1
|
Djermoun S, Rode DKH, Jiménez-Siebert E, Netter N, Lesterlin C, Drescher K, Bigot S. Biofilm architecture determines the dissemination of conjugative plasmids. Proc Natl Acad Sci U S A 2025; 122:e2417452122. [PMID: 40279390 PMCID: PMC12054802 DOI: 10.1073/pnas.2417452122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/10/2025] [Indexed: 04/27/2025] Open
Abstract
Plasmid conjugation is a contact-dependent horizontal gene transfer mechanism that significantly contributes to the dissemination of antibiotic resistance among bacteria. While the molecular mechanisms of conjugation have been extensively studied, our understanding of plasmid transfer dynamics within spatially structured bacterial communities and the influence of community architecture on plasmid dissemination remains limited. In this study, we use live-cell fluorescence microscopy to investigate the propagation of the broad host range RP4 conjugative plasmid in Escherichia coli populations exhibiting varying levels of spatial organization. In high-density, two-dimensional cell monolayers, direct and tight contact between donors and recipients is not only necessary but also sufficient to trigger RP4 plasmid transfer, ensuring optimal plasmid propagation. In three-dimensional mature biofilms, the emergent community architecture limits the ability of donor cells to enter regions with high cell density, which hinders the establishment of direct contacts with recipients and impedes plasmid transfer in biofilms. In contrast, microcolonies, early-stage biofilms, and biofilms with a lower surface coverage leave open access points for donor cells in regions that later emerge as high-cell-density regions in mature biofilms, which facilitates plasmid transfer. These findings reveal the crucial role of bacterial community architecture in determining the efficiency of plasmid dissemination.
Collapse
Affiliation(s)
- Sarah Djermoun
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| | | | | | - Niklas Netter
- Biozentrum, University of Basel, Basel4056, Switzerland
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| | - Knut Drescher
- Biozentrum, University of Basel, Basel4056, Switzerland
| | - Sarah Bigot
- Microbiologie Moléculaire et Biochimie Structurale, Université Lyon 1, CNRS, Inserm, Lyon69007, France
| |
Collapse
|
2
|
Gillett DL, Selinidis M, Seamons T, George D, Igwe AN, Del Valle I, Egbert RG, Hofmockel KS, Johnson AL, Matthews KRW, Masiello CA, Stadler LB, Chappell J, Silberg JJ. A roadmap to understanding and anticipating microbial gene transfer in soil communities. Microbiol Mol Biol Rev 2025:e0022524. [PMID: 40197024 DOI: 10.1128/mmbr.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
SUMMARYEngineered microbes are being programmed using synthetic DNA for applications in soil to overcome global challenges related to climate change, energy, food security, and pollution. However, we cannot yet predict gene transfer processes in soil to assess the frequency of unintentional transfer of engineered DNA to environmental microbes when applying synthetic biology technologies at scale. This challenge exists because of the complex and heterogeneous characteristics of soils, which contribute to the fitness and transport of cells and the exchange of genetic material within communities. Here, we describe knowledge gaps about gene transfer across soil microbiomes. We propose strategies to improve our understanding of gene transfer across soil communities, highlight the need to benchmark the performance of biocontainment measures in situ, and discuss responsibly engaging community stakeholders. We highlight opportunities to address knowledge gaps, such as creating a set of soil standards for studying gene transfer across diverse soil types and measuring gene transfer host range across microbiomes using emerging technologies. By comparing gene transfer rates, host range, and persistence of engineered microbes across different soils, we posit that community-scale, environment-specific models can be built that anticipate biotechnology risks. Such studies will enable the design of safer biotechnologies that allow us to realize the benefits of synthetic biology and mitigate risks associated with the release of such technologies.
Collapse
Affiliation(s)
- David L Gillett
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Malyn Selinidis
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Travis Seamons
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Dalton George
- Department of Biosciences, Rice University, Houston, Texas, USA
- School for the Future of Innovation in Society, Arizona State University, Tempe, Arizona, USA
| | - Alexandria N Igwe
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Ilenne Del Valle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Alicia L Johnson
- Baker Institute for Public Policy, Rice University, Houston, Texas, USA
| | | | - Caroline A Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - James Chappell
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | |
Collapse
|
3
|
Rodriguez-Grande J, Ortiz Y, Garcia-Lopez D, Garcillán-Barcia MP, de la Cruz F, Fernandez-Lopez R. Encounter rates and engagement times limit the transmission of conjugative plasmids. PLoS Genet 2025; 21:e1011560. [PMID: 39919124 PMCID: PMC11828410 DOI: 10.1371/journal.pgen.1011560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/14/2025] [Accepted: 12/31/2024] [Indexed: 02/09/2025] Open
Abstract
Plasmid conjugation is a major route for the dissemination of antibiotic resistances and adaptive genes among bacterial populations. Obtaining precise conjugation rates is thus key to understanding how antibiotic resistances spread. Plasmid conjugation is typically modeled as a density-dependent process, where the formation of new transconjugants depends on the rate of encounters between donor and receptor cells. By analyzing conjugation dynamics at different cell concentrations, here we show that this assumption only holds at very low bacterial densities. At higher cell concentrations, conjugation becomes limited by the engagement time, the interval required between two successful matings. Plasmid conjugation therefore follows a Holling´s Type II functional response, characterized by the encounter rate and the engagement time, which represent, respectively, the density and frequency-dependent limits of plasmid transmission. Our results demonstrate that these parameters are characteristic of the transfer machinery, rather than the entire plasmid genome, and that they are robust to environmental and transcriptional perturbation. Precise parameterization of plasmid conjugation will contribute to better understanding the propagation dynamics of antimicrobial resistances.
Collapse
Affiliation(s)
- Jorge Rodriguez-Grande
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Santander, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Yelina Ortiz
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - Daniel Garcia-Lopez
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - M. Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| | - Raul Fernandez-Lopez
- Instituto de Biomedicina y Biotecnologia de Cantabria IBBTEC, Spanish National Research Council CSIC – University of Cantabria, Santander, Spain
| |
Collapse
|
4
|
Marquiegui – Alvaro A, Kottara A, Chacón M, Cliffe L, Brockhurst M, Dixon N. Genetic Bioaugmentation-Mediated Bioremediation of Terephthalate in Soil Microcosms Using an Engineered Environmental Plasmid. Microb Biotechnol 2025; 18:e70071. [PMID: 39801293 PMCID: PMC11725763 DOI: 10.1111/1751-7915.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown. Our engineered plasmid caused a low fitness cost and was stably maintained in terephthalate-contaminated soil by the bacterium P. putida. Plasmid carriers efficiently bioremediated contaminated soil in model soil microcosms, achieving complete breakdown of 3.2 mg/g of terephthalate within 8 days. The engineered plasmid horizontally transferred the synthetic operon to P. fluorescens in situ, and the resulting transconjugants degraded 10 mM terephthalate during a 180-h incubation. Our findings show that environmental plasmids carrying synthetic catabolic operons can be useful tools for in situ engineering of microbial communities to perform clean-up even of complex environments like soil.
Collapse
Affiliation(s)
| | - Anastasia Kottara
- School of Biological SciencesThe University of ManchesterManchesterUK
| | - Micaela Chacón
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | - Lisa Cliffe
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | | | - Neil Dixon
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| |
Collapse
|
5
|
Thamayandhi C, El-Tayeb MA, Syed SR, Sivaramakrishnan R, Gunasekar B. Antibacterial and anti-biofilm efficacy of selenium nanoparticles against Pseudomonas aeruginosa: Characterization and in vitro analysis. Microb Pathog 2024; 196:106998. [PMID: 39384023 DOI: 10.1016/j.micpath.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a Gram-negative opportunistic pathogen, poses significant treatment challenges due to its antibiotic resistance and biofilm formation. This study investigates the anti-bacterial and anti-biofilm activities of chemically synthesized selenium nanoparticles (SeNPs) against P. aeruginosa. SeNPs were synthesized using ascorbic acid as a reducing agent and characterized. Biofilm formation was quantified using a modified microtiter plate method, and the anti-biofilm efficacy of SeNPs was evaluated using confocal microscopy and SEM. The P. aeruginosa isolates exhibited high resistance to piperacillin-tazobactam (60 %) and ceftazidime (59 %). SeNPs demonstrated a round shape with a diameter of 15-18 nm. UV-Vis spectra showed a peak at 275 nm, and XRD analysis revealed crystalline peaks corresponding to selenium. The FTIR spectra confirmed the presence of various functional groups. SeNPs significantly reduced biofilm formation in a dose-dependent manner, with MIC50 and MIC90 values of 60 μg/mL and 80 μg/mL, respectively. Confocal microscopy and SEM analysis showed a notable decrease in biofilm thickness and bacterial adherence post-SeNPs treatment. These findings suggest that SeNPs could be a promising alternative or adjunctive treatment option for combating antibiotic-resistant P. aeruginosa infections. Further research is warranted to explore the clinical applications of SeNPs in treating biofilm-associated infections.
Collapse
Affiliation(s)
- Catherine Thamayandhi
- Department of Microbiology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamilnadu, India
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyad, 11451, Saudi Arabia
| | - Shaban Rm Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyad, 11451, Saudi Arabia
| | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Bhuvaneshwari Gunasekar
- Department of Microbiology, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamilnadu, India.
| |
Collapse
|
6
|
Ma Y, Kan A, Johnson DR. Metabolic interactions control the transfer and spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth. Cell Rep 2024; 43:114653. [PMID: 39213158 DOI: 10.1016/j.celrep.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Surface-associated microbial systems are hotspots for the spread of plasmid-encoded antibiotic resistance, but how surface association affects plasmid transfer and proliferation remains unclear. Surface association enables prolonged spatial proximities between different populations, which promotes plasmid transfer between them. However, surface association also fosters strong metabolic interactions between different populations, which can direct their spatial self-organization with consequences for plasmid transfer and proliferation. Here, we hypothesize that metabolic interactions direct the spatial self-organization of different populations and, in turn, regulate the spread of plasmid-encoded antibiotic resistance. We show that resource competition causes populations to spatially segregate, which represses plasmid transfer. In contrast, resource cross-feeding causes populations to spatially intermix, which promotes plasmid transfer. We further show that the spatial positionings that emerge from metabolic interactions determine the proliferation of plasmid recipients. Our results demonstrate that metabolic interactions are important regulators of both the transfer and proliferation of plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland.
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
7
|
MubarakAli D, Saravanakumar K, Ganeshalingam A, Santosh SS, De Silva S, Park JU, Lee CM, Cho SH, Kim SR, Cho N, Thiripuranathar G, Park S. Recent Progress in Multifunctional Stimuli-Responsive Combinational Drug Delivery Systems for the Treatment of Biofilm-Forming Bacterial Infections. Pharmaceutics 2024; 16:976. [PMID: 39204321 PMCID: PMC11359499 DOI: 10.3390/pharmaceutics16080976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Drug-resistant infectious diseases pose a substantial challenge and threat to medical regimens. While adaptive laboratory evolution provides foresight for encountering such situations, it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for overcoming these hurdles. Multi-stimuli responsive DDSs are particularly effective due to their reduced background leakage and targeted drug delivery to specific host sites for pathogen elimination. Bacterial infections create an acidic state in the microenvironment (pH: 5.0-5.5), which differs from normal physiological conditions (pH: 7.4). Infected areas are characterized by the overexpression of hyaluronidase, gelatinase, phospholipase, and other virulence factors. Consequently, several effective stimuli-responsive DDSs have been developed to target bacterial pathogens. Additionally, biofilms, structured communities of bacteria encased in a self-produced polymeric matrix, pose a significant challenge by conferring resistance to conventional antimicrobial treatments. Recent advancements in nano-drug delivery systems (nDDSs) show promise in enhancing antimicrobial efficacy by improving drug absorption and targeting within the biofilm matrix. nDDSs can deliver antimicrobials directly to the biofilm, facilitating more effective eradication of these resilient bacterial communities. Herein, this review examines challenges in DDS development, focusing on enhancing antibacterial activity and eradicating biofilms without adverse effects. Furthermore, advances in immune system modulation and photothermal therapy are discussed as future directions for the treatment of bacterial diseases.
Collapse
Affiliation(s)
- Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, Tamil Nadu, India;
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Archchana Ganeshalingam
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | | | - Shanali De Silva
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - Jung Up Park
- Division of Practical Application, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Republic of Korea;
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Su-Hyeon Cho
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea;
| | - Song-Rae Kim
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea; (K.S.); (N.C.)
| | - Gobika Thiripuranathar
- College of Chemical Sciences, Institute of Chemistry Ceylon, Welikada, Rajagiriya 10107, Sri Lanka; (A.G.); (S.D.S.)
| | - SeonJu Park
- Metropolitan Seoul Center, Korea Basic Science Institute (KBSI), Seoul 03759, Republic of Korea;
| |
Collapse
|
8
|
Zhou R, Huang X, Xie Z, Ding Z, Wei H, Jin Q. A review focusing on mechanisms and ecological risks of enrichment and propagation of antibiotic resistance genes and mobile genetic elements by microplastic biofilms. ENVIRONMENTAL RESEARCH 2024; 251:118737. [PMID: 38493850 DOI: 10.1016/j.envres.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Microplastics (MPs) are emerging ubiquitous pollutants in aquatic environment and have received extensive global attention. In addition to the traditional studies related to the toxicity of MPs and their carrier effects, their unique surface-induced biofilm formation also increases the ecotoxicity potential of MPs from multiple perspectives. In this review, the ecological risks of MPs biofilms were summarized and assessed in detail from several aspects, including the formation and factors affecting the development of MPs biofilms, the selective enrichment and propagation mechanisms of current pollution status of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in MPs biofilms, the dominant bacterial communities in MPs biofilms, as well as the potential risks of ARGs and MGEs transferring from MPs biofilms to aquatic organisms. On this basis, this paper also put forward the inadequacy and prospects of the current research and revealed that the MGEs-mediated ARG propagation on MPs under actual environmental conditions and the ecological risk of the transmission of ARGs and MGEs to aquatic organisms and human beings are hot spots for future research. Relevant research from the perspective of MPs biofilm should be carried out as soon as possible to provide support for the ecological pollution prevention and control of MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Zhongtang Xie
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| |
Collapse
|
9
|
Nkemngong C, Teska P. Biofilms, mobile genetic elements and the persistence of pathogens on environmental surfaces in healthcare and food processing environments. Front Microbiol 2024; 15:1405428. [PMID: 38894974 PMCID: PMC11183103 DOI: 10.3389/fmicb.2024.1405428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Biofilms are the natural state for bacterial and fungal species. To achieve surface hygiene in commercial facilities, the presence of biofilms must be adequately considered. However, standard disinfectant and sanitizer efficacy tests required by the US-EPA and the European Committee for Standardization (CEN) do not currently consider the role of environmental biofilms. This selective review will discuss what biofilms are and why they are important. We will also cover where they are commonly found in healthcare and food processing facilities and explore how current antimicrobial test methods required for product registration do not test for the presence of biofilms. Additionally, we will explore how a lack of efficacy against biofilms may play a role in the development of antimicrobial resistance in healthcare facilities due to the exchange of mobile genetic elements that occur readily in a biofilm matrix.
Collapse
Affiliation(s)
| | - Peter Teska
- Diversey-A Solenis Company, Fort Mill, SC, United States
| |
Collapse
|
10
|
Li X, Li Y, Xiong B, Qiu S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics 2024; 16:663. [PMID: 38794325 PMCID: PMC11124934 DOI: 10.3390/pharmaceutics16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a deeper understanding of microbial habits and drug resistance mechanisms, various creative strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by a C6-C2-C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing drug resistance. This review will provide an important reference for the future development and research into the mechanisms of stilbenoids as antimicrobial agents.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| |
Collapse
|
11
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
12
|
Mukhopadhyay S, Bishayi R, Shaji A, Lee AH, Gupta R, Mohajeri M, Katiyar A, McKee B, Schmitz IR, Shin R, Lele TP, Lele PP. Dynamic Adaptation in Extant Porins Facilitates Antibiotic Tolerance in Energetic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583920. [PMID: 38496420 PMCID: PMC10942424 DOI: 10.1101/2024.03.07.583920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacteria can tolerate antibiotics despite lacking the genetic components for resistance. The prevailing notion is that tolerance results from depleted cellular energy or cell dormancy. In contrast to this view, many cells in the tolerant population of Escherichia coli can exhibit motility - a phenomenon that requires cellular energy, specifically, the proton-motive force (PMF). As these motile-tolerant cells are challenging to isolate from the heterogeneous tolerant population, their survival mechanism is unknown. Here, we discovered that motile bacteria segregate themselves from the tolerant population under micro-confinement, owing to their unique ability to penetrate micron-sized channels. Single-cell measurements on the motile-tolerant population showed that the cells retained a high PMF, but they did not survive through active efflux alone. By utilizing growth assays, single-cell fluorescence studies, and chemotaxis assays, we showed that the cells survived by dynamically inhibiting the function of existing porins in the outer membrane. A drug transport model for porin-mediated intake and efflux pump-mediated expulsion suggested that energetic tolerant cells withstand antibiotics by constricting their porins. The novel porin adaptation we have uncovered is independent of gene expression changes and may involve electrostatic modifications within individual porins to prevent extracellular ligand entry.
Collapse
|
13
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
14
|
Liu H, Xu T, Xue Z, Huang M, Wang T, Zhang M, Yang R, Guo Y. Current Development of Thiazole-Containing Compounds as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:350-370. [PMID: 38232301 DOI: 10.1021/acsinfecdis.3c00647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The emergence of multi-drug-resistant bacteria is threatening to human health and life around the world. In particular, methicillin-resistant Staphylococcus aureus (MRSA) causes fatal injuries to human beings and serious economic losses to animal husbandry due to its easy transmission and difficult treatment. Currently, the development of novel, highly effective, and low-toxicity antimicrobials is important to combat MRSA infections. Thiazole-containing compounds with good biological activity are widely used in clinical practice, and appropriate structural modifications make it possible to develop new antimicrobials. Here, we review thiazole-containing compounds and their antibacterial effects against MRSA reported in the past two decades and discuss their structure-activity relationships as well as the corresponding antimicrobial mechanisms. Some thiazole-containing compounds exhibit potent antibacterial efficacy in vitro and in vivo after appropriate structural modifications and could be used as antibacterial candidates. This Review provides insights into the development of thiazole-containing compounds as antimicrobials to combat MRSA infections.
Collapse
Affiliation(s)
- Hang Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
15
|
Liang S, Xiao L, Fang Y, Chen T, Xie Y, Peng Z, Wu M, Liu Y, Xie J, Nie Y, Zhao X, Deng Y, Zhao C, Mai Y. A nanocomposite hydrogel for co-delivery of multiple anti-biofilm therapeutics to enhance the treatment of bacterial biofilm-related infections. Int J Pharm 2024; 649:123638. [PMID: 38008233 DOI: 10.1016/j.ijpharm.2023.123638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
The characteristics of biofilms have exacerbated the issue of clinical antibiotic resistance, rendering it a pressing challenge in need of resolution. The combination of biofilm-dispersing agents and antibiotics can eliminate biofilms and promote healing synergistically in infected wounds. In this study, we developed a novel nanocomposite hydrogel (NC gel) comprised of the poly(lactic acid)-hyperbranched polyglycerol (PLA-HPG) based bioadhesive nanoparticles (BNPs) and a hydrophilic carboxymethyl chitosan (CS) network. The NC gel was designed to co-deliver two biofilm-dispersing agents (an NO-donor SNO, and an α-amylase Am) and an antibiotic, cefepime (Cef), utilizing a synergistic anti-biofilm mechanism in which Am loosens the matrix structure and NO promotes the release of biofilm bacteria via quorum sensing, and Cef kills bacteria. The drug-loaded NC gel (SNO/BNP/CS@Am-Cef) demonstrated sustained drug release, minimal cytotoxicity, and increased drug-bacterial interactions at the site of infection. When applied to mice infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vivo, SNO/BNP/CS@Am-Cef enhanced biofilm elimination and promoted wound healing compared to traditional antibiotic treatments. Our work demonstrates the feasibility of the co-delivery of biofilm-dispersing agents and antibiotics using the NC gel and presents a promising approach for the polytherapy of bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Shu Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lingyun Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yixuan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yuan Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan & Sun Yat-sen University Foshan Hospital, Foshan 528000, China
| | - Xizhe Zhao
- Department of Chemistry, College of Staten Island, City University of New York, NY 10314, USA
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Chao Zhao
- Department of Chemical and Biological Engineering, Center for Convergent Biosciences and Medicine, Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
16
|
Skoog EJ, Fournier GP, Bosak T. Assessing the Influence of HGT on the Evolution of Stress Responses in Microbial Communities from Shark Bay, Western Australia. Genes (Basel) 2023; 14:2168. [PMID: 38136990 PMCID: PMC10742547 DOI: 10.3390/genes14122168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat. Phylogenies of several stress-related genes-including those involved in response to osmotic stress, oxidative stress and arsenic toxicity-indicate a potentially long history of HGT events and are consistent with these transfers occurring outside of modern pustular mats. The phylogeny of a particular osmoprotectant transport gene reveals relatively recent adaptations and suggests interactions between Planctomycetota and Myxococcota within these pustular mats. Overall, HGT phylogenies support a potentially broad distribution in the relative timing of the HGT events of stress-related genes and demonstrate ongoing microbial adaptations and evolution in these pustular mat communities.
Collapse
Affiliation(s)
- Emilie J. Skoog
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
| | - Gregory P. Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (G.P.F.); (T.B.)
| |
Collapse
|
17
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 PMCID: PMC10189392 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
18
|
Yang S, Li X, Cang W, Mu D, Ji S, An Y, Wu R, Wu J. Biofilm tolerance, resistance and infections increasing threat of public health. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:233-247. [PMID: 37933277 PMCID: PMC10625689 DOI: 10.15698/mic2023.11.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Microbial biofilms can cause chronic infection. In the clinical setting, the biofilm-related infections usually persist and reoccur; the main reason is the increased antibiotic resistance of biofilms. Traditional antibiotic therapy is not effective and might increase the threat of antibiotic resistance to public health. Therefore, it is urgent to study the tolerance and resistance mechanism of biofilms to antibiotics and find effective therapies for biofilm-related infections. The tolerance mechanism and host reaction of biofilm to antibiotics are reviewed, and bacterial biofilm related diseases formed by human pathogens are discussed thoroughly. The review also explored the role of biofilms in the development of bacterial resistance mechanisms and proposed therapeutic intervention strategies for biofilm related diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Yuejia An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| |
Collapse
|
19
|
Liu T, Zhai Y, Jeong KC. Advancing understanding of microbial biofilms through machine learning-powered studies. Food Sci Biotechnol 2023; 32:1653-1664. [PMID: 37780593 PMCID: PMC10533454 DOI: 10.1007/s10068-023-01415-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Microbial biofilms are prevalent in various environments and pose significant challenges to food safety and public health. The biofilms formed by pathogens can cause food spoilage, foodborne illness, and infectious diseases, which are difficult to treat due to their enhanced antimicrobial resistance. While the composition and development of biofilms have been widely studied, their profound impact on food, the food industry, and public health has not been sufficiently recapitulated. This review aims to provide a comprehensive overview of microbial biofilms in the food industry and their implication on public health. It highlights the existence of biofilms along the food-producing chains and the underlying mechanisms of biofilm-associated diseases. Furthermore, this review thoroughly summarizes the enhanced understanding of microbial biofilms achieved through machine learning approaches in biofilm research. By consolidating existing knowledge, this review intends to facilitate developing effective strategies to combat biofilm-associated infections in both the food industry and public health.
Collapse
Affiliation(s)
- Ting Liu
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| |
Collapse
|
20
|
Bhadra S, Chettri D, Kumar Verma A. Biosurfactants: Secondary Metabolites Involved in the Process of Bioremediation and Biofilm Removal. Appl Biochem Biotechnol 2023; 195:5541-5567. [PMID: 35579742 DOI: 10.1007/s12010-022-03951-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
The search for environmentally friendly methods to remove persistent substances such as organic pollutants and sessile communities such as biofilms that severely affect the environment and human health resulted in biosurfactant discovery. Owing to their low level of toxicity and high biodegradability, biosurfactants are increasingly preferred to be used for removal of pollutants from nature. These amphipathic molecules can be synthesized inexpensively, employing cheap substrates such as agricultural and industrial wastes. Recent progress has been made in identifying various biosurfactants that can be used to remove organic pollutants and harmful microbial aggregates, as well as novel microbial strains that produce these surface-active molecules to survive in a hydrocarbon-rich environment. This review focuses on the identification and understanding the role of biosurfactants and the microorganisms involved in the removal of biofilms and remediation of xenobiotics and various types of hydrocarbons such as crude oil, aromatic hydrocarbons, n-alkanes, aliphatic hydrocarbons, asphaltenes, naphthenes, and other petroleum products. This property of biosurfactant is very important as biofilms are of great concern due to their impact on the environment, public health, and industries worldwide. This work also includes several advanced molecular methods that can be used to enhance the production of biosurfactants by the microorganisms studied.
Collapse
Affiliation(s)
- Sushruta Bhadra
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
21
|
Tran NN, Morrisette T, Jorgensen SCJ, Orench-Benvenutti JM, Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy 2023; 43:816-832. [PMID: 37133439 DOI: 10.1002/phar.2806] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 05/04/2023]
Abstract
Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and contributes to significant increase in morbidity and mortality especially when associated with medical devices and in biofilm form. Biofilm structure provides a pathway for the enrichment of resistant and persistent phenotypes of S. aureus leading to relapse and recurrence of infection. Minimal diffusion of antibiotics inside biofilm structure leads to heterogeneity and distinct physiological activity. Additionally, horizontal gene transfer between cells in proximity adds to the challenges associated with eradication of biofilms. This narrative review focuses on biofilm-associated infections caused by S. aureus, the impact of environmental conditions on biofilm formation, interactions inside biofilm communities, and the clinical challenges that they present. Conclusively, potential solutions, novel treatment strategies, combination therapies, and reported alternatives are discussed.
Collapse
Affiliation(s)
- Nikki N Tran
- Department of Pharmacy, The Ohio State University Wexner Medical Center - The James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - Taylor Morrisette
- Department of Clinical Pharmacy and Outcomes Sciences, Medical University of South Carolina College of Pharmacy, Charleston, South Carolina, USA
- Department of Pharmacy Services, Medical University of South Carolina Shawn Jenkins Children's Hospital, Charleston, South Carolina, USA
| | - Sarah C J Jorgensen
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - José M Orench-Benvenutti
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Razieh Kebriaei
- P3 Research Laboratory, Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
23
|
Javed MU, Hayat MT, Mukhtar H, Imre K. CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1075. [PMID: 37370394 DOI: 10.3390/antibiotics12061075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is rising to dangerously high levels throughout the world. To cope with this problem, scientists are working on CRISPR-based research so that antibiotic-resistant bacteria can be killed and attacked almost as quickly as antibiotic-sensitive bacteria. Nuclease activity is found in Cas9, which can be programmed with a specific target sequence. This mechanism will only attack pathogens in the microbiota while preserving commensal bacteria. This article portrays the delivery methods used in the CRISPR-Cas system, which are both viral and non-viral, along with its implications and challenges, such as microbial dysbiosis, off-target effects, and failure to counteract intracellular infections. CRISPR-based systems have a lot of applications, such as correcting mutations, developing diagnostics for infectious diseases, improving crops productions, improving breeding techniques, etc. In the future, CRISPR-based systems will revolutionize the world by curing diseases, improving agriculture, and repairing genetic disorders. Though all the drawbacks of the technology, CRISPR carries great potential; thus, the modification and consideration of some aspects could result in a mind-blowing technique to attain all the applications listed and present a game-changing potential.
Collapse
Affiliation(s)
| | | | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Kalman Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| |
Collapse
|
24
|
Abavisani M, Khayami R, Hoseinzadeh M, Kodori M, Kesharwani P, Sahebkar A. CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resist Updat 2023; 68:100948. [PMID: 36780840 DOI: 10.1016/j.drup.2023.100948] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
The phenomenon of antibiotic resistance (AR) and its increasing global trends and destructive waves concerns patients and the healthcare system. In order to combat AR, it is necessary to explore new strategies when the current antibiotics fail to be effective. Thus, knowing the resistance mechanisms and appropriate diagnosis of bacterial infections may help enhance the sensitivity and specificity of novel strategies. On the other hand, resistance to antimicrobial compounds can spread from resistant populations to susceptible ones. Antimicrobial resistance genes (ARGs) significantly disseminate AR via horizontal and vertical gene transfer. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is a member of the bacterial immune system with the ability to remove the ARGs; therefore, it can be introduced as an effective and innovative strategy in the battle against AR. Here, we reviewed CRISPR-based bacterial diagnosis technologies. Moreover, the strategies to battle AR based on targeting bacterial chromosomes and resistance plasmids using the CRISPR-Cas system have been explained. Besides, we have presented the limitations of CRISPR delivery and potential solutions to help improve the future development of CRISPR-based platforms.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Reza Khayami
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Melika Hoseinzadeh
- Student research committee, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran
| | - Mansoor Kodori
- Non communicable Diseases Research Center, Bam University of Medical sciences, Bam, the Islamic Republic of Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the Islamic Republic of Iran.
| |
Collapse
|
25
|
Liu W, Huang Y, Zhang H, Liu Z, Huan Q, Xiao X, Wang Z. Factors and Mechanisms Influencing Conjugation In Vivo in the Gastrointestinal Tract Environment: A Review. Int J Mol Sci 2023; 24:5919. [PMID: 36982992 PMCID: PMC10059276 DOI: 10.3390/ijms24065919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have imposed a serious threat on global public health. Horizontal gene transfer (HGT) via plasmids is mainly responsible for the spread of ARGs, and conjugation plays an important role in HGT. The conjugation process is very active in vivo and its effect on the spreading of ARGs may be underestimated. In this review, factors affecting conjugation in vivo, especially in the intestinal environment, are summarized. In addition, the potential mechanisms affecting conjugation in vivo are summarized from the perspectives of bacterial colonization and the conjugation process.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Han Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
26
|
Usui M, Yoshii Y, Thiriet-Rupert S, Ghigo JM, Beloin C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun Biol 2023; 6:275. [PMID: 36928386 PMCID: PMC10020551 DOI: 10.1038/s42003-023-04601-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan.
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| | - Yutaka Yoshii
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| |
Collapse
|
27
|
Verweij W, Griswold CK. Spatial structure and benefits to hosts allow plasmids with and without post-segregational killing systems to coexist. Biol Lett 2023; 19:20220376. [PMID: 36855853 PMCID: PMC9975649 DOI: 10.1098/rsbl.2022.0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
To persist, a plasmid relies on being passed on to a daughter cell, but this does not always occur. Plasmids with post-segregational killing (PSK) systems kill a daughter cell if the plasmid has not been passed on. By killing the host, it also kills competing plasmids in the same host, something competing plasmids without a similar system cannot do. Accordingly, plasmids with PSK systems can displace other plasmids. In nature, plasmids with and without PSK systems coexist and prior theory has suggested this is expected to be very rare or unstable, such that one or the other type of plasmid eventually takes over. Here, we show that if there is spatial structure and plasmids confer benefits to hosts, coexistence of plasmids occurs broadly. Often plasmids confer benefits (even ones with a PSK system) and bacteria are often spatially structured. So, our results may be generally applicable.
Collapse
Affiliation(s)
- Wilco Verweij
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Cortland K. Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
28
|
Disturbing the Spatial Organization of Biofilm Communities Affects Expression of agr-Regulated Virulence Factors in Staphylococcus aureus. Appl Environ Microbiol 2023; 89:e0193222. [PMID: 36700647 PMCID: PMC9973005 DOI: 10.1128/aem.01932-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus uses quorum sensing and nutrient availability to control the expression of agr-regulated virulence factors. Quorum sensing is mediated by autoinducing peptide (AIP), which at a high concentration reduces expression of surface attachment proteins (coa, fnbpA) and increases expression of exotoxins (lukS) and proteases (splA). Nutrient availability can be sensed through the saeS/saeR system. Low nutrients increase expression of saeR, which augments expression of coa and fnbpA, distinct from the activity of AIP. The formation of spatial structure, such as biofilms, can alter quorum sensing and nutrient acquisition. In natural environments, biofilms encounter forces that may alter their spatial structure. These forces may impact quorum sensing and/or nutrient acquisition and thus affect the expression of agr-regulated virulence factors. However, this has not been studied. We show that periodically disturbing biofilms composed of S. aureus using a physical force affected the expression of agr-regulated virulence factors. In nutrient-poor environments, disturbance increased the expression of coa, fnbpA, lukS, and splA. Disturbance in a nutrient-rich environment at low or high disturbance amplitudes moderately reduced expression of coa and fnbpA but increased expression of lukS and splA. Interestingly, at an intermediate amplitude, the overall expression of agr-regulated virulence factors was the lowest; expression of lukS and splA remained unchanged relative to an undisturbed biofilm, while expression of coa and fnbpA significantly decreased. We hypothesize that these changes are a result of disturbance-driven changes in access to AIP and nutrients. Our results may allow the identification of environments where virulence is enhanced, or reduced, owing to a disturbance. IMPORTANCE Bacteria, such as Staphylococcus aureus, integrate signals from the environment to regulate genes encoding virulence factors. These signals include those produced by quorum-sensing systems and nutrient availability. We show that disturbing the spatial organization of S. aureus populations can lead to changes in the expression of virulence factors, likely by altering the ways in which S. aureus detects these signals. Our work may allow us to identify environments that increase or reduce the expression of virulence factors in S. aureus.
Collapse
|
29
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
30
|
Zhang Y, Zhou J, Wu JL, Ma JC, Wang H, Wen J, Huang S, Lee M, Bai X, Cui ZK. Intrinsic antibacterial and osteoinductive sterosomes promote infected bone healing. J Control Release 2023; 354:713-725. [PMID: 36702258 DOI: 10.1016/j.jconrel.2023.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Open fractures and internal fixation implants are often accompanied by bacterial infection, leading to osteomyelitis, characterized by intractable bone infection and sequestrum formation, and can result in lifelong disability or fatal sepsis. As common clinical treatment strategies, high-dose antibiotic application and autologous bone transplantation face the risk of recurrence and donor site injury. Herein, we designed and prepared a novel drug delivery system by rational selection of the antibacterial single-chain amphiphile (cetylpyridinium chloride, CPC) and osteoinductive sterol (20S-hydroxycholesterol, Oxy) to formulate CPC/Oxy sterosomes. We demonstrate their excellent biocompatibility and antibacterial ability through 2D and 3D settings in vitro. In addition, the osteogenic differentiation of bone marrow mesenchymal stem cells was investigated in cell monolayers and a hydrogel environment. Moreover, a rat infected critical-sized calvarial defect model was employed to illustrate the effects of antibacterial and osteogenic CPC/Oxy sterosomes in vivo. Our results showed that CPC/Oxy sterosomes not only exterminated bacterial infections, but also enhanced calvarial healing without additional antibiotics, bone formation promoters or exogenous cells. This research provides a promising and effective multifunctional sterosomal platform for the treatment of infected bone defects, with the potential to be combined with therapeutic genes, and small molecule drugs.
Collapse
Affiliation(s)
- Yiqing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiao-Lan Wu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian-Chao Ma
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Jing Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shen Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min Lee
- Division of Advanced Prosthodontics, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou 342800, China.
| |
Collapse
|
31
|
Mills M, Lee S, Mollenkopf D, Wittum T, Sullivan SMP, Lee J. Comparison of environmental microbiomes in an antibiotic resistance-polluted urban river highlights periphyton and fish gut communities as reservoirs of concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158042. [PMID: 35973543 DOI: 10.1016/j.scitotenv.2022.158042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Natural waterways near urban areas are heavily impacted by anthropogenic activities, including their microbial communities. A contaminant of growing public health concern in rivers is antibiotic resistant genes (ARGs), which can spread between neighboring bacteria and increase the potential for transmission of AR bacteria to animals and humans. To identify the matrices of most concern for AR, we compared ARG burdens and microbial community structures between sample types from the Scioto River Watershed, Ohio, the United States, from 2017 to 2018. Five environmental matrices (water, sediment, periphyton, detritus, and fish gut) were collected from 26 river sites. Due to our focus on clinically relevant ARGs, three carbapenem resistance genes (blaKPC, blaNDM, and blaOXA-48) were quantified via DropletDigital™ PCR. At a subset of nine urbanized sites, we conducted16S rRNA gene sequencing and functional gene predictions. Carbapenem resistance genes were quantified from all matrices, with blaKPC being the most detected (88 % of samples), followed by blaNDM (64 %) and blaOXA-48 (23 %). Fish gut samples showed higher concentrations of blaKPC and blaNDM than any other matrix, indicating potential ARG bioaccumulation, and risk of broader dissemination through aquatic and nearshore food webs. Periphyton had higher concentrations of blaNDM than water, sediment, or detritus. Microbial community analysis identified differences by sample type in community diversity and structure. Sediment samples had the most diverse microbial communities, and detritus, the least. Spearman correlations did not reveal significant relationships between the concentrations of the monitored ARGs and microbial community diversity. However, several differentially abundant taxa and microbial functions were identified by sample type that is definitive of these matrices' roles in the river ecosystem and habitat type. In summary, the fish gut and periphyton are a concern as AR reservoirs due to their relatively high concentration of carbapenem resistance genes, diverse microbial communities, and natural functions that promote AR.
Collapse
Affiliation(s)
- Molly Mills
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Dixie Mollenkopf
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - S Mažeika Patricio Sullivan
- Schiermeier Olentangy River Wetland Research Park, School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA; Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
32
|
Biofilms preserve the transmissibility of a multi-drug resistance plasmid. NPJ Biofilms Microbiomes 2022; 8:95. [PMID: 36481746 PMCID: PMC9732292 DOI: 10.1038/s41522-022-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Self-transmissible multidrug resistance (MDR) plasmids are a major health concern because they can spread antibiotic resistance to pathogens. Even though most pathogens form biofilms, little is known about how MDR plasmids persist and evolve in biofilms. We hypothesize that (i) biofilms act as refugia of MDR plasmids by retaining them in the absence of antibiotics longer than well-mixed planktonic populations and that (ii) the evolutionary trajectories that account for the improvement of plasmid persistence over time differ between biofilms and planktonic populations. In this study, we evolved Acinetobacter baumannii with an MDR plasmid in biofilm and planktonic populations with and without antibiotic selection. In the absence of selection, biofilm populations were better able to maintain the MDR plasmid than planktonic populations. In planktonic populations, plasmid persistence improved rapidly but was accompanied by a loss of genes required for the horizontal transfer of plasmids. In contrast, in biofilms, most plasmids retained their transfer genes, but on average, plasmid, persistence improved less over time. Our results showed that biofilms can act as refugia of MDR plasmids and favor the horizontal mode of plasmid transfer, which has important implications for the spread of MDR.
Collapse
|
33
|
Illuminating the signalomics of microbial biofilm on plant surfaces. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Brigmon MM, Brigmon RL. Infectious Diseases Impact on Biomedical Devices and Materials. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2022; 1:1-8. [PMID: 38625309 PMCID: PMC9616421 DOI: 10.1007/s44174-022-00035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Infectious diseases and nosocomial infections may play a significant role in healthcare issues associated with biomedical materials and devices. Many current polymer materials employed are inadequate for resisting microbial growth. The increase in microbial antibiotic resistance is also a factor in problematic biomedical implants. In this work, the difficulty in diagnosing biomedical device-related infections is reviewed and how this leads to an increase in microbial antibiotic resistance. A conceptualization of device-related infection pathogenesis and current and future treatments is made. Within this conceptualization, we focus specifically on biofilm formation and the role of host immune and antimicrobial therapies. Using this framework, we describe how current and developing preventative strategies target infectious disease. In light of the significant increase in antimicrobial resistance, we also emphasize the need for parallel development of improved treatment strategies. We also review potential production methods for manufacturing specific nanostructured materials with antimicrobial functionality for implantable devices. Specific examples of both preventative and novel treatments and how they align with the improved care with biomedical devices are described.
Collapse
Affiliation(s)
- Matthew M. Brigmon
- Department of Infectious Diseases and Pulmonary Critical Care, Long School of Medicine, UT Health San Antonio, San Antonio, USA
| | - Robin L. Brigmon
- Savannah River National Laboratory, Bldg 999W, Aiken, SC 29808 USA
| |
Collapse
|
35
|
Haudiquet M, de Sousa JM, Touchon M, Rocha EPC. Selfish, promiscuous and sometimes useful: how mobile genetic elements drive horizontal gene transfer in microbial populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210234. [PMID: 35989606 PMCID: PMC9393566 DOI: 10.1098/rstb.2021.0234] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Horizontal gene transfer (HGT) drives microbial adaptation but is often under the control of mobile genetic elements (MGEs) whose interests are not necessarily aligned with those of their hosts. In general, transfer is costly to the donor cell while potentially beneficial to the recipients. The diversity and plasticity of cell–MGEs interactions, and those among MGEs, result in complex evolutionary processes where the source, or even the existence of selection for maintaining a function in the genome, is often unclear. For example, MGE-driven HGT depends on cell envelope structures and defense systems, but many of these are transferred by MGEs themselves. MGEs can spur periods of intense gene transfer by increasing their own rates of horizontal transmission upon communicating, eavesdropping, or sensing the environment and the host physiology. This may result in high-frequency transfer of host genes unrelated to the MGE. Here, we review how MGEs drive HGT and how their transfer mechanisms, selective pressures and genomic traits affect gene flow, and therefore adaptation, in microbial populations. The encoding of many adaptive niche-defining microbial traits in MGEs means that intragenomic conflicts and alliances between cells and their MGEs are key to microbial functional diversification. This article is part of a discussion meeting issue ‘Genomic population structures of microbial pathogens’.
Collapse
Affiliation(s)
- Matthieu Haudiquet
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Jorge Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Marie Touchon
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
36
|
Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022; 20:621-635. [PMID: 35115704 DOI: 10.1038/s41579-022-00682-4] [Citation(s) in RCA: 486] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chronic infections caused by microbial biofilms represent an important clinical challenge. The recalcitrance of microbial biofilms to antimicrobials and to the immune system is a major cause of persistence and clinical recurrence of these infections. In this Review, we present the extent of the clinical problem, and the mechanisms underlying the tolerance of biofilms to antibiotics and to host responses. We also explore the role of biofilms in the development of antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claus Moser
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
37
|
Abstract
The transfer of mobile genetic elements between bacteria is the main cause of the spread of antibiotic resistance genes. While biofilms are the predominant bacterial lifestyle both in the environment and in clinical settings, their impact on the propagation of mobile genetic elements is still poorly understood.
Collapse
|
38
|
Li P, Wan P, Zhao R, Chen J, Li X, Li J, Xiong W, Zeng Z. Targeted Elimination of bla NDM-5 Gene in Escherichia coli by Conjugative CRISPR-Cas9 System. Infect Drug Resist 2022; 15:1707-1716. [PMID: 35422639 PMCID: PMC9004731 DOI: 10.2147/idr.s357470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Plasmid-borne carbapenem resistance gene bla NDM-5 accelerates the dissemination of carbapenem-resistant Enterobacteriaceae. To efficiently eliminate the bla NDM-5-harboring plasmid and sensitize the antibiotic-resistant bacteria to meropenem, we used the CRISPR-Cas9 system for combating the carbapenem-resistant Escherichia coli (E. coil). Methods A series of CRISPR-Cas9 plasmids was constructed, and specific guide RNAs(sgRNA) were designed to target the bla NDM-5 gene. We used chemically transformation or conjugation delivery methods, and the elimination efficiency in each recipient strains was evaluated by plate counting, PCR and quantitative real-time PCR (qPCR). Antimicrobial susceptibility test was carried out by using the broth microdilution method. In addition, we assessed the effect of the CRISPR-Cas9 system of adaptive immunity on the prevention of the exogenous resistant plasmids pNDM-5 by introducing the system into E coli J53. Results The results showed that pCas9, pCas9-oriT and pBAD-Cas9-oriT can effectively eliminate bla NDM-5 in E. coli with >94.00% elimination efficiency. The bla NDM-5-harboring E. coli successfully restored their susceptibility to meropenem, with eight-fold reduction of minimum inhibitory concentration (MIC) values (from 16 µg/mL to 0.06 µg/mL). The E. coli J53 strain containing plasmid pCas9-N reduced the number of transconjugants by 26-fold. Conclusion The CRISPR-Cas9 system achieved plasmid clearance and simultaneous re-sensitization to meropenem in E. coli. The CRISPR-Cas9 system could block the horizontal transfer of plasmid pNDM-5. The conjugative delivery of CRISPR-Cas9 provides a new tool for the removal of resistance plasmids and sensitize the recipient to carbapenem. It provides a therapeutic approach to counteract the propagation of bla NDM-5 gene among clinical pathogens.
Collapse
Affiliation(s)
- Peisi Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Ruonan Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Jin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, People’s Republic of China
| |
Collapse
|
39
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
40
|
Saraiva MMS, Silva NMV, Ferreira VA, Moreira Filho ALB, Givisiez PEN, Freitas Neto OC, Berchieri Júnior A, Gebreyes WA, Oliveira CJB. Residual concentrations of antimicrobial growth promoters in poultry litter favour plasmid conjugation among Escherichia coli. Lett Appl Microbiol 2022; 74:831-838. [PMID: 35138674 DOI: 10.1111/lam.13671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Considering that plasmid conjugation is a major driver for the dissemination of antimicrobial resistance in bacteria, this study aimed to investigate the effects of residual concentrations of antimicrobial growth promoters (AGPs) in poultry litter on the frequencies of IncFII-FIB plasmid conjugation among Escherichia coli organisms. A 2x5 factorial trial was performed in vitro, using two types of litter materials (sugarcane bagasse and wood shavings) and five treatments of litter: non-treated (CON), herbal alkaloid sanguinarine (SANG), and AGPs monensin (MON), lincomycin (LCM), and virginiamycin (VIR). E. coli H2332 and E. coli J62 were used as donor and recipient strains, respectively.The presence of residues of monensin, lincomycin and virginiamycin increased the frequency of plasmid conjugation among E. coli in both types of litter materials. On the contrary, sanguinarine significantly reduced the frequency of conjugation among E. coli in sugarcane bagasse litter. The conjugation frequencies were significantly higher in wood shavings compared to sugarcane bagasse only in the presence of AGPs. Considering that the presence of AGPs in the litter can increase the conjugation of IncFII-FIB plasmids carrying antimicrobial resistance genes, the real impact of this phenomenon on the dissemination of antimicrobial resistant bacteria in the poultry production chain must be investigated.
Collapse
Affiliation(s)
- M M S Saraiva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil.,Department of Pathology, Theriogenology and One Health, Laboratory of Ornithopathology, São Paulo State University (FCAV/Unesp), Jaboticabal, SP, Brazil
| | - N M V Silva
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil.,Instituto Federal do Sertão Pernambucano - Campus Petrolina
| | - V A Ferreira
- Department of Pathology, Theriogenology and One Health, Laboratory of Ornithopathology, São Paulo State University (FCAV/Unesp), Jaboticabal, SP, Brazil
| | - A L B Moreira Filho
- Department of Animal Science, Center for Human, Social and Agricultural Sciences, Federal University of Paraiba (CCHSA/UFPB), Bananeiras, PB, Brazil
| | - P E N Givisiez
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - O C Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - A Berchieri Júnior
- Department of Pathology, Theriogenology and One Health, Laboratory of Ornithopathology, São Paulo State University (FCAV/Unesp), Jaboticabal, SP, Brazil
| | - W A Gebreyes
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,Global One health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| | - C J B Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil.,Global One health initiative (GOHi), The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Billane K, Harrison E, Cameron D, Brockhurst MA. Why do plasmids manipulate the expression of bacterial phenotypes? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200461. [PMID: 34839708 PMCID: PMC8628079 DOI: 10.1098/rstb.2020.0461] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conjugative plasmids play an important role in bacterial evolution by transferring niche-adaptive traits between lineages, thus driving adaptation and genome diversification. It is increasingly clear, however, that in addition to this evolutionary role, plasmids also manipulate the expression of a broad range of bacterial phenotypes. In this review, we argue that the effects that plasmids have on the expression of bacterial phenotypes may often represent plasmid adaptations, rather than mere deleterious side effects. We begin by summarizing findings from untargeted omics analyses, which give a picture of the global effects of plasmid acquisition on host cells. Thereafter, because many plasmids are capable of both vertical and horizontal transmission, we distinguish plasmid-mediated phenotypic effects into two main classes based upon their potential fitness benefit to plasmids: (i) those that promote the competitiveness of the host cell in a given niche and thereby increase plasmid vertical transmission, and (ii) those that promote plasmid conjugation and thereby increase plasmid horizontal transmission. Far from being mere vehicles for gene exchange, we propose that plasmids often act as sophisticated genetic parasites capable of manipulating their bacterial hosts for their own benefit. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- Kathryn Billane
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Duncan Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michael A Brockhurst
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
42
|
Bornemann TLV, Adam PS, Turzynski V, Schreiber U, Figueroa-Gonzalez PA, Rahlff J, Köster D, Schmidt TC, Schunk R, Krauthausen B, Probst AJ. Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing. Nat Commun 2022; 13:284. [PMID: 35022403 PMCID: PMC8755723 DOI: 10.1038/s41467-021-27783-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Earth’s mantle releases 38.7 ± 2.9 Tg/yr CO2 along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere. Geological degassing can impact subsurface metabolism. Here, the authors describe microbial communities from a cold-water geyser are described and compared with other deep subsurface sites, finding a key role for an uncultivated archaeon.
Collapse
Affiliation(s)
- Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Victoria Turzynski
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Ulrich Schreiber
- Department of Geology, University Duisburg-Essen, Essen, Germany
| | | | - Janina Rahlff
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.,Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linneaus University, Kalmar, Sweden
| | - Daniel Köster
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.,Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany
| | | | - Bernhard Krauthausen
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany. .,Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany.
| |
Collapse
|
43
|
Subroto E, van Neer J, Valdes I, de Cock H. Growth of Aspergillus fumigatus in Biofilms in Comparison to Candida albicans. J Fungi (Basel) 2022; 8:48. [PMID: 35049988 PMCID: PMC8779434 DOI: 10.3390/jof8010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Biofilm formation during infections with the opportunistic pathogen Aspergillus fumigatus can be very problematic in clinical settings, since it provides the fungal cells with a protective environment. Resistance against drug treatments, immune recognition as well as adaptation to the host environment allows fungal survival in the host. The exact molecular mechanisms behind most processes in the formation of biofilms are unclear. In general, the formation of biofilms can be categorized roughly in a few stages; adhesion, conidial germination and development of hyphae, biofilm maturation and cell dispersion. Fungi in biofilms can adapt to the in-host environment. These adaptations can occur on a level of phenotypic plasticity via gene regulation. However, also more substantial genetic changes of the genome can result in increased resistance and adaptation in the host, enhancing the survival chances of fungi in biofilms. Most research has focused on the development of biofilms. However, to tackle developing microbial resistance and adaptation in biofilms, more insight in mechanisms behind genetic adaptations is required to predict which defense mechanisms can be expected. This can be helpful in the development of novel and more targeted antifungal treatments to combat fungal infections.
Collapse
Affiliation(s)
| | | | | | - Hans de Cock
- Molecular Microbiology Laboratory, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.); (J.v.N.); (I.V.)
| |
Collapse
|
44
|
Seidavi A, Tavakoli M, Asroosh F, Scanes CG, Abd El-Hack ME, Naiel MAE, Taha AE, Aleya L, El-Tarabily KA, Swelum AA. Antioxidant and antimicrobial activities of phytonutrients as antibiotic substitutes in poultry feed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5006-5031. [PMID: 34811612 DOI: 10.1007/s11356-021-17401-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Globally, there is increasing demand for safe poultry food products free from antibiotic residues. There is thus a need to develop alternatives to antibiotics with safe nutritional feed derivatives that maximize performance, promote the intestinal immune status, enrich beneficial microbiota, promote health, and reduce the adverse effects of pathogenic infectious microorganisms. With the move away from including antibiotics in poultry diets, botanicals are among the most important alternatives to antibiotics. Some botanicals such as fennel, garlic, oregano, mint, and rosemary have been reported to increase the poultry's growth rate and/or feed to gain ratio. Botanicals' role is assumed to be mediated by improved immune responses and/or shifts in the microbial population in the intestine, with the elimination of pathogenic species. In addition, modulation of the gut microbiota resulted in various physiological and immunological responses and promoted beneficial bacterial strains that led to a healthy gut. There is thus a need to understand the relationship between poultry diets supplemented with botanicals and good health of the entire gastrointestinal tract if we intend to use these natural products to promote general health status and production. This current review provides an overview of current knowledge about certain botanicals that improve poultry productivity by modulating intestinal health and reducing the negative impacts of numerous pathogenic bacteria. This review also describes the efficacy, negative effects, and modes of action of some common herbal plants applied in poultry as alternatives to reduce the use of antibiotics.
Collapse
Affiliation(s)
- Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Masoomeh Tavakoli
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Fariborz Asroosh
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Colin G Scanes
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| |
Collapse
|
45
|
Mahto KU, Kumari S, Das S. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol 2021; 57:305-332. [PMID: 34937434 DOI: 10.1080/10409238.2021.2015747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilms are assemblages of bacteria embedded within a matrix of extracellular polymeric substances (EPS) attached to a substratum. The process of biofilm formation is a complex phenomenon regulated by the intracellular and intercellular signaling systems. Various secondary messenger molecules such as cyclic dimeric guanosine 3',5'-monophosphate (c-di-GMP), cyclic adenosine 3',5'-monophosphate (cAMP), and cyclic dimeric adenosine 3',5'-monophosphate (c-di-AMP) are involved in complex signaling networks to regulate biofilm development in several bacteria. Moreover, the cell to cell communication system known as Quorum Sensing (QS) also regulates biofilm formation via diverse mechanisms in various bacterial species. Bacteria often switch to the biofilm lifestyle in the presence of toxic pollutants to improve their survivability. Bacteria within a biofilm possess several advantages with regard to the degradation of harmful pollutants, such as increased protection within the biofilm to resist the toxic pollutants, synthesis of extracellular polymeric substances (EPS) that helps in the sequestration of pollutants, elevated catabolic gene expression within the biofilm microenvironment, higher cell density possessing a large pool of genetic resources, adhesion ability to a wide range of substrata, and metabolic heterogeneity. Therefore, a comprehensive account of the various factors regulating biofilm development would provide valuable insights to modulate biofilm formation for improved bioremediation practices. This review summarizes the complex regulatory networks that influence biofilm development in bacteria, with a major focus on the applications of bacterial biofilms for environmental restoration.
Collapse
Affiliation(s)
- Kumari Uma Mahto
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Swetambari Kumari
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| | - Surajit Das
- Department of Life Science, Laboratory of Environmental Microbiology and Ecology (LEnME), National Institute of Technology, Odisha, India
| |
Collapse
|
46
|
Patel M, Siddiqui AJ, Hamadou WS, Surti M, Awadelkareem AM, Ashraf SA, Alreshidi M, Snoussi M, Rizvi SMD, Bardakci F, Jamal A, Sachidanandan M, Adnan M. Inhibition of Bacterial Adhesion and Antibiofilm Activities of a Glycolipid Biosurfactant from Lactobacillus rhamnosus with Its Physicochemical and Functional Properties. Antibiotics (Basel) 2021; 10:1546. [PMID: 34943758 PMCID: PMC8698754 DOI: 10.3390/antibiotics10121546] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
Biosurfactants derived from different microbes are an alternative to chemical surfactants, which have broad applications in food, oil, biodegradation, cosmetic, agriculture, pesticide and medicine/pharmaceutical industries. This is due to their environmentally friendly, biocompatible, biodegradable, effectiveness to work under various environmental conditions and non-toxic nature. Lactic acid bacteria (LAB)-derived glycolipid biosurfactants can play a major role in preventing bacterial attachment, biofilm eradication and related infections in various clinical settings and industries. Hence, it is important to explore and identify the novel molecule/method for the treatment of biofilms of pathogenic bacteria. In the present study, a probiotic Lactobacillus rhamnosus (L. rhamnosus) strain was isolated from human breast milk. Firstly, its ability to produce biosurfactants, and its physicochemical and functional properties (critical micelle concentration (CMC), reduction in surface tension, emulsification index (% EI24), etc.) were evaluated. Secondly, inhibition of bacterial adhesion and biofilm eradication by cell-bound biosurfactants from L. rhamnosus was performed against various biofilm-forming pathogens (B. subtilis, P. aeruginosa, S. aureus and E. coli). Finally, bacterial cell damage, viability of cells within the biofilm, exopolysaccharide (EPS) production and identification of the structural analogues of the crude biosurfactant via gas chromatography-mass spectrometry (GC-MS) analysis were also evaluated. As a result, L. rhamnosus was found to produce 4.32 ± 0.19 g/L biosurfactant that displayed a CMC of 3.0 g/L and reduced the surface tension from 71.12 ± 0.73 mN/m to 41.76 ± 0.60 mN/m. L. rhamnosus cell-bound crude biosurfactant was found to be effective against all the tested bacterial pathogens. It displayed potent anti-adhesion and antibiofilm ability by inhibiting the bacterial attachment to surfaces, leading to the disruption of biofilm formation by altering the integrity and viability of bacterial cells within biofilms. Our results also confirm the ability of the L. rhamnosus cell-bound-derived biosurfactant to damage the architecture of the biofilm matrix, as a result of the reduced total EPS content. Our findings may be further explored as a green alternative/approach to chemically synthesized toxic antibiofilm agents for controlling bacterial adhesion and biofilm eradication.
Collapse
Affiliation(s)
- Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Malvi Surti
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India; (M.P.); (M.S.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.M.A.); (S.A.A.)
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.A.); (M.S.); (F.B.); (A.J.)
| |
Collapse
|
47
|
Sentenac H, Loyau A, Leflaive J, Schmeller DS. The significance of biofilms to human, animal, plant and ecosystem health. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hugo Sentenac
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
- Department of Experimental Limnology Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin Germany
| | - Joséphine Leflaive
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| | - Dirk S. Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement UMR 5245 Université de Toulouse CNRS INPT UPS Castanet‐Tolosan Cedex France
| |
Collapse
|
48
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
49
|
Ma L, Konkel ME, Lu X. Antimicrobial Resistance Gene Transfer from Campylobacter jejuni in Mono- and Dual-Species Biofilms. Appl Environ Microbiol 2021; 87:e0065921. [PMID: 33990313 PMCID: PMC8276811 DOI: 10.1128/aem.00659-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) is a driving force for the dissemination of antimicrobial resistance (AMR) genes among Campylobacter jejuni organisms, a leading cause of foodborne gastroenteritis worldwide. Although HGT is well documented for C. jejuni planktonic cells, the role of C. jejuni biofilms in AMR spread that likely occurs in the environment is poorly understood. Here, we developed a cocultivation model to investigate the HGT of chromosomally encoded AMR genes between two C. jejuni F38011 AMR mutants in biofilms. Compared to planktonic cells, C. jejuni biofilms significantly promoted HGT (P < 0.05), resulting in an increase of HGT frequencies by up to 17.5-fold. Dynamic study revealed that HGT in biofilms increased at the early stage (i.e., from 24 h to 48 h) and remained stable during 48 to 72 h. Biofilms continuously released the HGT mutants into supernatant culture, indicating spontaneous dissemination of AMR to broader niches. DNase I treatment confirmed the role of natural transformation in genetic exchange. HGT was not associated with biofilm biomass, cell density, or bacterial metabolic activity, whereas the presence of extracellular DNA was negatively correlated with the altered HGT frequencies. HGT in biofilms also had a strain-to-strain variation. A synergistic HGT effect was observed between C. jejuni with different genomic backgrounds (i.e., C. jejuni NCTC 11168 chloramphenicol-resistant strain and F38011 kanamycin-resistant strain). C. jejuni performed HGT at the frequency of 10-7 in Escherichia coli-C. jejuni biofilms, while HGT was not detectable in Salmonella enterica-C. jejuni biofilms. IMPORTANCE Antimicrobial-resistant C. jejuni has been listed as a high priority of public health concern worldwide. To tackle the rapid evolution of AMR in C. jejuni, it is of great importance to understand the extent and characteristics of HGT in C. jejuni biofilms, which serve as the main survival strategy of this microbe in the farm-to-table continuum. In this study, we demonstrated that biofilms significantly enhanced HGT compared to the planktonic state (P < 0.05). Biofilm cultivation time and extracellular DNA (eDNA) amount were related to varied HGT frequencies. C. jejuni could spread AMR genes in both monospecies and dual-species biofilms, mimicking the survival mode of C. jejuni in food chains. These findings indicated that the risk and extent of AMR transmission among C. jejuni organisms have been underestimated, as previous HGT studies mainly focused on the planktonic state. Future AMR controlling measures can target biofilms and their main component eDNA.
Collapse
Affiliation(s)
- Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E. Konkel
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Quebec, Canada
| |
Collapse
|
50
|
Abstract
Bacteria acquire novel DNA through horizontal gene transfer (HGT), a process that enables an organism to rapidly adapt to changing environmental conditions, provides a competitive edge and potentially alters its relationship with its host. Although the HGT process is routinely exploited in laboratories, there is a surprising disconnect between what we know from laboratory experiments and what we know from natural environments, such as the human gut microbiome. Owing to a suite of newly available computational algorithms and experimental approaches, we have a broader understanding of the genes that are being transferred and are starting to understand the ecology of HGT in natural microbial communities. This Review focuses on these new technologies, the questions they can address and their limitations. As these methods are applied more broadly, we are beginning to recognize the full extent of HGT possible within a microbiome and the punctuated dynamics of HGT, specifically in response to external stimuli. Furthermore, we are better characterizing the complex selective pressures on mobile genetic elements and the mechanisms by which they interact with the bacterial host genome.
Collapse
Affiliation(s)
- Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|