1
|
Sammarro Silva KJ, Sabogal-Paz LP. Analytical challenges and perspectives of assessing viability of Giardia muris cysts and Cryptosporidium parvum oocysts by live/dead simultaneous staining. ENVIRONMENTAL TECHNOLOGY 2022; 43:60-69. [PMID: 32463712 DOI: 10.1080/09593330.2020.1775712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Giardia and Cryptosporidium are pathogenic protozoa often present in the environment in their infective form(cysts and oocysts). These parasites are very resistant to disinfection, which makes them important target organisms in environmental quality monitoring and sanitation. Viability assessment provides an interpretation of cell inactivation, and it can be evaluated by membrane integrity as well as enzyme activity, using different staining methods. These are straightforward and adequate to laboratories that lack infrastructure for molecular-based technologies or animal infectivity tests. This study investigated simultaneous staining by a commercial live/dead kit, in order to assess viability of Cryptosporidium parvum oocysts and Giardia muris cysts, comparing it to propidium iodide (PI) incorporation, a common stain applied in viability estimation. Results suggested that, although the central hypothesis of one-panel visualization (α = 0.05) was met, simultaneous staining impaired (oo)cyst detection by immunofluorescence assay (IFA), which was found to be essential to enumeration, as the live/dead test led to poor (oo)cyst labelling or a 10-fold lower recovery when carried out concomitantly to IFA. As for the viability assessment itself, although red dye uptake occurred as expected by dead or weakened organisms, neither live G. muris cysts or C. parvum oocysts present any green fluorescence by esterase metabolism. This may have been caused by low enzyme activity in the infective form and/or wall thickness of these parasites. The results do not exclude the possibility of simultaneous fluorescence staining for protozoa, but it is a starting point for a broader analysis, that may consider, for instance, different incubation conditions.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
2
|
Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research. Microorganisms 2020; 8:microorganisms8091440. [PMID: 32962237 PMCID: PMC7563294 DOI: 10.3390/microorganisms8091440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
The clinical manifestation of leishmaniases depends on parasite species, host genetic background, and immune response. Manifestations of human leishmaniases are highly variable, ranging from self-healing skin lesions to fatal visceral disease. The scope of standard model hosts is insufficient to mimic well the wide disease spectrum, which compels the introduction of new model animals for leishmaniasis research. In this article, we study the susceptibility of three Asian rodent species (Cricetulus griseus, Lagurus lagurus, and Phodopus sungorus) to Leishmania major and L. donovani. The external manifestation of the disease, distribution, as well as load of parasites and infectiousness to natural sand fly vectors, were compared with standard models, BALB/c mice and Mesocricetus auratus. No significant differences were found in disease outcomes in animals inoculated with sand fly- or culture-derived parasites. All Asian rodent species were highly susceptible to L. major. Phodopus sungorus showed the non-healing phenotype with the progressive growth of ulcerative lesions and massive parasite loads. Lagurus lagurus and C. griseus represented the healing phenotype, the latter with high infectiousness to vectors, mimicking best the character of natural reservoir hosts. Both, L. lagurus and C. griseus were also highly susceptible to L. donovani, having wider parasite distribution and higher parasite loads and infectiousness than standard model animals.
Collapse
|
3
|
Takahashi K, Matsubayashi M, Ohashi Y, Naohara J, Urakami I, Sasai K, Kido Y, Kaneko A, Teramoto I. Efficacy of ultraviolet light-emitting diodes (UV-LED) at four different peak wavelengths against Cryptosporidium parvum oocysts by inactivation assay using immunodeficient mice. Parasitol Int 2020; 77:102108. [PMID: 32224132 DOI: 10.1016/j.parint.2020.102108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 03/22/2020] [Indexed: 11/26/2022]
Abstract
As an alternative to using ultraviolet (UV) lamps, which are made with mercury that is toxic to the environment and human health, UV light-emitting diodes (UV-LEDs) are expected to be effective for inactivating microorganisms in water. Although UV-LEDs have been reported to be effective against bacteria and viruses, the effectiveness of UV-LEDs against Cryptosporidium parasites has not been fully evaluated. As we report here, we have developed an in vivo quantitative inactivation assay for C. parvum oocysts using immunodeficient mice. Using the assay, we evaluated the effectiveness of treatment by UV lamp (254 nm) at approximately 1000 μJ/cm2 (for 3 s at a distance of 95 mm) compared to inactivation by commercially available UV-LEDs (with peak wavelengths of 268, 275, 284, and 289 nm). The shed patterns of oocysts after treatment with 284- and 289-nm wavelength UV-LEDs were significantly delayed compared to that after treatment with a UV lamp. These findings provide the first suggestion that UV-LEDs are effective against these parasites, as assessed using commercially available 350-mA UV-LEDs under conditions of fixed exposure distance and time.
Collapse
Affiliation(s)
- Karin Takahashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Makoto Matsubayashi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; Asian Health Science Research Institute, Osaka Prefecture University, Osaka 598-8531, Japan; Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia..
| | - Yukio Ohashi
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, Okayama 700-0005, Japan
| | - Jun Naohara
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, Okayama 700-0005, Japan
| | | | - Kazumi Sasai
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan; Asian Health Science Research Institute, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Yasutoshi Kido
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Akira Kaneko
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; Department of Parasitology and Research Centre for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Isao Teramoto
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
4
|
Kong FE, Deighton MA, Thurbon NA, Smith SR, Rouch DA. Cryptosporidium parvum decay during air drying and stockpiling of mesophilic anaerobically digested sewage sludge in a simulation experiment and oocyst counts in sludge collected from operational treatment lagoons in Victoria, Australia. JOURNAL OF WATER AND HEALTH 2018; 16:435-448. [PMID: 29952332 DOI: 10.2166/wh.2018.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The inactivation of Cryptosporidium species oocysts during sewage sludge treatment is important to protect human health when the residual biosolids are applied to agricultural land. Quantifying the decay of Cryptosporidium species during sludge treatment for microbiological assurance purposes is difficult if low numbers are present in wastewater. The rate of decay of Cryptosporidium parvum oocysts during solar/air drying treatment and in sludge stockpiles in temperate environment conditions was simulated in laboratory inoculation experiments using sludge sampled from a mesophilic anaerobic digester. Oocyst numbers were also determined in settled lagoon sludge samples collected from three operational rural wastewater treatment plants (WWTPs). C. parvum oocysts were enumerated by immunomagnetic separation followed by staining with vital dyes and examination by confocal laser scanning microscopy. An air-drying/storage period equivalent to 11 weeks was required for a 1 log10 reduction of viable oocysts inoculated into digested sludge. Oocyst viability in air-dried and stored digested sludge decreased with time, but was independent of sludge desiccation and dry solids (DS) content. No oocysts were detected in sludge samples collected from the anaerobic digester, and the average concentration of oocysts found in settled lagoon sludge from the rural WWTP was 4.6 × 102 oocysts/g DS.
Collapse
Affiliation(s)
- Frederic E Kong
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Margaret A Deighton
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Nerida A Thurbon
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Stephen R Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Duncan A Rouch
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| |
Collapse
|
5
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
6
|
Shatilovich A, Stoupin D, Rivkina E. Ciliates from ancient permafrost: Assessment of cold resistance of the resting cysts. Eur J Protistol 2015; 51:230-40. [DOI: 10.1016/j.ejop.2015.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 03/07/2015] [Accepted: 04/03/2015] [Indexed: 11/15/2022]
|
7
|
Santos SRD, Branco N, Franco RMB, Paterniani JES, Katsumata M, Barlow PW, de Mello Gallep C. Fluorescence decay of dyed protozoa: differences between stressed and non-stressed cysts. LUMINESCENCE 2015; 30:1139-47. [DOI: 10.1002/bio.2872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 01/05/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Samuel Ricardo dos Santos
- School of Technology; University of Campinas/Limeira; SP Brazil
- School of Agricultural Engineering; University of Campinas/Campinas; SP Brazil
| | - Nilson Branco
- Biology Institute; University of Campinas/Campinas; SP Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Varughese EA, Bennett-Stamper CL, Wymer LJ, Yadav JS. A new in vitro model using small intestinal epithelial cells to enhance infection of Cryptosporidium parvum. J Microbiol Methods 2014; 106:47-54. [PMID: 25072838 DOI: 10.1016/j.mimet.2014.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 02/04/2023]
Abstract
To better understand and study the infection of the protozoan parasite Cryptosporidium parvum, a more sensitive in vitro assay is required. In vivo, this parasite infects the epithelial cells of the microvilli layer in the small intestine. While cell infection models using colon, kidney, and stomach cells have been studied to understand the infectivity potential of the oocysts, an ideal in vitro model would be readily-available, human-derived, and originating from the small intestine. In this study, we developed a reproducible, quantitative infection model using a non-carcinoma, human small intestinal epithelial cell type, named FHs 74 Int. Our results show that FHs 74 Int cells are productively infected by viable oocysts, and exhibit higher levels of infection susceptibility compared to other cell types. Moreover, infection rate of the sporozoites on the monolayer was found to be comparable or better than other cell types. We furthermore demonstrate that infection can be improved by 65% when pre-treated oocysts are directly inoculated on cells, compared to inoculation of excysted sporozoites on cells. Identification of a better infection model, which captures the preferred site of infection in humans, will facilitate studies on the host pathogenesis mechanisms of this important parasitic human pathogen.
Collapse
Affiliation(s)
- Eunice A Varughese
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; United States Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, USA.
| | - Christina L Bennett-Stamper
- United States Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH 45268, USA
| | - Larry J Wymer
- United States Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH 45268, USA
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
9
|
Liang Z, Keeley A. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples. WATER RESEARCH 2012; 46:5941-5953. [PMID: 22980572 DOI: 10.1016/j.watres.2012.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/02/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
Purified oocysts of Cryptosporidium parvum were used to evaluate the applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-qPCR heat induced hsp70 mRNA in water samples spiked with oocysts. Changes in viability of flow cytometry sorted fresh and oocysts having undergone various aging periods (up to 48 months at 4 °C) were evaluated by Ct values obtained from the qPCR before and after disinfection scenarios involving ammonia or hydrogen peroxide. Both qPCR methods achieved stability in dose dependent responses by hydrogen peroxide treatment in distilled water that proved their suitability for the viability evaluations. Oocysts exposed to 3% hydrogen peroxide were inactivated at a rate of 0.26 h(-1) and 0.93 h(-1), as measured by the mRNA assay and the PMA-DNA assay, respectively. In contrast, the PMA-DNA assay was not as sensitive as the mRNA assay in detecting viability alterations followed by exposure to ammonia or after a long-term storage in 4 °C in distilled water since no dose response dependency was achieved. Surface water concentrates containing enhanced suspendable solids determined that changes in viability were frequently detected only by the mRNA method. Failure of, or inconsistency in the detection of oocysts viability with the PMA-DNA method, apparently resulted from solids that might have reduced light penetration through the samples, and thus inhibited the cross-linking step of PMA-DNA assay.
Collapse
Affiliation(s)
- Zhanbei Liang
- National Research Council, 919 Kerr Research Drive, Ada, OK 74820, USA
| | | |
Collapse
|
10
|
Kothavade RJ. Potential molecular tools for assessing the public health risk associated with waterborne Cryptosporidium oocysts. J Med Microbiol 2012; 61:1039-1051. [DOI: 10.1099/jmm.0.043158-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
DUHAIN GLMC, MINNAAR A, BUYS EM. Effect of Chlorine, Blanching, Freezing, and Microwave Heating on Cryptosporidium parvum Viability Inoculated on Green Peppers. J Food Prot 2012; 75:936-41. [DOI: 10.4315/0362-028x.jfp-11-367] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryptosporidium parvum oocysts have been found on the surface of vegetables in both developed and developing countries. C. parvum can contaminate vegetables via various routes, including irrigation water. This study investigated the effect of individual treatments of chlorine, blanching, blast freezing, and microwave heating, as well as combined treatments of chlorine and freezing, and chlorine and microwave heating on the viability of C. parvum oocysts inoculated on green peppers. The viability of the oocysts after the treatments was assessed using propidium iodide and a flow cytometer. Based on the propidium iodide staining, the chlorine treatments did not affect the viability of the oocysts. Blast freezing significantly inactivated 20% of the oocysts. Microwave heating and blanching significantly inactivated 93% of oocysts. Treatment with chlorine followed by blast freezing did not affect the viability of the oocysts significantly. Treatment with chlorine and microwave heating was significantly more effective than microwave heating alone and inactivated 98% of the oocysts. The study indicates that C. parvum oocysts are sensitive to heat and, to some extent, to blast freezing, but are resistant to chlorine. Therefore, the use of chlorine during vegetable processing is not a critical control point for C. parvum oocysts, and the consumption of raw or minimally processed vegetables may constitute a health risk as C. parvum oocysts can still be found viable on ready-to-eat, minimally processed vegetables.
Collapse
Affiliation(s)
- G. L. M. C. DUHAIN
- Department of Food Science, University of Pretoria, Pretoria, 0028, South Africa
| | - A. MINNAAR
- Department of Food Science, University of Pretoria, Pretoria, 0028, South Africa
| | - E. M. BUYS
- Department of Food Science, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
12
|
Detection of viable Cryptosporidium parvum in soil by reverse transcription-real-time PCR targeting hsp70 mRNA. Appl Environ Microbiol 2011; 77:6476-85. [PMID: 21803904 DOI: 10.1128/aem.00677-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraction of high-quality mRNA from Cryptosporidium parvum is a key step in PCR detection of viable oocysts in environmental samples. Current methods for monitoring oocysts are limited to water samples; therefore, the goal of this study was to develop a rapid and sensitive procedure for Cryptosporidium detection in soil samples. The efficiencies of five RNA extraction methods were compared (mRNA extraction with the Dynabeads mRNA Direct kit after chemical and physical sample treatments, and total RNA extraction methods using the FastRNA Pro Soil-Direct, PowerSoil Total RNA, E.Z.N.A. soil RNA, and Norgen soil RNA purification kits) for the direct detection of Cryptosporidium with oocyst-spiked sandy, loamy, and clay soils by using TaqMan reverse transcription-PCR. The study also evaluated the presence of inhibitors by synthesis and incorporation of an internal positive control (IPC) RNA into reverse transcription amplifications, used different facilitators (bovine serum albumin, yeast RNA, salmon DNA, skim milk powder, casein, polyvinylpyrrolidone, sodium hexametaphosphate, and Salmonella enterica serovar Typhi) to mitigate RNA binding on soil components, and applied various treatments (β-mercaptoethanol and bead beating) to inactivate RNase and ensure the complete lysis of oocysts. The results of spiking studies showed that Salmonella cells most efficiently relieved binding of RNA. With the inclusion of Salmonella during extraction, the most efficient mRNA method was Dynabeads, with a detection limit of 6 × 10(2) oocysts g(-1) of sandy soil. The most efficient total RNA method was PowerSoil, with detection limits of 1.5 × 10(2), 1.5 × 10(3), and 1.5 × 10(4) C. parvum oocysts g(-1) soil for sandy, loamy, and clay samples, respectively.
Collapse
|
13
|
Rechenberg DK, Thurnheer T, Zehnder M. Potential systematic error in laboratory experiments on microbial leakage through filled root canals: an experimental study. Int Endod J 2011; 44:827-35. [DOI: 10.1111/j.1365-2591.2011.01888.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection. Parasitology 2009; 136:393-9. [PMID: 19195413 DOI: 10.1017/s0031182009005563] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Species belonging to the genera Cryptosporidium are recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated with Cryptosporidium parvum oocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37-50 degrees C), on the excystation of C. parvum in the absence of other stimuli. In samples exposed to 40-48 degrees C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53.81% of excystation was obtained on exposure of the water to a temperature of 46 degrees C for 12 h (versus 8.80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19.38% versus 100%). The results demonstrate the important effect of the temperature on the excystation of C. parvum and therefore on its viability and infectivity.
Collapse
|
15
|
Monitoring of waterborne pathogens in surface waters in amsterdam, the Netherlands, and the potential health risk associated with exposure to cryptosporidium and giardia in these waters. Appl Environ Microbiol 2008; 74:2069-78. [PMID: 18281429 DOI: 10.1128/aem.01609-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The water in the canals and some recreational lakes in Amsterdam is microbiologically contaminated through the discharge of raw sewage from houseboats, sewage effluent, and dog and bird feces. Exposure to these waters may have negative health effects. During two successive 1-year study periods, the water quality in two canals (2003 to 2004) and five recreational lakes (2004 to 2005) in Amsterdam was tested with regard to the presence of fecal indicators and waterborne pathogens. According to Bathing Water Directive 2006/7/EC, based on Escherichia coli and intestinal enterococcus counts, water quality in the canals was poor but was classified as excellent in the recreational lakes. Campylobacter, Salmonella, Cryptosporidium, and Giardia were detected in the canals, as was rotavirus, norovirus, and enterovirus RNA. Low numbers of Cryptosporidium oocysts and Giardia cysts were detected in the recreational lakes, despite compliance with European bathing water legislation. The estimated risk of infection with Cryptosporidium and Giardia per exposure event ranged from 0.0002 to 0.007% and 0.04 to 0.2%, respectively, for occupational divers professionally exposed to canal water. The estimated risk of infection at exposure to incidental peak concentrations of Cryptosporidium and Giardia may be up to 0.01% and 1%, respectively, for people who accidentally swallow larger volumes of the canal water than the divers. Low levels of viable waterborne pathogens, such as Cryptosporidium and Giardia, pose a possible health risk from occupational, accidental, and recreational exposure to surface waters in Amsterdam.
Collapse
|
16
|
Lee SU, Joung M, Ahn MH, Huh S, Song H, Park WY, Yu JR. CP2 gene as a useful viability marker for Cryptosporidium parvum. Parasitol Res 2007; 102:381-7. [PMID: 18060431 DOI: 10.1007/s00436-007-0772-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The validity of the CP2 gene of Cryptosporidium parvum as a viability marker was evaluated using absolute quantitative real-time polymerase chain reaction (qPCR) assays. Total ribonucleic acid (RNA) was isolated from live and heat-killed C. parvum oocysts, and complementary deoxyribonucleic acid was synthesized and used as a template. The most accurate number of viable C. parvum oocysts was predicted when the CP2 gene was used as a target gene. The lower detection limit of the CP2 gene was ten oocysts, which was the most sensitive among examined target genes. With heat shock induction, only hsp70 messenger RNA (mRNA) was induced, and the predicted viable oocyst number was increased by heat shock for this marker. The CP2, hsp70, Cryptosporidium oocyst wall protein, and beta-tubulin mRNAs were not detected in heat-killed oocysts, but the 18S ribosomal ribonucleic acid (rRNA) showed heat stability until 48 h after heat killing. Although the 18S rRNA demonstrated the fastest response in crossing point (CP) value among the examined primer sets in qPCR, overestimation of viable oocysts was noted in the analysis with this gene. In conclusion, the CP2 gene was identified as the most sensitive, reliable, and accurate candidate of a viability marker of C. parvum by qPCR evaluation.
Collapse
Affiliation(s)
- Soo-Ung Lee
- Department of Environmental and Tropical Medicine, Konkuk University School of Medicine, Chungju 380-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen F, Huang K, Qin S, Zhao Y, Pan C. Comparison of viability and infectivity of Cryptosporidium parvum oocysts stored in potassium dichromate solution and chlorinated tap water. Vet Parasitol 2007; 150:13-7. [DOI: 10.1016/j.vetpar.2007.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/21/2007] [Accepted: 09/07/2007] [Indexed: 11/25/2022]
|
18
|
Meireles MV, Soares RM, dos Santos MMAB, Gennari SM. Biological studies and molecular characterization of a Cryptosporidium isolate from ostriches (Struthio camelus). J Parasitol 2006; 92:623-6. [PMID: 16884009 DOI: 10.1645/0022-3395(2006)92[623:bsamco]2.0.co;2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There are many reports of cryptosporidial infection in ostriches, but none with molecular characterization of the isolates. A study was undertaken for the characterization of a Brazilian Cryptosporidium sp. ostrich isolate by using molecular phylogenetic analysis of fragments of the 18S ribosomal DNA, heat-shock protein (hsp) 70 coding gene, and actin coding gene. Biological studies were accomplished by the experimental inoculation of chickens via oral or intratracheal routes with fresh ostrich Cryptosporidium sp. oocysts. Molecular analysis of nucleotide sequences of the 3 genes by using neighbor-joining and parsimony methods grouped the ostrich isolate as a sister taxon of Cryptosporidium baileyi and showed that the ostrich isolate is genetically distinct from all other known Cryptosporidium species or genotypes. None of the inoculated chickens developed infection as determined by mucosal smears, histology, and fecal screening for oocysts. Although biological and molecular studies indicate that the ostrich Cryptosporidium is a new species, further studies regarding morphological, biological, and molecular characteristics of other ostrich isolates are required to confirm the species status of the ostrich Cryptosporidium.
Collapse
|
19
|
Biswas K, Craik S, Smith DW, Belosevic M. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters. WATER RESEARCH 2005; 39:3167-76. [PMID: 16000207 DOI: 10.1016/j.watres.2005.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/07/2005] [Accepted: 05/21/2005] [Indexed: 05/03/2023]
Abstract
The effect of sequential exposure to ozone followed by monochloramine on inactivation of Cryptosporidium parvum oocysts suspended in untreated natural surface water from two different sources was studied in bench-scale batch reactors. Animal infectivity using neonatal CD-1 mice was used to measure oocyst inactivation. A statistically significant synergistic effect on oocyst inactivation was measured in both natural water samples studied. The magnitude of the effect measured in the natural water with lower turbidity, colour, and organic carbon concentration was comparable to that previously reported for oocysts suspended in buffered de-ionized water but was reduced considerably in the natural water with higher turbidity, colour and organic carbon concentration. Synergy increased with initial pH and with the degree of ozone pre-treatment but was independent of temperature. For water treatment plants with adequate disinfectant contact times, ozone followed by monochloramine may be a practical means of achieving additional C. parvum inactivation, however, the influence of water quality characteristics should be considered.
Collapse
Affiliation(s)
- Kaushik Biswas
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alta., Canada T6G 2W2
| | | | | | | |
Collapse
|
20
|
Betancourt WQ, Rose JB. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet Parasitol 2005; 126:219-34. [PMID: 15567586 DOI: 10.1016/j.vetpar.2004.09.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Major waterborne cryptosporidiosis and giardiasis outbreaks associated with contaminated drinking water have been linked to evidence of suboptimal treatment. Cryptosporidium parvum oocysts are particularly more resistant than Giardia lamblia cysts to removal and inactivation by conventional water treatment (coagulation, sedimentation, filtration and chlorine disinfection); therefore, extensive research has been focused on the optimization of treatment processes and application of new technologies to reduce concentrations of viable/infectious oocysts to a level that prevents disease. The majority of the data on the performance of treatment processes to remove cysts and oocysts from drinking water have been obtained from pilot-tests, with a few studies performed in full-scale conventional water treatment plants. These studies have demonstrated that protozoan cyst removal throughout all stages of the conventional treatment is largely influenced by the effectiveness of coagulation pretreatment, which along with clarification constitutes the first treatment barrier against protozoan breakthrough. Physical removal of waterborne Crytosporidium oocysts and Giardia cysts is ultimately achieved by properly functioning conventional filters, providing that effective pretreatment of the water is applied. Disinfection by chemical or physical methods is finally required to inactivate/remove the infectious life stages of these organisms. The effectiveness of conventional (chlorination) and alternative (chlorine dioxide, ozonation and ultra violet [UV] irradiation) disinfection procedures for inactivation of Cryptosporidium has been the focus of much research due to the recalcitrant nature of waterborne oocysts to disinfectants. This paper provides technical information on conventional and alternative drinking water treatment technologies for removal and inactivation of the protozoan parasites Cryptosporidium and Giardia.
Collapse
Affiliation(s)
- Walter Q Betancourt
- Department of Fisheries and Wildlife, 13 Natural Resources Building, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
21
|
Mariotte D, Comby E, Brasseur P, Ballet JJ. Kinetics of spleen and Peyer's patch lymphocyte populations during gut parasite clearing in Cryptosporidium parvum infected suckling mice. Parasite Immunol 2004; 26:1-6. [PMID: 15198640 DOI: 10.1111/j.0141-9838.2004.00676.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Data from experimental and human cryptosporidiosis have established a major role of specific immunity in the control of Cryptosporidium parvum infection. In this work, alterations in spleen and Peyer's patch (Pp) lymphocytes were investigated in the course of a spontaneously resolutive gut cryptosporidiosis in four-day-old suckling NMRI mice infected with either 4 x 10(5) or 30 viable oocysts. Oocysts from entire small intestines, and spleen and Pp lymphocytes were examined using flow cytometry from day 7 to day 27 post-infection. Compared to uninfected animals, a 3-5 fold increase in the numbers of spleen TCR alphabeta+, CD4+, CD8+, TCR gammadelta+ and CD45R/B220+ lymphocytes was observed on day 17 post-infection in heavily infected animals. In Pp, more than ten-fold increases were observed, except for TCR gammadelta+ lymphocytes. At termination of infection, i.e. on days 21-23 after ingestion of 4 x 105 oocysts, T and B lymphocytes decreased rapidly in both organs, and remained lower than in uninfected animals on days 19-23 post-infection. In mice infected with 30 oocysts, similar alterations were observed in Pp, but not in spleen. Data suggest that in normally developing mice, clearance of gut C. parvum infection is associated with an initial increase in systemic and local lymphocyte numbers, followed by their decrease to below control levels during the recovery phase.
Collapse
Affiliation(s)
- D Mariotte
- Laboratoire d'Immunologie et Immunopathologie, CHU-Clemenceau, Caen, France.
| | | | | | | |
Collapse
|
22
|
Biswas K, Craik S, Smith DW, Belosevic M. Synergistic inactivation of Cryptosporidium parvum using ozone followed by free chlorine in natural water. WATER RESEARCH 2003; 37:4737-4747. [PMID: 14568061 DOI: 10.1016/s0043-1354(03)00435-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synergistic effect of sequential exposure to ozone followed by free chlorine on inactivation of Cryptosporidium parvum oocysts suspended in natural waters was studied in bench-scale batch reactors. Animal infectivity using neonatal CD-1 mice was used to measure oocyst inactivation. The synergistic effect measured in two alkaline (pH 8.1) natural waters was statistically significant but was considerably smaller than previously reported in buffered de-ionized water at pH 6.0. Temperature, ozone primary treatment level, and water type did not have measurable impacts on the synergistic effect. Efforts to increase the synergistic effect by reducing the pH from 8 to 6 by acid addition were unsuccessful. In the two low alkalinity (pH 6.0) natural waters tested, the measured synergistic effect was greater than in the alkaline waters, but was still less than that measured previously in buffered de-ionized water. It was concluded that the synergistic effect reduction in the natural waters tested was due in part to alkalinity and in part to other unidentified water quality characteristics. Sequential treatment with ozone followed by free chlorine may only be a feasible strategy for achieving synergistic C. parvum inactivation credit for water treatment facilities with natural waters having a low pH (near 6.0).
Collapse
Affiliation(s)
- Kaushik Biswas
- Department of Civil and Environmental Engineering, University of Alberta, 304 Environomental Engineering Bldg. Edmonton, Alberta, Canada T6G 2G7
| | | | | | | |
Collapse
|
23
|
Craik SA, Smith DW, Chandrakanth M, Belosevic M. Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone. WATER RESEARCH 2003; 37:3622-3631. [PMID: 12867328 DOI: 10.1016/s0043-1354(03)00285-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Static mixers may be used to dissolve gaseous ozone in water treatment facilities in order to provide protection against the waterborne parasite Cryptosporidium parvum. The objective of this study was to determine the effect of a brief exposure to turbulent gas-liquid mixing conditions in a static mixer on inactivation of C. parvum oocysts by ozone. Inactivation measured in an ozone contacting apparatus that employed a static mixer for ozone dissolution was compared to predictions based on a previously published kinetic model of C. parvum inactivation by dissolved ozone in gently stirred batch reactors. Although initial contact in the static mixer had no immediate effect on the oocysts, a 20% increase in the rate of inactivation during subsequent contact with dissolved ozone was observed. Increasing the degree of turbulence within the static mixer did not yield additional inactivation. Use of static mixers for dissolution of ozone in drinking water treatment systems may provide limited enhancement of C. parvum inactivation by dissolved ozone.
Collapse
Affiliation(s)
- Stephen A Craik
- Department of Civil and Environmental Engineering, University of Alberta, Rm. 304 Environmental Engineering Building, Edmonton AB, Canada T6G 2M8.
| | | | | | | |
Collapse
|
24
|
Theron J, Cloete TE. Emerging waterborne infections: contributing factors, agents, and detection tools. Crit Rev Microbiol 2002; 28:1-26. [PMID: 12003038 DOI: 10.1080/1040-840291046669] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Because microorganisms are easily dispersed, display physiological diversity, and tolerate extreme conditions, they are ubiquitous and may contaminate and grow in water. The presence of waterborne enteric pathogens (bacteria, viruses, and protozoa) in domestic water supplies represents a potentially significant human health risk. Even though major outbreaks of waterborne disease are comparatively rare, there is substantial evidence that human enteric pathogens that are frequently present in domestic water supplies are responsible for low-level incidence of waterborne microbial disease. Although these diseases are rarely debilitating to healthy adults for more than a few hours to a few days, enteric pathogens can cause severe illness, even death, for young children, the elderly, or those with compromised immune systems. As the epidemiology of waterborne diseases is changing, there is a growing global public health concern about new and reemerging infectious diseases that are occurring through a complex interaction of social, economic, evolutionary, and ecological factors. New microbial pathogens have emerged, and some have spread worldwide. Alternative testing strategies for waterborne diseases should significantly improve the ability to detect and control the causative pathogenic agents. In this article, we provide an overview of the current state of knowledge of waterborne microbial pathogens, their detection, and the future of new methods in controlling these infectious agents.
Collapse
Affiliation(s)
- J Theron
- Department of Microbiology and Plant Pathology, University of Pretoria, South Africa
| | | |
Collapse
|
25
|
Quintero-Betancourt W, Peele ER, Rose JB. Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites. J Microbiol Methods 2002; 49:209-24. [PMID: 11869786 DOI: 10.1016/s0167-7012(02)00007-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cryptosporidium and Cyclospora are obligate, intracellular, coccidian protozoan parasites that infest the gastrointestinal tract of humans and animals causing severe diarrhea illness. In this paper, we present an overview of the conventional and more novel techniques that are currently available to detect Cryptosporidium and Cyclospora in water. Conventional techniques and new immunological and genetic/molecular methods make it possible to assess the occurrence, prevalence, virulence (to a lesser extent), viability, levels, and sources of waterborne protozoa. Concentration, purification, and detection are the three key steps in all methods that have been approved for routine monitoring of waterborne oocysts. These steps have been optimized to such an extent that low levels of naturally occurring Cryptosporidium oocysts can be efficiently recovered from water. The filtration systems developed in the US and Europe trap oocysts more effectively and are part of the standard methodologies for environmental monitoring of Cryptosporidium oocysts in source and treated water. Purification techniques such as immunomagnetic separation and flow cytometry with fluorescent activated cell sorting impart high capture efficiency and selective separation of oocysts from sample debris. Monoclonal antibodies with higher avidity and specificity to oocysts in water concentrates have significantly improved the detection and enumeration steps. To date, PCR-based detection methods allow us to differentiate the human pathogenic Cryptosporidium parasites from those that do not infect humans, and to track the source of oocyst contamination in the environment. Cell culture techniques are now used to examine oocyst viability. While fewer studies have focused on Cyclospora cayetanensis, the parasite has been successfully detected in drinking water and wastewater using current methods to recover Cryptosporidium oocysts. More research is needed for monitoring of Cyclospora in the environment. Meanwhile, molecular methods (e.g. molecular markers such as intervening transcribed spacer regions), which can identify different genotypes of C. cayetanensis, show good promise for detection of this emerging coccidian parasite in water.
Collapse
Affiliation(s)
- Walter Quintero-Betancourt
- Water Pollution Microbiology, College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, FL 33701, USA
| | | | | |
Collapse
|
26
|
Li H, Finch GR, Smith DW, Belosevic M. Sequential inactivation of Cryptosporidium parvum using ozone and chlorine. WATER RESEARCH 2001; 35:4339-4348. [PMID: 11763036 DOI: 10.1016/s0043-1354(01)00180-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inactivation of bovine-derived C. parvum oocysts was studied at bench-scale in oxidant demand free 0.05 M phosphate buffer using free chlorine alone or ozone followed by free chlorine at temperatures of 1 degrees C, 10 degrees C and 22 degrees C at pH 6. Animal infectivity using neonatal CD-1 mice was used for evaluation of oocyst viability after treatment. Kinetic models based on the linear Chick-Watson model were developed for free chlorine inactivation and ozone/free chlorine sequential inactivation for 0.4 or 1.6 log-units of ozone primary kill. At 22 degrees C. ozone pre-treatment increased the efficacy of free chlorine for about 4-6 times depending on the level of ozone primary kills. Gross kills of the ozone/free chlorine sequential inactivation were a function of ozone primary kills and increased linearly with the free chlorine C(avg)t (arithmetic average of the initial and final residual x contact time) product. Temperature was critical for both single and sequential inactivation, and the efficacy of free chlorine after 1.6 log-units of ozone primary inactivation decreased by a factor of 1.8 for every 10 degrees C temperature decrease. Given an ozone primary kill of 1.6 log-units, the free chlorine C(avg)t products required for a gross kill of 3.0 log-units were 1000, 2000 and 3,300 mgmin/L for 22 degrees C. 10 degrees C and 1degrees C, respectively.
Collapse
Affiliation(s)
- H Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
27
|
Abstract
Confocal microscopy offers several advantages over other conventional microscopic techniques as a tool for studying the interaction of bacteria with food and the role of food microstructure in product quality and safety. When using confocal microscopy, samples can be observed without extensive preparation processes, which allows for the evaluation of food without introducing artifacts. In addition, observations can be made in three dimensions without physically sectioning the specimen. The confocal microscope can be used to follow changes over a period of time, such as the development of the food structure or changes in microbial population during a process. Microbial attachment to and detachment from food and food contact surfaces with complex three-dimensional (3-D) structures can be observed in situ. The fate of microbial populations in food system depends on processing, distribution, and storage conditions as well as decontamination procedures that are applied to inactivate and remove them. The ability to determine the physiological status of microorganisms without disrupting their physical relationship with a food system can be useful for determining the means by which microorganisms survive decontamination treatments. Conventional culturing techniques can detect viable cells; however, these techniques lack the ability to locate viable cells in respect to the microscopic structures of food. Various microscopic methods take advantage of physiological changes in bacterial cells that are associated with the viability to assess the physiologic status of individual cells while retaining the ability to locate the cell within a food tissue system. This paper reviews the application of confocal microscopy in food research and direct observation of viable bacteria with emphasis on their use in food microbiology.
Collapse
Affiliation(s)
- K Takeuchi
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Athens 30602-2106, USA
| | | |
Collapse
|
28
|
Craik SA, Weldon D, Finch GR, Bolton JR, Belosevic M. Inactivation of Cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation. WATER RESEARCH 2001; 35:1387-1398. [PMID: 11317885 DOI: 10.1016/s0043-1354(00)00399-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of ultraviolet radiation from low- and medium-pressure mercury arc lamps on Cryptosporidium parvum oocysts was studied using a collimated beam apparatus. Experiments were conducted using parasites suspended in both filtered surface water and phosphate buffered laboratory water. Inactivation of oocysts was measured as reduction in infectivity using a CD-1 neonatal mouse model and was found to be a non-linear function of UV dose over the range of germicidal doses tested (0.8-119 mJ/cm2). Oocyst inactivation increased rapidly with UV dose at doses less than 25 mJ/cm2 with two and three log-units inactivation at approximately 10 and 25 mJ/cm2, respectively. The cause of significant leveling-off and tailing in the UV inactivation curve at higher doses was not determined. Maximum measured oocyst inactivation ranged from 3.4 to greater than 4.9 log-units and was dependent on different batches of parasites. Water type and temperature, the concentration of oocysts in the suspension, and the UV irradiance did not have significant impacts on oocyst inactivation. When compared on the basis of germicidal UV dose, the oocysts were equally sensitive to low- and medium-pressure UV radiation. With respect to Cryptosporidium, both low- and medium-pressure ultraviolet radiation are attractive alternatives to conventional chemical disinfection methods in drinking water treatment.
Collapse
Affiliation(s)
- S A Craik
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2M8.
| | | | | | | | | |
Collapse
|
29
|
Jenkins MC, Trout J, Abrahamsen MS, Lancto CA, Higgins J, Fayer R. Estimating viability of Cryptosporidium parvum oocysts using reverse transcriptase-polymerase chain reaction (RT-PCR) directed at mRNA encoding amyloglucosidase. J Microbiol Methods 2000; 43:97-106. [PMID: 11121608 DOI: 10.1016/s0167-7012(00)00198-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to determine if reverse transcriptase-polymerase chain reaction (RT-PCR) directed at mRNA encoding the enzyme amyloglucosidase (CPAG) could serve as a indicator for C. parvum oocyst viability. Oocysts were stored for 1-11 months in the refrigerator and at monthly intervals extracted for total RNA for RT-PCR analysis. An aliquot of these C. parvum oocysts was inoculated into neonatal mice which were necropsied 4 days later for ileal tissue that was analyzed by semi-quantitative PCR to determine the level of parasite replication. The CPAG RT-PCR assay detected RNA from as few as 10(3) C. parvum oocysts. An effect of storage time on both RT-PCR signal and mouse infectivity was observed. RNA from oocysts stored for 1-7 months, unlike oocysts stored for 9 or 11 months, contained CPAG mRNA that was detectable by RT-PCR. A gradual decrease in the RT-PCR signal intensity was observed between 5 and 7 months storage. The intensity of RT-PCR product from oocysts and the signal from semi-quantitative PCR of ileal tissue DNA from mice infected with these same aged oocysts were comparable. The RT-PCR assay of CPAG mRNA in cultured cells infected with viable C. parvum oocysts first detected expression at 12 h with highest expression levels observed at 48 h post-infection. These results indicate that CPAG RT-PCR may be useful for differentiating viable from non-viable C. parvum oocysts and for studying the expression of the gene for amyloglucosidase in vitro.
Collapse
Affiliation(s)
- M C Jenkins
- Immunology and Disease Resistance Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|
30
|
Di Giorgio C, Ridoux O, Delmas F, Azas N, Gasquet M, Timon-David P. Flow cytometric detection of Leishmania parasites in human monocyte-derived macrophages: application to antileishmanial-drug testing. Antimicrob Agents Chemother 2000; 44:3074-8. [PMID: 11036025 PMCID: PMC101605 DOI: 10.1128/aac.44.11.3074-3078.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A flow cytometric technique was developed for detection of amastigotes of the protozoan Leishmania infantum in human nonadherent monocyte-derived macrophages. The cells were fixed and permeabilized with paraformaldehyde-ethanol, and intracellular amastigotes were labeled with Leishmania lipophosphoglycan-specific monoclonal antibody. Results showed that flow cytometry provided accurate quantification of the infection rates in human macrophages compared to the rates obtained by the conventional microscopic technique, with the advantage that a large number of cells could be analyzed rapidly. The results demonstrated, moreover, that labeling of intracellular amastigotes could reliably be used to evaluate the antileishmanial activities of conventional drugs such as meglumine antimoniate, amphotericin B, pentamidine, and allopurinol. They also established that various Leishmania species (L. mexicana, L. donovani) could be detected by this technique in other host-cell models such as mouse peritoneal macrophages and suggested that the flow cytometric method could be a valid alternative to the conventional method.
Collapse
Affiliation(s)
- C Di Giorgio
- Laboratoire de Parasitologie, Hygiène et Zoologie, Faculté de Pharmacie, Marseille cedex 05, France.
| | | | | | | | | | | |
Collapse
|
31
|
Bukhari Z, Marshall MM, Korich DG, Fricker CR, Smith HV, Rosen J, Clancy JL. Comparison of Cryptosporidium parvum viability and infectivity assays following ozone treatment of oocysts. Appl Environ Microbiol 2000; 66:2972-80. [PMID: 10877794 PMCID: PMC92099 DOI: 10.1128/aem.66.7.2972-2980.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several in vitro surrogates have been developed as convenient, user-friendly alternatives to mouse infectivity assays for determining the viability of Cryptosporidium parvum oocysts. Such viability assays have been used increasingly to determine oocyst inactivation following treatment with chemical, physical, or environmental stresses. Defining the relationship between in vitro viability assays and oocyst infectivity in susceptible hosts is critical for determining the significance of existing oocyst inactivation data for these in vitro assays and their suitability in future studies. In this study, four viability assays were compared with mouse infectivity assays, using neonatal CD-1 mice. Studies were conducted in the United States and United Kingdom using fresh (<1 month) or environmentally aged (3 months at 4 degrees C) oocysts, which were partially inactivated by ozonation before viability and/or infectivity analyses. High levels of variability were noted within and between the viability and infectivity assays in the U.S. and United Kingdom studies despite rigorous control over oocyst conditions and disinfection experiments. Based on the viability analysis of oocyst subsamples from each ozonation experiment, SYTO-59 assays demonstrated minimal change in oocyst viability, whereas 4',6'-diamidino-2-phenylindole-propidium iodide assays, in vitro excystation, and SYTO-9 assays showed a marginal reduction in oocyst viability. In contrast, the neonatal mouse infectivity assay demonstrated significantly higher levels of oocyst inactivation in the U.S. and United Kingdom experiments. These comparisons illustrate that four in vitro viability assays cannot be used to reliably predict oocyst inactivation following treatment with low levels of ozone. Neonatal mouse infectivity assays should continue to be regarded as a "gold standard" until suitable alternative viability surrogates are identified for disinfection studies.
Collapse
Affiliation(s)
- Z Bukhari
- Clancy Environmental Consultants, Inc., St. Albans, Vermont 05478, USA.
| | | | | | | | | | | | | |
Collapse
|