Fabio Terribile
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| |
Collapse
|
16
|
Abstract
Cultural heritage buildings of stone construction require careful restorative actions to maintain them as close to the original condition as possible. This includes consolidation and cleaning of the structure. Traditional consolidants may have poor performance due to structural drawbacks such as low adhesion, poor penetration and flexibility. The requirement for organic consolidants to be dissolved in volatile organic compounds may pose environmental and human health risks. Traditional conservation treatments can be replaced by more environmentally acceptable, biologically-based, measures, including bioconsolidation using whole bacterial cells or cell biomolecules; the latter include plant or microbial biopolymers and bacterial cell walls. Biocleaning can employ microorganisms or their extracted enzymes to remove inorganic and organic surface deposits such as sulfate crusts, animal glues, biofilms and felt tip marker graffiti. This review seeks to provide updated information on the innovative bioconservation treatments that have been or are being developed.
Collapse
|
17
|
Bacteria and Metabolic Potential in Karst Caves Revealed by Intensive Bacterial Cultivation and Genome Assembly. Appl Environ Microbiol 2021; 87:AEM.02440-20. [PMID: 33452024 DOI: 10.1128/aem.02440-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
Karst caves are widely distributed subsurface systems, and the microbiomes therein are proposed to be the driving force for cave evolution and biogeochemical cycling. In past years, culture-independent studies on the microbiomes of cave systems have been conducted, yet intensive microbial cultivation is still needed to validate the sequence-derived hypothesis and to disclose the microbial functions in cave ecosystems. In this study, the microbiomes of two karst caves in Guizhou Province in southwest China were examined. A total of 3,562 bacterial strains were cultivated from rock, water, and sediment samples, and 329 species (including 14 newly described species) of 102 genera were found. We created a cave bacterial genome collection of 218 bacterial genomes from a karst cave microbiome through the extraction of 204 database-derived genomes and de novo sequencing of 14 new bacterial genomes. The cultivated genome collection obtained in this study and the metagenome data from previous studies were used to investigate the bacterial metabolism and potential involvement in the carbon, nitrogen, and sulfur biogeochemical cycles in the cave ecosystem. New N2-fixing Azospirillum and alkane-oxidizing Oleomonas species were documented in the karst cave microbiome. Two pcaIJ clusters of the β-ketoadipate pathway that were abundant in both the cultivated microbiomes and the metagenomic data were identified, and their representatives from the cultivated bacterial genomes were functionally demonstrated. This large-scale cultivation of a cave microbiome represents the most intensive collection of cave bacterial resources to date and provides valuable information and diverse microbial resources for future cave biogeochemical research.IMPORTANCE Karst caves are oligotrophic environments that are dark and humid and have a relatively stable annual temperature. The diversity of bacteria and their metabolisms are crucial for understanding the biogeochemical cycling in cave ecosystems. We integrated large-scale bacterial cultivation with metagenomic data mining to explore the compositions and metabolisms of the microbiomes in two karst cave systems. Our results reveal the presence of a highly diversified cave bacterial community, and 14 new bacterial species were described and their genomes sequenced. In this study, we obtained the most intensive collection of cultivated microbial resources from karst caves to date and predicted the various important routes for the biogeochemical cycling of elements in cave ecosystems.
Collapse
|
18
|
Çandiroğlu B, Güngör ND. The Biotechnological Potentials of Bacteria Isolated from Parsık Cave, Turkey : Measuring the enzyme profiles, antibiotic resistance and antimicrobial activity in bacteria. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15923194903811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since cave ecosystems have extraordinary environmental conditions, these ecosystems offer opportunities for microbiological studies. In this study, cultivable bacteria isolated from Parsık cave, Turkey, were investigated regarding enzyme profiles, antibiotic resistance and potential
for production of antimicrobial agents. The metabolic properties of 321 bacterial isolates were determined. The most produced enzyme by the isolates was found to be tyrosine arylamidase. The enzymatic reactions of the bacteria showed that Parsık cave isolates have high aminopeptidase
activity. The highest antibiotic resistance frequency of the isolates was 38.6% against ampicillin. While the isolates displayed variable inhibition rates against tested pathogenic microorganisms, they showed the highest inhibition against Candida albicans. The results show that the
bacteria isolated from Parsık cave have potential for further studies related to biotechnological applications. The study findings contribute increased knowledge on metabolic peculiarities of bacteria isolated from cave ecosystems.
Collapse
Affiliation(s)
- Begüm Çandiroğlu
- Institute of Graduate Studies in Sciences, Istanbul University Balabanaga Mah. Sehzadebasi Cd., 34134 Vezneciler Fatih-Istanbul, Turkey
| | - Nihal Doğruöz Güngör
- Department of Biology, Faculty of Science, Istanbul University Balabanaga Mah. Sehzadebasi Cd., 34134 Vezneciler Fatih-Istanbul, Turkey
| |
Collapse
|
19
|
Ferral-Pérez H, Galicia-García M, Alvarado-Tenorio B, Izaguirre-Pompa A, Aguirre-Ramírez M. Novel method to achieve crystallinity of calcite by Bacillus subtilis in coupled and non-coupled calcium-carbon sources. AMB Express 2020; 10:174. [PMID: 32990816 PMCID: PMC7524977 DOI: 10.1186/s13568-020-01111-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Bacteria mineralization is a promising biotechnological approach to apply in biomaterials development. In this investigation, we demonstrate that Bacillus subtilis 168 induces and influences CaCO3 composites precipitation. Crystals were formed in calcium-carbon non-coupled (glycerol + CaCl2, GLY; or glucose + CaCl2, GLC) and coupled (calcium lactate, LAC; or calcium acetate, ACE) agar-sources, only maintaining the same Ca2+ concentration. The mineralized colonies showed variations in morphology, size, and crystallinity form properties. The crystals presented spherulitic growth in all conditions, and botryoidal shapes in GLC one. Birefringence and diffraction patterns confirmed that all biogenic carbonate crystals (BCC) were organized as calcite. The CaCO3 in BCC was organized as calcite, amorphous calcium carbon (ACC) and organic matter (OM) of biofilm; all of them with relative abundance related to bacteria growth condition. BCC-GLY presented greatest OM composition, while BCC-ACE highest CaCO3 content. Nucleation mechanism and OM content impacted in BCC crystallinity.
Collapse
|
20
|
Miralles I, Soria R, Lucas-Borja ME, Soriano M, Ortega R. Effect of biocrusts on bacterial community composition at different soil depths in Mediterranean semi-arid ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:138613. [PMID: 32446045 DOI: 10.1016/j.scitotenv.2020.138613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
This study analyzed the influence of biocrusts on the chemical properties and bacterial diversity and community composition in the underlying soils along a depth gradient (the biocrust (C1), middle (S2) and deep (S3) soil layers) in two semi-arid Mediterranean ecosystems. Organic carbon, pH, electric conductivity and calcium carbonate content were estimated by wet oxidation, potentiometrically (pHmeter), with a conductivity-meter and volumetrically with a Bernard calcimeter, respectively. Bacterial diversity and community composition were estimated by 16S rRNA gene high-throughput amplicon sequencing. Chemical properties in C1 were significantly different from the other soil layers, showing higher organic carbon content and lower pH (p < 0.05). The relative abundance of several bacterial taxa, such as Bryocella, Methylobacterium, Segitebacter and Actinomycetospora showed significant positive correlations with organic carbon (r = 0.53 to 0.75) and negative with pH (r = -0.72 to -0.84), and were also highly correlated with each other (p < 0.01), suggesting a bacterial co-occurrence pattern associated with the biocrust. On the contrary, other bacterial taxa, such as Euzebyaceae, Truepera, Alphaproteobacteria and Caldinilaceae, showed positive correlations with electrical conductivity and calcium carbonate and were also correlated with each other (p < 0.01), in a second type of co-occurrence pattern associated with bare soil. The C1 and S2 layers had several taxa in common, while S3 layers had taxa common to bare soil, suggesting that the effect of biocrusts was limited to the first centimeters of soil and progressively decreased in depth. Bacterial diversity was lower in C1 than in the underlying layers and increased progressively from biocrust to deeper soil layers. The results suggest that the diversity and composition of soil microbial communities in biologically crusted sites in Mediterranean semi-arid environments are mainly controlled by chemical properties which in turn are modified by the biocrust along a depth gradient.
Collapse
Affiliation(s)
- I Miralles
- Department of Agronomy, University of Almeria, E-04120 Almería, Spain; Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain.
| | - R Soria
- Department of Agronomy, University of Almeria, E-04120 Almería, Spain; Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| | - M E Lucas-Borja
- Escuela Técnica Superior Ingenieros Agrónomos y Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
| | - M Soriano
- Department of Agronomy, University of Almeria, E-04120 Almería, Spain; Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| | - R Ortega
- Department of Agronomy, University of Almeria, E-04120 Almería, Spain; Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAIMBITAL), University of Almeria, E-04120 Almería, Spain
| |
Collapse
|
21
|
Dikshit R, Jain A, Dey A, Kumar A. Microbially induced calcite precipitation using Bacillus velezensis with guar gum. PLoS One 2020; 15:e0236745. [PMID: 32785276 PMCID: PMC7423064 DOI: 10.1371/journal.pone.0236745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mineral precipitation via microbial activity is a well-known process with applications in various fields. This relevance of microbially induced calcite precipitation (MICP) has pushed researchers to explore various naturally occurring MICP capable bacterial strains. The present study was performed to explore the efficiency of microbially induced calcite precipitation (MICP) via locally isolated bacterial strains and role of guar gum, which is a naturally occurring polymer, on the MICP process. The strains were isolated from local soil and screened for urease activity Further, the urease positive strain was subjected to urea and calcium chloride based medium to investigate the efficacy of isolated strain for microbial induced precipitation. Among screened isolates, the soil bacterium that showed urease positive behaviour and precipitated calcium carbonate was subjected to 16S rRNA gene sequencing. This strain was identified as Bacillus velezensis. Guar gum—a natural polymer, was used as a sole carbon source to enhance the MICP process. It was observed that the isolated strain was able to breakdown the guar gum into simple sugars resulting in two-fold increase in calcium carbonate precipitate. Major bio-chemical activities of isolated strain pertaining to MICP such as ammonium ion concentration, pH profiling, and total reducing sugar with time were explored under four different concentrations of guar gum (0.25%, 0.5%, 0.75% and 1% w/v). Maximum ammonium ion concentration (17.5 μg/ml) and increased pH was observed with 1% guar gum supplementation, which confirms augmented MICP activity of the bacterial strain. Microstructural analysis of microbial precipitation was performed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques, which confirmed the presence of calcium carbonate in different phases. Further, XRD and SEM based studies corroborated that guar gum supplemented media showed significant increase in stable calcite phase as compared to media without guar gum supplementation. Significant diverse group of nitrogenous compounds were observed in guar gum supplemented medium when subjected to Gas Chromatography–Mass spectrometry (GC-MS) profiling.
Collapse
Affiliation(s)
- Rashmi Dikshit
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Animesh Jain
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Arjun Dey
- Thermal Systems Group, U. R. Rao Satellite Centre (formerly ISRO Satellite Centre), Indian Space Research Organisation, Bangalore, India
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
22
|
Ansari A, Peña-Bahamonde J, Fanourakis SK, Hu Y, Rodrigues DF. Microbially-induced mineral scaling in desalination conditions: Mechanisms and effects of commercial antiscalants. WATER RESEARCH 2020; 179:115863. [PMID: 32402860 DOI: 10.1016/j.watres.2020.115863] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Reverse osmosis (RO) technology is promising in the sustainable production of fresh water. However, expansion of RO use has been hindered by membrane fouling, mainly inorganic fouling known as scaling. Although membrane mineral scaling by chemical means have been investigated extensively, mineral scaling triggered by microbial activity has been largely neglected. In this study, the simultaneous biomineralization of CaCO3 and CaSO4 in the presence of three different microbial communities from fresh water, wastewater, and seawater was investigated. In the presence of either 13 or 79 mM of Ca2+ and SO42- in the media, the fresh water microbial community produced calcite/vaterite and vaterite/gypsum, respectively; the wastewater community produced vaterite and vaterite/gypsum, respectively; and the seawater community produced aragonite in both conditions. The results showed that the concentration of salts and the microbial composition influence the types of precipitates produced. The mechanisms of crystal formation of CaCO3 and gypsum by these communities were also investigated by determining the need for metabolic active cells, the effect of a calcium channel blocker, and the presence of extracellular polymeric substances (EPS). The results showed that metabolically active cells can lead to production of EPS and formation of Ca2+ gradient along the cells through calcium channels, which will trigger formation of biominerals. The prevention of biomineralization by these consortia was also investigated with two common polymeric RO antiscalants, i.e. polyacrylic acid (PAA) and polymaleic acid (PMA). Results showed that these antiscalants do not prevent the formation of the bio-precipitates suggesting that novel approaches to prevent biomineralization in RO systems still needs to be investigated.
Collapse
Affiliation(s)
- Ali Ansari
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Sofia K Fanourakis
- Department of Materials Science and Engineering, University of Houston, Houston, TX, 77004, USA
| | - Yandi Hu
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77004, USA; Department of Materials Science and Engineering, University of Houston, Houston, TX, 77004, USA.
| |
Collapse
|
23
|
Geomicrobial Investigations of Colored Outer Coatings from an Ethiopian Rock Art Gallery. COATINGS 2020. [DOI: 10.3390/coatings10060536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The open rock shelter of Yabelo in Ethiopia hosts diverse Holocene paintings of great cultural importance. The paintings are characterized by the presence of different mineral coatings, whose features have not been studied yet. Our goal was to understand whether different rock samples from the Yabelo paintings collected in close proximity may reveal coatings with different minerology and biology. Thus, elemental analyses combined with microscopic and molecular investigations were performed on two coatings, one whitish (sample 1) and one reddish (sample 2). Although both samples were dominated by heterotrophic bacteria, the two coatings showed distinct mineralogical and microbiological characteristics. Sample 1 contained higher amounts of Ca and P than sample 2, which was likely related to the presence of organic matter. Sample 1 hosted bacterial genera that are potentially involved in biomineralization processes, metal redox cycles and metal resistance. In contrast, sample 2 showed mainly pathogenic and commensal bacteria that are characteristic of animal and human microbiota, and other microorganisms that are involved in nitrogen and metal biogeochemical cycles. Overall, our results indicated that the bacterial communities were particular to the coating mineralogy, suggesting a potential role of the biological components in the crust genesis.
Collapse
|
24
|
Enyedi NT, Makk J, Kótai L, Berényi B, Klébert S, Sebestyén Z, Molnár Z, Borsodi AK, Leél-Őssy S, Demény A, Németh P. Cave bacteria-induced amorphous calcium carbonate formation. Sci Rep 2020; 10:8696. [PMID: 32457467 PMCID: PMC7251137 DOI: 10.1038/s41598-020-65667-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Amorphous calcium carbonate (ACC) is a precursor of crystalline calcium carbonates that plays a key role in biomineralization and polymorph evolution. Here, we show that several bacterial strains isolated from a Hungarian cave produce ACC and their extracellular polymeric substance (EPS) shields ACC from crystallization. The findings demonstrate that bacteria-produced ACC forms in water-rich environment at room temperature and is stable for at least half year, which is in contrast to laboratory-produced ACC that needs to be stored in a desiccator and kept below 10 °C for avoiding crystallization. The ACC-shielding EPS consists of lipids, proteins, carbohydrates and nucleic acids. In particular, we identified large amount of long-chain fatty acid components. We suggest that ACC could be enclosed in a micella-like formula within the EPS that inhibits water infiltration. As the bacterial cells lyse, the covering protective layer disintegrates, water penetrates and the unprotected ACC grains crystallize to calcite. Our study indicates that bacteria are capable of producing ACC, and we estimate its quantity in comparison to calcite presumably varies up to 20% depending on the age of the colony. Since diverse bacterial communities colonize the surface of cave sediments in temperate zone, we presume that ACC is common in these caves and its occurrence is directly linked to bacterial activity and influences the geochemical signals recorded in speleothems.
Collapse
Affiliation(s)
- Nóra Tünde Enyedi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Judit Makk
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - László Kótai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Deuton-X Ltd., Selmeci u. 89, H-2030, Érd, Hungary
| | - Bernadett Berényi
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Zoltán Sebestyén
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Zsombor Molnár
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem út 10, H-8200, Veszprém, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Szabolcs Leél-Őssy
- Department of Physical and Applied Geology, Faculty of Science, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary
| | - Attila Demény
- Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, H-1112, Budapest, Hungary
| | - Péter Németh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
- Department of Earth and Environmental Sciences, University of Pannonia, Egyetem út 10, H-8200, Veszprém, Hungary.
| |
Collapse
|
25
|
Understanding and creating biocementing beachrocks via biostimulation of indigenous microbial communities. Appl Microbiol Biotechnol 2020; 104:3655-3673. [PMID: 32095860 DOI: 10.1007/s00253-020-10474-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
Bacterially induced precipitation of minerals leading to cementation of natural geological formations has been well recorded in a variety of environments. A range of microbial pathways and geochemical processes have been found to influence the cementation processes; but detailed formation mechanisms and biogeochemical relationships are still not very clear. There has been a growing demand for the application of bacterially driven biocementation in a number of geotechnical engineering applications recently. Here, we aimed to unpin the mechanisms behind the formation of actively mineralising beachrock sediments at Lucky Bay in Western Australia to understand the natural accretionary processes and potential of indigenous bacterial communities in biocementation. We observed ferruginous, aluminosilicate and carbonate cements along with extensive extra polymeric substances, borings with possible microbial activities in certain sections of native beachrock sediments. Cement precipitation under calcium- and iron-rich microenvironments sourced from seawater and iron creek seems to be driven by both biogenic and abiogenic processes in nature. Native microbial communities with a dominance of the genera Halococcus and Marinobacter were recorded. Enrichment of native bacterial communities under seawater media conditions was conducted which lead to successful biomineralisation of calcitic and ferruginous cements under in vitro conditions although the community composition changed significantly. Nanomechanical properties of natural and laboratory synthesised cement crystals showed that engineered biocement is highly promising. The results of this study clearly demonstrate biological influence in the formation of natural cements and hint significant potential of biostimulation which can be harnessed for different engineering applications including coastal erosion.
Collapse
|
26
|
Rautela R, Rawat S. Analysis and optimization of process parameters for in vitro biomineralization of CaCO3 by Klebsiella pneumoniae, isolated from a stalactite from the Sahastradhara cave. RSC Adv 2020; 10:8470-8479. [PMID: 35497856 PMCID: PMC9049971 DOI: 10.1039/d0ra00090f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
Stalactite is a speleothem which is usually made up of calcium carbonate crystals. In the present study the bacterial isolates, recovered from a stalactite from the Sahastradhara cave, were screened for their ability to precipitate calcium carbonate in order to understand whether mineralization in caves is a biogenic process or not. Five bacterial isolates were found to precipitate calcium carbonate via urease. The most potent bacterial isolate was identified as Klebsiella pneumoniae (accession number MG946801) based on 16S rDNA sequencing. The optimized conditions, for calcium carbonate precipitation, determined by response surface methodology using CCD were found to be: 1.5625% urea, 19.98% inoculum level, 6.98 pH and 38 h 24 min. The morphology and crystalline structure of the precipitated mineral were revealed by SEM. EDX analysis confirmed the presence of carbon, oxygen and calcium in a precipitated crystal. XRD analysis confirmed the crystalline structure of a mineral with rhombohedral shape and 166 Å crystal size. This bacterium can serve as a promising candidate for producing bioconcrete. Stalactite is a speleothem which is usually made up of calcium carbonate crystals.![]()
Collapse
Affiliation(s)
- Rachna Rautela
- Microbial Diversity Lab
- Department of Botany and Microbiology
- School of Life Sciences
- HNB Garhwal University
- India
| | - Seema Rawat
- Microbial Diversity Lab
- Department of Botany and Microbiology
- School of Life Sciences
- HNB Garhwal University
- India
| |
Collapse
|
27
|
Greenfield SR, Tighe SW, Bai Y, Goerlitz DS, Von Turkovich M, Taatjes DJ, Dragon JA, Johnson SS. Life and its traces in Antarctica's McMurdo Dry Valley paleolakes: a survey of preservation. Micron 2019; 131:102818. [PMID: 31968300 DOI: 10.1016/j.micron.2019.102818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023]
Abstract
The extremely cold and arid conditions of Antarctica make it uniquely positioned to investigate fundamental questions regarding the persistence of life in extreme environments. Within the McMurdo Dry Valleys and surrounding mountain ranges are multiple ancient relict lakes, paleolakes, with lacustrine deposits spanning from thousands to millions of years in age. Here we present data from light microscopy, scanning electron microscopy, electron dispersive x-ray spectroscopy, and radiocarbon dating to catalog the remarkable range of life preserved within these deposits. This includes intact microbes and nanobacteria-sized cocci, CaCO3 precipitations consistent with biogenic calcium, previously undescribed net-like structures, possible dormant spores, and long-extinct yet exquisitely preserved non-vascular plants. These images provide an important reference for further microbiome investigations of Antarctic paleolake samples. In addition, these findings may provide a visual reference for the use of subsurface groundwater microbial communities as an analog for paleolake subsurface water on planets such as Mars.
Collapse
Affiliation(s)
| | - Scott W Tighe
- Vermont Integrative Genomics, University of Vermont, Burlington, VT, 05405 USA
| | - Yu Bai
- Department of Biology, Georgetown University, Washington DC 20057 USA
| | - David S Goerlitz
- Georgetown University Medical Center, Georgetown University, Washington DC, 20057 USA
| | - Michele Von Turkovich
- Department of Pathology and Laboratory Medicine, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405 USA
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405 USA
| | - Julie A Dragon
- Vermont Integrative Genomics, University of Vermont, Burlington, VT, 05405 USA; Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, 05405 USA
| | - Sarah Stewart Johnson
- Department of Biology, Georgetown University, Washington DC 20057 USA; Science, Technology, and International Affairs Program, Georgetown University, Washington DC, 20057 USA
| |
Collapse
|
28
|
Zhao R, Wang H, Cheng X, Yun Y, Qiu X. Upland soil cluster γ dominates the methanotroph communities in the karst Heshang Cave. FEMS Microbiol Ecol 2019; 94:5107866. [PMID: 30265314 DOI: 10.1093/femsec/fiy192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are thought to play a critical role in methane (CH4) consumption in karst caves and yet the presence and diversity of methane-oxidizing bacteria (MOB) remain a mystery. In Heshang Cave, CH4 concentration decreases from 1.9 ppm at the entrance to 0.65 ppm inside the cave. To explore the presence and diversity of MOB in this cave, weathered rocks and sediment samples were collected from the cave and subjected to molecular analysis. The abundances of MOB were 107-108 copies g-1 dry sample via quantification of the pmoA gene, which are comparable to or even higher than those reported in other terrestrial environments, and account for up to 20% of the total microbial communities. Phylogenetically, MOB communities were dominated by the 'high-affinity' upland soil cluster γ (USCγ), although the predominance of Type Ia MOB was also detected in the permanently waterlogged stream sediment. The estimated CH4 oxidation potential varied dramatically among samples in the range of 0.6-80 CH4 m-3 d-1. Collectively, this study provides compelling evidence that the high-affinity MOB capable of oxidizing CH4 at the atmospheric level are present in Heshang Cave, which may play an important role in the CH4 consumption, and supports karst caves as important atmospheric CH4 sinks.
Collapse
Affiliation(s)
- Rui Zhao
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China.,Now at School of Marine Science and Policy, University of Delaware, Lewes 19958, Delaware, USA
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China.,Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
29
|
Enyedi NT, Anda D, Borsodi AK, Szabó A, Pál SE, Óvári M, Márialigeti K, Kovács-Bodor P, Mádl-Szőnyi J, Makk J. Radioactive environment adapted bacterial communities constituting the biofilms of hydrothermal spring caves (Budapest, Hungary). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 203:8-17. [PMID: 30844681 DOI: 10.1016/j.jenvrad.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
The thermal waters of Gellért Hill discharge area of the Buda Thermal Karst System (Hungary) are characterized by high (up to 1000 Bq/L) 222Rn-activity due to the radium-accumulating biogeochemical layers. Samples were taken from these ferruginous and calcareous layers developed on spring cave walls and water surface. Accumulation of potentially toxic metals (e.g. As, Hg, Pb, Sn, Sr, Zn) in the dense extracellular polymeric substance containing bacterial cells and remains was detected by inductively coupled plasma mass spectrometry. The comparison of bacterial phylogenetic diversity of the biofilm samples was performed by high throughput next generation sequencing (NGS). The analysis showed similar sets of mainly unidentified taxa of phyla Chloroflexi, Nitrospirae, Proteobacteria, Planctomycetes; however, large differences were found in their abundance. Cultivation-based method complemented with irradiation assay was performed using 5, 10 and 15 kGy doses of gamma-rays from a 60Co-source to reveal the extreme radiation-resistant bacteria. The phyla Actinobacteria, Firmicutes, Proteobacteria (classes Alpha- Beta- and Gammaproteobacteria), Bacteriodetes and Deinococcus-Thermus were represented among the 452 bacterial strains. The applied irradiation treatments promoted the isolation of 100 different species, involving candidate novel species, as well. The vast majority of the isolates belonged to bacterial taxa previously unknown as radiation-resistant microorganisms. Members of the genera Paracoccus, Marmoricola, Dermacoccus and Kytococcus were identified from the 15 kGy dose irradiated samples. The close relatives of several known radiation-tolerant bacteria were also detected from the biofilm samples, alongside with bacteria capable of detoxification by metal accumulation, adsorption and precipitation in the form of calcium-carbonate which possibly maintain the viability of the habitat. The results suggest the establishment of a unique, extremophilic microbiota in the studied hydrothermal spring caves.
Collapse
Affiliation(s)
- Nóra Tünde Enyedi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Dóra Anda
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary; Danube Research Institute, MTA Centre for Ecological Research, Karolina út 29, H-1113, Budapest, Hungary.
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary; Danube Research Institute, MTA Centre for Ecological Research, Karolina út 29, H-1113, Budapest, Hungary.
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Sára Eszter Pál
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Mihály Óvári
- Danube Research Institute, MTA Centre for Ecological Research, Karolina út 29, H-1113, Budapest, Hungary; Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány P. sétány 1/A, H-1117, Budapest, Hungary.
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Petra Kovács-Bodor
- Department of Physical and Applied Geology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Judit Mádl-Szőnyi
- Department of Physical and Applied Geology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| | - Judit Makk
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
30
|
Characterization of Microbial Communities Associated with Ceramic Raw Materials as Potential Contributors for the Improvement of Ceramic Rheological Properties. MINERALS 2019. [DOI: 10.3390/min9050316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Technical ceramics are being widely employed in the electric power, medical and engineering industries because of their thermal and mechanical properties, as well as their high resistance qualities. The manufacture of technical ceramic components involves complex processes, including milling and stirring of raw materials in aqueous solutions, spray drying and dry pressing. In general, the spray-dried powders exhibit an important degree of variability in their performance when subjected to dry-pressing, which affects the efficiency of the manufacturing process. Commercial additives, such as deflocculants, biocides, antifoam agents, binders, lubricants and plasticizers are thus applied to ceramic slips. Several bacterial and fungal species naturally occurring in ceramic raw materials, such as Sphingomonas, Aspergillus and Aureobasidium, are known to produce exopolysaccharides. These extracellular polymeric substances (EPS) may confer unique and potentially interesting properties on ceramic slips, including viscosity control, gelation, and flocculation. In this study, the microbial communities present in clay raw materials were identified by both culture methods and DNA-based analyses to select potential EPS producers based on the scientific literature for further assays based on the use of EPS for enhancing the performance of technical ceramics. Potential exopolysaccharide producers were identified in all samples, such as Sphingomonas sp., Pseudomonas xanthomarina, P. stutzeri, P. koreensis, Acinetobacter lwoffi, Bacillus altitudinis and Micrococcus luteus, among bacteria. Five fungi (Penicillium citrinum, Aspergillus niger, Fusarium oxysporum, Acremonium persicinum and Rhodotorula mucilaginosa) were also identified as potential EPS producers.
Collapse
|
31
|
Qiu X, Yao Y, Wang H, Shen A, Zhang J. Halophilic Archaea Mediate the Formation of Proto-Dolomite in Solutions With Various Sulfate Concentrations and Salinities. Front Microbiol 2019; 10:480. [PMID: 30915060 PMCID: PMC6422947 DOI: 10.3389/fmicb.2019.00480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/25/2019] [Indexed: 11/17/2022] Open
Abstract
In the past several decades, sulfate concentration and salinity have been considered to be the two essential hydrochemical factors in the formation of dolomite, yet arguments against this hypothesis have existed simultaneously. To clarify the effects of sulfate concentration and salinity in the mineralization of dolomite, we conducted experiments on dolomite precipitation mediated by a halophilic archaeon, Natrinema sp. J7-1 with various sulfate concentrations and salinities. This strain was cultured in a series of modified growth media (MGM) with salinities of 140, 200, and 280‰. Cells in the post-log phase were harvested and used to mediate the formation of dolomite in solutions with various sulfate concentrations of 0, 3, 29.8, and 100 mM and salinities of 140, 200, and 280‰. X-ray diffraction (XRD) spectra showed that proto-dolomite, monohydrocalcite, and aragonite formed in samples with cells, yet only aragonite was detected in samples without cells. Proto-dolomite was found in all biotic samples, regardless of the variation in salinity and sulfate concentration. Moreover, the relative abundances of proto-dolomite in the precipitates were positively correlated with the salinities of the media but were uncorrelated with the sulfate concentrations of the solutions. Scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS) results showed that all the proto-dolomites were sphere or sphere aggregates with a mole ratio of Mg/Ca close to 1.0. No obvious variations in morphology and Mg/Ca were found among samples with various sulfate concentrations or salinities. This work reveals that a variation of sulfate concentration in solution (from 0 to 100 mM) does not affect the formation of dolomite mediated by halophilic archaea, but an increase of salinity (from 140 to 280‰) enhances this process. Our results indicate that under natural conditions, an increase in salinity may be more significant than the decrease of sulfates in microbe-mediated dolomite formation.
Collapse
Affiliation(s)
- Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yancheng Yao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Anjiang Shen
- Key Laboratory of Carbonate Reservoir, China National Petroleum Corporation, Hangzhou, China
| | - Jie Zhang
- Key Laboratory of Carbonate Reservoir, China National Petroleum Corporation, Hangzhou, China
| |
Collapse
|
32
|
Rajasekar A, Wilkinson S, Sekar R, Bridge J, Medina-Roldán E, Moy CK. Biomineralisation performance of bacteria isolated from a landfill in China. Can J Microbiol 2018; 64:945-953. [DOI: 10.1139/cjm-2018-0254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report an investigation of microbially induced carbonate precipitation by seven indigenous bacteria isolated from a landfill in China. Bacterial strains were cultured in a medium supplemented with 25 mmol/L calcium chloride and 333 mmol/L urea. The experiments were carried out at 30 °C for 7 days with agitation by a shaking table at 130 r/min. Scanning electron microscopic and X-ray diffraction analyses showed variations in calcium carbonate polymorphs and mineral composition induced by all bacterial strains. The amount of carbonate precipitation was quantified by titration. The amount of carbonate precipitated in the medium varied among isolates, with the lowest being Bacillus aerius rawirorabr15 (LC092833) precipitating around 1.5 times more carbonate per unit volume than the abiotic (blank) solution. Pseudomonas nitroreducens szh_asesj15 (LC090854) was found to be the most efficient, precipitating 3.2 times more carbonate than the abiotic solution. Our results indicate that bacterial carbonate precipitation occurred through ureolysis and suggest that variations in carbonate crystal polymorphs and rates of precipitation were driven by strain-specific differences in urease expression and response to the alkaline environment. These results and the method applied provide benchmarking and screening data for assessing the bioremediation potential of indigenous bacteria for containment of contaminants in landfills.
Collapse
Affiliation(s)
- Adharsh Rajasekar
- Department of Civil Engineering, Xi’an Jiaotong – Liverpool University, Suzhou 215123, Jiangsu, P.R. China
| | - Stephen Wilkinson
- Department of Civil Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong – Liverpool University, Suzhou 215123, Jiangsu, P.R. China
| | - Jonathan Bridge
- Department of the Natural and Built Environment, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Eduardo Medina-Roldán
- Department of Environmental Science, Xi’an Jiaotong – Liverpool University, Suzhou 215123, Jiangsu, P.R. China
| | - Charles K.S. Moy
- Department of Civil Engineering, Xi’an Jiaotong – Liverpool University, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
33
|
Seifan M, Berenjian A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World J Microbiol Biotechnol 2018; 34:168. [PMID: 30387067 DOI: 10.1007/s11274-018-2552-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
Concrete is one of the most broadly used construction materials in the world due to its number of performance characteristics. Despite the long life of concrete structure under ideal conditions, it tends to crack and this phenomenon results in a considerable reduction in service life and performance. Evidence of microbial involvement in the precipitation of minerals has led to a massive investigation on adapting this technology for addressing the concrete cracking issue. Calcium carbonate is one of most compatible materials with the concrete constituents and it can be induced via biological process. In this review paper, the effects of different factors, such as nucleation site, pH, nutrient and temperature, on the biosynthesis of calcium carbonate are elucidated. Moreover, the influences of effective factors on calcium carbonate polymorphism are extensively elaborated. Finally, the limitations for the future application of this innovative technology in construction industry are highlighted.
Collapse
Affiliation(s)
- Mostafa Seifan
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
34
|
Borsodi AK, Anda D, Makk J, Krett G, Dobosy P, Büki G, Erőss A, Mádl-Szőnyi J. Biofilm forming bacteria and archaea in thermal karst springs of Gellért Hill discharge area (Hungary). J Basic Microbiol 2018; 58:928-937. [PMID: 30160784 DOI: 10.1002/jobm.201800138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
Abstract
The Buda Thermal Karst System (BTKS) is an extensive active hypogenic cave system located beneath the residential area of the Hungarian capital. At the river Danube, several thermal springs discharge forming spring caves. To reveal and compare the morphological structure and prokaryotic diversity of reddish-brown biofilms developed on the carbonate rock surfaces of the springs, scanning electron microscopy (SEM), and molecular cloning were applied. Microbial networks formed by filamentous bacteria and other cells with mineral crystals embedded in extracellular polymeric substances were observed in the SEM images. Biofilms were dominated by prokaryotes belonging to phyla Proteobacteria, Chloroflexi and Nitrospirae (Bacteria) and Thaumarchaeota (Archaea) but their abundance showed differences according to the type of the host rock, geographic distance, and different water exchange. In addition, representatives of phyla Acidobacteria, Actinobacteria, Caldithrix, Cyanobacteria, Firmicutes Gemmatimonadetes, and several candidate divisions of Bacteria as well as Crenarchaeota and Euryarchaeota were detected in sample-dependent higher abundance. The results indicate that thermophilic, anaerobic sulfur-, sulfate-, nitrate-, and iron(III)-reducing chemoorganotrophic as well as sulfur-, ammonia-, and nitrite-oxidizing chemolithotrophic prokaryotes can interact in the studied biofilms adapted to the unique and extreme circumstances (e.g., aphotic and nearly anoxic conditions, oligotrophy, and radionuclide accumulation) in the thermal karst springs.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary.,Danube Research Institute, MTA Centre for Ecological Research, Budapest, Hungary
| | - Dóra Anda
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary.,Danube Research Institute, MTA Centre for Ecological Research, Budapest, Hungary
| | - Judit Makk
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary.,Danube Research Institute, MTA Centre for Ecological Research, Budapest, Hungary
| | - Péter Dobosy
- Danube Research Institute, MTA Centre for Ecological Research, Budapest, Hungary
| | - Gabriella Büki
- Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Anita Erőss
- Department of Physical and Applied Geology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Judit Mádl-Szőnyi
- Department of Physical and Applied Geology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
35
|
Dhami NK, Mukherjee A, Watkin ELJ. Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions. Front Microbiol 2018; 9:40. [PMID: 29472898 PMCID: PMC5810276 DOI: 10.3389/fmicb.2018.00040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/09/2018] [Indexed: 11/17/2022] Open
Abstract
Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD) and Tescan Integrated Mineral Analyzer (TIMA) demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS) indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Scanning Electron Microscopy (SEM) analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content. The in vitro metabolic activity of the microbial communities associated with the surfaces of the speleothems resulted in calcium carbonate crystal precipitation. Firmicutes and Proteobacteria dominated these populations, in contrast to the populations seen in natural systems. The precipitation of calcium carbonate crystals in vitro indicated that microbial metabolic activity may also play an important role in the synthesis and dissociation of biominerals in the natural environment. Our study provides novel evidence of the close relationship between mineralogy, microbial ecology, geochemistry, and nanomechanical properties of natural formations.
Collapse
Affiliation(s)
- Navdeep K. Dhami
- Biologically Activated Materials Laboratory, Department of Civil Engineering, Curtin University, Perth, WA, Australia
| | - Abhijit Mukherjee
- Biologically Activated Materials Laboratory, Department of Civil Engineering, Curtin University, Perth, WA, Australia
| | - Elizabeth L. J. Watkin
- School of Biomedical Sciences, Curtin Health Innovation Research Institute-Biosciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
36
|
Karwautz C, Kus G, Stöckl M, Neu TR, Lueders T. Microbial megacities fueled by methane oxidation in a mineral spring cave. ISME JOURNAL 2017; 12:87-100. [PMID: 28949325 PMCID: PMC5739006 DOI: 10.1038/ismej.2017.146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/23/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Massive biofilms have been discovered in the cave of an iodine-rich former medicinal spring in southern Germany. The biofilms completely cover the walls and ceilings of the cave, giving rise to speculations about their metabolism. Here we report on first insights into the structure and function of the biofilm microbiota, combining geochemical, imaging and molecular analytics. Stable isotope analysis indicated that thermogenic methane emerging into the cave served as an important driver of biofilm formation. The undisturbed cavern atmosphere contained up to 3000 p.p.m. methane and was microoxic. A high abundance and diversity of aerobic methanotrophs primarily within the Methylococcales (Gammaproteobacteria) and methylotrophic Methylophilaceae (Betaproteobacteria) were found in the biofilms, along with a surprising diversity of associated heterotrophic bacteria. The highest methane oxidation potentials were measured for submerged biofilms on the cavern wall. Highly organized globular structures of the biofilm matrix were revealed by fluorescent lectin staining. We propose that the extracellular matrix served not only as an electron sink for nutrient-limited biofilm methylotrophs but potentially also as a diffusive barrier against volatilized iodine species. Possible links between carbon and iodine cycling in this peculiar habitat are discussed.
Collapse
Affiliation(s)
- Clemens Karwautz
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Günter Kus
- Bavarian Environment Agency (LfU), Department 10: Geological Survey, Hof/Saale, Germany
| | - Michael Stöckl
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| |
Collapse
|
37
|
In Situ Cultured Bacterial Diversity from Iron Curtain Cave, Chilliwack, British Columbia, Canada. DIVERSITY 2017. [DOI: 10.3390/d9030036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Leuko S, Koskinen K, Sanna L, D’Angeli IM, De Waele J, Marcia P, Moissl-Eichinger C, Rettberg P. The influence of human exploration on the microbial community structure and ammonia oxidizing potential of the Su Bentu limestone cave in Sardinia, Italy. PLoS One 2017; 12:e0180700. [PMID: 28704427 PMCID: PMC5507542 DOI: 10.1371/journal.pone.0180700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
The bacterial diversity in the Su Bentu Cave in Sardinia was investigated by means of 16S rRNA gene-based analysis. This 15 km long cave, carved in Jurassic limestone, hosts a variety of calcite speleothems, and a long succession of subterranean lakes with mixed granite and carbonate sands. The lower level is occasionally flooded by a rising groundwater level, but with only scarce input of organic remains (leaves and charcoal fragments). On the quiet cave pools there are visible calcite rafts, whereas walls are locally coated with manganese deposits. In the drier upper levels, where organic input is much more subdued, moonmilk—a hydrated calcium-magnesium carbonate speleothem—can be found. Relative humidity approaches 100% and the measured mean annual cave air temperature is 14.8°C. Samples were obtained in 2014 from calcite rafts, moonmilk, manganese oxide deposits and soil (limestone and granite grains). Microclimatic conditions in the cave near the sampling sites, sample properties, physico-chemical parameters of water, and sediment composition were determined. The microbial community of this system is predominately composed of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Nitrospirae, and Firmicutes. Sampling sites near the entrance of the cave and in close proximity of the underground campsite–located 500 meters deep into the cave—revealed the highest diversity as well as the highest number of human associated microorganisms. Two samples obtained in very close proximity of each other near the campsite, indicate that the human impact is localized and is not distributed freely within the system. Analysis of the abundance of bacterial and archaeal amoA genes revealed a far greater abundance of archaeal amoA genes compared to bacterial representatives. The results of this study highlight that human impact is confined to locations that are utilized as campsites and that exploration leaves little microbial trails. Furthermore, we uncovered a highly specialized microbiome, which is perfectly adapted to survive and thrive in an environment with low nutrient availability.
Collapse
Affiliation(s)
- Stefan Leuko
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Höhe, Cologne (Köln), Germany
- * E-mail:
| | - Kaisa Koskinen
- Medical University of Graz, Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, BioTechMed, Krenngasse, Graz, Austria
| | - Laura Sanna
- Institute for Biometeorology, National Research Council of Italy, Sassari, Italy
| | | | - Jo De Waele
- Italian Institute of Speleology, University of Bologna, Bologna, Italy
| | - Paolo Marcia
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Sassari, Italy
| | - Christine Moissl-Eichinger
- Medical University of Graz, Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, BioTechMed, Krenngasse, Graz, Austria
| | - Petra Rettberg
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Höhe, Cologne (Köln), Germany
| |
Collapse
|
39
|
Dhami NK, Alsubhi WR, Watkin E, Mukherjee A. Bacterial Community Dynamics and Biocement Formation during Stimulation and Augmentation: Implications for Soil Consolidation. Front Microbiol 2017; 8:1267. [PMID: 28744265 PMCID: PMC5504299 DOI: 10.3389/fmicb.2017.01267] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/23/2017] [Indexed: 11/23/2022] Open
Abstract
Microbially-induced CaCO3 precipitation (MICP) is a naturally occurring process wherein durable carbonates are formed as a result of microbial metabolic activities. In recent years, MICP technology has been widely harnessed for applications in civil engineering wherein synthesis of calcium carbonate crystals occurs at ambient temperature paving way for low energy biocement. MICP using pure urease (UA) and carbonic anhydrase (CA) producing bacteria has been promising in laboratory conditions. In the current study we enriched ureolytic and carbonic anhydrase communities in calcareous soil under biostimulation and bioaugmentation conditions and investigated the effect of microbial dynamics on carbonate precipitation, calcium carbonate polymorph selection and consolidation of biological sand column under nutrient limited and rich conditions. All treatments for stimulation and augmentation led to significant changes in the composition of indigenous bacterial population. Biostimulation as well as augmentation through the UA route was found to be faster and more effective compared to the CA route in terms of extracellular enzyme production and carbonate precipitation. Synergistic role of augmented cultures along with indigenous communities was recorded via both the routes of UA and CA as more effective calcification was seen in case of augmentation compared to stimulation. The survival of supplemented isolates in presence of indigenous bacterial communities was confirmed through sequencing of total diversity and it was seen that both UA and CA isolate had the potential to survive along with native communities under high nutrient conditions. Nutrient conditions played significant role in determining calcium carbonate polymorph fate as calcitic crystals dominated under high carbon supplementation. Finally, the consolidation of sand columns via stimulation and augmentation was successfully achieved through both UA and CA route under high nutrient conditions but higher consolidation in short time period was noticed in UA route. The study reports that based upon the organic carbon content in native soils, stimulation can be favored at sites with high organic carbon content while augmentation with repeated injections of nutrients can be applied on poor nutrient soils via different enrichment routes of microbial metabolism.
Collapse
Affiliation(s)
- Navdeep K Dhami
- Biologically Activated Materials Laboratory, Department of Civil Engineering, Curtin UniversityPerth, WA, Australia
| | - Walaa R Alsubhi
- School of Biomedical Sciences, Curtin Health Innovation Research Institute-Biosciences, Curtin UniversityPerth, WA, Australia
| | - Elizabeth Watkin
- School of Biomedical Sciences, Curtin Health Innovation Research Institute-Biosciences, Curtin UniversityPerth, WA, Australia
| | - Abhijit Mukherjee
- Biologically Activated Materials Laboratory, Department of Civil Engineering, Curtin UniversityPerth, WA, Australia
| |
Collapse
|
40
|
Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Appl Microbiol Biotechnol 2017. [DOI: 10.1007/s00253-017-8372-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Decho AW, Gutierrez T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front Microbiol 2017; 8:922. [PMID: 28603518 PMCID: PMC5445292 DOI: 10.3389/fmicb.2017.00922] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Microbial cells (i.e., bacteria, archaea, microeukaryotes) in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs) or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured 'biofilm' communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called 'marine snow.' Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs), sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS contribute to efficient trophic-transfer of environmental contaminants, and may provide a protective refugia for pathogenic cells within marine systems; one that enhances their survival/persistence. Finally, these secretions are prominent in 'extreme' environments ranging from sea-ice communities to hypersaline systems to the high-temperatures/pressures of hydrothermal-vent systems. This overview summarizes some of the roles of exopolymer in oceans.
Collapse
Affiliation(s)
- Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, ColumbiaSC, United States
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, United Kingdom
| |
Collapse
|
42
|
Andrei AŞ, Păuşan MR, Tămaş T, Har N, Barbu-Tudoran L, Leopold N, Banciu HL. Diversity and Biomineralization Potential of the Epilithic Bacterial Communities Inhabiting the Oldest Public Stone Monument of Cluj-Napoca (Transylvania, Romania). Front Microbiol 2017; 8:372. [PMID: 28326074 PMCID: PMC5339310 DOI: 10.3389/fmicb.2017.00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/22/2017] [Indexed: 01/22/2023] Open
Abstract
In this study, we investigated the biomineralization potential and diversity of the epilithic bacterial communities dwelling on the limestone statue of Saint Donatus, the oldest public monument of Cluj-Napoca city (Transylvania region, NW Romania). Their spatial distribution together with phylogenetic and metabolic diversity, as well as their capacity to precipitate calcium carbonate was evaluated by combining molecular and phenotypic fingerprinting methods with X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron-microscopy analyses. The results of real-time quantitative PCR, molecular fingerprinting and community-level physiological profiling showed that diverse and abundant bacterial assemblages that differ in relation to their collection site colonized the statue. The cultivation and molecular identification procedures allowed the characterization of 79 bacterial isolates belonging to Proteobacteria (73.4%), Firmicutes (19%), and Actinobacteria (7.6%). Amongst them, the 22 strains identified as being capable of calcium carbonate precipitation were found to belong mostly to Bacillus and Pseudomonas genera. We found that bacteria acted as nucleation sites, inducing the formation of nanoscale aggregates that were shown to be principally composed of vaterite. Furthermore, we expanded the current knowledge on culturable diversity of carbonatogenic bacteria by providing evidence for biogenic vaterite/calcite formation mediated by: Pseudomonas synxantha, P. graminis, Brevibacterium iodinum, Streptomyces albidoflavus, and Stenotrophomonas chelatiphaga. Overall, this study highlights the need to evaluate the carbonatogenetic potential of all the bacterial communities present on stone artwork prior to designing an efficient conservation treatment based on biomineralization.
Collapse
Affiliation(s)
- Adrian-Ştefan Andrei
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Center of the Academy of Sciences of the Czech RepublicČeské Budějovice, Czechia
| | - Manuela R Păuşan
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Department for Internal Medicine, Medical University of GrazGraz, Austria
| | - Tudor Tămaş
- Department of Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Nicolae Har
- Department of Geology, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Electron Microscopy Center, Babeş-Bolyai UniversityCluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University Cluj-Napoca, Romania
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai UniversityCluj-Napoca, Romania; Center for Systems Biology, Biodiversity, and Bioresources, Babeş-Bolyai UniversityCluj-Napoca, Romania
| |
Collapse
|
43
|
Seifan M, Samani AK, Berenjian A. New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl Microbiol Biotechnol 2017; 101:3131-3142. [DOI: 10.1007/s00253-017-8109-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
44
|
Gonzalez-Martinez A, Rodriguez-Sanchez A, Rivadeneyra MA, Rivadeneyra A, Martin-Ramos D, Vahala R, Gonzalez-Lopez J. 16S rRNA gene-based characterization of bacteria potentially associated with phosphate and carbonate precipitation from a granular autotrophic nitrogen removal bioreactor. Appl Microbiol Biotechnol 2016; 101:817-829. [DOI: 10.1007/s00253-016-7914-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
|
45
|
Induced calcium carbonate precipitation using Bacillus species. Appl Microbiol Biotechnol 2016; 100:9895-9906. [PMID: 27392449 DOI: 10.1007/s00253-016-7701-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/15/2016] [Accepted: 06/19/2016] [Indexed: 10/21/2022]
Abstract
Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca2+). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.
Collapse
|
46
|
Seifan M, Samani AK, Berenjian A. Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 2016; 100:2591-602. [PMID: 26825821 DOI: 10.1007/s00253-016-7316-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/25/2022]
Abstract
Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research.
Collapse
Affiliation(s)
- Mostafa Seifan
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Ali Khajeh Samani
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
47
|
Sarayu K, Iyer NR, Annaselvi M, Ramachandra Murthy A. The Micro-mechanism Involved and Wollastonite Signature in the Calcareous Precipitates of Marine Isolates. Appl Biochem Biotechnol 2015; 178:1069-80. [PMID: 26585115 DOI: 10.1007/s12010-015-1929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/09/2015] [Indexed: 11/30/2022]
Abstract
Micro-mechanical studies connecting the influence of extrinsic factors over intrinsic factors on 30 calcareous isolates obtained from marine sediment biofilms of the Bay of Bengal (Indian Ocean) revealed that the fate of calcareous crystal precipitation is highly dependent on factors like extracellular polysaccharides (EPS), organic carbon and nutrition. Further studies exemplified that EPS and the organic carbon secreted by the isolates controlled the dissemination of the calcareous crystals precipitated. From the study, it is evident that an EPS concentration of 7-15 mg l(-1) was found to enhance the dissemination of the calcareous crystals. Atomic force micrographs explain the nucleation behaviour and morphology of the calcareous crystals precipitated. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDAX) showed that the crystals were mainly composed of calcite and partially wollastonite.
Collapse
Affiliation(s)
- K Sarayu
- CSIR-Structural Engineering Research Centre, Taramani, Chennai, 600 113, India.
| | - Nagesh R Iyer
- CSIR-Structural Engineering Research Centre, Taramani, Chennai, 600 113, India
| | - M Annaselvi
- CSIR-Structural Engineering Research Centre, Taramani, Chennai, 600 113, India
| | | |
Collapse
|
48
|
Microbial mediation of complex subterranean mineral structures. Sci Rep 2015; 5:15525. [PMID: 26510667 PMCID: PMC4625141 DOI: 10.1038/srep15525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022] Open
Abstract
Helictites—an enigmatic type of mineral structure occurring in some caves—differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed. Morphological and petro-physical properties are inconsistent with mineral precipitation under purely physico-chemical control. Instead, microanalysis and molecular-biological investigation reveals the presence of a prokaryotic biofilm intimately associated with the mineral structures. We propose that microbially-influenced mineralization proceeds within a gliding biofilm which serves as a nucleation site for CaCO3, and where chemotaxis influences the trajectory of mineral growth, determining the macroscopic morphology of the speleothems. The influence of biofilms may explain the occurrence of similar speleothems in other caves worldwide, and sheds light on novel biomineralization processes.
Collapse
|
49
|
Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines. Microbiol Res 2015; 182:21-30. [PMID: 26686610 DOI: 10.1016/j.micres.2015.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/16/2015] [Accepted: 09/26/2015] [Indexed: 11/21/2022]
Abstract
Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines.
Collapse
|
50
|
|