1
|
Shackleton D, Memon FA, Nichols G, Phalkey R, Chen AS. Mechanisms of cholera transmission via environment in India and Bangladesh: state of the science review. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:313-329. [PMID: 36639850 DOI: 10.1515/reveh-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Cholera has a long history in India and Bangladesh, the region where six out of the past seven global pandemics have been seeded. The changing climate and growing population have led to global cholera cases remaining high despite a consistent improvement in the access to clean water and sanitation. We aim to provide a holistic overview of variables influencing environmental cholera transmission within the context of India and Bangladesh, with a focus on the mechanisms by which they act. CONTENT We identified 56 relevant texts (Bangladesh n = 40, India n = 7, Other n = 5). The results of the review found that cholera transmission is associated with several socio-economic and environmental factors, each associated variable is suggested to have at least one mediating mechanism. Increases in ambient temperature and coastal sea surface temperature support cholera transmission via increases in plankton and a preference of Vibrio cholerae for warmer waters. Increased rainfall can potentially support or reduce transmission via several mechanisms. SUMMARY AND OUTLOOK Common issues in the literature are co-variance of seasonal factors, limited access to high quality cholera data, high research bias towards research in Dhaka and Matlab (Bangladesh). A specific and detailed understanding of the relationship between SST and cholera incidence remains unclear.
Collapse
Affiliation(s)
- Debbie Shackleton
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Fayyaz A Memon
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Gordon Nichols
- European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, UK
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Revati Phalkey
- Climate Change and Health Group, UK Health Security Agency, London, UK
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Albert S Chen
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
2
|
Lawrence Grant S, Lange S, Almeida S, Hoque B, Kjær Mackie Jensen P. Influence of Seasonal Hazards on Water, Sanitation, and Hygiene-Related Behavior and Implications for Cholera Transmission in Bangladesh. Am J Trop Med Hyg 2023; 108:518-523. [PMID: 36689946 PMCID: PMC9978562 DOI: 10.4269/ajtmh.21-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/01/2022] [Indexed: 01/24/2023] Open
Abstract
Most cholera outbreaks in Bangladesh are seasonal, peaking in the dry and post-monsoon periods. Therefore, we investigated whether changes in water, sanitation, and hygiene (WASH) behavior in three populations in Bangladesh during the year could help explain why these two periods are particular to cholera transmission. The study used a mixed-method design, including a repeated cross-sectional study, focus group discussions, and key informant interviews. Through a repeated cross-sectional study, WASH-related variables were assessed during the dry, monsoon, and control seasons in 600 households from coastal Satkhira, inland Sirajganj, and the Dhaka slums. Seasonal behavioral changes were observed in all study areas. Dhaka and Satkhira had an increased mean distance to water sources during the dry and monsoon seasons (Dhaka: control season, 12 m [95% CI, 11-13]; dry season, 36 m [95% CI, 18-55]; and monsoon season, 180 m [95% CI, 118-243]; Satkhira: control season, 334 m [95% CI, 258-411]; dry season, 669 m [95% CI, 515-822]; and monsoon season, 2,437 m [95% CI, 1,665-3,209]). The participants attributed this to pollution of the usual water source. Perceived water quantity was lowest during the dry season in Dhaka and Sirajganj, and during the monsoon season in Satkhira. Handwashing with soap declined in all areas during the dry and monsoon seasons. Open defecation was frequent among children younger than 5 years, increasing during seasonal climate hazards. Results show that WASH-related behavior changed seasonally, increasing the risk of cholera transmission through multiple hygiene-related transmission pathways. Future research would benefit by ensuring that the length of studies covers all seasons throughout the year and also by looking in more detail at people's behavior and hygiene practices.
Collapse
Affiliation(s)
- Stephen Lawrence Grant
- Copenhagen Center for Disaster Research, Section of Global Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Sina Lange
- Copenhagen Center for Disaster Research, Section of Global Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Sara Almeida
- Copenhagen Center for Disaster Research, Section of Global Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Bilqis Hoque
- Environment and Population Research Centre, Dhaka, Bangladesh
| | - Peter Kjær Mackie Jensen
- Copenhagen Center for Disaster Research, Section of Global Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
McDonald ND, Rosenberger JR, Almagro-Moreno S, Boyd EF. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:195-211. [PMID: 36792877 DOI: 10.1007/978-3-031-22997-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.
Collapse
Affiliation(s)
- N D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - J R Rosenberger
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
5
|
Perera IU, Fujiyoshi S, Nishiuchi Y, Nakai T, Maruyama F. Zooplankton act as cruise ships promoting the survival and pathogenicity of pathogenic bacteria. Microbiol Immunol 2022; 66:564-578. [PMID: 36128640 PMCID: PMC10091822 DOI: 10.1111/1348-0421.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Bacteria in general interact with zooplankton in aquatic ecosystems. These zooplankton-bacterial interactions help to shape the bacterial community by regulating bacterial abundances. Such interactions are even more significant and crucially in need of investigation in the case of pathogenic bacteria, which cause severe diseases in humans and animals. Among the many associations between a host metazoan and pathogenic bacteria, zooplankton provide nutrition and protection from stressful conditions, promote the horizontal transfer of virulence genes, and act as a mode of pathogen transport. These interactions allow the pathogen to survive and proliferate in aquatic environments and to endure water treatment processes, thereby creating a potential risk to human health. This review highlights current knowledge on the contributions of zooplankton to the survival and pathogenicity of pathogenic bacteria. We also discuss the need to consider these interactions as a risk factor in water treatment processes.
Collapse
Affiliation(s)
- Ishara U Perera
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - So Fujiyoshi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Yukiko Nishiuchi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Toshihiro Nakai
- Takehara Marine Science Station, Graduate School of Integrated Science for Life, Hiroshima University, Takehara City, Hiroshima, Japan
| | - Fumito Maruyama
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan.,Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| |
Collapse
|
6
|
Dey SS, Hossain ZZ, Akhter H, Jensen PKM, Begum A. Abundance and biofilm formation capability of Vibrio cholerae in aquatic environment with an emphasis on Hilsha fish (Tenualosa ilisha). Front Microbiol 2022; 13:933413. [PMID: 36386632 PMCID: PMC9643777 DOI: 10.3389/fmicb.2022.933413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
The potentially deadly and sporadic diarrhea-causing agent, Vibrio cholerae, is present in a great number in the freshwater aquatic environment and can be transmitted to humans by different aquatic organisms. In the perspective of Bangladesh, an anadromous fish species Hilsha (Tenualosa ilisha) can act as a transmission vehicle of V. cholerae from the aquatic to the household kitchen environment. The present study was carried out to investigate the presence of V. cholerae in the aquatic habitat of Bangladesh with a major emphasis on freshly caught Hilsha fish, along with river water and plankton samples from the fish capture site. The study also detected the biofilm formation capability of V. cholerae within Hilsha fish that might help the transmission and persistence of the pathogen in aquatic habitat. Twenty out of 65 freshly caught fish (30.8%) and 1 out of 15 water samples (6.67%) showed the presence of V. cholerae and none of the plankton samples were positive for V. cholerae. The isolated strains were identified as non-O1 and non-O139 serogroups of V. cholerae and contain some major toxin and virulence genes. A few strains showed cellular cytotoxicity on the HeLa cell line. All strains were able to form biofilm on the microtiter plate and the detection of three genes related to biofilm formation (vpsA, vpsL, and vpsR) were also assayed using qPCR. In this study, the in vitro biofilm formation ability of the isolated strains may indicate the long-term persistence of V. cholerae in different parts of Hilsha fish. The abundance of V. cholerae only in freshly caught Hilsha fish and the absence of the pathogen in the surrounding aquatic environment could stipulate the role of Hilsha fish as one of the major transmission routes of V. cholerae from the freshwater aquatic environment of Bangladesh to the household kitchen environment.
Collapse
Affiliation(s)
- Subarna Sandhani Dey
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, Bangladesh
| | - Zenat Zebin Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Public Health, School of Pharmacy and Public Health, Independent University, Dhaka, Bangladesh
| | - Humaira Akhter
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K. M. Jensen
- Copenhagen Centre for Disaster Research, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- *Correspondence: Anowara Begum,
| |
Collapse
|
7
|
Zhang H, Jiang H, Hu Z, Song Q, An YQC. Development of a versatile resource for post-genomic research through consolidating and characterizing 1500 diverse wild and cultivated soybean genomes. BMC Genomics 2022; 23:250. [PMID: 35361112 PMCID: PMC8973893 DOI: 10.1186/s12864-022-08326-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/20/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND With advances in next-generation sequencing technologies, an unprecedented amount of soybean accessions has been sequenced by many individual studies and made available as raw sequencing reads for post-genomic research. RESULTS To develop a consolidated and user-friendly genomic resource for post-genomic research, we consolidated the raw resequencing data of 1465 soybean genomes available in the public and 91 highly diverse wild soybean genomes newly sequenced. These altogether provided a collection of 1556 sequenced genomes of 1501 diverse accessions (1.5 K). The collection comprises of wild, landraces and elite cultivars of soybean that were grown in East Asia or major soybean cultivating areas around the world. Our extensive sequence analysis discovered 32 million single nucleotide polymorphisms (32mSNPs) and revealed a SNP density of 30 SNPs/kb and 12 non-synonymous SNPs/gene reflecting a high structural and functional genomic diversity of the new collection. Each SNP was annotated with 30 categories of structural and/or functional information. We further identified paired accessions between the 1.5 K and 20,087 (20 K) accessions in US collection as genomic "equivalent" accessions sharing the highest genomic identity for minimizing the barriers in soybean germplasm exchange between countries. We also exemplified the utility of 32mSNPs in enhancing post-genomics research through in-silico genotyping, high-resolution GWAS, discovering and/or characterizing genes and alleles/mutations, identifying germplasms containing beneficial alleles that are potentially experiencing artificial selection. CONCLUSION The comprehensive analysis of publicly available large-scale genome sequencing data of diverse cultivated accessions and the newly in-house sequenced wild accessions greatly increased the soybean genome-wide variation resolution. This could facilitate a variety of genetic and molecular-level analyses in soybean. The 32mSNPs and 1.5 K accessions with their comprehensive annotation have been made available at the SoyBase and Ag Data Commons. The dataset could further serve as a versatile and expandable core resource for exploring the exponentially increasing genome sequencing data for a variety of post-genomic research.
Collapse
Affiliation(s)
- Hengyou Zhang
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - He Jiang
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Zhenbin Hu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Qijian Song
- US Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD 20705, USA
| | - Yong-Qiang Charles An
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA.
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit, 975 N Warson Rd, St. Louis, MO 63132, USA.
| |
Collapse
|
8
|
Nasreen T, Hussain NA, Ho JY, Aw VZJ, Alam M, Yanow SK, Boucher YF. Assay for Evaluating the Abundance of Vibrio cholerae and Its O1 Serogroup Subpopulation from Water without DNA Extraction. Pathogens 2022; 11:pathogens11030363. [PMID: 35335687 PMCID: PMC8953119 DOI: 10.3390/pathogens11030363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cholera is a severe diarrheal disease caused by Vibrio cholerae, a natural inhabitant of brackish water. Effective control of cholera outbreaks depends on prompt detection of the pathogen from clinical specimens and tracking its source in the environment. Although the epidemiology of cholera is well studied, rapid detection of V. cholerae remains a challenge, and data on its abundance in environmental sources are limited. Here, we describe a sensitive molecular quantification assay by qPCR, which can be used on-site in low-resource settings on water without the need for DNA extraction. This newly optimized method exhibited 100% specificity for total V. cholerae as well as V. cholerae O1 and allowed detection of as few as three target CFU per reaction. The limit of detection is as low as 5 × 103 CFU/L of water after concentrating biomass from the sample. The ability to perform qPCR on water samples without DNA extraction, portable features of the equipment, stability of the reagents at 4 °C and user-friendly online software facilitate fast quantitative analysis of V. cholerae. These characteristics make this assay extremely useful for field research in resource-poor settings and could support continuous monitoring in cholera-endemic areas.
Collapse
Affiliation(s)
- Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.)
| | - Nora A.S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.)
| | - Jia Yee Ho
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore; (J.Y.H.); (V.Z.J.A.)
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore 117549, Singapore
| | - Vanessa Zhi Jie Aw
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore; (J.Y.H.); (V.Z.J.A.)
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore 117549, Singapore
| | - Munirul Alam
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh;
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB T6G 2E9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Yann F. Boucher
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore; (J.Y.H.); (V.Z.J.A.)
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore 117549, Singapore
- Correspondence:
| |
Collapse
|
9
|
Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 2021; 23:7314-7340. [PMID: 34390611 DOI: 10.1111/1462-2920.15716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Vibrio spp. thrive in warm water and moderate salinity, and they are associated with aquatic invertebrates, notably crustaceans and zooplankton. At least 12 Vibrio spp. are known to cause infection in humans, and Vibrio cholerae is well documented as the etiological agent of pandemic cholera. Pathogenic non-cholera Vibrio spp., e.g., Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Incidence of vibriosis is rising globally, with evidence that anthropogenic factors, primarily emissions of carbon dioxide associated with atmospheric warming and more frequent and intense heatwaves, significantly influence environmental parameters, e.g., temperature, salinity, and nutrients, all of which can enhance growth of Vibrio spp. in aquatic ecosystems. It is not possible to eliminate Vibrio spp., as they are autochthonous to the aquatic environment and many play a critical role in carbon and nitrogen cycling. Risk prediction models provide an early warning that is essential for safeguarding public health. This is especially important for regions of the world vulnerable to infrastructure instability, including lack of 'water, sanitation, and hygiene' (WASH), and a less resilient infrastructure that is vulnerable to natural calamity, e.g., hurricanes, floods, and earthquakes, and/or social disruption and civil unrest, arising from war, coups, political crisis, and economic recession. Incorporating environmental, social, and behavioural parameters into such models allows improved prediction, particularly of cholera epidemics. We have reported that damage to WASH infrastructure, coupled with elevated air temperatures and followed by above average rainfall, promotes exposure of a population to contaminated water and increases the risk of an outbreak of cholera. Interestingly, global predictive risk models successful for cholera have the potential, with modification, to predict diseases caused by other clinically relevant Vibrio spp. In the research reported here, the focus was on environmental parameters associated with incidence and distribution of clinically relevant Vibrio spp. and their role in disease transmission. In addition, molecular methods designed for detection and enumeration proved useful for predictive modelling and are described, namely in the context of prediction of environmental conditions favourable to Vibrio spp., hence human health risk.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| | - Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Kristine M Chen
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Mayank Gangwar
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Antarpreet S Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.,University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
| |
Collapse
|
10
|
L-arabinose induces the formation of viable non-proliferating spheroplasts in Vibrio cholerae. Appl Environ Microbiol 2021; 87:AEM.02305-20. [PMID: 33355111 PMCID: PMC8090878 DOI: 10.1128/aem.02305-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the agent of the deadly human disease cholera, propagates as a curved rod-shaped bacterium in warm waters. It is sensitive to cold, but persists in cold waters under the form of viable but non-dividing coccoidal shaped cells. Additionally, V. cholerae is able to form non-proliferating spherical cells in response to cell wall damage. It was recently reported that L-arabinose, a component of the hemicellulose and pectin of terrestrial plants, stops the growth of V. cholerae. Here, we show that L-arabinose induces the formation of spheroplasts that lose the ability to divide and stop growing in volume over time. However, they remain viable and upon removal of L-arabinose they start expanding in volume, form branched structures and give rise to cells with a normal morphology after a few divisions. We further show that WigKR, a histidine kinase/response regulator pair implicated in the induction of a high expression of cell wall synthetic genes, prevents the lysis of the spheroplasts during growth restart. Finally, we show that the physiological perturbations result from the import and catabolic processing of L-arabinose by the V. cholerae homolog of the E. coli galactose transport and catabolic system. Taken together, our results suggest that the formation of non-growing spherical cells is a common response of Vibrios exposed to detrimental conditions. They also permit to define conditions preventing any physiological perturbation of V. cholerae when using L-arabinose to induce gene expression from the tightly regulated promoter of the Escherichia coli araBAD operon.Importance Vibrios among other bacteria form transient cell wall deficient forms as a response to different stresses and revert to proliferating rods when permissive conditions have been restored. Such cellular forms have been associated to antimicrobial tolerance, chronic infections and environmental dispersion.The effect of L-Ara on V. cholerae could provide an easily tractable model to study the ability of Vibrios to form viable reversible spheroplasts. Indeed, the quick transition to spheroplasts and reversion to proliferating rods by addition or removal of L-Ara is ideal to understand the genetic program governing this physiological state and the spatial rearrangements of the cellular machineries during cell shape transitions.
Collapse
|
11
|
Nasreen T, Hussain NAS, Islam MT, Orata FD, Kirchberger PC, Case RJ, Alam M, Yanow SK, Boucher YF. Simultaneous Quantification of Vibrio metoecus and Vibrio cholerae with Its O1 Serogroup and Toxigenic Subpopulations in Environmental Reservoirs. Pathogens 2020; 9:pathogens9121053. [PMID: 33339261 PMCID: PMC7766680 DOI: 10.3390/pathogens9121053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Vibrio metoecus is a recently described aquatic bacterium and opportunistic pathogen, closely related to and often coexisting with Vibrio cholerae. To study the relative abundance and population dynamics of both species in aquatic environments of cholera-endemic and cholera-free regions, we developed a multiplex qPCR assay allowing simultaneous quantification of total V. metoecus and V. cholerae (including toxigenic and O1 serogroup) cells. The presence of V. metoecus was restricted to samples from regions that are not endemic for cholera, where it was found at 20% of the abundance of V. cholerae. In this environment, non-toxigenic O1 serogroup V. cholerae represents almost one-fifth of the total V. cholerae population. In contrast, toxigenic O1 serogroup V. cholerae was also present in low abundance on the coast of cholera-endemic regions, but sustained in relatively high proportions throughout the year in inland waters. The majority of cells from both Vibrio species were recovered from particles rather than free-living, indicating a potential preference for attached versus planktonic lifestyles. This research further elucidates the population dynamics underpinning V. cholerae and its closest relative in cholera-endemic and non-endemic regions through culture-independent quantification from environmental samples.
Collapse
Affiliation(s)
- Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Mohammad Tarequl Islam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Fabini D. Orata
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Rebecca J. Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Munirul Alam
- Centre for Communicable Diseases, International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1000, Bangladesh;
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (T.N.); (N.A.S.H.); (M.T.I.); (F.D.O.); (R.J.C.)
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), National University of Singapore, Singapore 637551, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Correspondence:
| |
Collapse
|
12
|
Abriat C, Enriquez K, Virgilio N, Cegelski L, Fuller GG, Daigle F, Heuzey MC. Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface. Colloids Surf B Biointerfaces 2020; 188:110786. [DOI: 10.1016/j.colsurfb.2020.110786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
13
|
Pressler K, Mitterer F, Vorkapic D, Reidl J, Oberer M, Schild S. Characterization of Vibrio cholerae's Extracellular Nuclease Xds. Front Microbiol 2019; 10:2057. [PMID: 31551990 PMCID: PMC6746945 DOI: 10.3389/fmicb.2019.02057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae encodes two nucleases, Dns and Xds, which play a major role during the human pathogen's lifecycle. Dns and Xds control three-dimensional biofilm formation and bacterial detachment from biofilms via degradation of extracellular DNA and thus contribute to the environmental, inter-epidemic persistence of the pathogen. During intestinal colonization the enzymes help evade the innate immune response, and therefore promote survival by mediating escape from neutrophil extracellular traps. Xds has the additional function of degrading extracellular DNA down to nucleotides, which are an important nutrient source for V. cholerae. Thus, Xds is a key enzyme for survival fitness during distinct stages of the V. cholerae lifecycle and could be a potential therapeutic target. This study provides detailed information about the enzymatic properties of Xds using purified protein in combination with a real time nuclease activity assay. The data define an optimal buffer composition for Xds activity as 50 mM Tris/HCl pH 7, 100 mM NaCl, 10 mM MgCl2, and 20 mM CaCl2. Moreover, maximal activity was observed using substrate DNA with low GC content and ambient temperatures of 20-25°C. In silico analysis and homology modeling predicted an exonuclease domain in the C-terminal part of the protein. Biochemical analyses with truncated variants and point mutants of Xds confirm that the C-terminal region is sufficient for nuclease activity. We also find that residues D787 and H837 within the predicted exonuclease domain are key to formation of the catalytic center.
Collapse
Affiliation(s)
| | - Fabian Mitterer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Dina Vorkapic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
14
|
Brenzinger S, van der Aart LT, van Wezel GP, Lacroix JM, Glatter T, Briegel A. Structural and Proteomic Changes in Viable but Non-culturable Vibrio cholerae. Front Microbiol 2019; 10:793. [PMID: 31057510 PMCID: PMC6479200 DOI: 10.3389/fmicb.2019.00793] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments are reservoirs of the human pathogen Vibrio cholerae O1, which causes the acute diarrheal disease cholera. Upon low temperature or limited nutrient availability, the cells enter a viable but non-culturable (VBNC) state. Characteristic of this state are an altered morphology, low metabolic activity, and lack of growth under standard laboratory conditions. Here, for the first time, the cellular ultrastructure of V. cholerae VBNC cells raised in natural waters was investigated using electron cryo-tomography. This was complemented by a comparison of the proteomes and the peptidoglycan composition of V. cholerae from LB overnight cultures and VBNC cells. The extensive remodeling of the VBNC cells was most obvious in the passive dehiscence of the cell envelope, resulting in improper embedment of flagella and pili. Only minor changes of the peptidoglycan and osmoregulated periplasmic glucans were observed. Active changes in VBNC cells included the production of cluster I chemosensory arrays and change of abundance of cluster II array proteins. Components involved in iron acquisition and storage, peptide import and arginine biosynthesis were overrepresented in VBNC cells, while enzymes of the central carbon metabolism were found at lower levels. Finally, several pathogenicity factors of V. cholerae were less abundant in the VBNC state, potentially limiting their infectious potential. This study gives unprecedented insight into the physiology of VBNC cells and the drastically altered presence of their metabolic and structural proteins.
Collapse
Affiliation(s)
- Susanne Brenzinger
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Lizah T. van der Aart
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Gilles P. van Wezel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université de Lille Sciences et Technologies, Villeneuve d'Ascq, France
| | - Timo Glatter
- Facility for Bacterial Proteomics and Mass Spectrometry, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ariane Briegel
- Department of Microbial Biotechnology & Health, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
15
|
Ruenchit P, Reamtong O, Siripanichgon K, Chaicumpa W, Diraphat P. New facet of non-O1/non-O139 Vibrio cholerae hemolysin A: a competitive factor in the ecological niche. FEMS Microbiol Ecol 2018; 93:4107107. [PMID: 28961768 DOI: 10.1093/femsec/fix113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/05/2017] [Indexed: 11/15/2022] Open
Abstract
Different serogroups of Vibrio cholerae may inhabit the same ecological niche. However, serogroup O1/O139 strains are rarely isolated from their ecological sources. Quite plausibly, the non-O1/non-O139 vibrios and other bacterial species suppress growth of O1/O139 strains that share the same niche. Our bacterial inhibition assay data indicated that certain non-O1/non-O139 strains used a contact-dependent type VI secretion system (T6SS) to suppress growth of the O1 El Tor, N16961 pandemic strain. Comparative proteomics of the O1 and the suppressive non-O1/non-O139 strains co-cultured in a simulated natural aquatic microcosm showed that SecB and HlyD were upregulated in the latter. The HlyD-related effective factor was subsequently found to be hemolysin A (HlyA). However, not all hlyA-positive non-O1/non-O139 strains mediated growth suppression of the N16961 V. cholerae; only strains harboring intact cluster I HlyA could exert this activity. The key feature of the HlyA is located in the ricin-like lectin domain (β-trefoil) that plays an important role in target cell binding. In conclusion, the results of this study indicated that non-O1/non-O139 V. cholerae suppressed the growth of the O1 pandemic strain by using contact-dependent T6SS as well as by secreting the O1-detrimental hemolysin A during their co-persistence in the aquatic habitat.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand.,Faculty of Graduate Studies, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Kanokrat Siripanichgon
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglung Road, Bangkok-noi, Bangkok, 10700 Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| |
Collapse
|
16
|
Laviad-Shitrit S, Izhaki I, Arakawa E, Halpern M. Wild waterfowl as potential vectors of Vibrio cholerae and Aeromonas species. Trop Med Int Health 2018; 23:758-764. [PMID: 29733476 DOI: 10.1111/tmi.13069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To study the hypothesis that migratory waterfowl are possible disseminators of Vibrio cholerae and Aeromonas. METHODS We monitored the presence of V. cholerae and Aeromonas in three wild waterfowl species. RESULTS V. cholerae and Aeromonas species were isolated and identified from intestine samples of little egrets and black-crowned night herons. Only Aeromonas species were isolated from black-headed gulls. The majority of Aeromonas isolates were A. veronii. Twenty-three V. cholerae serogroups were identified. V. cholerae serogroup O1 was found in the intestine DNA extractions from four little egrets and black-crowned night herons; six birds carried cholera toxin subunit A gene. CONCLUSION Wild waterfowl species may carry pathogenic V. cholerae O1 and non-O1 serogroups and Aeromonas species in their intestine. The migration of waterfowl is a potential mechanism for global distribution of V. cholerae and Aeromonas.
Collapse
Affiliation(s)
- Sivan Laviad-Shitrit
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Eiji Arakawa
- National Institute of Infectious Diseases, Tokyo, Japan
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.,Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Tivon, Israel
| |
Collapse
|
17
|
Abstract
Vibrio cholerae, an estuarine bacterium, is the causative agent of cholera, a severe diarrheal disease that demonstrates seasonal incidence in Bangladesh. In an extensive study of V. cholerae occurrence in a natural aquatic environment, water and plankton samples were collected biweekly between December 2005 and November 2006 from Mathbaria, an estuarine village of Bangladesh near the mangrove forests of the Sundarbans. Toxigenic V. cholerae exhibited two seasonal growth peaks, one in spring (March to May) and another in autumn (September to November), corresponding to the two annual seasonal outbreaks of cholera in this region. The total numbers of bacteria determined by heterotrophic plate count (HPC), representing culturable bacteria, accounted for 1% to 2.7% of the total numbers obtained using acridine orange direct counting (AODC). The highest bacterial culture counts, including toxigenic V. cholerae, were recorded in the spring. The direct fluorescent antibody (DFA) assay was used to detect V. cholerae O1 cells throughout the year, as free-living cells, within clusters, or in association with plankton. V. cholerae O1 varied significantly in morphology, appearing as distinctly rod-shaped cells in the spring months, while small coccoid cells within thick clusters of biofilm were observed during interepidemic periods of the year, notably during the winter months. Toxigenic V. cholerae O1 was culturable in natural water during the spring when the temperature rose sharply. The results of this study confirmed biofilms to be a means of persistence for bacteria and an integral component of the annual life cycle of toxigenic V. cholerae in the estuarine environment of Bangladesh. Vibrio cholerae, the causative agent of cholera, is autochthonous in the estuarine aquatic environment. This study describes morphological changes in naturally occurring V. cholerae O1 in the estuarine environment of Mathbaria, where the bacterium is culturable when the water temperature rises and is observable predominantly as distinct rods and dividing cells. In the spring and fall, these morphological changes coincide with the two seasonal peaks of endemic cholera in Bangladesh. V. cholerae O1 cells are predominantly coccoid within biofilms but are rod shaped as free-living cells and when attached to plankton or to particulate matter in interepidemic periods of the year. It is concluded that biofilms represent a stage of the annual life cycle of V. cholerae O1, the causative agent of cholera in Bangladesh.
Collapse
|
18
|
Noorian P, Hu J, Chen Z, Kjelleberg S, Wilkins MR, Sun S, McDougald D. Pyomelanin produced by Vibrio cholerae confers resistance to predation by Acanthamoeba castellanii. FEMS Microbiol Ecol 2018; 93:4582896. [PMID: 29095994 PMCID: PMC5812506 DOI: 10.1093/femsec/fix147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Protozoan predation is one of the main environmental factors constraining bacterial growth in aquatic environments, and thus has led to the evolution of a number of defence mechanisms that protect bacteria from predation. These mechanisms may also function as virulence factors in infection of animal and human hosts. Whole transcriptome shotgun sequencing of Vibrio cholerae biofilms during predation by the amoebae, Acanthamoeba castellanii, revealed that 131 transcripts were significantly differentially regulated when compared to the non-grazed control. Differentially regulated transcripts included those involved in biosynthetic and metabolic pathways. The transcripts of genes involved in tyrosine metabolism were down-regulated in the grazed population, which indicates that the tyrosine metabolic regulon may have a role in the response of V. cholerae biofilms to A. castellanii predation. Homogentisate 1, 2-dioxygenase (HGA) is the main intermediate of the normal L-tyrosine catabolic pathway which is known to auto-oxidize, leading to the formation of the pigment, pyomelanin. Indeed, a pigmented mutant, disrupted in hmgA, was more resistant to amoebae predation than the wild type. Increased grazing resistance was correlated with increased production of pyomelanin and thus reactive oxygen species (ROS), suggesting that ROS production is a defensive mechanism used by bacterial biofilms against predation by amoebae A. castellanii.
Collapse
Affiliation(s)
- Parisa Noorian
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.,The ithree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jie Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zhiliang Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.,Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.,Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuyang Sun
- The ithree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Diane McDougald
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.,The ithree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
19
|
Shishir MA, Mamun MA, Mian MM, Ferdous UT, Akter NJ, Suravi RS, Datta S, Kabir ME. Prevalence of Vibrio cholerae in Coastal Alternative Supplies of Drinking Water and Association with Bacillus-Like Spore Formers. Front Public Health 2018. [PMID: 29536001 PMCID: PMC5834913 DOI: 10.3389/fpubh.2018.00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The scarcity of hygienic drinking water is a normal phenomenon in the coastal areas of Bangladesh due to the high salinity of ground water. The inhabitants of this locality, therefore, live on alternative supplies of water including rain-fed pond water, and rainwater with persistent complex microbial interactions therein, often contaminated with life-threatening pathogens. Hence, this study was aimed at analyzing the prevalence of Vibrio cholerae (Vc) in the alternative drinking waters of Mathbaria, a coastal subdistrict neighboring the Bay of Bengal, the efficacy of pond sand filter (PSF) and the co-association among Bacillus-like spore formers (Sf) and Vc. Vc presumably entrapped into the membrane filter was enriched in alkaline peptone water medium and was isolated on selective thiosulfate-citrate-bile salts-sucrose and taurocholate-tellurite-gelatin agar media. They were finally identified by immunochromatographic one step rapid test and serology test. A total of 26% Vc positive samples were obtained out of 100 [ponds—48, household (HH)—29, and PSFs—23] where 13% cases were pathogenic (Vc O1) and 13% were non-pathogenic (Vc non-O1/non-O139). The distribution of Vc as observed was 33, 26, and 13.8% in waters derived from pond surface, PSF, and HH reservoirs, respectively, and for pathogenic type, it was 62.5%, 50%, and nil, respectively. Although none of the samples was identified with pathogenic Vc O139, the statistics represents a significant and augmentative risk of cholera outbreak in the focused area. The antibiotic sensitivity pattern in this study resembled the trend observed during last few years for Vc. The PSF demonstrated its inability to remove Vc from any of the samples and in addition, the filter itself was evidenced to be the source of pathogens and spores in further contamination and transmission. The development of biofilm in the PSF could be hypothesized as the reservoir in contaminating pathogen-free water samples. From the test of homogeneity, the risk levels of alternative water sources were estimated equal regarding Vc. Simultaneously, it was determined statistically that the prevalence of Vc, by no means, is influenced by Bacillus-like Sf be it for pond surface, HH, or PSF derived water.
Collapse
Affiliation(s)
| | - Md Al Mamun
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | | | | | | | | | - Suvamoy Datta
- Department of Microbiology, Primeasia University, Dhaka, Bangladesh
| | - Md Ehsanul Kabir
- Emirates Bird Breeding Center for Conservation (EBBCC), Bukhara, Uzbekistan
| |
Collapse
|
20
|
Hossain ZZ, Farhana I, Tulsiani SM, Begum A, Jensen PKM. Transmission and Toxigenic Potential of Vibrio cholerae in Hilsha Fish ( Tenualosa ilisha) for Human Consumption in Bangladesh. Front Microbiol 2018. [PMID: 29515532 PMCID: PMC5826273 DOI: 10.3389/fmicb.2018.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fish have been considered natural reservoirs of Vibrio cholerae, the deadly diarrheal pathogen. However, little is known about the role of fish in the transmission of V. cholerae from the Bay of Bengal to the households of rural and urban Bangladesh. This study analyzes the incidence and pathogenic potential of V. cholerae in Hilsha (Tenualosa ilisha), a commonly caught and consumed fish that exhibits a life cycle in both freshwater and marine environments in Bangladesh. During the period from October 2014 to October 2015, samples from the gills, recta, intestines, and scale swabs of a total of 48 fish were analyzed. The fish were collected both at local markets in the capital city Dhaka and directly from fishermen at the river. PCR analysis by targeting V. cholerae species-specific ompW gene revealed that 39 of 48 (81%) fish were positive in at least one of the sample types. Real-time PCR analysis demonstrated that the cholera-causing ctxA gene was detected in 20% (8 of 39) of V. cholerae-positive fish. A total of 158 V. cholerae isolates were obtained which were categorized into 35 genotypic groups. Altogether, 25 O1 and 133 non-O1/O139 strains were isolated, which were negative for the cholera toxin gene. Other pathogenic genes such as stn/sto, hlyA, chxA, SXT, rtxC, and HA-P were detected. The type three secretion system gene cluster (TTSS) was present in 18% (24 of 133) of non-O1/O139 isolates. The antibiotic susceptibility test revealed that the isolates conferred high resistance to sulfamethoxazole-trimethoprim and kanamycin. Both O1 and non-O1/O139 strains were able to accumulate fluid in rabbit ileal loops and caused distinctive cell death in HeLa cell. Multilocus sequence typing (MLST) showed clonal diversity among fish isolates with pandemic clones. Our data suggest a high prevalence of V. cholerae in Hilsha fish, which indicates that this fish could serve as a potential vehicle for V. cholerae transmission. Moreover, the indigenous V. cholerae strains isolated from Hilsha fish possess considerable virulence potential despite being quite diverse from current epidemic strains. This represents the first study of the population structure of V. cholerae associated with fish in Bangladesh.
Collapse
Affiliation(s)
- Zenat Z Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Israt Farhana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Suhella M Tulsiani
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101188. [PMID: 28991153 PMCID: PMC5664689 DOI: 10.3390/ijerph14101188] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.
Collapse
|
22
|
Sinha-Ray S, Ali A. Mutation in flrA and mshA Genes of Vibrio cholerae Inversely Involved in vps-Independent Biofilm Driving Bacterium Toward Nutrients in Lake Water. Front Microbiol 2017; 8:1770. [PMID: 28959249 PMCID: PMC5604084 DOI: 10.3389/fmicb.2017.01770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022] Open
Abstract
Many bacterial pathogens promote biofilms that confer resistance against stressful survival conditions. Likewise Vibrio cholerae O1, the causative agent of cholera, and ubiquitous in aquatic environments, produces vps-dependent biofilm conferring resistance to environmental stressors and predators. Here we show that a 49-bp deletion mutation in the flrA gene of V. cholerae N16961S strain resulted in promotion of vps-independent biofilm in filter sterilized lake water (FSLW), but not in nutrient-rich L-broth. Complementation of flrA mutant with the wild-type flrA gene inhibited vps-independent biofilm formation. Our data demonstrate that mutation in the flrA gene positively contributed to vps-independent biofilm production in FSLW. Furthermore, inactivation of mshA gene, encoding the main pilin of mannose sensitive hemagglutinin (MSHA pilus) in the background of a ΔflrA mutant, inhibited vps-independent biofilm formation. Complementation of ΔflrAΔmshA double mutant with wild-type mshA gene restored biofilm formation, suggesting that mshA mutation inhibited ΔflrA-driven biofilm. Taken together, our data suggest that V. cholerae flrA and mshA act inversely in promoting vps-independent biofilm formation in FSLW. Using a standard chemotactic assay, we demonstrated that vps-independent biofilm of V. cholerae, in contrast to vps-dependent biofilm, promoted bacterial movement toward chitin and phosphate in FSLW. A ΔflrAΔmshA double mutant inhibited the bacterium from moving toward nutrients; this phenomenon was reversed with reverted mutants (complemented with wild-type mshA gene). Movement to nutrients was blocked by mutation in a key chemotaxis gene, cheY-3, although, cheY-3 had no effect on vps-independent biofilm. We propose that in fresh water reservoirs, V. cholerae, on repression of flagella, enhances vps-independent biofilm that aids the bacterium in acquiring nutrients, including chitin and phosphate; by doing so, the microorganism enhances its ability to persist under nutrient-limited conditions.
Collapse
Affiliation(s)
- Shrestha Sinha-Ray
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, GainesvilleFL, United States
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, GainesvilleFL, United States.,Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, GainesvilleFL, United States
| |
Collapse
|
23
|
Garrine M, Mandomando I, Vubil D, Nhampossa T, Acacio S, Li S, Paulson JN, Almeida M, Domman D, Thomson NR, Alonso P, Stine OC. Minimal genetic change in Vibrio cholerae in Mozambique over time: Multilocus variable number tandem repeat analysis and whole genome sequencing. PLoS Negl Trop Dis 2017; 11:e0005671. [PMID: 28622368 PMCID: PMC5489214 DOI: 10.1371/journal.pntd.0005671] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 06/28/2017] [Accepted: 05/30/2017] [Indexed: 01/05/2023] Open
Abstract
Although cholera is a major public health concern in Mozambique, its transmission patterns remain unknown. We surveyed the genetic relatedness of 75 Vibrio cholerae isolates from patients at Manhiça District Hospital between 2002-2012 and 3 isolates from river using multilocus variable-number tandem-repeat analysis (MLVA) and whole genome sequencing (WGS). MLVA revealed 22 genotypes in two clonal complexes and four unrelated genotypes. WGS revealed i) the presence of recombination, ii) 67 isolates descended monophyletically from a single source connected to Wave 3 of the Seventh Pandemic, and iii) four clinical isolates lacking the cholera toxin gene. This Wave 3 strain persisted for at least eight years in either an environmental reservoir or circulating within the human population. Our data raises important questions related to where these isolates persist and how identical isolates can be collected years apart despite our understanding of high change rate of MLVA loci and the V. cholerae molecular clock.
Collapse
Affiliation(s)
- Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Sozinho Acacio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Ministério da Saúde, Maputo, Mozambique
| | - Shan Li
- Department of Epidemiology and Public Health, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Joseph N. Paulson
- Institute for Applied Computer Sciences, University of Maryland, College Park, Maryland, United States of America
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mathieu Almeida
- Institute for Applied Computer Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Daryl Domman
- Infection Genomics, Wellcome Trust Sanger Instititue, Hinxton, England, United Kingdom
| | - Nicholas R. Thomson
- Infection Genomics, Wellcome Trust Sanger Instititue, Hinxton, England, United Kingdom
| | - Pedro Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic / Universitat de Barcelona, Barcelona, Spain
| | - Oscar Colin Stine
- Department of Epidemiology and Public Health, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Briquaire R, Colwell RR, Boncy J, Rossignol E, Dardy A, Pandini I, Villeval F, Machuron JL, Huq A, Rashed S, Vandevelde T, Rozand C. Application of a paper based device containing a new culture medium to detect Vibrio cholerae in water samples collected in Haiti. J Microbiol Methods 2016; 133:23-31. [PMID: 28007529 DOI: 10.1016/j.mimet.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 01/25/2023]
Abstract
Cholera is now considered to be endemic in Haiti, often with increased incidence during rainy seasons. The challenge of cholera surveillance is exacerbated by the cost of sample collection and laboratory analysis. A diagnostic tool is needed that is low cost, easy-to-use, and able to detect and quantify Vibrio cholerae accurately in water samples within 18-24h, and perform reliably in remote settings lacking laboratory infrastructure and skilled staff. The two main objectives of this study were to develop and evaluate a new culture medium embedded in a new diagnostic tool (PAD for paper based analytical device) for detecting Vibrio cholerae from water samples collected in Haiti. The intent is to provide guidance for corrective action, such as chlorination, for water positive for V. cholerae epidemic strains. For detecting Vibrio cholerae, a new chromogenic medium was designed and evaluated as an alternative to thiosulfate citrate bile salts sucrose (TCBS) agar for testing raw water samples. Sensitivity and specificity of the medium were assessed using both raw and spiked water samples. The Vibrio cholerae chromogenic medium was proved to be highly selective against most of the cultivable bacteria in the water samples, without loss of sensitivity in detection of V. cholerae. Thus, reliability of this new culture medium for detection of V. cholerae in the presence of other Vibrio species in water samples offers a significant advantage. A new paper based device containing the new chromogenic medium previously evaluated was compared with reference methods for detecting V. cholerae from spiked water sample. The microbiological PAD specifications were evaluated in Haiti. More precisely, a total of 185 water samples were collected at five sites in Haiti, June 2014 and again in June 2015. With this new tool, three V. cholerae O1 and 17 V. cholerae non-O1/O139 strains were isolated. The presence of virulence-associated and regulatory genes, including ctxA, zot, ace, and toxR, was confirmed using multiplex PCR. The three V. cholerae O1 isolates were positive for three of the four virulence-associated and regulatory genes. Twelve of the V. cholerae non-O1/O139 isolates were found to carry toxR, but none were ctxA+, zot+, or ace+. However, six of the V. cholerae non-O1/O139 isolates were resistant to penicillin, ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, and ciprofloxacin. The paper based analytical device (PAD) provides advantages in that standard culture methods employing agar plates are not required. Also, intermediary isolation steps were not required, including transfer to selective growth media, hence these steps being omitted reduced time to results. Furthermore, experienced technical skills also were not required. Thus, PAD is well suited for resource-limited settings.
Collapse
Affiliation(s)
- Romain Briquaire
- PAH - Les Pharmaciens Humanitaires, 84 rue de Charonne, 75011 Paris 11, France.
| | - Rita R Colwell
- Institute for Advanced Computer Studies, University of Maryland College Park, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland College Park, College Park, MD 20742, USA
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti
| | - Emmanuel Rossignol
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti
| | - Aline Dardy
- bioMérieux, Novel Analytical Devices, Innovation Unit, 69280, Marcy L'Etoile, France
| | | | | | - Jean-Louis Machuron
- PAH - Les Pharmaciens Humanitaires, 84 rue de Charonne, 75011 Paris 11, France
| | - Anwar Huq
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland College Park, College Park, MD 20742, USA
| | - Shah Rashed
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland College Park, College Park, MD 20742, USA
| | | | - Christine Rozand
- bioMérieux, Novel Analytical Devices, Innovation Unit, 69280, Marcy L'Etoile, France.
| |
Collapse
|
25
|
Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton. Appl Environ Microbiol 2016; 82:4441-52. [PMID: 27208110 DOI: 10.1128/aem.00807-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ability to sense and adapt to temperature fluctuation is critical to the aquatic survival, transmission, and infectivity of Vibrio cholerae, the causative agent of the disease cholera. Little information is available on the physiological changes that occur when V. cholerae experiences temperature shifts. The genome-wide transcriptional profile of V. cholerae upon a shift in human body temperature (37°C) to lower temperatures, 15°C and 25°C, which mimic those found in the aquatic environment, was determined. Differentially expressed genes included those involved in the cold shock response, biofilm formation, type VI secretion, and virulence. Analysis of a mutant lacking the cold shock gene cspV, which was upregulated >50-fold upon a low-temperature shift, revealed that it regulates genes involved in biofilm formation and type VI secretion. CspV controls biofilm formation through modulation of the second messenger cyclic diguanylate and regulates type VI-mediated interspecies killing in a temperature-dependent manner. Furthermore, a strain lacking cspV had significant defects for attachment and type VI-mediated killing on the surface of the aquatic crustacean Daphnia magna Collectively, these studies reveal that cspV is a major regulator of the temperature downshift response and plays an important role in controlling cellular processes crucial to the infectious cycle of V. cholerae IMPORTANCE Little is known about how human pathogens respond and adapt to ever-changing parameters of natural habitats outside the human host and how environmental adaptation alters dissemination. Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, experiences fluctuations in temperature in its natural aquatic habitats and during the infection process. Furthermore, temperature is a critical environmental signal governing the occurrence of V. cholerae and cholera outbreaks. In this study, we showed that V. cholerae reprograms its transcriptome in response to fluctuations in temperature, which results in changes to biofilm formation and type VI secretion system activation. These processes in turn impact environmental survival and the virulence potential of this pathogen.
Collapse
|
26
|
Koepke AA, Longini IM, Halloran ME, Wakefield J, Minin VN. PREDICTIVE MODELING OF CHOLERA OUTBREAKS IN BANGLADESH. Ann Appl Stat 2016; 10:575-595. [PMID: 27746850 PMCID: PMC5061460 DOI: 10.1214/16-aoas908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between environmental conditions and cholera cases. We seek to develop a predictive model for cholera outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the contribution of environmental variables, such as water depth and water temperature, to cholera outbreaks in the context of a disease transmission model. We implement a method which simultaneously accounts for disease dynamics and environmental variables in a Susceptible-Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time hidden Markov model, where the hidden Markov states are the numbers of people who are susceptible, infected, or recovered at each time point, and the observed states are the numbers of cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing particle Markov chain Monte Carlo methods to sample from the posterior distribution of the environmental and transmission parameters given the observed data. We test this method using both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate that our model can successfully predict an increase in the number of infected individuals in the population weeks before the observed number of cholera cases increases, which could allow for early notification of an epidemic and timely allocation of resources.
Collapse
|
27
|
Abstract
Members of the genus Vibrio are known to interact with phyto- and zooplankton in aquatic environments. These interactions have been proven to protect the bacterium from various environmental stresses, serve as a nutrient source, facilitate exchange of DNA, and to serve as vectors of disease transmission. This review highlights the impact of Vibrio-zooplankton interactions at the ecosystem scale and the importance of studies focusing on a wide range of Vibrio-zooplankton interactions. The current knowledge on chitin utilization (i.e., chemotaxis, attachment, and degradation) and the role of these factors in attachment to nonchitinous zooplankton is also presented.
Collapse
|
28
|
Shinoda S, Imamura D, Mizuno T, Miyoshi SI, Ramamurthy T. International collaborative research on infectious diseases by Japanese universities and institutes in Asia and Africa, with a special emphasis on J-GRID. Biocontrol Sci 2016; 20:77-89. [PMID: 26133505 DOI: 10.4265/bio.20.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In developed countries including Japan, malignant tumor (cancer), heart disease and cerebral apoplexy are major causes of death, but infectious diseases are still responsible for a high number of deaths in developing countries, especially among children aged less than 5 years. World Health Statistics published by WHO reports a high percentage of mortality from infectious diseases in children, and many of these diseases may be subject to transmission across borders and could possibly invade Japan. Given this situation, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan initiated Phase I of the Program of Founding Research Centers for Emerging and Reemerging Infectious Disease, which ran from FY 2005 to 2009, and involved 8 Japanese universities and 2 research centers. The program was established for the following purposes: 1) creation of a domestic research structure to promote the accumulation of fundamental knowledge about infectious diseases, 2) establishment of 13 overseas research collaboration centers in 8 countries at high risk of emerging and reemerging infections and at which Japanese researchers are stationed and conduct research in partnership with overseas instructors, 3) development of a network among domestic and overseas research centers, and 4) development of human resources. The program was controlled under MEXT and managed by the RIKEN Center of Research Network for Infectious Diseases (Riken CRNID). Phase II of the program was set up as the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID), and has been running in FY 2010-2014. Phase III will start in April 2015, and will be organized by the newly established Japanese governmental organization "Japan Agency for Medical Research and Development (AMED)", the so-called Japanese style NIH. The Collaborative Research Center of Okayama University for Infectious Diseases in India (CRCOUI) was started up in 2007 at the National Institute of Cholera and Enteric Disease, Kolkata, India. Major projects of CRCOUI are concerned with diarrheal diseases such as, 1) active surveillance of diarrheal patients, 2) development of dysentery vaccines, 3) viable but nonculturable (VBNC) Vibrio cholerae, and 4) pathogenic mechanisms of various diarrhogenic microorganisms. This review article outlines project of J-GRID and CRCOUI which the authors carried out collaboratively with NICED staff members.
Collapse
Affiliation(s)
- Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Disease in India
| | | | | | | | | |
Collapse
|
29
|
Paranjpye RN, Nilsson WB, Liermann M, Hilborn ED, George BJ, Li Q, Bill BD, Trainer VL, Strom MS, Sandifer PA. Environmental influences on the seasonal distribution of Vibrio parahaemolyticus in the Pacific Northwest of the USA. FEMS Microbiol Ecol 2015; 91:fiv121. [PMID: 26454066 DOI: 10.1093/femsec/fiv121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
Populations of Vibrio parahaemolyticus in the environment can be influenced by numerous factors. We assessed the correlation of total (tl+) and potentially virulent (tdh+) V. parahaemolyticus in water with three harmful algal bloom (HAB) genera (Pseudo-nitzschia, Alexandrium and Dinophysis), the abundance of diatoms and dinoflagellates, chlorophyll-a and temperature, salinity and macronutrients at five sites in Washington State from 2008-2009. The variability in V. parahaemolyticus density was explained predominantly by strong seasonal trends where maximum densities occurred in June, 2 months prior to the highest seasonal water temperature. In spite of large geographic differences in temperature, salinity and nutrients, there was little evidence of corresponding differences in V. parahaemolyticus density. In addition, there was no evident relationship between V. parahaemolyticus and indices of HAB genera, perhaps due to a lack of significant HAB events during the sampling period. The only nutrient significantly associated with V. parahaemolyticus density after accounting for the seasonal trend was silicate. This negative relationship may be caused by a shift in cell wall structure for some diatom species to a chitinous substrate preferred by V. parahaemolyticus. Results from our study differ from those in other regions corroborating previous findings that environmental factors that trigger vibrio and HAB events may differ depending on geographic locations. Therefore caution should be used when applying results from one region to another.
Collapse
Affiliation(s)
- Rohinee N Paranjpye
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - William B Nilsson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Martin Liermann
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Elizabeth D Hilborn
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Laboratory, Research Triangle Park, NC 27709, USA
| | - Barbara J George
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Laboratory, Research Triangle Park, NC 27709, USA
| | - Quanlin Li
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Brian D Bill
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Vera L Trainer
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Mark S Strom
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | - Paul A Sandifer
- Hollings Marine Laboratory, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, SC 29412, USA
| |
Collapse
|
30
|
Abstract
ABSTRACT
Many Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of “transformation.” Recent studies have identified multiple environmental cues sufficient to induce natural transformation in
Vibrio cholerae
and several other
Vibrio
species. In
V. cholerae
, nutrient limitation activates the cAMP receptor protein regulator, quorum-sensing signals promote synthesis of HapR-controlled QstR, chitin stimulates production of TfoX, and low extracellular nucleosides allow CytR to serve as an additional positive regulator. The network of signaling systems that trigger expression of each of these required regulators is well described, but the mechanisms by which each in turn controls competence apparatus genes is poorly understood. Recent work has defined a minimal set of genes that encode apparatus components and begun to characterize the architecture of the machinery by fluorescence microscopy. While studies with a small set of
V. cholerae
reference isolates have identified regulatory and competence genes required for DNA uptake, future studies may identify additional genes and regulatory connections, as well as revealing how common natural competence is among diverse
V. cholerae
isolates and other
Vibrio
species.
Collapse
|
31
|
Abstract
ABSTRACT
Vibrio
-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1°C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on
Vibrio
interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.
Collapse
|
32
|
Enumeration of viable non-culturable Vibrio cholerae using propidium monoazide combined with quantitative PCR. J Microbiol Methods 2015; 115:147-52. [PMID: 26001818 DOI: 10.1016/j.mimet.2015.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022]
Abstract
The well-known human pathogenic bacterium, Vibrio cholerae, can enter a physiologically viable but non-culturable (VBNC) state under stress conditions. The differentiation of VBNC cells and nonviable cells is essential for both disease prevention and basic research. Among all the methods for detecting viability, propidium monoazide (PMA) combined with real-time PCR is popular because of its specificity, sensitivity, and speed. However, the effect of PMA treatment is not consistent and varies among different species and conditions. In this study, with an initial cell concentration of 1×10(8) CFU/ml, time and dose-effect relationships of different PMA treatments were evaluated via quantitative real-time PCR using live cell suspensions, dead cell suspensions and VBNC cell suspensions of V. cholerae O1 El Tor strain C6706. The results suggested that a PMA treatment of 20 μM PMA for 20 min was optimal under our conditions. This treatment maximized the suppression of the PCR signal from membrane-compromised dead cells but had little effect on the signal from membrane-intact live cells. In addition to the characteristics of PMA treatment itself, the initial concentration of the targeted bacteria showed a significant negative influence on the stability of PMA-PCR assay in this study. We developed a strategy that mimicked a 1×10(8) CFU/ml cell concentration with dead bacteria of a different bacterial species, the DNA of which cannot be amplified using the real time PCR primers. With this strategy, our optimal approach successfully overcame the impact of low cell density and generated stable and reliable results for counting viable cells of V. cholerae in the VBNC state.
Collapse
|
33
|
Grant SL, Tamason CC, Hoque BA, Jensen PKM. Drinking cholera: salinity levels and palatability of drinking water in coastal Bangladesh. Trop Med Int Health 2015; 20:455-61. [DOI: 10.1111/tmi.12455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen Lawrence Grant
- Department of Public Health; Copenhagen Center for Disaster Research COPE; University of Copenhagen; Copenhagen Denmark
| | - Charlotte Crim Tamason
- Department of Public Health; Copenhagen Center for Disaster Research COPE; University of Copenhagen; Copenhagen Denmark
| | | | - Peter Kjaer Mackie Jensen
- Department of Public Health; Copenhagen Center for Disaster Research COPE; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
34
|
Kahler AM, Haley BJ, Chen A, Mull BJ, Tarr CL, Turnsek M, Katz LS, Humphrys MS, Derado G, Freeman N, Boncy J, Colwell RR, Huq A, Hill VR. Environmental surveillance for toxigenic Vibrio cholerae in surface waters of Haiti. Am J Trop Med Hyg 2015; 92:118-25. [PMID: 25385860 PMCID: PMC4347365 DOI: 10.4269/ajtmh.13-0601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 09/10/2014] [Indexed: 11/07/2022] Open
Abstract
Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic Vibrio cholerae in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. Vibrio cholerae was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic V. cholerae was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for V. cholerae O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic V. cholerae could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic.
Collapse
Affiliation(s)
- Amy M Kahler
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Bradd J Haley
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Arlene Chen
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Bonnie J Mull
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Cheryl L Tarr
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Maryann Turnsek
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Lee S Katz
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Michael S Humphrys
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Gordana Derado
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Nicole Freeman
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Jacques Boncy
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Rita R Colwell
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Anwar Huq
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| | - Vincent R Hill
- Centers for Disease Control and Prevention, Atlanta, Georgia; University of Maryland, College Park, Maryland; Haitian Ministry of Public Health and Population, National Public Health Laboratory, Port-au-Prince, Haiti
| |
Collapse
|
35
|
Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 2014; 5:mBio.01824-14. [PMID: 25538191 PMCID: PMC4278535 DOI: 10.1128/mbio.01824-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.
Collapse
|
36
|
Detection of Vibrio cholerae O1 and O139 in environmental waters of rural Bangladesh: a flow-cytometry-based field trial. Epidemiol Infect 2014; 143:2330-42. [PMID: 25496520 DOI: 10.1017/s0950268814003252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presence of Vibrio cholerae serogroups O1 and O139 in the waters of the rural area of Matlab, Bangladesh, was investigated with quantitative measurements performed with a portable flow cytometer. The relevance of this work relates to the testing of a field-adapted measurement protocol that might prove useful for cholera epidemic surveillance and for validation of mathematical models. Water samples were collected from different water bodies that constitute the hydrological system of the region, a well-known endemic area for cholera. Water was retrieved from ponds, river waters, and irrigation canals during an inter-epidemic time period. Each sample was filtered and analysed with a flow cytometer for a fast determination of V. cholerae cells contained in those environments. More specifically, samples were treated with O1- and O139-specific antibodies, which allowed precise flow-cytometry-based concentration measurements. Both serogroups were present in the environmental waters with a consistent dominance of V. cholerae O1. These results extend earlier studies where V. cholerae O1 and O139 were mostly detected during times of cholera epidemics using standard culturing techniques. Furthermore, our results confirm that an important fraction of the ponds' host populations of V. cholerae are able to self-sustain even when cholera cases are scarce. Those contaminated ponds may constitute a natural reservoir for cholera endemicity in the Matlab region. Correlations of V. cholerae concentrations with environmental factors and the spatial distribution of V. cholerae populations are also discussed.
Collapse
|
37
|
Household Transmission of Vibrio cholerae in Bangladesh. PLoS Negl Trop Dis 2014; 8:e3314. [PMID: 25411971 PMCID: PMC4238997 DOI: 10.1371/journal.pntd.0003314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
Background Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures. Methodology/Principal Findings Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001–2006. We estimated the probabilities of cholera transmission through 1) direct exposure within the household and 2) contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001) occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%–22.8%) risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length). The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%–8.0%). The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%–16.6%) and 8.2% (2.1%–27.1%) through direct exposure, and 3.4% (1.7%–6.7%) and 2.0% (0.5%–7.3%) through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered. Conclusions Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of the transmissibility of endemic cholera within prospectively-followed members of households. The role of direct transmission must be considered when planning cholera control activities. Since John Snow's ground-breaking investigations of the devastating outbreaks in 19th-century London, cholera has been considered the quintessential waterborne human infection, transmitting via fecal contamination of environmental water sources. Recently, renewed interest has been paid to the potential importance of transmission through direct exposure within close-contact groups, such as, via fecal contamination of surfaces, food, or drinking water within households. Significant direct transmission of cholera within close contact groups would represent a new target for innovative prevention and control strategies. We estimated the probability of transmission 1) via direct contact within 364 urban households located in an endemic cholera setting (Dhaka, Bangladesh) and 2) via exposure to sources located outside of these households. In this setting we estimated a 4 to 8 percent probability of becoming infected with cholera via direct exposure within households in this setting versus a 2 to 3 percent likelihood of infection due to exposure to external sources over a comparable time period. Our results demonstrate that direct (within-household) transmission is a significant component of endemic cholera transmission, suggesting that biomedical and behavioral-modification interventions specifically targeting this mode of transmission could substantially reduce the cholera burden in this type of setting.
Collapse
|
38
|
Identification of genes induced in Vibrio cholerae in a dynamic biofilm system. Int J Med Microbiol 2014; 304:749-63. [PMID: 24962154 PMCID: PMC4101255 DOI: 10.1016/j.ijmm.2014.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/23/2014] [Accepted: 05/25/2014] [Indexed: 12/13/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae, the causative agent of the severe secretory diarrheal disease cholera, persists in its aquatic reservoirs in biofilms during interepidemic periods. Biofilm is a likely form in which clinically relevant V. cholerae is taken up by humans, providing an infective dose. Thus, a better understanding of biofilm formation of V. cholerae is relevant for the ecology and epidemiology of cholera as well as a target to control the disease. Most previous studies have investigated static biofilms of V. cholerae and elucidated structural prerequisites like flagella, pili and a biofilm matrix including extracellular DNA, numerous matrix proteins and exopolysaccharide, as well as the involvement of regulatory pathways like two-component systems, quorum sensing and c-di-GMP signaling. However, aquatic environments are more likely to reflect an open, dynamic system. Hence, we used a biofilm system with constant medium flow and a temporal controlled reporter-system of transcription to identify genes induced during dynamic biofilm formation. We identified genes known or predicted to be involved in c-di-GMP signaling, motility and chemotaxis, metabolism, and transport. Subsequent phenotypic characterization of mutants with independent mutations in candidate dynamic biofilm-induced genes revealed novel insights into the physiology of static and dynamic biofilm conditions. The results of this study also reinforce the hypotheses that distinct differences in regulatory mechanisms governing biofilm development are present under dynamic conditions compared to static conditions.
Collapse
|
39
|
Wang D, Wang X, Li B, Deng X, Tan H, Diao B, Chen J, Ke B, Zhong H, Zhou H, Ke C, Kan B. High prevalence and diversity of pre-CTXΦ alleles in the environmental Vibrio cholerae O1 and O139 strains in the Zhujiang River estuary. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:251-258. [PMID: 24983529 DOI: 10.1111/1758-2229.12121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/27/2013] [Indexed: 06/03/2023]
Abstract
Toxigenic conversion of environmental Vibrio cholerae strains through lysogenic infection by the phage CTXΦ is an important step in the emergence of new pathogenic clones. The precursor form of the CTXΦ phage, pre-CTXΦ, does not carry the cholera toxin gene. During our investigation, we frequently found pre-CTXΦ prophages in non-toxigenic isolates in the serogroups of O1 and O139 strains in the Zhujiang estuary. We observed high amounts of sequence variation of rstR and gIII(CTX) in the pre-CTXΦ alleles as well as in the tcpA sequences within the strains. In addition, a new pre-CTXΦ allele, with a novel rstR sequence type and hybrid RS2, was identified. Our findings show that active, complicated gene recombination and horizontal transfer of pre-CTXΦs occurs within V. cholerae environmental strains, which creates a complex intermediate pool for the generation of toxigenic clones in the estuarine environment.
Collapse
Affiliation(s)
- Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Senoh M, Ghosh-Banerjee J, Mizuno T, Shinoda S, Miyoshi SI, Hamabata T, Nair GB, Takeda Y. Isolation of viable but nonculturable Vibrio cholerae O1 from environmental water samples in Kolkata, India, in a culturable state. Microbiologyopen 2014; 3:239-46. [PMID: 24574069 PMCID: PMC3996571 DOI: 10.1002/mbo3.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 11/12/2022] Open
Abstract
Previously, we reported that viable but nonculturable (VBNC) Vibrio cholerae was converted into a culturable state by coculture with several eukaryotic cell lines including HT-29 cells. In this study, we found that a factor converting VBNC V. cholerae into a culturable state (FCVC) existed in cell extracts of eukaryotic cells. FCVC was nondialyzable, proteinase K-sensitive, and stable to heating at <60°C for 5 min. We prepared thiosulfate citrate bile salts sucrose (TCBS) plates with FCVC (F-TCBS plates). After confirming that VBNC V. cholerae O1 and O139 formed typical yellow colonies on F-TCBS plates, we tried to isolate cholera toxin gene-positive VBNC V. cholerae from environmental water samples collected in urban slum areas of Kolkata, India and succeeded in isolating V. cholerae O1 El Tor variant strains harboring a gene for the cholera toxin. The possible importance of VBNC V. cholerae O1 as a source of cholera outbreaks is discussed.
Collapse
Affiliation(s)
- Mitsutoshi Senoh
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Okayama UniversityKolkata, India
| | | | - Tamaki Mizuno
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Okayama UniversityKolkata, India
| | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Okayama UniversityKolkata, India
| | - Shin-ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayama, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and MedicineShinjuku, Tokyo, Japan
| | - G Balakrish Nair
- Translational Health Science and Technology InstituteHaryana, India
| | - Yoshifumi Takeda
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Okayama UniversityKolkata, India
| |
Collapse
|
41
|
Lima AAM, Fonteles MC. From Escherichia coli heat-stable enterotoxin to mammalian endogenous guanylin hormones. ACTA ACUST UNITED AC 2014; 47:179-91. [PMID: 24652326 PMCID: PMC3982939 DOI: 10.1590/1414-431x20133063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/15/2013] [Indexed: 12/16/2022]
Abstract
The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- A A M Lima
- Unidade de Pesquisas Clinicas, Instituto de Biomedicina, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Universidade Federal do Ceara, Fortaleza, CE, Brasil
| | - M C Fonteles
- Unidade de Pesquisas Clinicas, Instituto de Biomedicina, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Universidade Federal do Ceara, Fortaleza, CE, Brasil
| |
Collapse
|
42
|
Takemura AF, Chien DM, Polz MF. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front Microbiol 2014; 5:38. [PMID: 24575082 PMCID: PMC3920100 DOI: 10.3389/fmicb.2014.00038] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/20/2014] [Indexed: 12/02/2022] Open
Abstract
The Vibrionaceae, which encompasses several potential pathogens, including V. cholerae, the causative agent of cholera, and V. vulnificus, the deadliest seafood-borne pathogen, are a well-studied family of marine bacteria that thrive in diverse habitats. To elucidate the environmental conditions under which vibrios proliferate, numerous studies have examined correlations with bulk environmental variables—e.g., temperature, salinity, nitrogen, and phosphate—and association with potential host organisms. However, how meaningful these environmental associations are remains unclear because data are fragmented across studies with variable sampling and analysis methods. Here, we synthesize findings about Vibrio correlations and physical associations using a framework of increasingly fine environmental and taxonomic scales, to better understand their dynamics in the wild. We first conduct a meta-analysis to determine trends with respect to bulk water environmental variables, and find that while temperature and salinity are generally strongly predictive correlates, other parameters are inconsistent and overall patterns depend on taxonomic resolution. Based on the hypothesis that dynamics may better correlate with more narrowly defined niches, we review evidence for specific association with plants, algae, zooplankton, and animals. We find that Vibrio are attached to many organisms, though evidence for enrichment compared to the water column is often lacking. Additionally, contrary to the notion that they flourish predominantly while attached, Vibrio can have, at least temporarily, a free-living lifestyle and even engage in massive blooms. Fine-scale sampling from the water column has enabled identification of such lifestyle preferences for ecologically cohesive populations, and future efforts will benefit from similar analysis at fine genetic and environmental sampling scales to describe the conditions, habitats, and resources shaping Vibrio dynamics.
Collapse
Affiliation(s)
- Alison F Takemura
- Parsons Lab for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Diana M Chien
- Parsons Lab for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Martin F Polz
- Parsons Lab for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
43
|
Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. INFECTION GENETICS AND EVOLUTION 2014; 23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains.
Collapse
Affiliation(s)
- Rachana Banerjee
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - G Balakrish Nair
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - Surajit Basak
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar 799 022, Tripura, India; Bioinformatics Centre, Tripura University, Suryamaninagar 799 022, Tripura, India.
| |
Collapse
|
44
|
Boncy J, Rossignol E, Dahourou G, Hast M, Buteau J, Stanislas M, Moffett D, Bopp C, Balajee SA. Performance and utility of a rapid diagnostic test for cholera: notes from Haiti. Diagn Microbiol Infect Dis 2013; 76:521-3. [PMID: 23886437 DOI: 10.1016/j.diagmicrobio.2013.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 11/19/2022]
Abstract
The present study details work done at the National Public Health Laboratory in Haiti (LNSP), comparing the results of a cholera rapid diagnostic test (RDT) with culture-based methods. As of October 21, 2011, 644 specimens were tested by both RDT and culture-based method at the LNSP. The sensitivity and specificity of RDT were 95% and 80%, respectively, with a positive predictive value of 89% and negative predictive value of 91%. In resource-limited settings, the RDT has good utility and should be considered as part of the laboratory testing algorithm.
Collapse
Affiliation(s)
- Jacques Boncy
- National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Previous work from our laboratory showed that the Gram-negative aquatic pathogen Vibrio cholerae can take up a much wider repertoire of fatty acids than other Gram-negative organisms. The current work elaborated on the ability of V. cholerae to exploit an even more diverse pool of lipid nutrients from its environment. We have demonstrated that the bacterium can use lysophosphatidylcholine as a metabolite for growth. Using a combination of thin-layer chromatography and mass spectrometry, we also showed that lysophosphatidylcholine-derived fatty acid moieties can be used for remodeling the V. cholerae membrane architecture. Furthermore, we have identified a lysophospholipase, VolA (Vibrio outer membrane lysophospholipase A), required for these activities. The enzyme is well conserved in Vibrio species, is coexpressed with the outer membrane fatty acid transporter FadL, is one of very few surface-exposed lipoprotein enzymes to be identified in Gram-negative bacteria and the first instance of a surface lipoprotein phospholipase. We propose a model whereby the bacterium efficiently couples the liberation of fatty acid from lysophosphatidylcholine to its subsequent metabolic uptake. An expanded ability to scavenge diverse environmental lipids at the bacterial surface increases overall bacterial fitness and promotes homeoviscous adaptation through membrane remodeling. Our understanding of how bacteria utilize environmental lipid sources has been limited to lipids such as fatty acids and cholesterol. This narrow scope may be attributed to both the intricate nature of lipid uptake mechanisms and the diversity of lipid substrates encountered within an ecological niche. By examining the ability of the pathogen Vibrio cholerae to utilize exogenous lipids, we uncovered a surface-exposed lipoprotein (VolA) that is required for processing the prevalent host lipid lysophosphatidylcholine. VolA functions as a lipase liberating a fatty acid from exogenous lysophospholipids. The freed fatty acid is then transported into the cell, serving as a carbon source, or shunted into phospholipid synthesis for membrane assembly. A limited number of surface-exposed lipoproteins have been found in Gram-negative organisms, and few have enzymatic function. This work highlights the ability of bacteria to exploit exogenous lipids for both maintenance of the membrane and carbon source acquisition.
Collapse
|
46
|
Griffitt KJ, Grimes DJ. Abundance and distribution of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus following a major freshwater intrusion into the Mississippi Sound. MICROBIAL ECOLOGY 2013; 65:578-83. [PMID: 23494573 DOI: 10.1007/s00248-013-0203-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/20/2013] [Indexed: 05/14/2023]
Abstract
In response to a major influx of freshwater to the Mississippi Sound following the opening of the Bonnet Carre Spillway, water samples were collected from three sites along the Mississippi shoreline to assess the impact of altered salinity on three pathogenic Vibrio species. Salinity readings across the affected area during the 2011 sample period ranged from 1.4 to 12.9 ppt (mean = 7.0) and for the 2012 sample period from 14.1 to 23.6 ppt (mean = 19.8). Analyses of the data collected in 2011 showed a reduction in densities of Vibrio parahaemolyticus and Vibrio vulnificus with a concurrent increase of Vibrio cholerae numbers, with V. cholerae becoming the only Vibrio detected once salinity readings dropped to 6 ppt. Follow-up samples taken in 2012 after recovery of the salinity in the sound showed that the relative densities of the three pathogenic vibrios had reverted back to normal levels. This study shows that although the spillway was open but a few weeks and the effects were therefore time limited, the Mississippi River water had a profound, if temporary, effect on Vibrio ecology in the Mississippi Sound.
Collapse
Affiliation(s)
- Kimberly J Griffitt
- Gulf Coast Research Laboratory, The University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | | |
Collapse
|
47
|
Characterizing the hexose-6-phosphate transport system of Vibrio cholerae, a utilization system for carbon and phosphate sources. J Bacteriol 2013; 195:1800-8. [PMID: 23417487 DOI: 10.1128/jb.01952-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The facultative human pathogen Vibrio cholerae transits between the gastrointestinal tract of its host and aquatic reservoirs. V. cholerae adapts to different situations by the timely coordinated expression of genes during its life cycle. We recently identified a subclass of genes that are induced at late stages of infection. Initial characterization demonstrated that some of these genes facilitate the transition of V. cholerae from host to environmental conditions. Among these genes are uptake systems lacking detailed characterization or correct annotation. In this study, we comprehensively investigated the function of the VCA0682-to-VCA0687 gene cluster, which was previously identified as in vivo induced. The results presented here demonstrate that the operon encompassing open reading frames VCA0685 to VCA0687 encodes an ABC transport system for hexose-6-phosphates with Km values ranging from 0.275 to 1.273 μM for glucose-6P and fructose-6P, respectively. Expression of the operon is induced by the presence of hexose-6P controlled by the transcriptional activator VCA0682, representing a UhpA homolog. Finally, we provide evidence that the operon is essential for the utilization of hexose-6P as a C and P source. Thereby, a physiological role can be assigned to hexose-6P uptake, which correlates with increased fitness of V. cholerae after a transition from the host into phosphate-limiting environments.
Collapse
|
48
|
Rashid A, Haley BJ, Rajabov M, Ahmadova S, Gurbanov S, Colwell RR, Huq A. Detection of Vibrio cholerae in environmental waters including drinking water reservoirs of Azerbaijan. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:30-38. [PMID: 23757128 DOI: 10.1111/j.1758-2229.2012.00369.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/26/2012] [Accepted: 06/30/2012] [Indexed: 06/02/2023]
Abstract
Cholera, a globally prevalent gastrointestinal disease, remains a persistent problem in many countries including the former Soviet republics of the Caucasus region where sporadic outbreaks occurred recently. Historically, this region has experienced cholera during every pandemic since 1816; however, no known comprehensive evaluation of the presence of Vibrio cholerae in surface waters using molecular methods has been done. Here we present the first report of the presence of V. cholerae in surface waters of Azerbaijan and its seasonality, using a combination of bacteriological and molecular methods. Findings from the present study indicate a peak in the presence of V. cholerae in warmer summer months relative to colder winter months. In the Caspian Sea, water temperature when optimal for growth of V. cholerae was significantly associated with detection of V. cholerae. Vibrio cholerae was simultaneously detected at freshwater sites including two water reservoirs. Most importantly, detection of V. cholerae in these water reservoirs, the source of municipal drinking water, poses a potential health risk to the population due to the limited and insufficient treatment of water in Azerbaijan. Routine monitoring of environmental waters used for recreational purposes, and especially drinking water reservoirs, is highly recommended as a measure for public health safety.
Collapse
Affiliation(s)
- Ahmadov Rashid
- Republican Anti Plague Station, Ministry of Health, Baku, Azerbaijan
| | | | | | | | | | | | | |
Collapse
|
49
|
Kaddumukasa M, Nsubuga D, Muyodi FJ. Occurence of Culturable
Vibrio cholerae
from Lake Victoria, and Rift Valley Lakes Albert and George, Uganda. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/lre.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martha Kaddumukasa
- Department of Biological Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - David Nsubuga
- Department of Biological Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Fredrick J. Muyodi
- Department of Biological Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
50
|
Stine OC, Morris JG. Circulation and transmission of clones of Vibrio cholerae during cholera outbreaks. Curr Top Microbiol Immunol 2013; 379:181-93. [PMID: 24407776 DOI: 10.1007/82_2013_360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cholera is still a major public health problem. The underlying bacterial pathogen Vibrio cholerae (V. cholerae) is evolving and some of its mutations have set the stage for outbreaks. After V. cholerae acquired the mobile elements VSP I & II, the El Tor pandemic began and spread across the tropics. The replacement of the O1 serotype encoding genes with the O139 encoding genes triggered an outbreak that swept across the Indian subcontinent. The sxt element generated a third selective sweep and most recently a fourth sweep was associated with the exchange of the El Tor ctx allele for a classical ctx allele in the El Tor background. In Kenya, variants of this fourth selective sweep have differentiated and become endemic residing in and emerging from environmental reservoirs. On a local level, studies in Bangladesh have revealed that outbreaks may arise from a nonrandom subset of the genetic lineages in the environment and as the population of the pathogen expands, many novel mutations may be found increasing the amount of genetic variation, a phenomenon known as a founder flush. In Haiti, after the initial invasion and expansion of V. cholerae in 2010, a second outbreak occurred in the winter of 2011-2012 driven by natural selection of specific mutations.
Collapse
Affiliation(s)
- O Colin Stine
- Department of Epidemiology and Public Health, University of Maryland, 596 Howard Hall, 660 W. Redwood St., Baltimore, MD, 21201, USA,
| | | |
Collapse
|