1
|
Shimizu K, Shimozuru M, Yamanaka M, Ito G, Nakao R, Tsubota T. Evaluating the vector potential of deer keds Lipoptena fortisetosa for selected pathogens in Hokkaido sika deer (Cervus nippon yesoensis). Parasitol Int 2025; 107:103053. [PMID: 39988082 DOI: 10.1016/j.parint.2025.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Deer keds (Lipoptena fortisetosa) are hematophagous insects that parasitize various ungulates, including Hokkaido sika deer (Cervus nippon yesoensis). Although deer keds are potential vectors for several pathogens, their role in disease transmission in Japan remains unclear. This study aimed to evaluate the potential of L. fortisetosa as a vector for selected pathogens in sika deer. Blood samples were collected from 32 sika deer and 149 deer keds (64 from deer and 85 from the environment) from the Rusha area of the Shiretoko Peninsula, Hokkaido, Japan. Nested PCRs and sequencing were performed to detect 18S rRNA gene of Theileria sp. Thrivae, 16S rRNA gene of Anaplasma sp. AP-sd (AP-sd), and flagellin B gene of Borrelia sp. in deer and deer keds. In sika deer, the infection rate was 84 % for Theileria sp. Thrivae, 75 % of AP-sd, and 3 % of Borrelia sp. The prevalence in deer keds collected from deer was 62 % for Theileria sp. Thrivae, 2 % AP-sd, and 1 % Borrelia sp. No pathogens were detected in nonparasitic deer keds captured from the environment. Notably, Theileria sp. Thrivae and AP-sd were detected in deer keds collected from PCR-negative sika deer, suggesting that deer keds acquired pathogens from a previously infested host. The absence of pathogens in non-parasitized deer keds suggests that they do not play as a biological vector for the tested pathogens. This study suggests a potential role for L. fortisetosa as a mechanical vector, emphasizing the need for additional experiments, including infection studies.
Collapse
Affiliation(s)
- Kotaro Shimizu
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Centre, Hokkaido University, Japan
| | | | | | - Ryo Nakao
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan.
| |
Collapse
|
2
|
Karatepe M, Aktaş M, Karatepe B, Özübek S. Investigation of Anaplasma Species with Veterinary and Public Health Significance in Sheep and Goats. Acta Parasitol 2025; 70:114. [PMID: 40423847 PMCID: PMC12117001 DOI: 10.1007/s11686-025-01056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
PURPOSE This study was carried out to investigate Anaplasma important for veterinary and public health in sheep and goats in Niğde province in Türkiye by using molecular methods. METHODS Blood samples were taken from randomly selected 690 animals (520 sheep and 170 goats), which were between 1 and 10 years old and from different study sites in Niğde by using the vacutainer tubes containing EDTA. After the genomic DNA extractions samples, the Anaplasma spp. 16S rRNA genes were amplified by PCR. Species-specific polymerase chain reaction (PCR) assays were performed on positive samples for the presence of A. bovis, A. capra, A. ovis, A. platys-like, and A. phagocytophilum. At the same time, the animals were tested for ixodid tick infestation and collected ticks were examined for identification under the stereo-microscope. RESULTS The results of PCR analysis show that the overall A. ovis prevalence was 63.3% (437/690) in small ruminants sampled. A total of 361 sheep (69.4%) and 76 goats (44.7%) were found to be infected with A. ovis, whereas no positivity was detected for A. bovis, A. capra, A. platys-like, and A. phagocytophilum. Anaplasma ovis positivity was observed at the highest percent in May (%74.6) while the lowest in June (%52.4). In total, 1361 ticks (579♀, 782♂) were collected from sheep and goats in Niğde. Ticks were identified as Rhipicephalus bursa (383, 28.1%), R. turanicus (607, 44.6%), Hyalomma marginatum (7, 0.5%), Hy. excavatum (247, 18.1%), Hy. anatolicum (23, 1.7%), Haemophsalis parva (21, 1.5%), Hae. punctata (7, 0.5%), Hae. sulcata (40, 2.9%) and Dermacentor marginatus (26, 1.9%). CONCLUSION The present study reports a high prevalence of A. ovis 63.3% (437/690) in sheep and goats in Niğde province.
Collapse
Affiliation(s)
- Mustafa Karatepe
- Faculty of Science, Department of Biotechnology, Niğde Ömer Halisdemir University, 51240, Niğde, Türkiye.
| | - Münir Aktaş
- Faculty of Veterinary, Department of Parasitology, Fırat University, 23200, Elazığ, Türkiye
| | - Bilge Karatepe
- Faculty of Science, Department of Biotechnology, Niğde Ömer Halisdemir University, 51240, Niğde, Türkiye
| | - Sezayi Özübek
- Faculty of Veterinary, Department of Parasitology, Fırat University, 23200, Elazığ, Türkiye
| |
Collapse
|
3
|
Wang JQ, Yu T, Qiu HY, Ji SW, Xu ZQ, Cui QC, Li HF, Liang WF, Feng S, Fu CT, Gao X, Han ZZ, Tian WN, Li JX, Xue SJ. Differential impact of spotted fever group rickettsia and anaplasmosis on tick microbial ecology: evidence from multi-species comparative microbiome analysis. Front Microbiol 2025; 16:1589263. [PMID: 40432969 PMCID: PMC12106494 DOI: 10.3389/fmicb.2025.1589263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Tick-borne diseases (TBDs) pose a significant public health challenge, as their incidence is increasing due to the effects of climate change and ecological shifts. The interplay between tick-borne pathogens and the host microbiome is an emerging area of research that may elucidate the mechanisms underlying disease susceptibility and severity. To investigate the diversity of microbial communities in ticks infected with vertebrate pathogens, we analyzed the microbiomes of 142 tick specimens. The presence of Rickettsia and Anaplasma pathogens in individual samples was detected through PCR. Our study aimed to elucidate the composition and variation of microbial communities associated with three tick species, which are known vectors for various pathogens affecting both wildlife and humans. We employed high-throughput sequencing techniques to characterize the microbial diversity and conducted statistical analyses to assess the correlation between the presence of specific pathogens and the overall microbial community structure. Pathogen screening revealed an overall positivity rate of 51.9% for Anaplasma and 44.6% for spotted fever group rickettsia (SFGR). Among the three tick species (Dermacentor silvarum, Haemaphysalis concinna, and Haemaphysalis japonica) analyzed, D. silvarum (the predominant species) exhibited the highest pathogen prevalence. The results indicate significant variation in microbial diversity between tick samples, with the presence of Anaplasma and SFGR associated with distinct changes in the microbial community composition. These findings underscore the complex interactions between ticks and their microbial inhabitants, enriching our understanding of tick-borne diseases.
Collapse
Affiliation(s)
- Jin-qi Wang
- Agricultural College of Yanbian University, Yanji, China
| | - Tian Yu
- Agricultural College of Yanbian University, Yanji, China
| | - Hong-yu Qiu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Sheng-wei Ji
- Agricultural College of Yanbian University, Yanji, China
| | - Zhi-qiang Xu
- Agricultural College of Yanbian University, Yanji, China
| | - Qi-chao Cui
- Agricultural College of Yanbian University, Yanji, China
| | - Hai-feng Li
- Agricultural College of Yanbian University, Yanji, China
| | - Wan-feng Liang
- Agricultural College of Yanbian University, Yanji, China
| | - Shuai Feng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chen-tao Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xu Gao
- Agricultural College of Yanbian University, Yanji, China
| | - Zhen-zhen Han
- Animal Health and Epidemic Prevention Center, Huludao, China
| | - Wan-nian Tian
- College of Animal Science, Jilin Agricultural Science and Technology College, Jilin, China
| | - Ji-xu Li
- Yanbian Center for Disease Control and Prevention, Yanji, China
| | - Shu-jiang Xue
- Agricultural College of Yanbian University, Yanji, China
| |
Collapse
|
4
|
Chisu V, Zobba R, Masala G, Chessa G, Giua L, Bianco P, Cacciotto C, Bazzoni E, Alberti A. Emergence of Novel Anaplasma Species in the Mediterranean Area. Animals (Basel) 2025; 15:1029. [PMID: 40218422 PMCID: PMC11988159 DOI: 10.3390/ani15071029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
The emergence of new Anaplasma strains in the Mediterranean region poses a challenge for both veterinary medicine and public health, as it can lead to more complex diagnostic and treatment strategies. Species related to Anaplasma platys and A. phagocytophilum, two important tick-borne pathogens, have been reported in several Mediterranean countries. However, the data on their presence in Sardinia remain limited. This study aimed to identify theAnaplasmaspecies genetically related to zoonotic agents, such as A. phagocytophilum or A. platys, in Sardinian horses, cattle, and swine. Using various molecular approaches targeting the groEL and gltA genes, the results confirm the presence of Candidatus (Ca.) Anaplasma turritanum and reveal the emergence of Candidatus (Ca.) Anaplasma cinensis and an A. phagocytophilum-like strain, designated as A. phagocytophilum-like 2, in Sardinian horses and cattle. These findings underscore the importance of ongoing surveillance in Sardinia and similar Mediterranean regions, as well as the urgent need for enhanced diagnostic tools and preventive strategies. Given the zoonotic potential of these emerging strains, these findings emphasize the need for greater vigilance in both veterinary and human health sectors to mitigate the risks associated with tick-borne Anaplasma species transmission. Ongoing research and proactive measures are essential to reduce the public health burden and prevent the spread of these pathogens across animal and human populations.
Collapse
Affiliation(s)
- Valentina Chisu
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (G.M.); (G.C.); (L.G.); (P.B.)
| | - Rosanna Zobba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (C.C.); (E.B.); (A.A.)
| | - Giovanna Masala
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (G.M.); (G.C.); (L.G.); (P.B.)
| | - Giovanna Chessa
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (G.M.); (G.C.); (L.G.); (P.B.)
| | - Laura Giua
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (G.M.); (G.C.); (L.G.); (P.B.)
| | - Piera Bianco
- Istituto Zooprofilattico Sperimentale “G. Pegreffi” della Sardegna, Via Duca degli Abruzzi 8, 07100 Sassari, Italy; (G.M.); (G.C.); (L.G.); (P.B.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (C.C.); (E.B.); (A.A.)
| | - Emanuela Bazzoni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (C.C.); (E.B.); (A.A.)
| | - Alberto Alberti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, 07100 Sassari, Italy; (C.C.); (E.B.); (A.A.)
| |
Collapse
|
5
|
Altay K, Abdugani A, Sahin OF, Muratova R, EroL U, Attokurov K, Abdurasulov I, Sakar HF, Risvanli A. A comprehensive molecular survey of vector-borne blood parasites in cattle in Kyrgyzstan with a note of the first molecular detection of Anaplasma bovis and Candidatus Anaplasma Camelii. Trop Anim Health Prod 2024; 56:266. [PMID: 39305339 DOI: 10.1007/s11250-024-04112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 12/11/2024]
Abstract
Vector-borne pathogens continue to increase their impact on the livestock industry worldwide. To protect animals against these pathogens, it is very important to identify the species that cause the disease and understand their prevalence. This study aimed to investigate the presence and prevalence of vector-borne pathogens in apparently healthy cattle in different parts of Kyrgyzstan using molecular diagnostic techniques. For this purpose, 531 blood samples were collected from the Osh, Jalal-Abad, and Batken oblasts of Kyrgyzstan. The blood samples were investigated for vector-borne pathogens using PCR, RLB, and RFLP. Moreover, DNA sequence analyses were used to confirm the results of molecular techniques and phylogenetic analyses of these pathogens. 359 (67.61%) out of 531 samples were found to be infected with at least one pathogen, whereas 172 (32.39%) were detected to be negative. Thirteen vector-borne pathogens were detected in cattle blood samples, and the prevalence of these pathogens was as follows: Theileria orientalis (47.83%), T. annulata (25.61%), Babesia major (0.19%), B. occultans (0.38%), Anaplasma phagocytophilum-like 1 (3.20%), A. capra (3.01%), A. centrale (2.82%), A. bovis (1.13%), (A) ovis (0.19%), Candidatus Anaplasma camelii (0.94%), Trypanosoma theileri (19.21%), Mycoplasma wenyonii (6.03%), and Ca. Mycoplasma haemobos (2.64%). Among the positive samples, one pathogen was identified in 189 cattle (35.59%), and co-infections (two or more pathogens) were determined in 170 (32.01%) animals. Theileria parva, T. mutans, (B) bigemina, B. bovis, B. divergens, and A. marginale could not be detected in the study. Anaplasma bovis and Ca. Anaplasma camelii were detected for the first time in the country. This molecular survey provides important epidemiological and genetic data for the vector-borne pathogens in cattle. The results of the study showed that vector-borne pathogens have a significant spread and distribution in cattle in Kyrgyzstan.
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye.
| | - Abdurasulov Abdugani
- Department of Veterinary Medicine and Biotechnology, Faculty of Natural Science, Tourism and Agricultural Technology, Osh State University, 723500, Osh, Kyrgyzstan
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye
| | - Rakhima Muratova
- Department of Veterinary Medicine and Biotechnology, Faculty of Natural Science, Tourism and Agricultural Technology, Osh State University, 723500, Osh, Kyrgyzstan
| | - Ufuk EroL
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye
| | - Kursantbek Attokurov
- Department of Veterinary Medicine and Biotechnology, Faculty of Natural Science, Tourism and Agricultural Technology, Osh State University, 723500, Osh, Kyrgyzstan
| | - Islambek Abdurasulov
- Department of Veterinary Medicine and Biotechnology, Faculty of Natural Science, Tourism and Agricultural Technology, Osh State University, 723500, Osh, Kyrgyzstan
| | - Husnu Furkan Sakar
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye
| | - Ali Risvanli
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek, 720044, Kyrgyzstan
- Department of Obstetrics and Gynaecology, Faculty of Veterinary Medicine, Fırat University, Elazig, 23159, Türkiye
| |
Collapse
|
6
|
Razzaq MA, Imran M, Atif FA, Abbas RZ, Alvi MA, Swelum AA, Sindhu ZUD, Khan MK, Sabir Mughal MA, Khan A, Wu WF. Molecular surveillance based on anaplasmosis in domestic small ruminants: First report on zoonotic Anaplasma capra and phylogenetic insights from Faisalabad, Pakistan. PLoS One 2024; 19:e0305412. [PMID: 39241048 PMCID: PMC11379319 DOI: 10.1371/journal.pone.0305412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/29/2024] [Indexed: 09/08/2024] Open
Abstract
Anaplasma is an intracellular alphaproteobacteria that infects diverse blood cell types in animal hosts including small ruminants. Epidemiological and risk factors information on zoonotic anaplasmosis with respect to anaplasmosis in sheep and goats are scarce. Therefore, the objective of the current study was to estimate the prevalence, risk factors of anaplasmosis and phylogenetic investigation of A. capra in sheep and goats from Faisalabad district, Pakistan. Briefly, 384 blood samples were randomly collected from sheep and goats of Faisalabad district, Pakistan, during January to May 2022. The samples were processed for the detection of Anaplasma targeting 16S rRNA gene using PCR. The data regarding disease determinants were collected using a predesigned questionnaire. Out of 384 samples, 131 samples were found positive for Anaplasma spp. with a prevalence rate of 34.11%. The results indicated a significantly higher prevalence of anaplasmosis in goats (41.88%) compared to sheep (22.00%). In addition, the chi square indicated that housing type, tick infestation, gender, tick control practices, age, mix farming, and hygiene were significantly associated with the occurrence of disease. The analysis of multivariate logistic regression expressed gender as the significant risk factor (p = 0.0001, OR = 1.757, CI = 1.305-2.366). The acquired sequences revealed four novel isolates of A. capra (Genbank accession numbers ON834323, ON838209, ON838210, and ON838211). The phylogenetic analysis of the 16S rRNA gene of A. capra revealed three distinct clusters with 99-100% homology with other isolates from different countries. Our isolates showed higher similarity with isolates from China (KM206273, KP314237, MT799937), Pakistan (ON238129, ON238130, ON238131), Angola (MT898988), India (MZ558066), Iran (MW692362), and Turkey (MT632469) isolated from human, sheep, ticks, goats, cattle, Gaddi goat, Persian Onager (Equus hemionus onager), and Turkish goats, respectively. In conclusion, A. capra is endemic in Punjab, Pakistan, there is a need to conduct large scale surveillance studies to assess the status of this pathogen at human-animal interface as well as to develop effective preventive and control strategies to reduce the economic losses associated with anaplasmosis in small ruminants.
Collapse
Affiliation(s)
- Muhammad A Razzaq
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rao Z Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Mughees A Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zia-Ud-Din Sindhu
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad K Khan
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | | | - Adil Khan
- Department of Botany and Zoology, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Wen-Feng Wu
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| |
Collapse
|
7
|
Altay K, Erol U, Sahin OF. Anaplasma capra: a new emerging tick-borne zoonotic pathogen. Vet Res Commun 2024; 48:1329-1340. [PMID: 38424380 PMCID: PMC11147849 DOI: 10.1007/s11259-024-10337-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The genus Anaplasma includes A. marginale, A. centrale, A. bovis, A. ovis, A. platys, and A. phagocytophilum transmitted by ticks, some of which are zoonotic and cause anaplasmosis in humans and animals. In 2012, a new species was discovered in goats in China. In 2015, the same agent was detected in humans in China, and it was provisionally named Anaplasma capra, referring to 2012. The studies conducted to date have revealed the existence of A. capra in humans, domestic animals, wild animals, and ticks from three different continents (Asia, Europe, and Africa). Phylogenetic analyses based on gltA and groEL sequences show that A. capra clearly includes two different genotypes (A. capra genotype-1 and A. capra genotype-2). Although A. capra human isolates are in the genotype-2 group, goat, sheep, and cattle isolates are in both groups, making it difficult to establish a host genotype-relationship. According to current data, it can be thought that human isolates are genotype-2 and while only genotype-1 is found in Europe, both genotypes are found in Asia. Anaplasma capra causes clinical disease in humans, but the situation is not yet sufficient to understand the zoonotic importance and pathogenicity in animals. In the present review, the history, hosts (vertebrates and ticks), molecular prevalence, pathogenic properties, and genetic diversity of A. capra were evaluated from a broad perspective.
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, 58140, Türkiye.
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, 58140, Türkiye
| |
Collapse
|
8
|
Mukhtar MU, Mahmood MA, Fayyaz Z, Klinpakdee K, Abdullah M. Opening the Black Box of Host Range, Vectorial Diversity, and Genetic Variants of Genus Anaplasma: The Contributing Factors Toward Its Zoonosis. Vector Borne Zoonotic Dis 2024; 24:265-273. [PMID: 38227393 DOI: 10.1089/vbz.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Background: Genus Anaplasma of the family Anaplasmataceae possesses bacteria of hematopoietic origin, which are obligate intracellular Gram-negative bacteria transmitted mainly by tick vectors. The members of this group of infectious agents are not new as etiological agents of animal diseases worldwide. However, now, reports of their zoonotic potential have gained currency to study these pathogens. The emergence of new species of Anaplasma and the spread of existing species to new areas and hosts highlight the importance of monitoring and improving diagnostic and treatment options for zoonotic diseases caused by Anaplasma. Conclusion: This review focuses on the general and distinctive characteristics of Anaplasma spp., with particular emphasis on the novel species and their diverse spectrum of hosts as potential risk factors impacting its emerging zoonosis.
Collapse
Affiliation(s)
- Muhammad Uzair Mukhtar
- Department of Medical Entomology and Parasitology, Institute of Public Health, Lahore, Pakistan
| | - Muhammad Asif Mahmood
- Department of Medical Entomology and Parasitology, Institute of Public Health, Lahore, Pakistan
| | - Zahra Fayyaz
- Department of Infectious Diseases, Institute of Public Health, Lahore, Pakistan
| | - Kanoknaphat Klinpakdee
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, Thailand
| | - Muhammad Abdullah
- Department of Paramedical Education, Institute of Public Health, Lahore, Pakistan
| |
Collapse
|
9
|
Pardinilla LM, Aljaberi S, Procter M, Hamdan L, Pasha SK, Al Aiyan A, Qablan MA. The prevalence of selected vector-borne diseases in dromedary camels (Camelus dromedarius) in the United Arab Emirates. Vet Parasitol Reg Stud Reports 2024; 50:101006. [PMID: 38644035 DOI: 10.1016/j.vprsr.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 04/23/2024]
Abstract
Vector-borne diseases (VBDs) affecting dromedary camels (Camelus dromedarius) have considerable importance in the United Arab Emirates (UAE) because of the consequences associated with production decline and economic losses. Our study aimed to determine the prevalence of selected VBDs in camels in the UAE and identify risk factors. This research is currently affected by the low number of epidemiological molecular surveys addressing this issue. Blood samples were obtained from 425 dromedary camels from different locations across the UAE. Whole genomic DNA was isolated, and PCR screening was done to detect piroplasmids (Babesia/Theileria spp.), Trypanosoma spp., and Anaplasmataceae spp. (Anaplasma, Ehrlichia, Neorickettsia and Wolbachia spp.). Amplicons were sequenced, and phylogenetic trees were constructed. Trypanosoma sequences were identified as T. brucei evansi, whereas Anaplasmataceae sequences were identified as A. platys-like. All camels were negative for Babesia/Theileria spp. (0%); however, 18 camels were positive for T. b. evansi (4%) and 52 were positive for A. platys-like (12%). Mixed infection with T. b. evansi and A. platys-like was found in one camel. Statistical analyses revealed that camels with a brown coat colour were significantly more prone to acquire the A. platys-like strain compared with those having a clearer coat. A similar finding was observed when comparing urban moving camels with desert indoor and urban indoor camels. Continuous disease surveillance is required to ensure and maintain the good health status of the camels in the UAE. Nonetheless, the risk of disease outbreak remains if the misuse of drugs continues.
Collapse
Affiliation(s)
- Laia-M Pardinilla
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saeed Aljaberi
- Veterinary Services Section, Public Health Services Department, Dubai Municipality, P.O. Box 67, Dubai, United Arab Emirates
| | - Miranda Procter
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Layaly Hamdan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Syed Kamaal Pasha
- Emirates Camel Center, P.O. Box 7660, Umm Al Quwain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Moneeb A Qablan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Oguz B, Deger MS, Al-Olayan E, El-Ashram S. Molecular Survey of Anaplasma capra in Goats in Van Province, Eastern Türkiye. Acta Parasitol 2024; 69:370-374. [PMID: 38112913 DOI: 10.1007/s11686-023-00758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND A newly discovered zoonotic infection carried by ixodid ticks, Anaplasma capra, affects a wide variety of hosts, including numerous mammals. A. capra most likely infects erythrocytes or endothelial cells in mammals. This study aimed to investigate the A. capra pathogen in goats in Türkiye's Van province. METHODS A total of 200 goat blood samples were examined. Goat samples were subjected to partial amplification of the gltA gene fragment using a nested polymerase chain reaction. RESULTS A. capra DNA was detected in 0.5% of goat blood samples. Phylogenetic analysis of a partial gltA gene fragment showed that the Eastern Türkiye isolate, closely grouped with A. capra isolates reported from wild and domestic ruminants in France, Türkiye, and Kyrgyzstan, formed a distinct clade. CONCLUSIONS This is the first report of A. capra in goats in Van province, Eastern Türkiye.
Collapse
Affiliation(s)
- Bekir Oguz
- Department of Parasitology, Faculty of Veterinary Medicine, University of Van Yuzuncu Yil, Tusba, 65100, Van, Türkiye.
| | - M Serdar Deger
- Department of Parasitology, Faculty of Veterinary Medicine, University of Van Yuzuncu Yil, Tusba, 65100, Van, Türkiye
| | - Ebtsam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
- College of Life Science and Engineering, Foshan University, 18 Jiangwan, Foshan, 528231, Guangdong, China
| |
Collapse
|
11
|
Ma Y, Jian Y, Wang G, Zafar I, Li X, Wang G, Hu Y, Yokoyama N, Ma L, Xuan X. Epidemiological Investigation of Tick-Borne Bacterial Pathogens in Domestic Animals from the Qinghai-Tibetan Plateau Area, China. Pathogens 2024; 13:86. [PMID: 38276159 PMCID: PMC10818765 DOI: 10.3390/pathogens13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The Qinghai-Tibetan Plateau area (QTPA) features a unique environment that has witnessed the selective breeding of diverse breeds of domestic livestock exhibiting remarkable adaptability. Nevertheless, Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. represent tick-borne bacterial pathogens that pose a global threat and have substantial impacts on both human and animal health, as well as on the economy of animal husbandry within the Qinghai-Tibetan plateau area. In this study, a total of 428 samples were systematically collected from 20 distinct areas within the Qinghai Plateau. The samples included 62 ticks and 366 blood samples obtained from diverse animal species to detect the presence of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. The prevalence of infection in this study was determined as follows: Anaplasma bovis accounted for 16.4% (70/428), A. capra for 4.7% (20/428), A. ovis for 5.8% (25/428), Borrelia burgdorferi sensu lato for 6.3% (27/428), Coxiella burnetii for 0.7% (3/428), and Rickettsia spp. for 0.5% (2/428). Notably, no cases of A. marginale and A. phagocytophilum infections were observed in this study. The findings revealed an elevated presence of these pathogens in Tibetan sheep and goats, with no infections detected in yaks, Bactrian camels, donkeys, and horses. To the best of our knowledge, this study represents the first investigation of tick-borne bacterial pathogens infecting goats, cattle, horses, and donkeys within the Qinghai Plateau of the Qinghai-Tibetan Plateau area. Consequently, our findings contribute valuable insights into the distribution and genetic diversity of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. within China.
Collapse
Affiliation(s)
- Yihong Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Yingna Jian
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Geping Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
- Veterinary Research Institute, Livestock and Dairy Development Department, Lahore 54810, Pakistan
| | - Xiuping Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Guanghua Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Yong Hu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Liqing Ma
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Centre for Biomedicine and Infectious Diseases, Qinghai University, Xining 810016, China
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| |
Collapse
|
12
|
Chadi H, Moraga-Fernández A, Sánchez-Sánchez M, Chenchouni H, Fernández de Mera IG, Garigliany MM, de la Fuente J, Tennah S, Sedrati T, Ghalmi F. Molecular detection and associated risk factors of Anaplasma marginale, A. ovis and A. platys in sheep from Algeria with evidence of the absence of A. phagocytophilum. Acta Trop 2024; 249:107040. [PMID: 37839669 DOI: 10.1016/j.actatropica.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Anaplasma species are obligate intracellular rickettsial pathogens that cause significant diseases in animals and humans. Despite their importance, limited information on Anaplasma infections in Algeria has been published thus far. This study aimed to assess the infection rate, characterize Anaplasma species, and identify associated risk factors in selected sheep farms across Oum El Bouaghi region in Algeria. In 2018, we collected 417 blood samples from sheep (Ovis aries) and performed molecular characterization of Anaplasma species infecting these animals. This characterization involved the use of 16S rRNA, msp2, rpoB, and msp5 genes, which were analyzed through nested PCR, qPCR, cPCR, DNA sequencing, and subsequent phylogenetic analysis. Our findings revealed infection rates of 12.7 % for Anaplasma species detected, with Anaplasma ovis at 10.8 %, Anaplasma marginale at 1.7 %, and Anaplasma platys at 0.2 %. Interestingly, all tested animals were found negative for Anaplasma phagocytophilum. Statistical analyses, including the Chi-square test and Fisher exact test, failed to establish any significant relationships (p > 0.05) between A. ovis and A. platys infections and variables such as age, sex, sampling season, and tick infestation level. However, A. marginale infection exhibited a significant association with age (p < 0.05), with a higher incidence observed in lambs (5.2 %) compared to other age groups. Remarkably, this study represents the first molecular detection of A. platys and A. marginale in Algerian sheep. These findings suggest that Algerian sheep may serve as potential reservoirs for these pathogens. This research contributes valuable insights into the prevalence and characteristics of Anaplasma infections in Algerian sheep populations, emphasizing the need for further investigation and enhanced surveillance to better understand and manage these diseases.
Collapse
Affiliation(s)
- Hafidha Chadi
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria; Department of Applied Biology, Faculty of Exact Sciences and Nature and Life Sciences, University of Echahid Cheikh Larbi Tebessi, Tebessa 12000, Algeria.
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Marta Sánchez-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | | | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Belgium
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, Ciudad Real 13005, Spain; Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Safia Tennah
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria
| | - Tahar Sedrati
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria; Department of Biology, University of Mohamed El Bachir El Ibrahimi, Bordj Bou Arréridj 34000, Algeria
| | - Farida Ghalmi
- Research Laboratory Management of Local Animal Resources, Higher National Veterinary School (ENSV), El Harrach, Algiers 16004, Algeria
| |
Collapse
|
13
|
Remesar S, Castro-Scholten S, Morrondo P, Díaz P, Jiménez-Martín D, Muñoz-Fernández L, Fajardo T, Cano-Terriza D, García-Bocanegra I. Occurrence of Anaplasma spp. in wild lagomorphs from Southern Spain: Molecular detection of new Anaplasma bovis lineages. Res Vet Sci 2024; 166:105093. [PMID: 37980815 DOI: 10.1016/j.rvsc.2023.105093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Wild lagomorphs can act as reservoirs of several pathogens of public and animal health concern. However, the number of studies assessing the presence of Anaplasma spp. in these species is scarce. The aim of the present study was to molecularly identify Anaplasma spp. in wild rabbits (Oryctolagus cuniculus) and Iberian hares (Lepus granatensis) from Southern Spain and assess their epidemiological role in the maintenance of the bacterium. During 2017-2021, spleen samples of 394 wild rabbits and 145 Iberian hares were collected. Anaplasma DNA was detected using different PCR assays (16S rRNA and groEL) and phylogenetic analyses were carried out by Bayesian approach. The possible influence of lagomorph species, age and sex on the prevalence of Anaplasma spp. was evaluated by a multiple logistic regression model. The 9.4% of the rabbits were positive to Anaplasma bovis, but all the hares were negative. No significant differences were found in Anaplasma spp. prevalence regarding to age or sex. This is the first report of A. bovis in lagomorphs from Europe. The phylogenetic analysis of A. bovis confirms the existence of different clusters suggesting the existence of several lineages. In addition, a high divergence of nucleotide identity was observed within the lineage 4, which could result in the under-detection of some strains when using A. bovis-specific PCR, hindering its detection and characterization. Since this analysis is based on a limited number of nucleotide bases and sequences, more studies are needed for further characterize A. bovis, as well as its relationship with other Anaplasma spp.
Collapse
Affiliation(s)
- Susana Remesar
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Sabrina Castro-Scholten
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Patrocinio Morrondo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díaz
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Débora Jiménez-Martín
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Leonor Muñoz-Fernández
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Tomás Fajardo
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud (ENZOEM), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Lin ZT, Ye RZ, Liu JY, Wang XY, Zhu WJ, Li YY, Cui XM, Cao WC. Epidemiological and phylogenetic characteristics of emerging Anaplasma capra: A systematic review with modeling analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105510. [PMID: 37778674 DOI: 10.1016/j.meegid.2023.105510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Anaplasma capra, an emerging tick-borne pathogen, has caused a lot of concern since initially recognized in goats and patients in China in 2015, and has been reported in a wide range of domestic and wild animals as well as ticks worldwide, posing a threat to public health. In this systematic review, we established a comprehensive database to acquire the distribution and prevalence status of this pathogen, and collected all sequences of A. capra to summarize the details of genetic diversity by phylogenetic analysis. We also predicted the possible global distribution of A. capra by using ecological niche model. A. capra has been known to distribute in 18 countries across Asia, Europe and Africa. A total of 19 species of mammals from seven families have been reported as hosts, and domestic ruminants including goats, sheep and cattle were the major hosts. At least 8 tick species of 4 genera have been reported to carry A. capra, and Haemaphysalis longicornis was most commonly infected. Sheep and Rhipicephalus microplus had the highest positive rates among animals and ticks. Phylogenetic analysis based on gltA and groEL genes revealed that A. capra could primarily be divided into two clusters related to geographic location and animal hosts. The predictive model showed that the most suitable habitats for presence of A. capra were mainly located in Asia and eastern Europe. These cumulative data regarding A. capra of our study lay a foundation for the subsequent exploration of this emerging tick-borne pathogen.
Collapse
Affiliation(s)
- Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, PR China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, PR China
| | - Xiao-Yang Wang
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, PR China
| | - Wen-Jie Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yu-Yu Li
- Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, PR China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China; Institute of EcoHealth, School of Public Health, Shandong University, 44 Wenhuaxi Street, Jinan 250012, Shandong, PR China.
| |
Collapse
|
15
|
Zhou S, Huang L, Lin Y, Bhowmick B, Zhao J, Liao C, Guan Q, Wang J, Han Q. Molecular surveillance and genetic diversity of Anaplasma spp. in cattle (Bos taurus) and goat (Capra aegagrus hircus) from Hainan island/province, China. BMC Vet Res 2023; 19:213. [PMID: 37853405 PMCID: PMC10583423 DOI: 10.1186/s12917-023-03766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.
Collapse
Affiliation(s)
- Sa Zhou
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Liangyuan Huang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Yang Lin
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Biswajit Bhowmick
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jianguo Zhao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Chenghong Liao
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Qingfeng Guan
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
| | - Jinhua Wang
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- College of Animal Science and Technology, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
16
|
Seo JY, Kim YJ, Kim SY, Lee HI. Molecular Detection of Anaplasma, Ehrlichia and Rickettsia Pathogens in Ticks Collected from Humans in the Republic of Korea, 2021. Pathogens 2023; 12:802. [PMID: 37375492 DOI: 10.3390/pathogens12060802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne pathogens (TBPs), transmitted by the bites of ticks, are of great medical and veterinary importance. They include bacteria, viruses, and protozoan parasites. To provide fundamental data on the risk of tick contact and public health strategies, we aimed to perform a molecular investigation on four tick-borne bacterial pathogens in ticks collected from humans across the Republic of Korea (ROK) in 2021. In total, 117 ticks were collected, including Haemaphysalis longicornis (56.4%), Amblyomma testudinarium (26.5%), Ixodes nipponensis (8.5%), H. flava (5.1%), and I. persulcatus (0.9%). Among the ticks, 20.5% (24/117) contained tick-borne bacterial pathogens, with infection rates of 17.9% for Rickettsia (Candidatus Rickettsia jingxinensis, R. tamurae, R. monacensis, and Candidatus Rickettsia tarasevichiae), 2.5% for Anaplasma (A. phagocytophilum, A. capra, and A. bovis), and 0.9% for Ehrlichia (Ehrlichia sp.). Additionally, the co-detection rate for R. monacensis and A. phagocytophilum was 0.9%. To our knowledge, this is the first report of A. capra and A. bovis detection in ticks collected from humans in the ROK. This study contributes to the understanding of the potential risk of tick contact and provides fundamental data for establishing a public health strategy for tick-borne disease management in the ROK.
Collapse
Affiliation(s)
- Ji-Ye Seo
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| | - Yu-Jung Kim
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| | - Seong-Yoon Kim
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| | - Hee-Il Lee
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju 28159, Republic of Korea
| |
Collapse
|
17
|
Kolo A. Anaplasma Species in Africa-A Century of Discovery: A Review on Molecular Epidemiology, Genetic Diversity, and Control. Pathogens 2023; 12:pathogens12050702. [PMID: 37242372 DOI: 10.3390/pathogens12050702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma species, belonging to the family Anaplasmataceae in the order Rickettsiales, are obligate intracellular bacteria responsible for various tick-borne diseases of veterinary and human significance worldwide. With advancements in molecular techniques, seven formal species of Anaplasma and numerous unclassified species have been described. In Africa, several Anaplasma species and strains have been identified in different animals and tick species. This review aims to provide an overview of the current understanding of the molecular epidemiology and genetic diversity of classified and unclassified Anaplasma species detected in animals and ticks across Africa. The review also covers control measures that have been taken to prevent anaplasmosis transmission on the continent. This information is critical when developing anaplasmosis management and control programs in Africa.
Collapse
Affiliation(s)
- Agatha Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
18
|
Ulucesme MC, Ozubek S, Aktas M. Molecular Prevalence and Genetic Diversity Based on Msp1a Gene of Anaplasma ovis in Goats from Türkiye. Life (Basel) 2023; 13:life13051101. [PMID: 37240746 DOI: 10.3390/life13051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma ovis is a tick-borne obligated intraerythrocytic bacterium that infects domestic sheep, goats, and wild ruminants. Recently, several studies have been carried out using 16S rRNA and msp4 genes to identify the genetic diversity of A. ovis. Instead of these genes, which are known to be highly stable among heterologous strains, Msp1a, which is accepted as a stable molecular marker to classify A. marginale strains, was used in A. ovis genetic diversity studies. The genetic diversity of A. ovis strains according to the Msp1a gene has not been extensively reported. Therefore, the purpose of this study was to examine the genetic diversity of A. ovis in goats specifically using analysis of the Msp1a gene. Blood samples were taken from the vena jugularis to the EDTA tubes from 293 randomly selected goats (apparently healthy) in the Antalya and Mersin provinces of Mediterranean region of Türkiye. The Msp1a gene of A. ovis was amplified in all DNA samples through the use of PCR, using a specific set of primers named AoMsp1aF and AoMsp1aR. Among the amplified products, well-defined bands with different band sizes were subjected to sequence analysis. The obtained sequence data were converted into amino acid sequences using an online bioinformatics program and the tandem regions were examined. The Msp1a gene of A. ovis was amplified in 46.1% (135 out of 293) of the goats. Through tandem analysis, five distinct tandems (Ao8, Ao18, Tr15-16-17) were identified, and it was found that three of these tandems (Tr15-16-17) were previously unknown and were therefore defined as new tandems. The study also involved examination of ticks from goats. It was observed that the goats in the area were infested with several tick species, including Rhipicephalus bursa (888/1091, 81.4%), R. turanicus (96/1091, 8.8%), Dermacentor raskemensis (92/1091, 8.4%), Hyalomma marginatum (9/1091, 0.8%), and R. sanguineus s.l. (6/1091, 0.5%). This study provides important data for understanding the genetic diversity and evolution of A. ovis based on tandem repeats in the Msp1a protein.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| |
Collapse
|
19
|
Ravindran R, Hembram PK, Kumar GS, Kumar KGA, Deepa CK, Varghese A. Transovarial transmission of pathogenic protozoa and rickettsial organisms in ticks. Parasitol Res 2023; 122:691-704. [PMID: 36797442 PMCID: PMC9936132 DOI: 10.1007/s00436-023-07792-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Transovarial transmission (TOT) is an efficient vertical transmission of pathogens that is observed in many arthropod vectors. This method seems to be an evolutionarily unique development observed only in Babesia sensu stricto (clade VI) and Rickettsia spp., whereas transstadial transmission is the common/default way of transmission. Transovarial transmission does not necessarily contribute to the amplification of tick-borne pathogens but does contribute to the maintenance of disease in the environment. This review aims to provide an updated summary of previous reports on TOT of tick-borne pathogens.
Collapse
Affiliation(s)
- Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India.
| | - Prabodh Kumar Hembram
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Gatchanda Shravan Kumar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | | | - Chundayil Kalarickal Deepa
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala, 673 576, India
| |
Collapse
|
20
|
Molecular survey of Anaplasma and Ehrlichia species in livestock ticks from Kassena-Nankana, Ghana; with a first report of Anaplasma capra and Ehrlichia minasensis. Arch Microbiol 2023; 205:92. [PMID: 36795247 DOI: 10.1007/s00203-023-03430-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Tick-borne pathogens harm livestock production and pose a significant risk to public health. To combat these effects, it is necessary to identify the circulating pathogens to create effective control measures. This study identified Anaplasma and Ehrlichia species in ticks collected from livestock in the Kassena-Nankana Districts between February 2020 and December 2020. A total of 1550 ticks were collected from cattle, sheep and goats. The ticks were morphologically identified, pooled and screened for pathogens using primers that amplify a 345 bp fragment of the 16SrRNA gene and Sanger sequencing. The predominant tick species collected was Amblyomma variegatum (62.98%). From the 491 tick pools screened, 34 (6.92%) were positive for Ehrlichia and Anaplasma. The pathogens identified were Ehrlichia canis (4.28%), Ehrlichia minasensis (1.63%), Anaplasma capra (0.81%) and Anaplasma marginale (0.20%). This study reports the first molecular identification of the above-mentioned Ehrlichia and Anaplasma species in ticks from Ghana. With the association of human infections with the zoonotic pathogen A. capra, livestock owners are at risk of infections, calling for the development of effective control measures.
Collapse
|
21
|
Seo MG, Ouh IO, Kwak D. Detection and Genotypic Analysis of Anaplasma bovis and A. phagocytophilum in Horse Blood and Lung Tissue. Int J Mol Sci 2023; 24:ijms24043239. [PMID: 36834651 PMCID: PMC9966372 DOI: 10.3390/ijms24043239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
A clinical case of Anaplasma bovis was reported for the first time in our previous study (2019) in a horse, a nondefinitive host. Although A. bovis is a ruminant and not a zoonotic pathogen, it is responsible for persistent infections in horses. In this follow-up study, the prevalence of Anaplasma spp., including A. bovis, was assessed in horse blood and lung tissue samples to fully understand Anaplasma spp. pathogen distribution and the potential risk factors of infection. Among 1696 samples, including 1433 blood samples from farms nationwide and 263 lung tissue samples from horse abattoirs on Jeju Island, a total of 29 samples (1.7%) tested positive for A. bovis and 31 (1.8%) samples tested positive for A. phagocytophilum, as determined by 16S rRNA nucleotide sequencing and restriction fragment length polymorphism. This study is the first to detect A. bovis infection in horse lung tissue samples. Further studies are needed to clarify the comparison of sample types within cohorts. Although the clinical significance of Anaplasma infection was not evaluated in this study, our results emphasize the need to clarify the host tropism and genetic divergence of Anaplasma to enable the development of effective prevention and control measures through broad epidemiological studies.
Collapse
Affiliation(s)
- Min-Goo Seo
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - In-Ohk Ouh
- National Institute of Health, Korea Disease Control and Prevention Agency, 212 Osongsaengmyeong 2-ro, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-53-950-7794
| |
Collapse
|
22
|
Addo SO, Bentil RE, Yartey KN, Ansah-Owusu J, Behene E, Opoku-Agyeman P, Bruku S, Asoala V, Mate S, Larbi JA, Baidoo PK, Wilson MD, Diclaro JW, Dadzie SK. First molecular identification of multiple tick-borne pathogens in livestock within Kassena-Nankana, Ghana. ANIMAL DISEASES 2023. [DOI: 10.1186/s44149-022-00064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractThe risk of pathogen transmission continues to increase significantly in the presence of tick vectors due to the trade of livestock across countries. In Ghana, there is a lack of data on the incidence of tick-borne pathogens that are of zoonotic and veterinary importance. This study, therefore, aimed to determine the prevalence of such pathogens in livestock using molecular approaches. A total of 276 dry blood spots were collected from cattle (100), sheep (95) and goats (81) in the Kassena-Nankana Districts. The samples were analyzed using Polymerase Chain Reaction (qPCR) and conventional assays and Sanger sequencing that targeted pathogens including Rickettsia, Coxiella, Babesia, Theileria, Ehrlichia and Anaplasma. An overall prevalence of 36.96% was recorded from the livestock DBS, with mixed infections seen in 7.97% samples. Furthermore, the prevalence of infections in livestock was recorded to be 19.21% in sheep, 14.13% in cattle, and 3.62% in goats. The pathogens identified were Rickettsia spp. (3.26%), Babesia sp. Lintan (8.70%), Theileria orientalis (2.17%), Theileria parva (0.36%), Anaplasma capra (18.48%), Anaplasma phagocytophilum (1.81%), Anaplasma marginale (3.26%) and Anaplasma ovis (7.25%). This study reports the first molecular identification of the above-mentioned pathogens in livestock in Ghana and highlights the use of dry blood spots in resource-limited settings. In addition, this research provides an update on tick-borne pathogens in Ghana, suggesting risks to livestock production and human health. Further studies will be essential to establish the distribution and epidemiology of these pathogens in Ghana.
Collapse
|
23
|
Altay K, Erol U, Sahin OF, Aytmirzakizi A, Temizel EM, Aydin MF, Dumanli N, Aktas M. The detection and phylogenetic analysis of Anaplasma phagocytophilum-like 1, A. ovis and A. capra in sheep: A. capra divides into two genogroups. Vet Res Commun 2022; 46:1271-1279. [PMID: 36167934 DOI: 10.1007/s11259-022-09998-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
In this study, the presence, prevalence, and genotypes of Anaplasma phagocytophilum, A. ovis, and A. capra in sheep were investigated based on 16 S SSU rRNA, groEL, and gtlA gene-specific polymerase chain reaction (PCR), respectively. The sequences of the genes were used for detection of the phylogenetic position of the species. Additionally, a restriction fragment length polymorphism (RFLP) were carried out for discrimination of A. phagocytophilum and related variants (A. phagocytophilum-like 1 and 2). The prevalence of Anaplasma spp. was found as 25.8% (101/391), while it was found that A. ovis, A. phagocytophilum-like 1, and A. capra are circulating in the sheep herds in Kyrgyzstan, according to the PCRs, RFLP and the partial DNA sequencing results. The positivity rates of A. phagocytophilum-like 1, A. ovis, and A. capra genotype-1 were 6.9, 22.5, and 5.3%, respectively. A total of 32 (8.2%) sheep were found to be mix infected. Moreover, phylogenetic analyses and sequence comparison with those available in the GenBank showed that A. capra formed two distinct genetic groups (A. capra genotype-1 and A. capra genotype-2). Considering the zoonotic potential of these species, it may be necessary to make changes in the interpretation of anaplasmosis cases in animals and there is a need for further studies to determine the pathogenicity of the species/genotypes circulating in animals.
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey.
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, Turkey
| | - Ayperi Aytmirzakizi
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720044, Bishkek, Kyrgyzstan
| | - Ethem Mutlu Temizel
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, TÜRKİYE, Turkey
| | - Mehmet Fatih Aydin
- Department of Public Health, Faculty of Health Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Nazir Dumanli
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
24
|
Lu M, Meng C, Gao X, Sun Y, Zhang J, Tang G, Li Y, Li M, Zhou G, Wang W, Li K. Diversity of Rickettsiales in Rhipicephalus microplus Ticks Collected in Domestic Ruminants in Guizhou Province, China. Pathogens 2022; 11:pathogens11101108. [PMID: 36297165 PMCID: PMC9607482 DOI: 10.3390/pathogens11101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Rhipicephalus microplus ticks are vectors for multiple pathogens infecting animals and humans. Although the medical importance of R. microplus has been well-recognized and studied in most areas of China, the occurrence of tick-borne Rickettsiales has seldom been investigated in Guizhou Province, Southwest China. In this study, we collected 276 R. microplus ticks from cattle (209 ticks) and goats (67 ticks) in three locations of Guizhou Province. The Rickettsia, Anaplasma, and Ehrlichia were detected by targeting the 16S rRNA gene and were further characterized by amplifying the key genes. One Rickettsia (Ca. Rickettsia jingxinensis), three Ehrlichia (E. canis, E. minasensis, Ehrlichia sp.), and four Anaplasma (A. capra, A. ovis, A. marginale, Ca. Anaplasma boleense) species were detected, and their gltA and groEL genes were recovered. Candidatus Rickettsia jingxinensis, a spotted fever group of Rickettsia, was detected in a high proportion of the tested ticks (88.89%, 100%, and 100% in ticks from the three locations, respectively), suggesting the possibility that animals may be exposed to this type of Rickettsia. All the 16S, gltA, groEL, and ompA sequences of these strains are 100% identical to strains reported in Ngawa, Sichuan Province. E. minasensis, A. marginale, and Candidatus Anaplasma boleense are known to infect livestock such as cattle. The potential effects on local husbandry should be considered. Notably, E. canis, A. ovis, and A. capra have been reported to infect humans. The relatively high positive rates in Qianxinan (20.99%, 9.88%, and 4.94%, respectively) may indicate the potential risk to local populations. Furthermore, the genetic analysis indicated that the E. minasensis strains in this study may represent a variant or recombinant. Our results indicated the extensive diversity of Rickettsiales in R. microplus ticks from Guizhou Province. The possible occurrence of rickettsiosis, ehrlichiosis, and anaplasmosis in humans and domestic animals in this area should be further considered and investigated.
Collapse
Affiliation(s)
- Miao Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | - Chao Meng
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Xiang Gao
- Tongzhou Center for Disease Control and Prevention, Tongzhou District, Beijing 101100, China
| | - Yue Sun
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Jun Zhang
- Guizhou Center for Disease Control and Prevention, Guiyang 550004, China
| | - Guangpeng Tang
- Liuzhi Center for Disease Control and Prevention, Liupanshui 553400, China
| | - Yilin Li
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Mengyao Li
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Guangyi Zhou
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Wen Wang
- College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Kun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
- Tianjin Key Laboratory of Food and Biotechnology, Tianjin University of Commerce, Beichen District, Tianjin 300134, China
- Correspondence:
| |
Collapse
|
25
|
The first molecular identification and phylogenetic analysis of tick-borne pathogens in captive wild animals from Lohi Bher zoo, Pakistan. Parasitol Res 2022; 121:3321-3326. [DOI: 10.1007/s00436-022-07666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
26
|
Sahin OF, Erol U, Altay K. Buffaloes as new hosts for Anaplasma capra: Molecular prevalence and phylogeny based on gtlA, groEL, and 16S rRNA genes. Res Vet Sci 2022; 152:458-464. [PMID: 36148715 DOI: 10.1016/j.rvsc.2022.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
Anaplasma capra is a tick-borne pathogen that was discovered for the first time in goats in China in 2012. The studies carried out from the first detection in China to the present have revealed the presence of this species in eight countries including Angola, France, Iranian, South Korea, Kyrgyzstan, Malaysia, Spain, and Türkiye in three continents (Africa, Asia, and Europe). It has also been determined that humans, sheep, cattle, dog, and wild animals are the hosts of A. capra. It was investigated whether water buffaloes were the host of A. capra using nested-PCR and DNA sequencing in this study. The prevalence of A. capra in Turkish water buffalo herds was investigated and phylogenetic analyzes were performed on the basis of gltA, groEL, and 16S rRNA genes. A total of 364 water buffalo blood samples were examined in terms of A. capra using gltA gene species-specific nested-PCR. A. capra were detected in 52 of 364 (14.28%) blood samples. There was no statistically significant difference between the prevalence, gender, and age parameters. The gltA, groEL, and 16S rRNA genes in randomly selected three positive samples were sequenced. A. capra isolates obtained from water buffaloes in this study shared 85.20-100%(gltA), 89.84-100%(groEL), and 99.82-100%(16S rRNA) nucleotide similarity with A.capra isolates present in GeneBank. Phylogenetic analyses of gtlA and groEL genes revealed that A. capra divided in two different genogroups. In conclusion, this study revealed that water buffalo is a new host of A. capra. However, comprehensive studies are needed to determine the pathogenicity, vectors, and biological properties of A. capra in this new host.
Collapse
Affiliation(s)
- Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Türkiye
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Türkiye
| | - Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140 Sivas, Türkiye.
| |
Collapse
|
27
|
Qi Y, Ai L, Zhu C, Lu Y, Lv R, Mao Y, Lu N, Tan W. Co-existence of Multiple Anaplasma Species and Variants in Ticks Feeding on Hedgehogs or Cattle Poses Potential Threats of Anaplasmosis to Humans and Livestock in Eastern China. Front Microbiol 2022; 13:913650. [PMID: 35756069 PMCID: PMC9226643 DOI: 10.3389/fmicb.2022.913650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Background Anaplasma spp., causative agents of anaplasmosis, pose significant a threat to public health and economic losses in livestock farming. Co-infections/co-existence of various Anaplasma spp. may facilitate pathogen interactions and the emergence of novel variants, represent potential dangers to public health and economic losses from livestock farming, and raise challenges of detection and diagnosis. The information regarding co-infection/co-existence of Anaplasma in their vector ticks and wild animals is limited and needs urgent investigation. Methods Wild hedgehogs and ticks from hedgehogs and cattle were collected from Jiangsu province, Eastern China, and DNA was extracted from hedgehog organs and tick homogenates. Various genera of species-specific polymerase chain reaction (PCR) or nested PCR amplifications targeting 16S ribosomal RNA (rrs), msp4, or groEL gene coupled with sequencing were conducted to identify Anaplasma spp. Results Anaplasma phagocytophilum (1, 0.6%), A. marginale (2, 1.2%), A. platys variants xyn10pt-1 (13, 7.7%), xyn21pt-2 (3, 1.8%), and xyn3pt-3 (3, 1.8%), A. bovis variant cwp72bo-1 (12, 7.1%), and a novel Candidatus Cryptoplasma sp. (1, 0.6%) were identified in 168 Haemaphysalis longicornis ticks from cattle. A. platys variant xyn10pt-1 (20, 11.4%) and A. bovis variants cwp72bo-1 (12, 6.9%) and cwp55-36bo-2 (1, 0.6%) were detected in 173 H. flava ticks from hedgehogs. However, only A. bovis variant cwp72bo-1 (15, 46.7%) was identified in 32 Erinaceus amurensis hedgehogs. Various co-existence combinations were found only in ticks. Conclusion The co-existence of various Anaplasma spp. and variants in H. flava and H. longicornis was detected for the first time in the world. The high infection rate of A. bovis in hedgehogs and its moderate infection rate in their parasitic ticks suggest that Er. amurensis hedgehog could be an important reservoir of A. bovis, rather than A. platys. Horizontal transmission of Anaplasma spp. may exist among different tick species via their shared hosts in the investigated area. This study provided epidemiological data that could be crucial for strategy development for early warning, prevention, and control of potential Anaplasma infections.
Collapse
Affiliation(s)
- Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Lele Ai
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Changqiang Zhu
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China.,Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Yongfeng Lu
- Administration for Drug and Instrument Supervision and Inspection of PLAJLSF, Beijing, China
| | - Ruichen Lv
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Yingqing Mao
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Nianhong Lu
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Weilong Tan
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China.,Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| |
Collapse
|
28
|
Yang X, Fu M, Yu Z, Wang J, Song J, Zhao G. Molecular Characterization of Anaplasma spp. among Dairy, Cashmere, and Meat Goats in Shaanxi Province, Northwestern China. Animals (Basel) 2022; 12:ani12121566. [PMID: 35739902 PMCID: PMC9219440 DOI: 10.3390/ani12121566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Anaplasma spp. are important tick-borne pathogens endangering the health of humans and various animals. Although several studies have reported Anaplasma infection in livestock in China, little is known about the impact of production categories on the occurrence of Anaplasma species. In the present study, PCR tools targeting the 16S rRNA and msp4 genes were applied to investigate the prevalence of Anaplasma spp. in 509 blood samples of dairy (n = 249), cashmere (n = 139), and meat (n = 121) goats from Shaanxi province. The prevalence of Anaplasma spp. was 58.5% (298/509) in goats, and significant differences (p < 0.001) were identified in the prevalence among production categories, with the highest in meat goats (84.3%, 102/121), followed by cashmere goats (58.3%, 81/139) and dairy goats (46.2%, 115/249). Significant differences (p < 0.001) in prevalence were also found among sampling sites and age groups. Meanwhile, the prevalence was 36.9% (188/509) for A. phagocytophilum, 36.1% (184/509) for A. bovis, and 11.0% (56/509) for A. ovis, and significant differences (p < 0.001) in prevalence of A. phagocytophilum, A. bovis and A. ovis were recognized among production categories and sampling sites. A. phagocytophilum, A. bovis and A. ovis were dominant species in meat, dairy, and cashmere goats, respectively, and A. ovis was absent in meat goats. Co-infections were found in 124 (24.4%) investigated samples. Goats aged < 2, 3−6, and 7−12 months, and goats from Qingjian and Zhenba were risk factors associated with the occurrence of Anaplasma. Phylogenetic analysis indicated separate clades for the distribution of A. phagocytophilum from different ruminant, reflecting potential host adaption within this species. This study reported the colonization occurrence of Anaplasma spp. among production categories in goats in Shaanxi province and enriched our knowledge on the transmission of Anaplasma spp. in goats in China. Considering the existence of zoonotic A. phagocytophilum in goats in this study and previous reports, interventions based on One Health are needed to be developed to control the transmission of Anaplasma spp. between humans and animals.
Collapse
Affiliation(s)
- Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
| | - Zhengqing Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Junwei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
| | - Junke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
- Correspondence: (J.S.); (G.Z.)
| | - Guanghui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (X.Y.); (M.F.); (J.W.)
- Correspondence: (J.S.); (G.Z.)
| |
Collapse
|
29
|
Rjeibi MR, Amairia S, Mhadhbi M, Rekik M, Gharbi M. Detection and molecular identification of Anaplasma phagocytophilum and Babesia spp. infections in Hyalomma aegyptium ticks in Tunisia. Arch Microbiol 2022; 204:385. [PMID: 35689686 DOI: 10.1007/s00203-022-02995-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Tortoises of the genus Testudo are the main hosts of Hyalomma aegyptium ticks. This species serves as a vector of several zoonotic pathogens. Therefore, the present study aimed to investigate the presence of four pathogens associated with H. aegyptium ticks obtained from tortoises from Tunisia. Conventional, multiplex and nested PCRs were used for Aanaplasma phagocytophilum, Ehrlichia canis, Coxiella burnetii and Babesia spp. screening. The molecular analyses revealed the presence of A. phagocytophilum and Babesia spp. None of the ticks, were infected by E. canis or C. burnetii species. Co-infection was detected in four ticks. As a conclusion, this is the first detection of A. phagocytophilum and Babesia spp. in H. aegyptium ticks collected from tortoises, in Tunisia. Thus, considering these results, the spur-thighed tortoise constitute a potential host of H. aegyptium which plays an important role in the transmission of pathogenic agents affecting both human and animals. In term of public health, a strict control and surveillance should be carried to reduce the circulation of such pathogens between different hosts.
Collapse
Affiliation(s)
- Mohamed Ridha Rjeibi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia.
- Laboratoire de Parasitologie, Institut de la Recherche Vétérinaire de Tunisie, 20 Rue de Jebel Lakdhar, La Rabta, 1006, Tunis, Tunisia.
| | - Safa Amairia
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Moez Mhadhbi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Mourad Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 950764, Amman, 11195, Jordan
| | - Mohamed Gharbi
- Laboratoire de Parasitologie, Univ. Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| |
Collapse
|
30
|
Molecular Detection and Genetic Diversity of Tick-Borne Pathogens in Goats from the Southern Part of Thailand. Pathogens 2022; 11:pathogens11040477. [PMID: 35456152 PMCID: PMC9032176 DOI: 10.3390/pathogens11040477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Tick-borne hemoprotozoan and rickettsial diseases affect the health and productivity of small ruminants in tropical and subtropical regions. Despite the large population of goats in the southern part of Thailand, there is limited information on the prevalence of tick-borne pathogens. In this study, polymerase chain reaction was used to detect the presence of Theileria spp., T. ovis, T. orientalis, Babesia ovis, Anaplasma ovis, and A. marginale in 262 goats from three provinces in the southern part of Thailand. In this investigation, Theileria spp. and A. ovis were detected while T. ovis, B. ovis, and A. marginale were not detected. Overall infection rates of Theileria spp. and A. ovis were 10.3% and 1.5%, respectively. The co-infections of two parasites was observed in 1.5% of goats. Sequence analysis showed the presence of T. luwenshuni and T. orientalis in the goat samples. This study is the first to use the molecular detection of T. orientalis in Thai goats, and presents genetic characterization using the major piroplasm surface protein (MPSP) gene. In the phylogenetic analysis, the T. orientalis MPSP sequence was classified as type 7. The A. ovis major surface protein 4 (MSP4) gene sequences shared high identities and similarity with each other and clustered with isolates from other regions. This study provides information about the prevalence and genetic diversity of tick-borne pathogens in goats in the study area, and is expected to be valuable for the development of effective control measures to prevent disease in animals in Thailand.
Collapse
|
31
|
The Use and Limitations of the 16S rRNA Sequence for Species Classification of Anaplasma Samples. Microorganisms 2022; 10:microorganisms10030605. [PMID: 35336180 PMCID: PMC8949108 DOI: 10.3390/microorganisms10030605] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/07/2022] Open
Abstract
With the advent of cheaper, high-throughput sequencing technologies, the ability to survey biodiversity in previously unexplored niches and geographies has expanded massively. Within Anaplasma, a genus containing several intra-hematopoietic pathogens of medical and economic importance, at least 25 new species have been proposed since the last formal taxonomic organization. Given the obligate intracellular nature of these bacteria, none of these proposed species have been able to attain formal standing in the nomenclature per the International Code of Nomenclature of Prokaryotes rules. Many novel species’ proposals use sequence data obtained from targeted or metagenomic PCR studies of only a few genes, most commonly the 16S rRNA gene. We examined the utility of the 16S rRNA gene sequence for discriminating Anaplasma samples to the species level. We find that while the genetic diversity of the genus Anaplasma appears greater than appreciated in the last organization of the genus, caution must be used when attempting to resolve to a species descriptor from the 16S rRNA gene alone. Specifically, genomically distinct species have similar 16S rRNA gene sequences, especially when only partial amplicons of the 16S rRNA are used. Furthermore, we provide key bases that allow classification of the formally named species of Anaplasma.
Collapse
|
32
|
Altay K, Erol U, Sahin OF. The first molecular detection of Anaplasma capra in domestic ruminants in the central part of Turkey, with genetic diversity and genotyping of Anaplasma capra. Trop Anim Health Prod 2022; 54:129. [PMID: 35257219 DOI: 10.1007/s11250-022-03125-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
Abstract
Tick-borne diseases have been an increasing threat to human and animal health all over the world. Anaplasmosis is one of the emerging tick-borne diseases and has zoonotic potential. A new novel species, which was detected in China in 2010-2012 and provisionally named Anaplasma capra in 2015, causes zoonotic infections and infects many different animal species. In this study, we investigated the presence of A. capra in domestic ruminants from Turkey. A total of 468 blood samples (cattle, sheep, and goat) were examined by the gltA gene-specific nested polymerase chain reaction, revealing the presence of A. capra in six samples (1.28%): one of them from cattle (0.41%) and the other five from sheep (3.22%). According to DNA sequences results of the gltA gene, A. capra isolates identified in the present study were shown high nucleotide similarity with A. capra isolates detected from different hosts. However, the nucleotide differences were detected in the same nucleotide positions between A. capra isolates. For this reason, we thought that at least two different A. capra genotypes could be circulating in the world. As a result, it is seen that A. capra, which was determined to be a new species with zoonotic potential, was revealed in European and Asian countries and in different hosts. In order to raise awareness about human anaplasmosis infections, it is important to reveal the prevalence of the species in the world. The emergence of A. capra in Turkey reveals the need for a re-evaluation of the human and animal health risk analysis in terms of anaplasmosis.
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140, Sivas, Turkey.
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140, Sivas, Turkey
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, 58140, Sivas, Turkey
| |
Collapse
|
33
|
First Molecular Evidence for the Presence of Anaplasma phagocytophilum in Naturally Infected Small Ruminants in Tunisia, and Confirmation of Anaplasma ovis Endemicity. Pathogens 2022; 11:pathogens11030315. [PMID: 35335639 PMCID: PMC8950766 DOI: 10.3390/pathogens11030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Anaplasma species are obligate intracellular rickettsial vector-borne pathogens that impose economic constraints on animal breeders and threaten human health. Anaplasma ovis and Anaplasma phagocytophilum infect sheep and goats worldwide. A duplex PCR targeting the msp2 and msp4 genes of A. phagocytophilum and A. ovis, respectively, was developed to analyze the field blood samples collected from sheep and goats. A total of 263 apparently healthy small ruminants from 16 randomly selected flocks situated in 3 bioclimatic zones in Tunisia were analyzed for Anaplasma infections. Anaplasma spp. was detected in 78.3% (95% confidence interval (CI): 72.8–83.1) of the analyzed animals. The prevalence of A. ovis in sheep (80.4%) and goats (70.3%) was higher than that of A. phagocytophilum (7.0% in sheep and 1.6% in goats). Using an inexpensive, specific, and rapid duplex PCR assay, we provide, to the best of our knowledge, the first molecular evidence for the presence of A. phagocytophilum in small ruminants in Tunisia. A. phagocytophilum generally presented as a co-infection with A. ovis. This study provides important data to understand the epidemiology of anaplasmosis in small ruminants, and highlights the risk of contracting the infection upon tick exposure.
Collapse
|
34
|
Aung A, Kaewlamun W, Narapakdeesakul D, Poofery J, Kaewthamasorn M. Molecular detection and characterization of tick-borne parasites in goats and ticks from Thailand. Ticks Tick Borne Dis 2022; 13:101938. [DOI: 10.1016/j.ttbdis.2022.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023]
|
35
|
Rahman M, Faruque MR, Rahman MM, Chowdhury MYE. Epidemiology and molecular detection of Anaplasma spp. in goats from Chattogram district, Bangladesh. Vet Med Sci 2022; 8:1240-1249. [PMID: 35218684 PMCID: PMC9122420 DOI: 10.1002/vms3.775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objectives Anaplasmosis is an economically important disease affecting cattle, buffalo, sheep, goat etc. The study was conducted to determine the prevalence, potential risk factors and molecular identification of circulating Anaplasma spp. in goats in Chattogram district, Bangladesh. Material and methods Four hundred blood samples were collected from goats of different ages, breeds, sex, coat color and body condition. These goats were selected based on some inclusion criteria through the period of July 2017 to June 2018. Samples were examined microscopically (Giemsa staining method) followed by polymerase chain reaction (PCR) and sequencing to identify of Anaplasma spp. Results The overall prevalences were estimated 5.75% (23/400) and 15.75% (63/400) by microscopy and PCR, respectively. Anaplasma ovis (A. ovis) and Anaplasma marginale (A. marginale) were identified with the prevalence of 14.75% (59/400) and 1.0% (4/400), respectively through PCR. Among different risk factors, jamnapari breed (p = 0.027), no use of acaricide (p = 0.025) and presence of tick (p < 0.01) were found to be significantly associated with anaplasmosis. Sequence analysis of msp4 gene revealed that, Anaplasma spp. detected in the present study were highly similar with those of China, Venezuela, Mongolia, Spain, Tunisia, Cyprus, Italy, Brazil, Argentina, Australia, Japan and Columbia. Conclusions In conclusion, strategic use of acaricide can control tick that ultimately will control the anaplasmosis in goats. Besides, rearing local goats in compare to cross and exotic breed are also recommended for the farmer to prevent the disease.
Collapse
Affiliation(s)
- Mizanur Rahman
- Faculty of Veterinary Medicine, Teaching and Training Pet Hospital and Research Center, Chattogram Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Md Rayhan Faruque
- Faculty of Veterinary Medicine, Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Md Mizanur Rahman
- Faculty of Veterinary Medicine, Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Khulshi, Bangladesh
| | - Mohammed Yousuf Elahi Chowdhury
- Faculty of Veterinary Medicine, Department of Medicine and Surgery, Chattogram Veterinary and Animal Sciences University, Khulshi, Bangladesh
| |
Collapse
|
36
|
Assessment of Seroprevalence and Associated Risk Factors for Anaplasmosis in Camelus dromedarius. Vet Sci 2022; 9:vetsci9020057. [PMID: 35202310 PMCID: PMC8877320 DOI: 10.3390/vetsci9020057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Anaplasmosis is an infectious disease in camels caused by an obligate intracellular bacterium that is transmitted by ticks. (2) Methods: A cross-sectional study was conducted during 2020 to study the seroprevalence of Anaplasma spp. among Camelus dromedarius in three governorates in Egypt and assess the associated risk factors. Serum samples from 365 camels were examined by a competitive enzyme-linked immunosorbent assay (cELISA) test. (3) Results: Overall, the seroprevalence of anaplasmosis among camels was 18.6%. Multivariable logistic regression was performed, and it was discovered that tick infestation, application of acaricides, grooming practice and body condition were potential risk factors for Anaplasma spp. infection (odds ratio > 1) in dromedary camels. In contrast, the locality in which the camels lived and their age were not significant effects with regard to the occurrence of anaplasmosis. (4) Conclusions: The current findings suggest that improvement of protective measures to limit the effects of the identified risk factors can help to reduce the spread of anaplasmosis among camels in Egypt.
Collapse
|
37
|
Yan Y, Cui Y, Zhao S, Jing J, Shi K, Jian F, Zhang L, Wang R, Wang K, Zhou Y, Ning C. Development of a duplex PCR assay for detecting Theileria luwenshuni and Anaplasma phagocytophilum in sheep and goats. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 85:319-330. [PMID: 34591210 DOI: 10.1007/s10493-021-00662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Coinfections with the tick-borne pathogens Theileria luwenshuni and Anaplasma phagocytophilum can cause significant economic losses in sheep and goat farming. The difficulty in detecting these two pathogens by microscopic examination warrants the development of a rapid detection test to discriminate them. In this study, a duplex polymerase chain reaction (PCR) assay was developed to simultaneously detect T. luwenshuni and A. phagocytophilum. Alignment of the sequences from related pathogens allowed us to design a primer pair targeting the 18S ribosomal RNA gene in T. luwenshuni and generate a target product of 962 bp, whereas a previously reported species-specific primer (SSAP2f/SSAP2r) for A. phagocytophilum was used in the same reaction to generate a product of 641 bp. Genomic DNA from T. luwenshuni and A. phagocytophilum was 10-fold serially diluted for testing PCR sensitivity. Under the optimal PCR conditions we established, the lower limit of detection of the assay was 29.13 fg/μL for T. luwenshuni and 1.53 fg/μL for A. phagocytophilum, and PCR primers used in this study were confirmed to be 100% species-specific using other hemoparasites previously identified by other methods. No significant difference was found between conventional and duplex PCR protocols used to detect the two species. Our study provides an effective, sensitive, specific, and accurate tool for the diagnosis and epidemiological surveillance of mixed infections of the two pathogens in sheep and goats.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Yanyan Cui
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Shanshan Zhao
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Jichun Jing
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Ke Shi
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Kunlun Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Yongchun Zhou
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Area, Zhengdong, District, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
38
|
Altay K, Erol U, Sahin OF, Aytmirzakizi A. First molecular detection of Anaplasma species in cattle from Kyrgyzstan; molecular identification of human pathogenic novel genotype Anaplasma capra and Anaplasma phagocytophilum related strain. Ticks Tick Borne Dis 2021; 13:101861. [PMID: 34773849 DOI: 10.1016/j.ttbdis.2021.101861] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Anaplasmosis is a rickettsial infection with significant effects on human and animal health, and the discovery of new species or genotypes with zoonotic potential in recent years has increased this importance. The aim of this study was to provide the first assessment of the molecular etiology and prevalence of bovine anaplasmosis in Kyrgyzstan (specifically in the Chuy, Talas, Djalal-Abad, Naryn, and Issyk-Kul regions). The prevalence of bovine anaplasmosis was determined as 1.7% (6/358). PCR and partial DNA sequencing results of the 16S ribosomal RNA (rRNA) gene revealed that Anaplasma centrale, A. phagocytophilum like-1, and the human pathogenic novel genotype A. capra are circulating in cattle herds in Kyrgyzstan. Six DNA nucleotide sequences obtained in this study were deposited in GenBank under the following accession numbers: A. centrale (MW672117, MW672118, MW672119, MW672120), A. phagocytophilum (MW672121), and A. capra (MW672115).
Collapse
Affiliation(s)
- Kursat Altay
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey.
| | - Omer Faruk Sahin
- Department of Parasitology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas 58140, Turkey
| | - Ayperi Aytmirzakizi
- Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek 720044, Kyrgyzstan
| |
Collapse
|
39
|
Wang Y, Zhang Q, Han S, Li Y, Wang B, Yuan G, Zhang P, Yang Z, Zhang H, Sun Y, Chen J, Han X, He H. Ehrlichia chaffeensis and Four Anaplasma Species With Veterinary and Public Health Significance Identified in Tibetan Sheep ( Ovis aries) and Yaks ( Bos grunniens) in Qinghai, China. Front Vet Sci 2021; 8:727166. [PMID: 34660764 PMCID: PMC8514825 DOI: 10.3389/fvets.2021.727166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne diseases (TBDs) can cause serious economic losses and are very important to animal and public health. To date, research on TBDs has been limited in Qinghai-Tibet Plateau, China. This epidemiological investigation was conducted to evaluate the distribution and risk factors of Anaplasma spp. and Ehrlichia chaffeensis in livestock in Qinghai. A total of 566 blood samples, including 330 yaks (Bos grunniens) and 236 Tibetan sheep (Ovis aries) were screened. Results showed that A. bovis (33.3%, 110/330) and A. phagocytophilum (29.4%, 97/330) were most prevalent in yaks, followed by A. ovis (1.2%, 4/330), A. capra (0.6%, 2/330), and E. chaffeensis (0.6%, 2/330). While A. ovis (80.9%, 191/236) and A. bovis (5.1%, 12/236) infection was identified in Tibetan sheep. To our knowledge, it is the first time that A. capra and E. chaffeensis have been detected in yaks in China. Apart from that, we also found that co-infection of A. bovis and A. phagocytophilum is common in yaks (28.2%, 93/330). For triple co-infection, two yaks were infected with A. bovis, A. phagocytophilum, and A. capra, and two yaks were infected with A. bovis, A. phagocytophilum, and E. chaffeensis. Risk analysis shows that infection with A. bovis, A. phagocytophilum, and A. ovis was related to region and altitude. This study provides new data on the prevalence of Anaplasma spp. and E. chaffeensis in Qinghai, China, which may help to develop new strategies for active responding to these pathogens.
Collapse
Affiliation(s)
- Ye Wang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Qingxun Zhang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Bo Wang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peiyang Zhang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Yang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Yali Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Jiyong Chen
- Animal Disease Prevention and Control Center of Yushu, Yushu, China
| | - Xueqing Han
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Remesar S, Prieto A, García-Dios D, López-Lorenzo G, Martínez-Calabuig N, Díaz-Cao JM, Panadero R, López CM, Fernández G, Díez-Baños P, Morrondo P, Díaz P. Diversity of Anaplasma species and importance of mixed infections in roe deer from Spain. Transbound Emerg Dis 2021; 69:e374-e385. [PMID: 34529897 DOI: 10.1111/tbed.14319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 12/19/2022]
Abstract
Although wildlife can act as reservoirs of some Anaplasma species, studies on the presence and distribution of Anaplasma spp. in wild cervids are mainly limited and focused on zoonotic species. In order to identify the Anaplasma species in roe deer from Spain and to detect co-infections, 224 spleen samples were tested for Anaplasma spp. using a commercial qPCR; positive samples were further characterized using generic 16S rRNA primers and species-specific primers targeting the msp2 and groEL genes. Anaplasma DNA was detected in the 50.9% of samples, and four Anaplasma species were identified. Anaplasma phagocytophilum (43.8%) was predominant, followed by Anaplasma bovis (13.8%), Anaplasma capra (5.8%) and Anaplasma ovis (2.2%). In addition, strains similar to Anaplasma platys were found in nine animals. Most positive roe deer (71.9%) were infected with a single Anaplasma species, whereas co-infections with two (19.3%) or three (8.8%) Anaplasma species were also found. This study confirms the widespread occurrence of Anaplasma spp. in roe deer from Spain, being the first report of A. platys-like strains and A. capra in this cervid; it is also the first report of A. capra in Spain. The detection of Anaplasma species pathogenic for humans and/or domestic animals in roe deer suggests that this cervid may play a role in the sylvatic cycle of these bacteria contributing to the appearance of clinical anaplasmosis cases. In addition, co-infections are common in roe deer revealing that Anaplasma species specific PCR assays are essential for a reliable identification as well as for determining their real prevalence.
Collapse
Affiliation(s)
- Susana Remesar
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alberto Prieto
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - David García-Dios
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gonzalo López-Lorenzo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Néstor Martínez-Calabuig
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - José Manuel Díaz-Cao
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosario Panadero
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ceferino Manuel López
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gonzalo Fernández
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díez-Baños
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Patrocinio Morrondo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díaz
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
41
|
Peng Y, Lu C, Yan Y, Shi K, Chen Q, Zhao C, Wang R, Zhang L, Jian F, Ning C. The first detection of Anaplasma capra, an emerging zoonotic Anaplasma sp., in erythrocytes. Emerg Microbes Infect 2021; 10:226-234. [PMID: 33446064 PMCID: PMC7894429 DOI: 10.1080/22221751.2021.1876532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An emerging infectious disease caused by “Anaplasma capra” was reported in a 2015 survey of 477 hospital patients with a tick-bite history in China. However, the morphological characteristics and parasitic location of this pathogen are still unclear, and the pathogen has not been officially classified as a member of the genus Anaplasma. Anaplasma capra-positive blood samples were collected, blood cells separated, and DNA of whole blood cells, erythrocytes, and leukocytes extracted. Multiplex PCR detection assay was used to detect whole blood cell, erythrocytes and leukocytes, DNA samples, and PCR identification, nucleic acid sequencing, and phylogenetic analyses based on A. capra groEL, 16S rRNA, gltA, and msp4 genes. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Wright–Giemsa staining, chromogenic in situ hybridization (CISH), immunocytochemistry, and indirect immunofluorescence assay (IFA) were used to identify the location and morphological characteristics of A. capra. Multiple gene loci results demonstrated that erythrocyte DNA samples were A. capra-positive, while leukocyte DNA samples were A. capra-negative. Phylogenetic analysis showed that A. capra is in the same clade with the A. capra sequence reported previously. SEM and TEM showed one or more pathogens internally or on the outer surface of erythrocytes. Giemsa staining, CISH, immunocytochemistry, and IFA indicated that erythrocytes were A. capra-positive. This study is the first to identify the novel zoonotic tick-borne Anaplasma sp., “Anaplasma capra,” in host erythrocytes. Based on our results, we suggest revision of Genus Anaplasma and formally name “A. capra” as Anaplasma capra sp. nov.
Collapse
Affiliation(s)
- Yongshuai Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Ke Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Qian Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Cong Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Rongjun Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People's Republic of China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People's Republic of China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, People's Republic of China
| |
Collapse
|
42
|
Staji H, Yousefi M, Hamedani MA, Tamai IA, Khaligh SG. Genetic characterization and phylogenetic of Anaplasma capra in Persian onagers (Equus hemionus onager). Vet Microbiol 2021; 261:109199. [PMID: 34385006 DOI: 10.1016/j.vetmic.2021.109199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Anaplasma spp. are among the most recognized arthropod-borne infectious agents. Although the novel A. capra has been isolated from wildlife, livestock, and hard ticks from many parts of the world, there is no report regarding the identification of this pathogen from equines and little is known about the epidemiology of A. capra in Equidae. In this study, A. capra was identified in two out of ten blood specimens of wild onagers (Equus hemionus onager) during a routine health check-up in Semnan, Iran by light microscopy and molecular analyses while other pathogens were not detected. First, inclusions on RBC's were observed in two blood smears by light microscopy. Then, the blood specimens of both animals were analyzed by realtime-PCR for Anaplasma, Ehrlichia, and Theileria infections. A 1400 bp sequence of 16S rRNA belonging to Anaplasmataceae and 874 bp fragment for groEL gene for A. capra were amplified in Anaplasma positive samples and sequenced. Preliminary BLAST analysis of sequenced fragments showed high homology to A. capra strains in GenBank database. Finally, nested PCR and restriction enzyme fragment length polymorphism techniques confirmed the pathogen as A. capra. To the best of our knowledge, this study has reported the occurrence of A. capra in wild onagers for the first time and suggests that equines could be infected with this pathogen and act as reservoirs for A. capra.
Collapse
Affiliation(s)
- Hamid Staji
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | - Mohammadhasan Yousefi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmoud Ahmadi Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Iradj Ashrafi Tamai
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Ghaffari Khaligh
- Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| |
Collapse
|
43
|
Yan Y, Wang K, Cui Y, Zhou Y, Zhao S, Zhang Y, Jian F, Wang R, Zhang L, Ning C. Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China. Sci Rep 2021; 11:14155. [PMID: 34238975 PMCID: PMC8266805 DOI: 10.1038/s41598-021-93629-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Anaplasma species, which are distributed worldwide, are gram-negative obligate intracellular tick-borne bacteria that pose a threat to human and animal health. Haemaphysalis longicornis ticks play a vital role as vectors in the transmission of Anaplasma pathogens. However, the Anaplasma species carried by H. longicornis in China are yet to be characterized. In this study, 1074 H. longicornis specimens were collected from goats in four provinces of China from 2018 to 2019 and divided into 371 sample pools. All tick sample pools were examined for the presence of Anaplasma species via nested PCR amplification of 16S ribosomal RNA, major surface protein 4 (msp4), or citric acid synthase (gltA) genes, which were sequenced to determine the molecular and phylogenetic characteristics of the isolates. The overall Anaplasma spp-positive rate of H. longicornis was determined to be 26.68% (99/371). The percentage prevalence of A. phagocytophilum-like1, A. bovis, A. ovis, A. marginale, and A. capra were 1.08% (4/371), 13.21% (49/371), 13.21% (49/371), 1.35% (5/371), and 10.24% (38/371), respectively, and the co-infection rate of two or more types of Anaplasma was 6.47% (24/371). Phylogenetic analyses led to the classification of A. phagocytophilum into an A. phagocytophilum-like1 (Anaplasma sp. Japan) group. Anaplasma bovis sequences obtained in this study were 99.8–100% identical to those of an earlier strain isolated from a Chinese tick (GenBank accession no. KP314251). Anaplasma ovis sequences showed 99.3–99.6% identity to an A. ovis human strain identified from a Cypriot patient (GenBank accession no. FJ460443). Only one msp4 sequence of A. marginale was detected and was grouped with those of other A. marginale isolates, and these A. capra isolates obtained in this present study may be zoonotic. The detection and characterization of four Anaplasma species in H. longicornis in this study have added to the current knowledge of the parasite and provided data on multiple Anaplasma species with veterinary and medical significance from four provinces of China.
Collapse
Affiliation(s)
- Yaqun Yan
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Kunlun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yanyan Cui
- School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, 476000, People's Republic of China
| | - Yongchun Zhou
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Shanshan Zhao
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yajun Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Fuchun Jian
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Rongjun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Changshen Ning
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
44
|
Banović P, Díaz-Sánchez AA, Galon C, Foucault-Simonin A, Simin V, Mijatović D, Papić L, Wu-Chuang A, Obregón D, Moutailler S, Cabezas-Cruz A. A One Health approach to study the circulation of tick-borne pathogens: A preliminary study. One Health 2021; 13:100270. [PMID: 34141849 PMCID: PMC8188046 DOI: 10.1016/j.onehlt.2021.100270] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Tick-borne pathogens (TBPs) have complex life cycles involving tick vectors and vertebrate hosts. However, there is limited empirical evidence on the zoonotic circulation of TBPs. In this study, we used a One Health approach to study the possible circulation of TBPs in ticks, animals and humans within a rural household in the foothills of the Fruška Gora mountain, northern Serbia. The presence of TBP DNA was assessed using microfluidic PCR (25 bacterial species, 7 parasite species, 5 bacterial genera, 3 parasite genera) in animal, human and tick samples and the presence of tick-borne encephalitis virus (TBEV) RNA was screened for using RT-qPCR on tick samples. In addition, Lyme borreliosis serology was assessed in patients sera. Rhipicephalus sanguineus and Ixodes ricinus ticks were identified on dogs and Haemaphysalis punctata was identified on house walls. Rickettsia helvetica was the most common pathogen detected in pooled R. sanguineus and I. ricinus tick samples, followed by Hepatozoon canis. None of the H. punctata tick samples tested positive for the presence of TBPs. Anaplasma phagocytophilum and Rickettsia monacensis were the most frequent pathogens detected in dogs, followed by Rickettsia felis, whereas Anaplasma bovis was the only pathogen found in one of the goats tested. None of the human blood samples collected from family members tested positive for the presence of TBPs. Although microfluidic PCR did not detect Borrelia sp. in any of the tested tick or blood samples, a family member with a history of Lyme disease was seropositive for Borrelia burgdorferi sensu lato (s.l.). We conclude that, despite the presence of TBPs in tick and vertebrate reservoirs, there is no evidence of infection with TBPs across various components of the epidemiological chain in a rural Fruška Gora household.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia.,Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, Novi Sad 21000, Serbia
| | - Adrian Alberto Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Verica Simin
- Department for Microbiological & Other Diagnostics, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, Novi Sad 21000, Serbia
| | - Luka Papić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad 21000, Serbia
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Dasiel Obregón
- School of Environmental Sciences University of Guelph, Guelph, Ontario N1G 2W1, Canada.,Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo 13400-970, Brazil
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| |
Collapse
|
45
|
The Novel Zoonotic Pathogen, Anaplasma capra, Infects Human Erythrocytes, HL-60, and TF-1 Cells In Vitro. Pathogens 2021; 10:pathogens10050600. [PMID: 34069112 PMCID: PMC8156996 DOI: 10.3390/pathogens10050600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Anaplasma capra, a species of the family Anaplasmataceae, is zoonotic tick-borne obligate intracellular bacteria. There have been no reports of human infection with this pathogen since 2015. Therefore, the zoonotic characteristics of A. capra need to be further studied. To verify the ability of A. capra to infect human cells, A. capra were inoculated in human erythrocytes, HL-60, and TF-1 cell lines in vitro. Cell smears were taken after inoculation, using Giemsa staining, transmission electron microscope (TEM), chromogenic in situ hybridization and immunocytochemistry for detection. In the Giemsa staining, many dark colored corpuscles or purple granules were seen in the inoculated erythrocytes, HL-60, and TF-1 cells. The results of chromogenic in situ hybridization show that there were brown precipitates on the surface of most erythrocytes. Immunocytochemistry results show many dark brown vacuolar structures or corpuscles in the cytoplasm of erythrocytes, HL-60, and TF-1 cell lines. The A. capra morulae were seen in the cytoplasm of both HL-60 and TF-1 in TEM, and their diameter was about 295–518 nm. Both dense-cored (DC) and reticulate cell (RC) form morulae could be seen. This study confirmed the ability of A. capra to infect human erythrocytes, HL-60, and TF-1. This study is of profound significance in further verifying the zoonotic characteristics of the pathogen and for establishing an in vitro cultivation model.
Collapse
|
46
|
Epizootic Situation on Anaplasmosis of Small Ruminants in the Irkutsk Region. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anaplasmosis of ruminants is a group of natural focal infections caused by bacteria from the genus Anaplasma of the Anaplasmataceae family. The main etiological agent of anaplasmosis in sheep, goats, and wild ruminants is Anaplasma ovis, which parasitizes in the erythrocytes of these animals. The purpose of this study was the finding and identification of Anaplasma spp. in the blood of small ruminants using genetic methods and obtaining data on the distribution of anaplasmosis in the Irkutsk region. 20 goat blood samples, 611 sheep blood samples and 209 Dermacentor nuttalli ticks from 12 districts of the Irkutsk region were examined for the presence of Anaplasma spp. Only one type of anaplasma, A. ovis, was found among the genotyped samples. A. ovis was found in the blood of sheep and goats in all of the studied districts of the Irkutsk region. The proportion of sheep blood samples containing anaplasma DNA varied from 30 % to 85 %, in goats – from 10 % to 100 % in different districts, and averaged 57.8 % in sheep and 55,0 % in goats. Frequency of infection of D. nuttalli ticks with A. ovis was 5.7 %. The nucleotide sequences of the samples detected in the blood of small ruminants on the territory of the Irkutsk region differed from each other by a single nucleotide substitution and were identical to the sequences of the type strain Haibei, as well as the sequences of A. ovis previously found in the blood of sheep from Mongolia, deer from China, and Dermacentor niveus and Dermacentor nuttalli ticks from China. These sequences were also identical to the sequences previously found in the blood of sheep from Altai and in Dermacentor nuttalli ticks from Tuva, which indicates the wide distribution of these A. ovis genovariants in Siberia and the probable role of D. nuttalli as a carrier of the agent of anaplasmosis of small ruminants in the Irkutsk region.
Collapse
|
47
|
Seo MG, Kwon OD, Kwak D. Molecular detection of Rickettsia raoultii, Rickettsia tamurae, and associated pathogens from ticks parasitizing water deer (Hydropotes inermis argyropus) in South Korea. Ticks Tick Borne Dis 2021; 12:101712. [PMID: 33819743 DOI: 10.1016/j.ttbdis.2021.101712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022]
Abstract
Most defined Rickettsiales, which can be transmitted by ticks, are known to be important zoonotic pathogens. Some of these pathogens can cause severe diseases in humans, including anaplasmosis, rickettsioses, and ehrlichiosis. Previous studies in South Korea have investigated tick-borne pathogens (TBPs) residing in ticks found on grassy vegetation and animals. However, there is limited phylogenetic information on TBPs in ticks parasitizing Korean water deer (KWD; Hydropotes inermis argyropus). This study evaluated the prevalence, risk factors (regions, tick stages, and tick species), and coinfections of TBPs in ticks parasitizing KWD. Were collected a total of 283 hard ticks, including Haemaphysalis longicornis, Haemaphysalis flava, and Ixodes nipponensis from KWD in South Korea from 2013 to 2017. In 173 tested tick pools, genes for seven TBPs, namely Rickettsia raoultii (20 %), Rickettsia tamurae (1 %), Candidatus Rickettsia longicornii (31 %), Ehrlichia canis (3 %), Anaplasma capra (3 %), Anaplasma bovis (2 %), and Anaplasma sp. (1 %), were detected. The unidentified Anaplasma sp. isolates revealed a 98.4 %-99.3 % sequence identity with Anaplasma sp. in GenBank sequences obtained from ticks. To the best of our knowledge, this is the first study to report the presence of the emerging human pathogen R. tamurae in South Korea. These results should increase awareness about the need for continued development of epidemiological control measures, and medical and veterinary communities must be informed of their high infection potential and clinical complexity in humans.
Collapse
Affiliation(s)
- Min-Goo Seo
- Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk, 39660, South Korea
| | - Oh-Deog Kwon
- College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, Bukgu, Daegu, 41566, South Korea; Cardiovascular Research Institute, Kyungpook National University, Junggu, Daegu, 41944, South Korea.
| |
Collapse
|
48
|
Wang K, Yan Y, Zhou Y, Zhao S, Jian F, Wang R, Zhang L, Ning C. Seasonal dynamics of Anaplasma spp. in goats in warm-temperate zone of China. Ticks Tick Borne Dis 2021; 12:101673. [PMID: 33549978 DOI: 10.1016/j.ttbdis.2021.101673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Anaplasma are tick-borne obligate intracellular bacteria that can endanger human and animal health, and until now, there have been few reports on the seasonal dynamics of Anaplasma species in China. In this study, a total of 491 goat blood samples were collected in spring (n = 124), summer (n = 135), autumn (n = 110), and winter (n = 122) from Shaanxi provinces. Single and mixed infections of Anaplasma spp. from warm-temperate regions of China were analyzed according to seasons using a nested PCR method. Positive samples were sequenced to observe the molecular and phylogenetic characteristics of the Anaplasma species, and we determined the co-infection rates of Anaplasma spp. for each season. A molecular survey of Anaplasma phagocytophilum, A. bovis, A. ovis, and A. capra in goats showed average prevalences of 71.6 % (maximum 86.7 % in summer and minimum 48.4 % in winter), 62.2 % (minimum 38.7 % in spring and maximum 94.1 % in summer), 25.5 % (minimum 0% in summer and maximum 51.6 % in spring), and 26.6 % (minimum 8.2 % in winter and maximum 55.6 % in summer), respectively. In the phylogenetic analysis, A. phagocytophilum and A. capra occupied two separate groups, Chinese A. bovis and foreign isolates appeared to be geographically isolated, and all A. ovis isolates were in the same branch as the previously described sequences. The survey indicated that goats in warm-temperate regions of China are frequently exposed to Anaplasma spp. all year round, and thus prevention and treatment efforts for anaplasmosis in the region should be strengthened.
Collapse
Affiliation(s)
- Kunlun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Yaqun Yan
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Yongchun Zhou
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Shanshan Zhao
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Fuchun Jian
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Rongjun Wang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Changshen Ning
- College of Veterinary Medicine, Longzihu Campus of Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, PR China.
| |
Collapse
|
49
|
Niaz S, Ur Rahman Z, Ali I, Cossío-Bayúgar R, Amaro-Estrada I, Alanazi AD, Khattak I, Zeb J, Nasreen N, Khan A. Molecular prevalence, characterization and associated risk factors of Anaplasma spp. and Theileria spp. in small ruminants in Northern Pakistan. Parasite 2021; 28:3. [PMID: 33416491 PMCID: PMC7792498 DOI: 10.1051/parasite/2020075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
This study was conducted in four districts (Malakand, Swat, Bajaur and Shangla) of Northern Pakistan to investigate the prevalence, associated risk factors and phylogenetic analyses of Theileria and Anaplasma species in small ruminants. A total of 800 blood samples, 200 from each district, were collected from apparently healthy animals. PCR assays were performed using generic primers for Anaplasma spp. and Theileria spp. as well as species specific primers for A. ovis and T. ovis. Overall infection prevalence was 361/800 (45.1%). Theileria spp. infection prevalence (187/800, 23.3%) was higher than Anaplasma spp. (174/800, 21.7%). Amplified partial 18S rRNA genes were sequenced and enrolled animals were found to be infected by T. ovis (115/800, 14.3%), and at least two more Theileria species (72/800, 9%) were present (T. lestoquardi and T. annulata). All blood samples that were found to be positive for Anaplasma spp. were also positive for A. ovis. Infection prevalence was higher in sheep (227/361, 28.3%) compared to goats (134/361, 16.6%) (p < 0.005). Univariable analysis of risk factors showed that host, age, grazing system and acaricide treatment were significant determinants (p < 0.05) for both Theileria and Anaplasma infections. Multivariable analysis revealed that host, sex, age, tick infestation and grazing system were significant risk factors (p < 0.005) for both pathogens. Phylogenetic analysis revealed variants among the A. ovis and T. annulata samples analysed, indicating that different genotypes are circulating in the field while T. ovis presented the same genotype for the samples analysed.
Collapse
Affiliation(s)
- Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan Toru Road, Sheikh Maltoon Town 23200 Mardan Pakistan
| | - Zia Ur Rahman
- Department of Zoology, Abdul Wali Khan University Mardan Toru Road, Sheikh Maltoon Town 23200 Mardan Pakistan
| | - Ijaz Ali
- Department of Zoology, Abdul Wali Khan University Mardan Toru Road, Sheikh Maltoon Town 23200 Mardan Pakistan
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534 Jiutepec 62550 Morelos México
| | - Itzel Amaro-Estrada
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, Carr. Fed. Cuernavaca-Cuautla No. 8534 Jiutepec 62550 Morelos México
| | - Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University P.O. Box 1040 11911 Ad-Dawadimi Saudi Arabia
| | - Irfan Khattak
- Department of Zoology, Abdul Wali Khan University Mardan Toru Road, Sheikh Maltoon Town 23200 Mardan Pakistan
| | - Jehan Zeb
- Department of Zoology, Abdul Wali Khan University Mardan Toru Road, Sheikh Maltoon Town 23200 Mardan Pakistan
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan Toru Road, Sheikh Maltoon Town 23200 Mardan Pakistan
| | - Adil Khan
- Department of Zoology, Abdul Wali Khan University Mardan Toru Road, Sheikh Maltoon Town 23200 Mardan Pakistan
| |
Collapse
|
50
|
Miranda EA, Han SW, Cho YK, Choi KS, Chae JS. Co-Infection with Anaplasma Species and Novel Genetic Variants Detected in Cattle and Goats in the Republic of Korea. Pathogens 2021; 10:pathogens10010028. [PMID: 33401478 PMCID: PMC7830860 DOI: 10.3390/pathogens10010028] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 01/03/2023] Open
Abstract
Anaplasmosis, a tick-borne disease with multiple reservoirs, has been evolving in its pathogenesis, increasing domestic ruminants susceptibility to simultaneous infections with multiple pathogens. However, there is limited information regarding anaplasmosis in domestic ruminants in the Republic of Korea (ROK). We aimed to evaluate the role of Korean cattle and goats in Anaplasma infection maintenance. Polymerase chain reaction was performed to investigate the prevalence and genetic diversity of Anaplasma spp. from 686 whole blood samples collected from different ROK provinces. Anaplasma infection was mostly caused by A. phagocytophilum (21.1%) in cattle, and A. bovis (7.3%) in goats. Co-infection cases were found in cattle: A. bovis and A. phagocytophilum (16.7%), and in goats: A. bovis and A. capra (1.0%). Notably, a triple co-infection with A. bovis, A. phagocytophilum, and A. capra was found in one cow. Phylogenetic analysis revealed novel variants of the A. phagocytophilum 16S rRNA and A. capra
gltA genes. This research contributes to the ratification of cattle as a potential reservoir of A. capra and demonstrates Anaplasma co-infection types in Korean domestic ruminants. As anaplasmosis is a zoonotic disease, our study could be crucial in making important decisions for public health.
Collapse
Affiliation(s)
- Evelyn Alejandra Miranda
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
| | - Yoon-Kyong Cho
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Korea;
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (E.A.M.); (S.-W.H.); (Y.-K.C.)
- Correspondence: ; Tel.: +82-2-880-1279
| |
Collapse
|