1
|
Hill MS, Minnis VR, Simpson AC, Salas Garcia MC, Bone D, Chung RK, Rushton E, Hameed A, Rekha PD, Gilbert JA, Venkateswaran K. Genomic description of Microbacterium mcarthurae sp. nov., a bacterium collected from the International Space Station that exhibits unique antimicrobial-resistant and virulent phenotype. mSystems 2025:e0053725. [PMID: 40391897 DOI: 10.1128/msystems.00537-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
A novel bacterial strain, designated as 1F8SW-P5T, was isolated from the wall of the crew quarters on the International Space Station. Cells were Gram-staining-positive, strictly aerobic, non-spore-forming, chemoheterotrophic, and mesophilic rods exhibiting catalase-positive and oxidase-negative reactivity. Strain 1F8SW-P5T shared the highest 16S rRNA gene similarity with Microbacterium proteolyticum CECT 8356T (99.34%) and the highest gyrB gene similarity with Microbacterium algihabitans KSW2-21T (91.34%). Its strongest matches via average nucleotide identity and DNA-DNA hybridization were to Microbacterium hydrothermale CGMCC_1.12512T (84.36% and 25.80%, respectively). 1F8SW-P5T formed a distinct lineage during phylogenetic and phylogenomic analysis. The biochemical, phenotypic, chemotaxonomic, and phylogenomic features substantiated the affiliation to 1F8SW-P5T as a new species of Microbacterium, for which we propose the name Microbacterium mcarthurae, with the type strain 1F8SW-P5T (=DSM 115934T =NRRL B-65667T). Based on metagenomic data collected during the Microbial Tracking mission series, M. mcarthurae was identified from all surfaces (n = 8) over an 8-year period, with an increase in relative abundance over time. This is of potential concern, as we observed resistance to all tested fluoroquinolone antibiotics (n = 6), two β-lactam antibiotics, and one macrolide antibiotic, which was not predicted based on isolate or plasmid genotype alone. Furthermore, we found an increase in virulence, compared to Escherichia coli, when tested within a Caenorhabditis elegans model. This pathogenic profile highlights the importance of continued characterization of spacecraft-associated microbes, the characterization of previously unidentified antimicrobial resistance and virulence genes, and the implementation of targeted mitigation strategies during spaceflight. IMPORTANCE Crew members are at an increased risk for exposure to and infection by pathogenic microbes during spaceflight. Therefore, it is imperative to characterize the species that are able to colonize and persist on spacecraft, how those organisms change in abundance and distribution over time, and their genotypic potential for and phenotypic expression of pathogenic traits (i.e., whether they encode for or exhibit traits associated with antibiotic resistance and/or virulence). Here, we describe a novel species of Microbacterium collected from the crew quarters on the International Space Station (ISS), 1F8SW-P5T, for which we propose the name Microbacterium mcarthurae. M. mcarthurae was found to be distributed throughout the ISS with an increase in relative abundance over time. Additionally, this bacterium exhibits a unique antibiotic resistance phenotype that was not predicted from whole-genome sequencing, as well as increased virulence, suggesting the need for the identification of previously undescribed antimicrobial resistance genes and monitoring/mitigation during spaceflight.
Collapse
Affiliation(s)
- Megan S Hill
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Vanessa R Minnis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Mariana C Salas Garcia
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Davis Bone
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- College of Arts and Sciences, Johnson and Wales University, Providence, Rhode Island, USA
- College of Engineering and Design, University of the West of England, Bristol, England, United Kingdom
| | - Ryan K Chung
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Ella Rushton
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- School of Applied Sciences, University of the West of England, Bristol, England, United Kingdom
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Center, Yenepoya (Deemto be University), Mangalore, India
| | - Punchappady D Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Center, Yenepoya (Deemto be University), Mangalore, India
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Wu X, Liu H, Guo YR. Insights into Virus-Host Interactions: Lessons from Caenorhabditis elegans-Orsay Virus Model. Curr Med Sci 2025; 45:169-184. [PMID: 40029496 DOI: 10.1007/s11596-025-00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 03/05/2025]
Abstract
The study of virus-host interactions has been significantly advanced using model organisms, with nematodes being a prominent example. Caenorhabditis elegans (C. elegans) nematodes have provided valuable insights into the mechanisms of viral infections, host defense strategies, and the development of antiviral therapies. With the discovery of natural viral pathogens of nematodes, Orsay virus, Le Blanc virus, Santeuil virus, and Mělník virus, the exploration of the virus-host interaction model based on nematodes has entered a new era. The virus-host interaction network consists of viruses, hosts, and the antagonistic effects of viruses on host immunity. The nematode virus-host interaction model is a concrete manifestation used to study the complex relationships among these three elements. Previous studies have indicated that during the entire process of nematode infection by viruses, antiviral RNA interference (RNAi) plays a crucial role. Additionally, the host's innate immune responses, such as the antiviral-specific intracellular pathogen response (IPR) and certain signaling pathways homologous to those in humans, are particularly important in the natural immune and antiviral processes of nematodes. These processes are regulated by multiple genes in the host. The reverse genetics system for Orsay virus has been successfully developed to study viral gene function and virus-host interactions. Nematodes serve as simple host models for understanding RNA virus replication, related cellular components, and virus-host interaction mechanisms. These findings will likely contribute to the development of antiviral treatment strategies based on novel targets.
Collapse
Affiliation(s)
- Xun Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yusong R Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
van Himbeeck R, Sowa JN, Tamim El Jarkass H, Wu W, Oude Vrielink J, Riksen JAG, Reinke A, van Sluijs L. Diversity-disease relationships in natural microscopic nematode communities. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242088. [PMID: 40177104 PMCID: PMC11961254 DOI: 10.1098/rsos.242088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Host diversity can affect parasite prevalence, a phenomenon widely studied in macroscopic organisms. However, data from microscopic communities are lacking, despite their essential role in ecosystem functioning and the unique experimental opportunities microscopic organisms offer. Here, we study diversity-disease effects in wild nematode communities by profiting from the molecular tools available in the well-studied model nematode Caenorhabditis elegans. Nanopore sequencing was used to characterize nematode community diversity and composition, whereas parasites were identified using nine distinct experimental assays based on fluorescent staining or fluorescent reporter strains. Our results indicate that biotic stress is abundant in wild nematode communities. Moreover, in two assays, diversity-disease relations were observed: microsporidia and immune system activation were more often detected in relatively species-poor communities. Other assays, targeting different parasites, were without diversity-disease relations. Together, this study provides the first demonstration of diversity-disease effects in microbial communities and establishes the use of nematode communities as model systems to study disease-diversity relationships.
Collapse
Affiliation(s)
- Robbert van Himbeeck
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Jessica N. Sowa
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA, USA
| | | | - Wenjia Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Job Oude Vrielink
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| | - Aaron Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University and Research, Wageningen, Gelderland, The Netherlands
| |
Collapse
|
4
|
Currie SD, Benson DB, Xie ZR, Wang JS, Tang L. Utilization of Artificial Intelligence Coupled with a High-Throughput, High-Content Platform in the Exploration of Neurodevelopmental Toxicity of Individual and Combined PFAS. J Xenobiot 2025; 15:24. [PMID: 39997367 PMCID: PMC11857074 DOI: 10.3390/jox15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various products, such as firefighting foams and non-stick cookware, due to their resistance to heat and degradation. However, these same properties make them persistent in the environment and human body, raising public health concerns. This study selected eleven PFAS commonly found in drinking water and exposed Caenorhabditis elegans to concentrations ranging from 0.1 to 200 µM to assess neurodevelopmental toxicity using a high-throughput, high-content screening (HTS) platform coupled with artificial intelligence for image analysis. Our findings showed that PFAS such as 6:2 FTS, HFPO-DA, PFBA, PFBS, PFHxA, and PFOS inhibited dopaminergic neuron activity, with fluorescence intensity reductions observed across concentrations from 0.1 to 100 µM. PFOS and PFBS also disrupted synaptic transmission, causing reduced motility and increased paralysis in aldicarb-induced assays, with the most pronounced effects at higher concentrations. These impairments in both neuron activity and synaptic function led to behavioral deficits. Notably, PFOS was one of the most toxic PFAS, affecting multiple neurodevelopmental endpoints. These results emphasize the developmental risks of PFAS exposure, highlighting the impact of both individual compounds and mixtures on neurodevelopment. This knowledge is essential for assessing PFAS-related health risks and informing mitigation strategies.
Collapse
Affiliation(s)
- Seth D. Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - David Blake Benson
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Stevens EJ, Li JD, Hector TE, Drew GC, Hoang K, Greenrod STE, Paterson S, King KC. Within-host competition causes pathogen molecular evolution and perpetual microbiota dysbiosis. THE ISME JOURNAL 2025; 19:wraf071. [PMID: 40244062 PMCID: PMC12066030 DOI: 10.1093/ismejo/wraf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Pathogens newly invading a host must compete with resident microbiota. This within-host microbial warfare could lead to more severe disease outcomes or constrain the evolution of virulence. By passaging a widespread pathogen (Staphylococcus aureus) and a natural microbiota community across populations of nematode hosts, we show that the pathogen displaced microbiota and reduced species richness, but maintained its virulence across generations. Conversely, pathogen populations and microbiota passaged in isolation caused more host harm relative to their respective no-host controls. For the evolved pathogens, this increase in virulence was partly mediated by enhanced biofilm formation and expression of the global virulence regulator agr. Whole genome sequencing revealed shifts in the mode of selection from directional (on pathogens evolving in isolation) to fluctuating (on pathogens evolving in host microbiota). This approach also revealed that competitive interactions with the microbiota drove early pathogen genomic diversification. Metagenome sequencing of the passaged microbiota shows that evolution in pathogen-infected hosts caused a significant reduction in community stability (dysbiosis), along with restrictions on the co-existence of some species based on nutrient competition. Our study reveals how microbial competition during novel infection could determine the patterns and processes of evolution with major consequences for host health.
Collapse
Affiliation(s)
- Emily J Stevens
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom
| | - Jingdi D Li
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Tobias E Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Georgia C Drew
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Kim Hoang
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Samuel T E Greenrod
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
| | - Steve Paterson
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, Wirral, CH64 7TE, United Kingdom
| | - Kayla C King
- Department of Biology, University of Oxford, Oxford, Oxfordshire, OX1 3SZ, United Kingdom
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
6
|
Currie SD, Ji Y, Huang Q, Wang JS, Tang L. The impact of early life exposure to individual and combined PFAS on learning, memory, and bioaccumulation in C. elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125257. [PMID: 39515569 DOI: 10.1016/j.envpol.2024.125257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are a group of water-soluble chemicals used for decades with important industrial and commercial applications. Due to their chemical and thermal stability, persistence in the environment, and widespread human exposure, PFAS become an important concern for public health. In this study, eleven highly prevalent PFAS and a reference mixture were selected according to various drinking water sources. The nematode, Caenorhabditis elegans, were exposed to PFAS at 0.1, 1, 10, 100, and 200 μM, and the toxic effects on learning & memory along with the bioaccumulation were investigated using a high-throughput screening (HTS) platform. Our results showed that perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) exhibited significant inhibitory effects (p < 0.05) on learning and memory in both time points at concentrations between 100 and 200 μmol/L. After 48 h of exposure, every PFAS resulted in an inhibition of learning and memory with a concentration of 200 μmol/L. Furthermore, the PFOS and PFBS had the highest bioaccumulation levels after 48 h of exposure. These findings provide valuable insight into the developmental adverse effects associated with exposure and the bioaccumulation of both individual and mixtures of PFAS.
Collapse
Affiliation(s)
- Seth D Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Yuqing Ji
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Crop & Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Qingguo Huang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Crop & Soil Sciences, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Vela-Corcia D, Hierrezuelo J, Pérez-Lorente AI, Stincone P, Pakkir Shah AK, Grélard A, Zi-Long Y, de Vicente A, Pérez García A, Bai L, Loquet A, Petras D, Romero D. Cyclo(Pro-Tyr) elicits conserved cellular damage in fungi by targeting the [H +]ATPase Pma1 in plasma membrane domains. Commun Biol 2024; 7:1253. [PMID: 39362977 PMCID: PMC11449911 DOI: 10.1038/s42003-024-06947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Bioactive metabolites play a crucial role in shaping interactions among diverse organisms. In this study, we identified cyclo(Pro-Tyr), a metabolite produced by Bacillus velezensis, as a potent inhibitor of Botrytis cinerea and Caenorhabditis elegans, two potential cohabitant eukaryotic organisms. Based on our investigation, cyclo(Pro-Tyr) disrupts plasma membrane polarization, induces oxidative stress and increases membrane fluidity, which compromises fungal membrane integrity. These cytological and physiological changes induced by cyclo(Pro-Tyr) may be triggered by the destabilization of membrane microdomains containing the [H+]ATPase Pma1. In response to cyclo(Pro-Tyr) stress, fungal cells activate a transcriptomic and metabolomic response, which primarily involves lipid metabolism and Reactive Oxygen Species (ROS) detoxification, to mitigate membrane damage. This similar response occurs in the nematode C. elegans, indicating that cyclo(Pro-Tyr) targets eukaryotic cellular membranes.
Collapse
Affiliation(s)
- D Vela-Corcia
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - J Hierrezuelo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A I Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - P Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - A K Pakkir Shah
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
| | - A Grélard
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - Y Zi-Long
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - A Pérez García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - L Bai
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - A Loquet
- L'Institut de Chimie et Biologie des Membranes et des Nano-Objets (CBMN), Unité Mixte de Recherche (UMR) 5248, Centre National de la Recherche (CNRS), University of Bordeaux, Pessac, France
| | - D Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| | - D Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
8
|
Opdensteinen P, Charudattan R, Hong JC, Rosskopf EN, Steinmetz NF. Biochemical and nanotechnological approaches to combat phytoparasitic nematodes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2444-2460. [PMID: 38831638 PMCID: PMC11332226 DOI: 10.1111/pbi.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Jason C. Hong
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Erin N. Rosskopf
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Materials Discovery and Design, University of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Engineering in Cancer, Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
9
|
Espejo LS, Freitas S, Hofschneider V, Chang L, Antenor A, Balsa J, Haskins A, DeNicola D, Dang H, Hamming S, Kelser D, Sutphin GL. SICKO: Systematic Imaging of Caenorhabditis Killing Organisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.17.529009. [PMID: 39149381 PMCID: PMC11326133 DOI: 10.1101/2023.02.17.529009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Caenorhabditis elegans are an important model system for research on host-microbe interaction. Their rapid life cycle, short lifespan, and transparent body structure allow simple quantification of microbial load and the influence of microbial exposure on host survival. C. elegans host-microbe interaction studies typically examine group survival and infection severity at fixed timepoints. Here we present an imaging pipeline, Systematic Imaging of Caenorhabditis Killing Organisms (SICKO), that allows longitudinal characterization of microbes colonizing isolated C. elegans, enabling dynamic tracking of tissue colonization and host survival in the same animals. Using SICKO, we show that Escherichia coli or Pseudomonas aeruginosa gut colonization dramatically shortens C. elegans lifespan and that immunodeficient animals lacking pmk-1 are more susceptible to colonization but display similar colony growth relative to wild type. SICKO opens new avenues for detailed research into bacterial pathogenesis, the benefits of probiotics, and the role of the microbiome in host health.
Collapse
Affiliation(s)
- Luis S. Espejo
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Samuel Freitas
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | | | - Leah Chang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Angelo Antenor
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Jonah Balsa
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Anne Haskins
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Destiny DeNicola
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Hope Dang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Sage Hamming
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - Delaney Kelser
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| | - George L. Sutphin
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA, 85721
| |
Collapse
|
10
|
Ilík V, Schwarz EM, Nosková E, Pafčo B. Hookworm genomics: dusk or dawn? Trends Parasitol 2024; 40:452-465. [PMID: 38677925 DOI: 10.1016/j.pt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Hookworms are parasites, closely related to the model nematode Caenorhabditis elegans, that are a major economic and health burden worldwide. Primarily three hookworm species (Necator americanus, Ancylostoma duodenale, and Ancylostoma ceylanicum) infect humans. Another 100 hookworm species from 19 genera infect primates, ruminants, and carnivores. Genetic data exist for only seven of these species. Genome sequences are available from only four of these species in two genera, leaving 96 others (particularly those parasitizing wildlife) without any genomic data. The most recent hookworm genomes were published 5 years ago, leaving the field in a dusk. However, assembling genomes from single hookworms may bring a new dawn. Here we summarize advances, challenges, and opportunities for studying these neglected but important parasitic nematodes.
Collapse
Affiliation(s)
- Vladislav Ilík
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eva Nosková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
11
|
Yuan C, Wang Y, Zhang L, Wang D. Procatechuic acid and protocatechuic aldehyde increase survival of Caenorhabditis elegans after fungal infection and inhibit fungal virulence. Front Pharmacol 2024; 15:1396733. [PMID: 38841375 PMCID: PMC11150623 DOI: 10.3389/fphar.2024.1396733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Protocatechuic acid (PCA) and protocatechuic aldehyde (PAL) are important phenolic compounds in plants. We here investigated their possible beneficial effect against fungal infection and the underlying mechanism. The model animal of Caenorhabditis elegans was used as host, and Candida albicans was used as fungal pathogen. The nematodes were first infected with C. albicans, and the PCA and PAL treatment were then performed. Post-treatment with 10-100 μM PCA and PAL suppressed toxicity of C. albicans infection in reducing lifespan. Accompanied with this beneficial effect, treatment with 10-100 μM PCA and PAL inhibited C. albicans accumulation in intestinal lumen. In addition, treatment with 10-100 μM PCA and PAL suppressed the increase in expressions of antimicrobial genes caused by C. albicans infection. The beneficial effect of PCA and PAL against C. albicans infection depended on p38 MAPK and insulin signals. Moreover, although treatment with 10-100 μM PCA and PAL could not exhibit noticeable antifungal activity, PCA and PAL treatment obviously suppressed biofilm formation, inhibited hyphal growth, and reduced expressions of virulence genes (ALS3, CaVps34, Vma7, Vac1, and/or HWP1) related to biofilm formation and hyphal growth in C. albicans. Therefore, our data demonstrated the potential of PCA and PAL post-treatment against fungal infection and fungal virulence.
Collapse
Affiliation(s)
- Chunyan Yuan
- Department of Gynaecology and Obstetrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yuxing Wang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| | - Le Zhang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| | - Dayong Wang
- Deaprtment of Biochemistry and Molecrla Biology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Kywe C, Lundquist EA, Ackley BD, Lansdon P. The MAB-5/Hox family transcription factor is important for Caenorhabditis elegans innate immune response to Staphylococcus epidermidis infection. G3 (BETHESDA, MD.) 2024; 14:jkae054. [PMID: 38478633 PMCID: PMC11075571 DOI: 10.1093/g3journal/jkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.
Collapse
Affiliation(s)
- Christopher Kywe
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Patrick Lansdon
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
13
|
Narayanan S, Baburajan AP, Muhammad M, Joseph A, Vemula PK, Bhat SG. Demonstrating the immunostimulatory and cytokine-augmentation effects of bacterial ghosts on natural killer cells and Caenorhabditis Elegans. Biotechnol Bioeng 2024; 121:959-970. [PMID: 38059432 PMCID: PMC7615764 DOI: 10.1002/bit.28619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
The potential of bacteria-based immunotherapy lies in its ability to inherently enhance immune responses. However, the "liveness" of bacteria poses risks of bacterial escape, nonspecific immuno-stimulation, and ethical concerns, limiting their acceptability in immunotherapy. In this scenario, nonliving empty bacterial-cell envelopes, named bacterial ghosts (BGs), have emerged as immuno-stimulants with the potential to side-step the limitations of live bacterial therapies. This study demonstrates the capability of BGs in modulating the functionality of NK-92 cells and Caenorhabditis elegans (C. elegans), as well as perform as cytokine-therapy adjuvants. BGs were obtained through a pH-driven culture method, and were validated for their structural and chemical integrity via electron microscopy and spectroscopy. In NK-92 cells, BGs have shown significant immuno-stimulation by boosting the gene-expression of perforin, granzyme-B, Fas-L, and interferon-gamma by factors of 3.5-, 1.5-, 12.5-, and 8.6-folds, respectively. Combined BG and IL-12 treatment yielded a notable 10.2-fold increase in interferon-gamma protein expression in 24 h. The BGs also significantly influenced the innate immune response in C. elegans through the upregulation of lysozyme genes viz., ilys-3 (8.8-fold) and lys-2 (3.1-fold). Our investigation into the impact of BGs on natural killer cells and C. elegans highlights its potential as a valid alternative approach for new-age immunotherapy and cytokine augmentation.
Collapse
Affiliation(s)
- Sreeja Narayanan
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | | | - Mumtaz Muhammad
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Andrea Joseph
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Praveen Kumar Vemula
- Chemical Biology Approaches for Stem Cells and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, Karnataka, India
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|
14
|
Scheler J, Binder U. Alternative in-vivo models of mucormycosis. Front Cell Infect Microbiol 2024; 14:1343834. [PMID: 38362495 PMCID: PMC10867140 DOI: 10.3389/fcimb.2024.1343834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Mucormycosis is still regarded a rare fungal infection, but the high incidences of COVID-associated cases in India and other countries have shown its potential threat to large patient cohorts. In addition, infections by these fast-growing fungi are often fatal and cause disfigurement, badly affecting patients' lives. In advancing our understanding of pathogenicity factors involved in this disease, to enhance the diagnostic toolset and to evaluate novel treatment regimes, animal models are indispensable. As ethical and practical considerations typically favor the use of alternative model systems, this review provides an overview of alternative animal models employed for mucormycosis and discusses advantages and limitations of the respective model.
Collapse
Affiliation(s)
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Tirol, Austria
| |
Collapse
|
15
|
Hatzis G, Rossi O, Testiler I, Dobbins G, Homan E. The Effects of Lithium Chloride Exposure on the Reproduction of Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000988. [PMID: 38371322 PMCID: PMC10870153 DOI: 10.17912/micropub.biology.000988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Caenorhabditis elegans ( C. elegans) are model organisms that share similar anatomical structures to humans. By exploring the effects of lithium chloride (LiCl) on C. elegans, we can collect crucial data regarding the compound's impact on patients taking psychiatric medications containing LiCl. Here we performed an egg retention assay on nematode populations to explore how LiCl can influence reproduction. We found a statistically significant difference in eggs retained between control and experimental groups, suggesting that LiCl has negative effects on reproductive health.
Collapse
Affiliation(s)
- George Hatzis
- Department of Biology, Northeastern University, Boston, Massachusetts, United States
| | - Olivia Rossi
- Department of Biology, Northeastern University, Boston, Massachusetts, United States
| | - Izabella Testiler
- Department of Biology, Northeastern University, Boston, Massachusetts, United States
| | - Grace Dobbins
- Department of Biology, Northeastern University, Boston, Massachusetts, United States
| | - Erica Homan
- Department of Biology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
16
|
VenkataKrishna LM, Balasubramaniam B, Sushmitha TJ, Ravichandiran V, Balamurugan K. Cronobacter sakazakii infection implicates multifaceted neuro-immune regulatory pathways of Caenorhabditis elegans. Mol Omics 2024; 20:48-63. [PMID: 37818754 DOI: 10.1039/d3mo00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The neural pathways of Caenorhabditis elegans play a crucial role in regulating host immunity and inflammation during pathogenic infections. To understand the major neuro-immune signaling pathways, this study aimed to identify the key regulatory proteins in the host C. elegans during C. sakazakii infection. We used high-throughput label-free quantitative proteomics and identified 69 differentially expressed proteins. KEGG analysis revealed that C. sakazakii elicited host immune signaling cascades primarily including mTOR signaling, axon regeneration, metabolic pathways (let-363 and acox-1.4), calcium signaling (mlck-1), and longevity regulating pathways (ddl-2), respectively. The abrogation in functional loss of mTOR-associated players deciphered that C. sakazakii infection negatively regulated the lifespan of mutant worms (akt-1, let-363 and dlk-1), including physiological aberrations, such as reduced pharyngeal pumping and egg production. Additionally, the candidate pathway proteins were validated by transcriptional profiling of their corresponding genes. Furthermore, immunoblotting showed the downregulation of mTORC2/SGK-1 during the later hours of pathogen exposure. Overall, our findings profoundly provide an understanding of the specificity of proteome imbalance in affecting neuro-immune regulations during C. sakazakii infection.
Collapse
Affiliation(s)
| | | | - T J Sushmitha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | | |
Collapse
|
17
|
Espejo LS, DeNicola D, Chang LM, Hofschneider V, Haskins AE, Balsa J, Freitas SS, Antenor A, Hamming S, Hull B, Castro-Portuguez R, Dang H, Sutphin GL. The Emerging Role of 3-Hydroxyanthranilic Acid on C. elegans Aging Immune Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574394. [PMID: 38260592 PMCID: PMC10802494 DOI: 10.1101/2024.01.07.574394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
3-hydroxyanthranilic acid (3HAA) is considered to be a fleeting metabolic intermediate along tryptophan catabolism through the kynurenine pathway. 3HAA and the rest of the kynurenine pathway have been linked to immune response in mammals yet whether it is detrimental or advantageous is a point of contention. Recently we have shown that accumulation of this metabolite, either through supplementation or prevention of its degradation, extends healthy lifespan in C. elegans and mice, while the mechanism remained unknown. Utilizing C. elegans as a model we investigate how 3HAA and haao-1 inhibition impact the host and the potential pathogens. What we find is that 3HAA improves host immune function with aging and serves as an antimicrobial against gram-negative bacteria. Regulation of 3HAA's antimicrobial activity is accomplished via tissue separation. 3HAA is synthesized in the C. elegans hypodermal tissue, localized to the site of pathogen interaction within the gut granules, and degraded in the neuronal cells. This tissue separation creates a new possible function for 3HAA that may give insight to a larger evolutionarily conserved function within the immune response.
Collapse
Affiliation(s)
- Luis S Espejo
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Destiny DeNicola
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Leah M Chang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Anne E Haskins
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jonah Balsa
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Samuel S Freitas
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Angelo Antenor
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Sage Hamming
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Bradford Hull
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | | - Hope Dang
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - George L Sutphin
- Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
18
|
Zhang L, Gade V, Kirienko NV. Pathogen-induced dormancy in liquid limits gastrointestinal colonization of Caenorhabditis elegans. Virulence 2023; 14:2204004. [PMID: 37096826 PMCID: PMC10132241 DOI: 10.1080/21505594.2023.2204004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Colonization is generally considered a prerequisite for infection, but this event is context-dependent, as evidenced by the differing ability of the human pathogen Pseudomonas aeruginosa to efficiently colonize Caenorhabditis elegans on agar but not in liquid . In this study, we examined the impact of the environment, pathogen, host, and their interactions on host colonization. We found that the transition to a liquid environment reduces food uptake by about two-fold. Also expression of specific adhesins was significantly altered in liquid-based assays for P. aeruginosa, suggesting that it may be one factor driving diminished colonization. Unexpectedly, host immune pathways did not appear to play a significant role in decreased colonization in liquid. Although knocking down key immune pathways (e.g. daf-16 or zip-2), either alone or in combination, significantly reduced survival, the changes in colonization were very small. In spite of the limited bacterial accumulation in the liquid setting, pathogenic colonization was still required for the virulence of Enterococcus faecalis. In addition, we found that a pathogen-induced dormancy was displayed by C. elegans in liquid medium after pathogen exposure, resulting in cessation of pharyngeal pumping and a decrease in bacterial intake. We conclude that poor colonization in liquid is likely due to a combination of environmental factors and host-pathogen interactions. These results provide new insights into mechanisms for colonization in different models, enabling pathogenesis models to be fine-tuned to more accurately represent the conditions seen in human infections so that new tools for curbing bacterial and fungal infections can be developed.
Collapse
Affiliation(s)
- Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Vyshnavi Gade
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
19
|
Du Y, Shi H, Guo Q, Liu C, Zhao K. Hirudomacin: a Protein with Dual Effects of Direct Bacterial Inhibition and Regulation of Innate Immunity. Appl Environ Microbiol 2023; 89:e0052723. [PMID: 37428035 PMCID: PMC10370334 DOI: 10.1128/aem.00527-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
Hirudomacin (Hmc) belongs to the Macin family of antimicrobial peptides, which can be used for bactericidal purposes in vitro by cleaving cell membranes. Although the Macin family has broad-spectrum antibacterial properties, few studies have been reported on bacterial inhibition by enhancing innate immunity. To further investigate the mechanism of Hmc inhibition, we chose the classical innate immune model organism Caenorhabditis elegans as the study subject. In this investigation, we found that Hmc treatment directly reduced the number of Staphylococcus aureus and Escherichia coli in the intestine of infected wild-type nematodes and infected pmk-1 mutant nematodes. Hmc treatment significantly prolonged the life span of infected wild-type nematodes and increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-1, lys-7), and Hmc treatment still significantly increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-7) in wild-type nematodes in the absence of bacterial stimulation. In addition, Hmc treatment significantly increased the expression of key genes of the pmk-1/p38 MAPK pathway (pmk-1, tir-1, atf-7, skn-1) under both infected and uninfected conditions but failed to increase the life span of infected pmk-1 mutant nematodes as well as the expression of antimicrobial effector genes. Western blot results further demonstrated that Hmc treatment significantly elevated pmk-1 protein expression levels in infected wild-type nematodes. In conclusion, our data suggest that Hmc has both direct bacteriostatic and immunomodulatory effects and may upregulate antimicrobial peptides in response to infection via the pmk-1/p38 MAPK pathway. It has the potential to serve as a new antibacterial agent and immune modulator. IMPORTANCE In today's world, bacterial drug resistance is becoming increasingly serious, and natural antibacterial proteins are attracting attention because of advantages such as their diverse and complex antibacterial modes, lack of residue, and harder-to-develop drug resistance. Notably, there are few antibacterial proteins with multiple effects such as direct antibacterial and innate immunity enhancement at the same time. We believe that an ideal antimicrobial agent can be developed only through a more comprehensive and in-depth study of the bacteriostatic mechanism of natural antibacterial proteins. The significance of our study is that based on the known in vitro bacterial inhibition of Hirudomacin (Hmc), we further clarified its mechanism in vivo, which can be subsequently developed as a natural bacterial inhibitor for various applications in medicine, food, farming, and daily chemicals.
Collapse
Affiliation(s)
- Yu Du
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Chang Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| | - Kun Zhao
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
20
|
Melnikov K, Kucharíková S, Bárdyová Z, Botek N, Kaiglová A. Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides. Physiol Res 2023; 72:149-166. [PMID: 37159850 PMCID: PMC10226405 DOI: 10.33549/physiolres.934977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/03/2023] [Indexed: 08/27/2023] Open
Abstract
The expansion of industry and the use of pesticides in agriculture represent one of the major causes of environmental contamination. Unfortunately, individuals and animals are exposed to these foreign and often toxic substances on a daily basis. Therefore, it is crucial to monitor the impact of such chemicals on human health. Several in vitro studies have addressed this issue, but it is difficult to explore the impact of these compounds on living organisms. A nematode Caenorhabditis elegans has become a useful alternative to animal models mainly because of its transparent body, fast growth, short life cycle, and easy cultivation. Furthermore, at the molecular level, there are significant similarities between humans and C. elegans. These unique features make it an excellent model to complement mammalian models in toxicology research. Heavy metals and pesticides, which are considered environmental contaminants, are known to have affected the locomotion, feeding behavior, brood size, growth, life span, and cell death of C. elegans. Today, there are increasing numbers of research articles dedicated to this topic, of which we summarized the most recent findings dedicated to the effect of heavy metals, heavy metal mixtures, and pesticides on the well-characterized nervous system of this nematode.
Collapse
Affiliation(s)
- K Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, University in Trnava, Slovakia.
| | | | | | | | | |
Collapse
|
21
|
Mladineo I, Rončević T, Gerdol M, Tossi A. Helminthic host defense peptides: using the parasite to defend the host. Trends Parasitol 2023; 39:345-357. [PMID: 36890022 DOI: 10.1016/j.pt.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ivona Mladineo
- Laboratory of Functional Helminthology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology BC CAS, Branišovska 31, Česke Budejovice 37005, Czech Republic.
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split 21000, Croatia
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
22
|
Agarrayua DA, Funguetto-Ribeiro AC, Trevisan P, Haas SE, Ávila DS. Safety assessment of different unloaded polymeric nanocapsules in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109477. [PMID: 36182082 DOI: 10.1016/j.cbpc.2022.109477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022]
Abstract
Nano-sized drug delivery systems have been the subject of intense research in recent years because polymeric materials allow the absorption and release of active substances in a controlled manner. Despite the benefits, the safety of nanoparticulate systems is an aspect to be understood, particularly in vivo systems. Caenorhabditis elegans is a very useful alternative model for nanotoxicology and has been recently applied in this field. The aim of this study was to evaluate toxicological endpoints in C. elegans exposed to nanocapsules (NC) prepared with different coatings: polysorbate 80 (NCP80); polyethylene glycol (NCPEG), Eudragit® RS 100 (NCEUD) and chitosan (NCCS). Nanocapsules were prepared by nanoprecipitation method and showed acceptable physico-chemical characterization. Polyethylene glycol nanocapsules and chitosan nanocapsules increased worms lethality in a dose-dependent manner in acute exposure; polysorbate 80 nanocapsules, polyethylene glycol nanocpsules and chitonan nanocapsules also increased lethality following chronic exposure. Chitosan nanocapsules were the most toxic in all exposures, demonstrating toxicity even at low concentrations. Reproduction and body length were not affected by any of the nanocapsules exposures. The expression of superoxide dismutase showed that polysorbate 80 nanocapsules at the highest concentration slightly increased SOD-3::GFP expression. On the other hand, chitosan nanocapsules exposure blunted SOD-3 expression. This work demonstrates the toxicological differences between nanocapsule produced with different coatings and indicates higher safety for the use of eugragit nanocapsule in new formulations for future drug delivery and targeting systems.
Collapse
Affiliation(s)
- Danielle Araujo Agarrayua
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil
| | - Ana Claudia Funguetto-Ribeiro
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil; Laboratório de Nanobiotecnologia, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Paula Trevisan
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Sandra Elisa Haas
- Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil; Laboratório de Nanobiotecnologia, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Daiana Silva Ávila
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCe), Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil; Programa de Pós-graduação em Bioquímica, Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil.
| |
Collapse
|
23
|
Anju VT, Busi S, Imchen M, Kumavath R, Mohan MS, Salim SA, Subhaswaraj P, Dyavaiah M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11121731. [PMID: 36551388 PMCID: PMC9774821 DOI: 10.3390/antibiotics11121731] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
- Correspondence:
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala 671316, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Mahima S. Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pattnaik Subhaswaraj
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Sambalpur 768019, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
24
|
Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022; 289:20221165. [PMID: 36126684 PMCID: PMC9489279 DOI: 10.1098/rspb.2022.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Gibbons SM, Gurry T, Lampe JW, Chakrabarti A, Dam V, Everard A, Goas A, Gross G, Kleerebezem M, Lane J, Maukonen J, Penna ALB, Pot B, Valdes AM, Walton G, Weiss A, Zanzer YC, Venlet NV, Miani M. Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions. Adv Nutr 2022; 13:1450-1461. [PMID: 35776947 PMCID: PMC9526856 DOI: 10.1093/advances/nmac075] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023] Open
Abstract
Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address high-throughput in vitro techniques for assessing interindividual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore in vivo approaches for better understanding of personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from nonhuman animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies. Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific interventions.
Collapse
Affiliation(s)
| | - Thomas Gurry
- Pharmaceutical Biochemistry group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (PSI-WS), University of Geneva/University of Lausanne, Geneva, Switzerland
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Veerle Dam
- Sensus BV (Royal Cosun), Roosendaal, The Netherlands
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Almudena Goas
- Department of Food, Nutrition, and Exercise Sciences, University of Surrey, Guildford, United Kingdom
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt| Mead Johnson Nutrition Institute, Nijmegen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jonathan Lane
- Health and Happiness Group, H&H Research, Cork, Ireland
| | | | - Ana Lucia Barretto Penna
- Department of Food Engineering and Technology, São Paulo State University, São José do Rio Preto, Brazil
| | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | - Ana M Valdes
- Nottingham NIHR Biomedical Research Centre at the School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Adrienne Weiss
- Yili Innovation Center Europe, Wageningen, The Netherlands
| | | | - Naomi V Venlet
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| |
Collapse
|
26
|
Anh NH, Yoon YC, Min YJ, Long NP, Jung CW, Kim SJ, Kim SW, Lee EG, Wang D, Wang X, Kwon SW. Caenorhabditis elegans deep lipidome profiling by using integrative mass spectrometry acquisitions reveals significantly altered lipid networks. J Pharm Anal 2022; 12:743-754. [PMID: 36320604 PMCID: PMC9615529 DOI: 10.1016/j.jpha.2022.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Lipidomics coverage improvement is essential for functional lipid and pathway construction. A powerful approach to discovering organism lipidome is to combine various data acquisitions, such as full scan mass spectrometry (full MS), data-dependent acquisition (DDA), and data-independent acquisition (DIA). Caenorhabditis elegans (C. elegans) is a useful model for discovering toxic-induced metabolism, high-throughput drug screening, and a variety of human disease pathways. To determine the lipidome of C. elegans and investigate lipid disruption from the molecular level to the system biology level, we used integrative data acquisition. The methyl-tert-butyl ether method was used to extract L4 stage C. elegans after exposure to triclosan (TCS), perfluorooctanoic acid, and nanopolystyrene (nPS). Full MS, DDA, and DIA integrations were performed to comprehensively profile the C. elegans lipidome by Q-Exactive Plus MS. All annotated lipids were then analyzed using lipid ontology and pathway analysis. We annotated up to 940 lipids from 20 lipid classes involved in various functions and pathways. The biological investigations revealed that when C. elegans were exposed to nPS, lipid droplets were disrupted, whereas plasma membrane-functionalized lipids were likely to be changed in the TCS treatment group. The nPS treatment caused a significant disruption in lipid storage. Triacylglycerol, glycerophospholipid, and ether class lipids were those primarily hindered by toxicants. Finally, toxicant exposure frequently involved numerous lipid-related pathways, including the phosphoinositide 3-kinase/protein kinase B pathway. In conclusion, an integrative data acquisition strategy was used to characterize the C. elegans lipidome, providing valuable biological insights into hypothesis generation and validation. Multiple data acquisitions were used to profile the lipidome of C. elegans. 940 detected lipids of 20 main classes involved in various pathways. Relevant hypotheses were generated using high-coverable lipidomics and pathways analysis.
Collapse
|
27
|
Qian W, Li X, Liu Q, Lu J, Wang T, Zhang Q. Antifungal and Antibiofilm Efficacy of Paeonol Treatment Against Biofilms Comprising Candida albicans and/or Cryptococcus neoformans. Front Cell Infect Microbiol 2022; 12:884793. [PMID: 35669114 PMCID: PMC9163411 DOI: 10.3389/fcimb.2022.884793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal populations are commonly found in natural environments and present enormous health care challenges, due to increased resistance to antifungal agents. Paeonol exhibits antifungal activities; nevertheless, the antifungal and antibiofilm activities of paeonol against Candida albicans and Cryptococcus neoformans remain largely unexplored. Here, we aimed to evaluate the antifungal and antibiofilm activities of paeonol against C. albicans and/or C. neoformans (i.e., against mono- or dual-species). The minimum inhibitory concentrations (MICs) of paeonol for mono-species comprising C. albicans or C. neoformans were 250 μg ml−1, whereas the MIC values of paeonol for dual-species were 500 μg ml−1. Paeonol disrupted cell membrane integrity and increased the influx of gatifloxacin into cells of mono- and dual-species cells, indicating an antifungal mode of action. Moreover, paeonol at 8 times the MIC damaged mono- and dual-species cells within C. albicans and C. neoformans biofilms, as it did planktonic cells. In particular, at 4 and 8 mg ml−1, paeonol efficiently dispersed preformed 48-h biofilms formed by mono- and dual-species cells, respectively. Paeonol inhibited effectively the yeast-to-hyphal-form transition of C. albicans and impaired capsule and melanin production of C. neoformans. The addition of 10 MIC paeonol to the medium did not shorten the lifespan of C. elegans, and 2 MIC paeonol could effectively protect the growth of C. albicans and C. neoformans-infected C. elegans. Furthermore, RNA sequencing was employed to examine the transcript profiling of C. albicans and C. neoformans biofilm cells in response to 1/2 MIC paeonol. RNA sequencing data revealed that paeonol treatment impaired biofilm formation of C. albicans by presumably downregulating the expression level of initial filamentation, adhesion, and growth-related genes, as well as biofilm biosynthesis genes, whereas paeonol inhibited biofilm formation of C. neoformans by presumably upregulating the expression level of ergosterol biosynthesis-related genes. Together, the findings of this study indicate that paeonol can be explored as a candidate antifungal agent for combating serious single and mixed infections caused by C. albicans and C. neoformans.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xinchen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Qiming Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jiaxing Lu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- *Correspondence: Ting Wang, ; Qian Zhang,
| | - Qian Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- *Correspondence: Ting Wang, ; Qian Zhang,
| |
Collapse
|
28
|
Lalsiamthara J, Aballay A. The gut efflux pump MRP-1 exports oxidized glutathione as a danger signal that stimulates behavioral immunity and aversive learning. Commun Biol 2022; 5:422. [PMID: 35513700 PMCID: PMC9072357 DOI: 10.1038/s42003-022-03381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate immune surveillance, which monitors the presence of potentially harmful microorganisms and the perturbations of host physiology that occur in response to infections, is critical to distinguish pathogens from beneficial microbes. Here, we show that multidrug resistance-associated protein-1 (MRP-1) functions in the basolateral membrane of intestinal cells to transport byproducts of cellular redox reactions to control both molecular and behavioral immunity in Caenorhabditis elegans. Pseudomonas aeruginosa infection disrupts glutathione homeostasis, leading to the excess production of the MRP-1 substrate, oxidized glutathione (GSSG). Extracellular GSSG triggers pathogen avoidance behavior and primes naïve C. elegans to induce aversive learning behavior via neural NMDA class glutamate receptor-1 (NMR-1). Our results indicate that MRP-1 transports GSSG, which acts as a danger signal capable of warning C. elegans of changes in intestinal homeostasis, thereby initiating a gut neural signal that elicits an appropriate host defense response. The multidrug resistance-associated protein-1 (MRP-1) functions in the basolateral membrane of intestinal cells to transport byproducts of cellular redox reactions to control both molecular and behavioral immunity in C. elegans.
Collapse
Affiliation(s)
- Jonathan Lalsiamthara
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University Portland, Oregon, OR, 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University Portland, Oregon, OR, 97239, USA.
| |
Collapse
|
29
|
Varão Moura A, Aparecido Rosini Silva A, Domingos Santo da Silva J, Aleixo Leal Pedroza L, Bornhorst J, Stiboller M, Schwerdtle T, Gubert P. Determination of ions in Caenorhabditis elegans by ion chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123312. [DOI: 10.1016/j.jchromb.2022.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
|
30
|
The evolving role of the Caenorhabditis elegans model as a tool to advance studies in nutrition and health. Nutr Res 2022; 106:47-59. [DOI: 10.1016/j.nutres.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
|
31
|
Lansdon P, Carlson M, Ackley BD. Wild-type Caenorhabditis elegans isolates exhibit distinct gene expression profiles in response to microbial infection. BMC Genomics 2022; 23:229. [PMID: 35321659 PMCID: PMC8943956 DOI: 10.1186/s12864-022-08455-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
The soil-dwelling nematode Caenorhabditis elegans serves as a model system to study innate immunity against microbial pathogens. C. elegans have been collected from around the world, where they, presumably, adapted to regional microbial ecologies. Here we use survival assays and RNA-sequencing to better understand how two isolates from disparate climates respond to pathogenic bacteria. We found that, relative to N2 (originally isolated in Bristol, UK), CB4856 (isolated in Hawaii), was more susceptible to the Gram-positive microbe, Staphylococcus epidermidis, but equally susceptible to Staphylococcus aureus as well as two Gram-negative microbes, Providencia rettgeri and Pseudomonas aeruginosa. We performed transcriptome analysis of infected worms and found gene-expression profiles were considerably different in an isolate-specific and microbe-specific manner. We performed GO term analysis to categorize differential gene expression in response to S. epidermidis. In N2, genes that encoded detoxification enzymes and extracellular matrix proteins were significantly enriched, while in CB4856, genes that encoded detoxification enzymes, C-type lectins, and lipid metabolism proteins were enriched, suggesting they have different responses to S. epidermidis, despite being the same species. Overall, discerning gene expression signatures in an isolate by pathogen manner can help us to understand the different possibilities for the evolution of immune responses within organisms.
Collapse
Affiliation(s)
- Patrick Lansdon
- Department of Molecular Biosciences, University of Kansas, 5004 Haworth Hall, 1200 Sunnyside Ave, KS, 66045, Lawrence, USA
| | - Maci Carlson
- Department of Molecular Biosciences, University of Kansas, 5004 Haworth Hall, 1200 Sunnyside Ave, KS, 66045, Lawrence, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, University of Kansas, 5004 Haworth Hall, 1200 Sunnyside Ave, KS, 66045, Lawrence, USA.
| |
Collapse
|
32
|
Manohar P, Loh B, Elangovan N, Loganathan A, Nachimuthu R, Leptihn S. A Multiwell-Plate Caenorhabditis elegans Assay for Assessing the Therapeutic Potential of Bacteriophages against Clinical Pathogens. Microbiol Spectr 2022; 10:e0139321. [PMID: 35171008 PMCID: PMC8849058 DOI: 10.1128/spectrum.01393-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
In order to establish phage therapy as a standard clinical treatment for bacterial infections, testing of every phage to ensure the suitability and safety of the biological compound is required. While some issues have been addressed over recent years, standard and easy-to-use animal models to test phages are still rare. Testing of phages in highly suitable mammalian models such as mice is subjected to strict ethical regulations, while insect larvae such as the Galleria mellonella model suffer from batch-to-batch variations and require manual operator skills to inject bacteria, resulting in unreliable experimental outcomes. A much simpler model is the nematode Caenorhabditis elegans, which feeds on bacteria, a fast growing and easy to handle organism that can be used in high-throughput screening. In this study, two clinical bacterial strains of Escherichia coli, one Klebsiella pneumoniae, and one Enterobacter cloacae strain were tested on the model system together with lytic bacteriophages that we isolated previously. We developed a liquid-based assay, in which the efficiency of phage treatment was evaluated using a scoring system based on microscopy and counting of the nematodes, allowing increasing statistical significance compared to other assays such as larvae or mice. Our work demonstrates the potential to use Caenorhabditis elegans to test the virulence of strains of Klebsiella pneumoniae, Enterobacter cloacae, and EHEC/EPEC as well as the efficacy of bacteriophages to treat or prevent infections, allowing a more reliable evaluation for the clinical therapeutic potential of lytic phages. IMPORTANCE Validating the efficacy and safety of phages prior to clinical application is crucial to see phage therapy in practice. Current animal models include mice and insect larvae, which pose ethical or technical challenges. This study examined the use of the nematode model organism C. elegans as a quick, reliable, and simple alternative for testing phages. The data show that all the four tested bacteriophages can eliminate bacterial pathogens and protect the nematode from infections. Survival rates of the nematodes increased from <20% in the infection group to >90% in the phage treatment group. Even the nematodes with poly-microbial infections recovered during phage cocktail treatment. The use of C. elegans as a simple whole-animal infection model is a rapid and robust way to study the efficacy of phages before testing them on more complex model animals such as mice.
Collapse
Affiliation(s)
- Prasanth Manohar
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People’s Republic of China
- The Second Affiliated Hospital Zhejiang University (SAHZU), School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People’s Republic of China
| | - Namasivayam Elangovan
- Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamil Nadu, India
| | - Archana Loganathan
- Antibiotic Resistance and Phage Therapy Lab, Department of Biomedical Science, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Ramesh Nachimuthu
- Antibiotic Resistance and Phage Therapy Lab, Department of Biomedical Science, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh (ZJE) Institute, Zhejiang University, School of Medicine, Haining, Zhejiang, People’s Republic of China
- Department of Infectious Diseases, Sir Run Department Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- University of Edinburgh Medical School, Biomedical Sciences, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Rangseekaew P, Barros-Rodríguez A, Pathom-aree W, Manzanera M. Plant Beneficial Deep-Sea Actinobacterium, Dermacoccus abyssi MT1.1T Promote Growth of Tomato (Solanum lycopersicum) under Salinity Stress. BIOLOGY 2022; 11:biology11020191. [PMID: 35205058 PMCID: PMC8869415 DOI: 10.3390/biology11020191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/23/2022]
Abstract
Simple Summary Salt stress is an important environmental problem that negatively affects agricultural and food production in the world. Currently, the use of plant beneficial bacteria for plant growth promotion is attractive due to the demand for eco-friendly and sustainable agriculture. In this study, salt tolerant deep-sea actinobacterium, Dermacoccus abyssi MT1.1T was investigated plant growth promotion and salt stress mitigation in tomato seedlings. In addition, D. abyssi MT1.1T whole genome was analyzed for plant growth promoting traits and genes related to salt stress alleviation in plants. We also evaluated the biosafety of this strain on human health and organisms in the environment. Our results highlight that the inoculation of D. abyssi MT1.1T could reduce the negative effects of salt stress in tomato seedlings by growth improvement, total soluble sugars accumulation and hydrogen peroxide reduction. Moreover, this strain could survive and colonize tomato roots. Biosafety testing and genome analysis of D. abyssi MT1.1T showed no pathogenicity risk. In conclusion, we provide supporting evidence on the potential of D. abyssi MT1.1T as a safe strain for use in plant growth promotion under salt stress. Abstract Salt stress is a serious agricultural problem threatens plant growth and development resulted in productivity loss and global food security concerns. Salt tolerant plant growth promoting actinobacteria, especially deep-sea actinobacteria are an alternative strategy to mitigate deleterious effects of salt stress. In this study, we aimed to investigate the potential of deep-sea Dermacoccus abyssi MT1.1T to mitigate salt stress in tomato seedlings and identified genes related to plant growth promotion and salt stress mitigation. D. abyssi MT1.1T exhibited plant growth promoting traits namely indole-3-acetic acid (IAA) and siderophore production and phosphate solubilization under 0, 150, 300, and 450 mM NaCl in vitro. Inoculation of D. abyssi MT1.1T improved tomato seedlings growth in terms of shoot length and dry weight compared with non-inoculated seedlings under 150 mM NaCl. In addition, increased total soluble sugar and total chlorophyll content and decreased hydrogen peroxide content were observed in tomato inoculated with D. abyssi MT1.1T. These results suggested that this strain mitigated salt stress in tomatoes via osmoregulation by accumulation of soluble sugars and H2O2 scavenging activity. Genome analysis data supported plant growth promoting and salt stress mitigation potential of D. abyssi MT1.1T. Survival and colonization of D. abyssi MT1.1T were observed in roots of inoculated tomato seedlings. Biosafety testing on D. abyssi MT1.1T and in silico analysis of its whole genome sequence revealed no evidence of its pathogenicity. Our results demonstrate the potential of deep-sea D. abyssi MT1.1T to mitigate salt stress in tomato seedlings and as a candidate of eco-friendly bio-inoculants for sustainable agriculture.
Collapse
Affiliation(s)
- Pharada Rangseekaew
- Doctor of Philosophy Program in Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Adoración Barros-Rodríguez
- Department of Microbiology, Institute for Water Research, University of Granada, 18071 Granada, Spain; (A.B.-R.); (M.M.)
| | - Wasu Pathom-aree
- Research Center in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53943346-48
| | - Maximino Manzanera
- Department of Microbiology, Institute for Water Research, University of Granada, 18071 Granada, Spain; (A.B.-R.); (M.M.)
| |
Collapse
|
34
|
Kinase signaling as a drug target modality for regulation of vascular hyperpermeability: a case for ARDS therapy development. Drug Discov Today 2022; 27:1448-1456. [DOI: 10.1016/j.drudis.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
|
35
|
Subsequent infection differentially affects the proteome of Caenorhabditis elegans by abrogating the intestinal cell proliferation. Microb Pathog 2021; 162:105350. [PMID: 34952153 DOI: 10.1016/j.micpath.2021.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
With a wide range of bacterial infections growing, it has become a big challenge to the research field to combat the newly emerging diseases. Immuno-compromised patients are vulnerable to opportunistic infections. P. mirabilis, an opportunistic pathogen infects the nematode when the immune system is compromised. In the present study, the C. elegans was pre-exposed to S. aureus for a short term, and then consecutively infected with P. mirabilis. The primary infection caused by S. aureus makes the immune system of C. elegans vulnerable making it easy for P. mirabilis to colonize efficiently during subsequent exposure, thereby stimulating the immune system of the nematode. In this study, the C. elegans exposed to the pathogens (S. aureus 4 h/P. mirabilis 40 h and S. aureus 8 h/P. mirabilis 60 h time points) showed a substantial difference in the banding patterns of SDS-PAGE gel, when compared to their respective OP50 fed controls. 2-DE identified a total of 235 proteins from all the time points which had >2 fold regulation. The regulated protein spots were identified by MALDI-ToF/ToF analysis and one common protein CDC-25.1 was found to be regulated in all the comparative time points. CDC-25.1 seemed to down regulate during subsequent infection and up regulate in single infection. The transcriptomic regulation of cdc-25.1 also reflects the protein regulation. In addition to it, survival assay in cdc-25.1 mutant nematodes confirm the susceptibility of host during subsequent infection.
Collapse
|
36
|
Varão AM, Silva JDS, Amaral LO, Aleixo LLP, Onduras A, Santos CS, Silva LPD, Ribeiro DE, Filho JLL, Bornhorst J, Stiboller M, Schwerdtle T, Alves LC, Soares FAA, Gubert P. Toxic effects of thallium acetate by acute exposure to the nematode C. elegans. J Trace Elem Med Biol 2021; 68:126848. [PMID: 34479099 DOI: 10.1016/j.jtemb.2021.126848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Thallium (Tl) is a toxic metalloid and an emerging pollutant due to electronic devices and dispersal nearby base-metal mining. Therefore, Tl poses a threat to human health and especially the long-term impact on younger individuals exposed is still unknown. This study aimed to evaluate the toxic effects of thallium acetate in C. elegans in early larval stages, considering physiological and behavioral endpoints, as well as the Tl absorption and bioaccumulation. METHODS Caenorhabditis elegans (C. elegans) was exposed to Thallium acetate (50, 100, 150, 200, 250, 500, and 1000 μM) in the L1 larval stage, with the purpose to observe the toxic effects invoked until adulthood. Transgenic worms strains were transported GFP, reporters to DAF-16 and were used to verify the antioxidant response. ICP-MS quantified total Tl+ concentration to evidence Tl uptake and bioaccumulation. RESULTS Thallium acetate caused a significant reduction in the number of living worms (p < 0.0001 in 100-1000 μM), a delay in larval development (p < 0.01; p < 0.001 and p < 0.0001 in 100-1000 μM) through the larval stages, and egg production in the worm's uterus was reduced. Thallium acetate also induced behavioral changes. Additionally, thallium acetate activated antioxidant pathway responses in C. elegans by translocating the DAF-16 transcription factor and activation of SOD-3::GFP expression. The Tl+ quantification in worms showed its absorption in the L1 larval stage and bioaccumulation in the body after development. CONCLUSIONS Thallium acetate reduced survival, delayed development, caused behavioral changes, induced responses inherent to oxidative stress, and serious damage to the worm's reproduction. In addition, C. elegans absorbed and bioaccumulated Tl+. Together, our results highlight the impacts of Tl+ exposure in the early stages of life, even for a short period.
Collapse
Affiliation(s)
- A M Varão
- MS(4)Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, 12916-900, Brazil; Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - J D S Silva
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L O Amaral
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil
| | - L L P Aleixo
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - A Onduras
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - C S Santos
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - L P D Silva
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - D E Ribeiro
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J L L Filho
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - J Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - M Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - T Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - L C Alves
- Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil; Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Parasitology, Brazil
| | - F A A Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, 97105900, Santa Maria, RS, Brazil
| | - P Gubert
- Graduate Program in Pure and Applied Chemistry, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, CEP 47810-059, Barreiras, Bahia, Brazil; Immunopathology Laboratory Keizo Asami. The Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
37
|
Leuconostoc mesenteroides Strains Isolated from Carrots Show Probiotic Features. Microorganisms 2021; 9:microorganisms9112290. [PMID: 34835416 PMCID: PMC8618143 DOI: 10.3390/microorganisms9112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria (LAB) share several beneficial effects on human organisms, such as bioactive metabolites’ release, pathogens’ competition and immune stimulation. This study aimed at determining the probiotic potential of autochthonous lactic acid bacteria isolated from carrots. In particular, the work reported the characterization at the species level of four LAB strains deriving from carrots harvested in Fucino highland, Abruzzo (Italy). Ribosomal 16S DNA analysis allowed identification of three strains belonging to Leuconostoc mesenteroides and a Weissella soli strain. In vitro and in vivo assays were performed to investigate the probiotic potential of the different isolates. Among them, L. mesenteroides C2 and L. mesenteroides C7 showed high survival percentages under in vitro simulated gastro-intestinal conditions, antibiotic susceptibly and the ability to inhibit in vitro growth against Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus pathogens. In parallel, the simple model Caenorhabditis elegans was used for in vivo screenings. L. mesenteroides C2 and L. mesenteroides C7 strains significantly induced pro-longevity effects, protection from pathogens’ infection and innate immunity stimulation. Overall, these results showed that some autochthonous LAB from vegetables such as carrots have functional features to be considered as novel probiotic candidates.
Collapse
|
38
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
39
|
Jamiu AT, Albertyn J, Sebolai O, Gcilitshana O, Pohl CH. Inhibitory effect of polyunsaturated fatty acids alone or in combination with fluconazole on Candida krusei biofilms in vitro and in Caenorhabditis elegans. Med Mycol 2021; 59:1225-1237. [PMID: 34558629 DOI: 10.1093/mmy/myab055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
The incidence of infections by non-albicans Candida species, including Candida krusei, is increasing. Candida krusei exhibits intrinsic resistance to fluconazole and rapidly develops acquired resistance to other antifungals. Moreover, this yeast can form biofilm with increased resistance. Hence, there is a need to develop novel therapeutic strategies to combat infections caused by this pathogen. One such approach is through combination therapy with natural compounds, such as polyunsaturated fatty acids (PUFAs). This study aims to investigate the effect of PUFAs on fluconazole susceptibility of C. krusei biofilms, as well as the conserved nature of these effects in the Caenorhabditis elegans infection model. C. krusei biofilms were exposed to various fatty acids as well as combinations of fluconazole and linoleic acid (LA) or gamma-linolenic acid (GLA). The effect of these treatments on biofilm formation, cell ultrastructure, membrane integrity, oxidative stress and efflux pump activity was evaluated. In addition, the ability of the PUFAs to prolong survival and reduce the fungal burden of infected C. elegans, in the absence and presence of fluconazole, was assessed. Two P|UFAs, LA and GLA had he displayed significant inhibition of C. krusei biofilms and both of them increased the susceptibility of C. krusei biofilm to fluconazole in vitro via induction of oxidative stress, cell membrane damage, and disruption of efflux pump activity. These PUFAs also extended the lifespan of infected nematodes and displayed a potentiating effect with fluconazole in this model. This may pave the way for future studies into novel antifungal drug targets and treatment options. LAY ABSTRACT The pathogenic yeast, Candida krusei, is naturally resistant to the antifungal drug, fluconazole. This study finds that polyunsaturated fatty acids, linoleic and gamma-linolenic acid, can inhibit C. krusei and overcome this resistance of in vitro biofilms, as well as in a nematode infection model.
Collapse
Affiliation(s)
- Abdullahi Temitope Jamiu
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Onele Gcilitshana
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
40
|
Hrach HC, O'Brien S, Steber HS, Newbern J, Rawls A, Mangone M. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans. Hum Mol Genet 2021; 29:1607-1623. [PMID: 32227114 PMCID: PMC7322572 DOI: 10.1093/hmg/ddaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease characterized by progressive muscle degeneration. The condition is driven by nonsense and missense mutations in the dystrophin gene, leading to instability of the sarcolemma and skeletal muscle necrosis and atrophy. Resulting changes in muscle-specific gene expression that take place in dystrophin's absence remain largely uncharacterized, as they are potentially obscured by the chronic inflammation elicited by muscle damage in humans. Caenorhabditis elegans possess a mild inflammatory response that is not active in the muscle, and lack a satellite cell equivalent. This allows for the characterization of the transcriptome rearrangements affecting disease progression independently of inflammation and regeneration. In effort to better understand these dynamics, we have isolated and sequenced body muscle-specific transcriptomes from C. elegans lacking functional dystrophin at distinct stages of disease progression. We have identified an upregulation of genes involved in mitochondrial function early in disease progression, and an upregulation of genes related to muscle repair in later stages. Our results suggest that in C. elegans, dystrophin may have a signaling role early in development, and its absence may activate compensatory mechanisms that counteract muscle degradation caused by loss of dystrophin. We have also developed a temperature-based screening method for synthetic paralysis that can be used to rapidly identify genetic partners of dystrophin. Our results allow for the comprehensive identification of transcriptome changes that potentially serve as independent drivers of disease progression and may in turn allow for the identification of new therapeutic targets for the treatment of DMD.
Collapse
Affiliation(s)
- Heather C Hrach
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA.,Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Shannon O'Brien
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.,Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Hannah S Steber
- Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Jason Newbern
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Alan Rawls
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
41
|
Huang Y, Sterken MG, van Zwet K, van Sluijs L, Pijlman GP, Kammenga JE. Heat Stress Reduces the Susceptibility of Caenorhabditis elegans to Orsay Virus Infection. Genes (Basel) 2021; 12:1161. [PMID: 34440335 PMCID: PMC8392475 DOI: 10.3390/genes12081161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The nematode Caenorhabditis elegans has been a versatile model for understanding the molecular responses to abiotic stress and pathogens. In particular, the response to heat stress and virus infection has been studied in detail. The Orsay virus (OrV) is a natural virus of C. elegans and infection leads to intracellular infection and proteostatic stress, which activates the intracellular pathogen response (IPR). IPR related gene expression is regulated by the genes pals-22 and pals-25, which also control thermotolerance and immunity against other natural pathogens. So far, we have a limited understanding of the molecular responses upon the combined exposure to heat stress and virus infection. We test the hypothesis that the response of C. elegans to OrV infection and heat stress are co-regulated and may affect each other. We conducted a combined heat-stress-virus infection assay and found that after applying heat stress, the susceptibility of C. elegans to OrV was decreased. This difference was found across different wild types of C. elegans. Transcriptome analysis revealed a list of potential candidate genes associated with heat stress and OrV infection. Subsequent mutant screens suggest that pals-22 provides a link between viral response and heat stress, leading to enhanced OrV tolerance of C. elegans after heat stress.
Collapse
Affiliation(s)
- Yuqing Huang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Koen van Zwet
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| |
Collapse
|
42
|
Ijomone OM, Gubert P, Okoh COA, Varão AM, Amara LDO, Aluko OM, Aschner M. Application of Fluorescence Microscopy and Behavioral Assays to Demonstrating Neuronal Connectomes and Neurotransmitter Systems in C. elegans. NEUROMETHODS 2021; 172:399-426. [PMID: 34754139 PMCID: PMC8575032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a prevailing model which is commonly utilized in a variety of biomedical research arenas, including neuroscience. Due to its transparency and simplicity, it is becoming a choice model organism for conducting imaging and behavioral assessment crucial to understanding the intricacies of the nervous system. Here, the methods required for neuronal characterization using fluorescent proteins and behavioral tasks are described. These are simplified protocols using fluorescent microscopy and behavioral assays to examine neuronal connections and associated neurotransmitter systems involved in normal physiology and aberrant pathology of the nervous system. Our aim is to make available to readers some streamlined and replicable procedures using C. elegans models as well as highlighting some of the limitations.
Collapse
Affiliation(s)
- Omamuyovwi M. Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Priscila Gubert
- Department of Biochemistry, Laboratório de Imunopatologia Keizo Asami, LIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Comfort O. A. Okoh
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Alexandre M. Varão
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Leandro de O. Amara
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Oritoke M. Aluko
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Michael Aschner
- Departments of Molecular Pharmacology and Neurosciences, Albert Einstein College of Medicine, NY, USA
| |
Collapse
|
43
|
Viri V, Arveiler M, Lehnert T, Gijs MAM. An In Vivo Microfluidic Study of Bacterial Load Dynamics and Absorption in the C. elegans Intestine. MICROMACHINES 2021; 12:832. [PMID: 34357242 PMCID: PMC8304684 DOI: 10.3390/mi12070832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Caenorhabditiselegans (C. elegans) has gained importance as a model for studying host-microbiota interactions and bacterial infections related to human pathogens. Assessing the fate of ingested bacteria in the worm's intestine is therefore of great interest, in particular with respect to normal bacterial digestion or intestinal colonization by pathogens. Here, we report an in vivo study of bacteria in the gut of C. elegans. We take advantage of a polydimethylsiloxane (PDMS) microfluidic device enabling passive immobilization of adult worms under physiological conditions. Non-pathogenic Escherichia coli (E. coli) bacteria expressing either pH-sensitive or pH-insensitive fluorescence reporters as well as fluorescently marked indigestible microbeads were used for the different assays. Dynamic fluorescence patterns of the bacterial load in the worm gut were conveniently monitored by time-lapse imaging. Cyclic motion of the bacterial load due to peristaltic activity of the gut was observed and biochemical digestion of E. coli was characterized by high-resolution fluorescence imaging of the worm's intestine. We could discriminate between individual intact bacteria and diffuse signals related to disrupted bacteria that can be digested. From the decay of the diffuse fluorescent signal, we determined a digestion time constant of 14 ± 4 s. In order to evaluate the possibility to perform infection assays with our platform, immobilized C. elegans worms were fed pathogenic Mycobacterium marinum (M. marinum) bacteria. We analyzed bacterial fate and accumulation in the gut of N2 worms and mitochondrial stress response in a hsp-6::gfp mutant.
Collapse
Affiliation(s)
| | | | | | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (V.V.); (M.A.); (T.L.)
| |
Collapse
|
44
|
Diamandas A, Razon MR, Ramirez-Arcos S, Brassinga AKC. The Virulence of S. marcescens Strains Isolated From Contaminated Blood Products Is Divergent in the C. elegans Infection Model. Front Genet 2021; 12:667062. [PMID: 34178032 PMCID: PMC8222908 DOI: 10.3389/fgene.2021.667062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial contamination of platelet concentrates (PCs) can occur during blood donation or PC processing, necessitating routine screening to identify contaminated products in efforts to prevent adverse transfusion reactions in recipient patients. Serratia marcescens is a common bacterial contaminant, and its resilient nature coupled with genetic promiscuity imbue this environmental bacterium with resistance to disinfectants and antibiotics enhancing bacterial virulence. In this study, we aim to understand adaptive survival mechanisms through genetic characterization of two S. marcescens strains, CBS11 and CBS12, isolated from PCs by Canadian Blood Services. Genomic analyses of the two strains indicated that CBS11 has one chromosome and one plasmid (pAM01), whereas CBS12 has no plasmids. Phylogenetic analyses show that CBS11 and CBS12 are non-clonal strains, with CBS11 clustering closely with clinical strain CAV1492 and less so with environmental strain PWN146, and CBS12 clustering with a clinical strain AR_0027. Interestingly, pAM01 was most closely related to PWN146p1, a plasmid found in S. marcescens PWN146 strain associated with pinewood nematode Bursaphelenchus xylophilus. Lastly, the genomic diversity of CBS11 and CBS12 was not reflected in the antibiotic resistance profiles as they were remarkably similar to one another, but was reflected in the virulence phenotypes assessed in the Caenorhabditis elegans nematode infection model, with CBS11 being more virulent then CBS12. Taken together, we suggest that S. marcescens environmental isolates that feature evolutionary diverse genomics are better equipped to adapt and thrive in varied environments, such as that of PCs, and therefore is as much of a concern as multi-drug resistance for human infection potential.
Collapse
Affiliation(s)
- Alexander Diamandas
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Mikhail R Razon
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Sandra Ramirez-Arcos
- Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
45
|
Evaluation of changes in C. elegans immune response during bacterial infection: A single nematode approach. Microbes Infect 2021; 23:104846. [PMID: 34091025 DOI: 10.1016/j.micinf.2021.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
Routinely, studies were performed using age-synchronized group of C. elegans as host which suggested a collective response by the host system. Here, we report the modulation of immune response in a single nematode against Staphylococcus aureus and Proteus mirabilis. Initially, the survival of wild-type N2 was tested and was found that S. aureus killed single nematode at 42 h while P. mirabilis failed to provoke infection but colonized the nematode's intestine. With this milieu, the pathogenicity of the bacteria was assessed by Fourier Transform Infra-Red (FTIR) spectroscopy and Cyclic Voltammetry (CV) and was found that S. aureus in the presence of host elicited its virulence while P. mirabilis and Escherichia coli OP50 did not show any alteration. Vertical transmission of infection was also deduced by colony forming unit assay using Cyanine dyes. The MALDI-TOF/TOF analysis was also performed to identify the proteome changes in the single nematode that showcased different proteins related to various immune pathways. This study suggested the importance of understanding the infection pathology and traits of individual nematode which could help our understanding on otherwise the disordered processes during host and microbe interactions.
Collapse
|
46
|
Proteomic analysis of Caenorhabditis elegans against Salmonella Typhi toxic proteins. Genes Immun 2021; 22:75-92. [PMID: 33986511 DOI: 10.1038/s41435-021-00132-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
Bacterial effector molecules are crucial infectious agents that can cause pathogenesis. In the present study, the pathogenesis of toxic Salmonella enterica serovar Typhi (S. Typhi) proteins on the model host Caenorhabditis elegans was investigated by exploring the host's regulatory proteins during infection through the quantitative proteomics approach. Extracted host proteins were analyzed using two-dimensional gel electrophoresis (2D-GE) and differentially regulated proteins were identified using MALDI TOF/TOF/MS analysis. Of the 150 regulated proteins identified, 95 were downregulated while 55 were upregulated. The interaction network of regulated proteins was predicted using the STRING tool. Most downregulated proteins were involved in muscle contraction, locomotion, energy hydrolysis, lipid synthesis, serine/threonine kinase activity, oxidoreductase activity, and protein unfolding. Upregulated proteins were involved in oxidative stress pathways. Hence, cellular stress generated by S. Typhi proteins in the model host was determined using lipid peroxidation as well as oxidant and antioxidant assays. In addition, candidate proteins identified via extract analysis were validated by western blotting, and the roles of several crucial molecules were analyzed in vivo using transgenic strains (myo-2 and col-19) and mutant (ogt-1) of C. elegans. To the best of our knowledge, this is the first study to report protein regulation in host C. elegans exposed to toxic S. Typhi proteins. It highlights the significance of p38 MAPK and JNK immune pathways.
Collapse
|
47
|
Survival upon Staphylococcus aureus mediated wound infection in Caenorhabditis elegans and the mechanism entailed. Microb Pathog 2021; 157:104952. [PMID: 34022354 DOI: 10.1016/j.micpath.2021.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022]
Abstract
Infection following injury is one of the major threats which causes huge economic burden in wound care management all over the world. Injury often results with poor healing when coupled by following infection. In contrast to this, we observed enhanced survival of wound infected worms compared to wounded worms in Caenorhabditis elegans wound model while infecting with Staphylococcus aureus. Hence, the study was intended to identify the mechanism for the enhanced survival of wound infected worms through LCMS/MS based high throughput proteomic analysis. Bioinformatics analyses of the identified protein players indicated differential enrichment of several pathways including MAPK signaling, oxidative phosphorylation and phosphatidylinositol signaling. Inhibition of oxidative phosphorylation and phosphatidylinositol signaling through chemical treatment showed complete reversal of the enhanced survival during wound infection nevertheless mutant of MAPK pathway did not reverse the same. Consequently, it was delineated that oxidative phosphorylation and phosphatidylinositol signaling are crucial for the survival. In this regard, elevated calcium signals and ROS including O- and H2O2 were observed in wounded and wound infected worms. Consequently, it was insinuated that presence of pathogen stress could have incited survival in wound infected worms with the aid of elevated ROS and calcium signals.
Collapse
|
48
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
49
|
Roger LM, Reich HG, Lawrence E, Li S, Vizgaudis W, Brenner N, Kumar L, Klein-Seetharaman J, Yang J, Putnam HM, Lewinski NA. Applying model approaches in non-model systems: A review and case study on coral cell culture. PLoS One 2021; 16:e0248953. [PMID: 33831033 PMCID: PMC8031391 DOI: 10.1371/journal.pone.0248953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Model systems approaches search for commonality in patterns underlying biological diversity and complexity led by common evolutionary paths. The success of the approach does not rest on the species chosen but on the scalability of the model and methods used to develop the model and engage research. Fine-tuning approaches to improve coral cell cultures will provide a robust platform for studying symbiosis breakdown, the calcification mechanism and its disruption, protein interactions, micronutrient transport/exchange, and the toxicity of nanoparticles, among other key biological aspects, with the added advantage of minimizing the ethical conundrum of repeated testing on ecologically threatened organisms. The work presented here aimed to lay the foundation towards development of effective methods to sort and culture reef-building coral cells with the ultimate goal of obtaining immortal cell lines for the study of bleaching, disease and toxicity at the cellular and polyp levels. To achieve this objective, the team conducted a thorough review and tested the available methods (i.e. cell dissociation, isolation, sorting, attachment and proliferation). The most effective and reproducible techniques were combined to consolidate culture methods and generate uncontaminated coral cell cultures for ~7 days (10 days maximum). The tests were conducted on scleractinian corals Pocillopora acuta of the same genotype to harmonize results and reduce variation linked to genetic diversity. The development of cell separation and identification methods in conjunction with further investigations into coral cell-type specific metabolic requirements will allow us to tailor growth media for optimized monocultures as a tool for studying essential reef-building coral traits such as symbiosis, wound healing and calcification at multiple scales.
Collapse
Affiliation(s)
- Liza M. Roger
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: ,
| | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Evan Lawrence
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Shuaifeng Li
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Whitney Vizgaudis
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Nathan Brenner
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | - Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado, United States of America
| | | | - Jinkyu Yang
- Aeronautics and Astronautics, University of Washington, Seattle, Washington, United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Nastassja A. Lewinski
- Life Science and Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
50
|
Rosiana S, Zhang L, Kim GH, Revtovich AV, Uthayakumar D, Sukumaran A, Geddes-McAlister J, Kirienko NV, Shapiro RS. Comprehensive genetic analysis of adhesin proteins and their role in virulence of Candida albicans. Genetics 2021; 217:iyab003. [PMID: 33724419 PMCID: PMC8045720 DOI: 10.1093/genetics/iyab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host. However, a comprehensive analysis of the role and relationships between these adhesins has not been explored. We previously established a CRISPR-based platform for efficient generation of single- and double-gene deletions in C. albicans, which was used to construct a library of 144 mutants, comprising 12 unique adhesin genes deleted singly, and every possible combination of double deletions. Here, we exploit this adhesin mutant library to explore the role of adhesin proteins in C. albicans virulence. We perform a comprehensive, high-throughput screen of this library, using Caenorhabditis elegans as a simplified model host system, which identified mutants critical for virulence and significant genetic interactions. We perform follow-up analysis to assess the ability of high- and low-virulence strains to undergo cellular morphogenesis and form biofilms in vitro, as well as to colonize the C. elegans host. We further perform genetic interaction analysis to identify novel significant negative genetic interactions between adhesin mutants, whereby combinatorial perturbation of these genes significantly impairs virulence, more than expected based on virulence of the single mutant constituent strains. Together, this study yields important new insight into the role of adhesins, singly and in combinations, in mediating diverse facets of virulence of this critical fungal pathogen.
Collapse
Affiliation(s)
- Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Liyang Zhang
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| | | | | | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON NIG 2W1, Canada
| |
Collapse
|