1
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
2
|
Zhao X, Fan Y, Zhang W, Xiang M, Kang S, Wang S, Liu X. DhFIG_2, a gene of nematode-trapping fungus Dactylellina haptotyla that encodes a component of the low-affinity calcium uptake system, is required for conidiation and knob-trap formation. Fungal Genet Biol 2023; 166:103782. [PMID: 36849068 DOI: 10.1016/j.fgb.2023.103782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Calcium ion (Ca2+) is a universal second messenger involved in regulating diverse processes in animals, plants, and fungi. The low-affinity calcium uptake system (LACS) participates in acquiring Ca2+ from extracellular environments under high extracellular Ca2+ concentration. Unlike most fungi, which encode only one protein (FIG1) for LACS, nematode-trapping fungi (NTF) encode two related proteins. AoFIG_2, the NTF-specific LACS component encoded by adhesive network-trap forming Arthrobotrys oligospora, was shown to be required for conidiation and trap formation. We characterized the role of DhFIG_2, an AoFIG_2 ortholog encoded by knob-trap forming Dactylellina haptotyla, in growth and development to expand our understanding of the role of LACS in NTF. Because repeated attempts to disrupt DhFIG_2 failed, knocking down the expression of DhFIG_2 via RNA interference (RNAi) was used to study its function. RNAi of DhFIG_2 significantly decreased its expression, severely reduced conidiation and trap formation, and affected vegetative growth and stress responses, suggesting that this component of LACS is crucial for trap formation and conidiation in NTF. Our study demonstrated the utility of RNAi assisted by ATMT for studying gene function in D. haptotyla.
Collapse
Affiliation(s)
- Xiaozhou Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, PA 16802, USA
| | - Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Abstract
Nematode-trapping fungi (NTF) are the majority of carnivorous microbes to capture nematodes through diverse and sophisticated trapping organs derived from hyphae. They can adopt carnivorous lifestyles in addition to saprophytism to obtain extra-nutrition from nematodes. As a special group of fungi, the NTF are not only excellent model organism for studying lifestyle transition of fungi but also natural resources of exploring biological control of nematodes. However, the carnivorous mechanism of NTF remains poorly understood. Nowadays, the omics studies of NTF have provided numerous genes and pathways that are associated with the phenotypes of carnivorous traits, which need molecular tools to verify. Here, we review the development and progress of gene manipulation tools in NTF, including methodology and strategy of transformation, random gene mutagenesis methods and target gene mutagenesis methods. The principle and practical approach for each method was summarized and discussed, and the basic operational flow for each tool was described. This paper offers a clear reference and instruction for researchers who work on NTF as well as other group of fungi.
Collapse
Affiliation(s)
- Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Gazengel K, Aigu Y, Lariagon C, Humeau M, Gravot A, Manzanares-Dauleux MJ, Daval S. Nitrogen Supply and Host-Plant Genotype Modulate the Transcriptomic Profile of Plasmodiophora brassicae. Front Microbiol 2021; 12:701067. [PMID: 34305867 PMCID: PMC8298192 DOI: 10.3389/fmicb.2021.701067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université Rennes 1, Le Rheu, France
| |
Collapse
|
5
|
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol 2021; 9:630551. [PMID: 33644021 PMCID: PMC7902521 DOI: 10.3389/fbioe.2021.630551] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Recombinant proteins are becoming increasingly important for industrial applications, where Escherichia coli is the most widely used bacterial host for their production. However, the formation of inclusion bodies is a frequently encountered challenge for producing soluble and functional recombinant proteins. To overcome this hurdle, different strategies have been developed through adjusting growth conditions, engineering host strains of E. coli, altering expression vectors, and modifying the proteins of interest. These approaches will be comprehensively highlighted with some of the new developments in this review. Additionally, the unique features of protein inclusion bodies, the mechanism and influencing factors of their formation, and their potential advantages will also be discussed.
Collapse
Affiliation(s)
- Arshpreet Bhatwa
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Weijun Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Nadine Abraham
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
6
|
Takagi S, Kojima K, Ohashi S. Proteomic analysis on Aspergillus strains that are useful for industrial enzyme production. Biosci Biotechnol Biochem 2020; 84:2241-2252. [PMID: 32693695 DOI: 10.1080/09168451.2020.1794784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A simple intracellular proteomic study was conducted to investigate the biological activities of Aspergillus niger during industrial enzyme production. A strain actively secreting a heterologous enzyme was compared to a reference strain. In total, 1824 spots on 2-D gels were analyzed using MALDI-TOF MS, yielding 343 proteins. The elevated levels of UPR components, BipA, PDI, and calnexin, and proteins related to ERAD and ROS reduction, were observed in the enzyme-producer. The results suggest the occurrence of these responses in the enzyme-producers. Major glycolytic enzymes, Fba1, EnoA, and GpdA, were abundant but at a reduced level relative to the reference, indicating a potential repression of the glycolytic pathway. Interestingly, it was observed that a portion of over-expressed heterologous enzyme accumulated inside the cells and digested during fermentation, suggesting the secretion capacity of the strain was not enough for completing secretion. Newly identified conserved-proteins, likely in signal transduction, and other proteins were also investigated. Abbreviations: 2-D: two-dimensional; UPR: unfolded protein response; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; PDI: protein disulfide-isomerase; ROS: reactive oxygen species; RESS: Repression under Secretion Stress; CSAP: Conserved Small Abundant Protein; TCTP: translationally controlled tumor protein.
Collapse
Affiliation(s)
| | | | - Shinichi Ohashi
- Genome Biotechnology Laboratory, Kanazawa-Institute of Technology , Ishikawa, Japan
| |
Collapse
|
7
|
Li H, Tian S, Qin G. NADPH Oxidase Is Crucial for the Cellular Redox Homeostasis in Fungal Pathogen Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1508-1516. [PMID: 31230563 DOI: 10.1094/mpmi-05-19-0124-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During interactions, both plants and pathogens produce reactive oxygen species (ROS). Plants generate ROS for defense induction, while pathogens synthesize ROS for growth, sporulation, and virulence. NADPH oxidase (NOX) complex in the plasma membrane represents a main protein complex for ROS production in pathogens. Although NOX plays a crucial role in pathogenicity of pathogens, the underlying molecular mechanisms of NOX, especially the proteins regulated by NOX, remain largely unknown. Here, we applied an iodoacetyl tandem mass tag-based redox proteomic assay to investigate the protein redox dynamics in deletion mutant of bcnoxR, which encodes a regulatory subunit of NOX in the fungal pathogen Botrytis cinerea. In total, 214 unique peptidyl cysteine (Cys) thiols from 168 proteins were identified and quantified in both the wild type and ∆bcnoxR mutant. The Cys thiols in the ∆bcnoxR mutant were generally more oxidized than those in the wild type, suggesting that BcNoxR is essential for maintaining the equilibrium of the redox state in B. cinerea. Site-specific thiol oxidation analysis indicated that 142 peptides containing the oxidized thiols changed abundance significantly in the ∆bcnoxR mutant. Proteins containing these differential peptides are classified into various functional categories. Functional analysis revealed that one of these proteins, 6-phosphate dehydrogenase, played roles in oxidative stress response and pathogenesis of B. cinerea. These results provide insight into the potential target proteins and the ROS signal transduction pathway regulated by NOX.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Hangzhou 310021, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Hangzhou 310021, China
| |
Collapse
|
8
|
Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol 2019; 35:54. [PMID: 30900052 DOI: 10.1007/s11274-019-2630-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are important microorganisms used in industrial production of proteins and enzymes. Among these organisms, Trichoderma reesei, Aspergilli, and more recently Myceliophthora thermophile are the most widely used and promising ones which have powerful protein secretion capability. In recent years, there have been tremendous achievements in understanding the molecular mechanisms of the secretory pathways in filamentous fungi. The acquired pieces of knowledge can be harnessed to enhance protein production in filamentous fungi with assistance of state-of-the-art genetic engineering techniques.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
9
|
Özcelik D, Seto A, Rakic B, Farzam A, Supek F, Pezacki JP. Gene Expression Profiling of Endoplasmic Reticulum Stress in Hepatitis C Virus-Containing Cells Treated with an Inhibitor of Protein Disulfide Isomerases. ACS OMEGA 2018; 3:17227-17235. [PMID: 30775641 PMCID: PMC6369735 DOI: 10.1021/acsomega.8b02676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/23/2018] [Indexed: 05/30/2023]
Abstract
Protein disulfide isomerases (PDIs) catalyze disulfide bond formation between protein cysteine residues during protein folding in the endoplasmic reticulum (ER) lumen and are essential for maintaining ER homoeostasis. The life cycle of the hepatitis C virus (HCV) is closely associated with the ER. Synthesis and maturation of HCV proteins occur in the ER membrane and are mediated by multiple host cell factors that include also PDI. Here, we present a study investigating the effect of PDI inhibition on Huh7 human hepatoma cells harboring an HCV subgenomic replicon using the abscisic acid-derived PDI inhibitor origamicin. Transcriptional profiling shows that origamicin changed the expression levels of genes involved in the oxidative and ER stress responses and the unfolded protein response, as indicated by the upregulation of antioxidant enzymes and chaperone proteins, the downregulation of cell-cycle proteins, and induction of apoptosis-associated genes. Our data suggest that origamicin negatively impacts HCV replication by causing an imbalance in cellular homoeostasis and induction of stress responses. These insights suggest that inhibition of PDIs by low-molecular-weight inhibitors could be a promising approach to the discovery of novel antiviral compounds.
Collapse
Affiliation(s)
- Dennis Özcelik
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, Ontario K1N 6N5, Canada
| | - Andrew Seto
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, Ontario K1N 6N5, Canada
| | - Bojana Rakic
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, Ontario K1N 6N5, Canada
| | - Ali Farzam
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, Ontario K1N 6N5, Canada
| | - Frantisek Supek
- Department
of Genetics & Neglected Diseases, Genomics
Institute of the Novartis Research Foundation, San Diego, California 92121, United States
| | - John Paul Pezacki
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Street, Ottawa, Ontario K1N 6N5, Canada
- Department
of Biochemistry, Microbiology, and Immunology, Ottawa Institute for Systems Biology, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
10
|
Genetics, Molecular, and Proteomics Advances in Filamentous Fungi. Curr Microbiol 2017; 74:1226-1236. [PMID: 28733909 DOI: 10.1007/s00284-017-1308-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Filamentous fungi play a dynamic role in health and the environment. In addition, their unique and complex hyphal structures are involved in their morphogenesis, integrity, synthesis, and degradation, according to environmental and physiological conditions and resource availability. However, in biotechnology, it has a great value in the production of enzymes, pharmaceuticals, and food ingredients. The beginning of nomenclature of overall fungi started in early 1990 after which the categorization, interior and exterior mechanism, function, molecular and genetics study took pace. This mini-review has emphasized some of the important aspects of filamentous fungi, their pattern of life cycle, history, and development of different strategic methods applied to exploit this unique organism. New trends and concepts that have been applied to overcome obstacle because of their basic structure related to genomics and systems biology has been presented. Furthermore, the future aspects and challenges that need to be deciphered to get a bigger and better picture of filamentous fungi have been discussed.
Collapse
|
11
|
Marschall R, Tudzynski P. The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes. Front Microbiol 2017; 8:960. [PMID: 28611757 PMCID: PMC5447010 DOI: 10.3389/fmicb.2017.00960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Botrytis cinerea is a filamentous plant pathogen, which infects hundreds of plant species; within its lifestyle, the production of reactive oxygen species (ROS) and a balanced redox homeostasis are essential parameters. The pathogen is capable of coping with the plant’s oxidative burst and even produces its own ROS to enhance the plant’s oxidative burst. Highly conserved NADPH oxidase (Nox) complexes produce the reactive molecules. The membrane-associated complexes regulate a large variety of vegetative and pathogenic processes. Besides their commonly accepted function at the plasma membrane, recent studies reveal that Nox complexes are also active at the membrane of the endoplasmic reticulum. In this study, we identified the essential ER protein BcPdi1 as new interaction partner of the NoxA complex in B. cinerea. Mutants that lack this ER chaperone display overlapping phenotypes to mutants of the NoxA signaling pathway. The protein appears to be involved in all major developmental processes, such as the formation of sclerotia, conidial anastomosis tubes and infection cushions (IC’s) and is needed for full virulence. Moreover, expression analyses and reporter gene studies indicate that BcPdi1 affects the redox homeostasis and unfolded protein response (UPR)-related genes. Besides the close association between BcPdi1 and BcNoxA, interaction studies provide evidence that the ER protein might likewise be involved in Ca2+ regulated processes. Finally, we were able to show that the potential key functions of the protein BcPdi1 might be affected by its phosphorylation state.
Collapse
Affiliation(s)
- Robert Marschall
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität MünsterMünster, Germany
| |
Collapse
|
12
|
Ben Azoun S, Belhaj AE, Göngrich R, Gasser B, Kallel H. Molecular optimization of rabies virus glycoprotein expression in Pichia pastoris. Microb Biotechnol 2016; 9:355-68. [PMID: 26880068 PMCID: PMC4835572 DOI: 10.1111/1751-7915.12350] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 01/13/2023] Open
Abstract
In this work, different approaches were investigated to enhance the expression rabies virus glycoprotein (RABV-G) in the yeast Pichia pastoris; this membrane protein is responsible for the synthesis of rabies neutralizing antibodies. First, the impact of synonymous codon usage bias was examined and an optimized RABV-G gene was synthesized. Nevertheless, data showed that the secretion of the optimized RABV-G gene was not tremendously increased as compared with the non-optimized one. In addition, similar levels of RABV-G were obtained when α-factor mating factor from Saccharomyces cerevisiae or the acid phosphatase PHO1 was used as a secretion signal. Therefore, sequence optimization and secretion signal were not the major bottlenecks for high-level expression of RABV-G in P. pastoris. Unfolded protein response (UPR) was induced in clones containing high copy number of RABV-G expression cassette indicating that folding was the limiting step for RABV-G secretion. To circumvent this limitation, co-overexpression of five factors involved in oxidative protein folding was investigated. Among these factors only PDI1, ERO1 and GPX1 proved their benefit to enhance the expression. The highest expression level of RABV-G reached 1230 ng ml(-1). Competitive neutralizing assay confirmed that the recombinant protein was produced in the correct conformational form in this host.
Collapse
Affiliation(s)
- Safa Ben Azoun
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur. BP. 74, Tunis, 1002, Tunisia
| | - Aicha Eya Belhaj
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur. BP. 74, Tunis, 1002, Tunisia
| | - Rebecca Göngrich
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna, 1190, Austria
| | - Brigitte Gasser
- Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna, 1190, Austria
| | - Héla Kallel
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Biofermentation Unit, Institut Pasteur de Tunis, 13, place Pasteur. BP. 74, Tunis, 1002, Tunisia
| |
Collapse
|
13
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
14
|
Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
|
16
|
Heimel K. Unfolded protein response in filamentous fungi-implications in biotechnology. Appl Microbiol Biotechnol 2014; 99:121-32. [PMID: 25384707 DOI: 10.1007/s00253-014-6192-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/16/2023]
Abstract
The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.
Collapse
Affiliation(s)
- Kai Heimel
- Institut für Mikrobiologie & Genetik, Georg-August-Universität, Grisebachstr. 8, 37077, Göttingen, Germany,
| |
Collapse
|
17
|
Castilho DG, Chaves AFA, Xander P, Zelanis A, Kitano ES, Serrano SMT, Tashima AK, Batista WL. Exploring Potential Virulence Regulators in Paracoccidioides brasiliensis Isolates of Varying Virulence through Quantitative Proteomics. J Proteome Res 2014; 13:4259-71. [DOI: 10.1021/pr5002274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniele G. Castilho
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
| | - Alison F. A. Chaves
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
| | - Patricia Xander
- Departamento
de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema, 09913-030 SP, Brazil
| | - André Zelanis
- Instituto
de Ciência e Tecnologia, Universidade Federal de São Paulo, Campus São José dos Campos, Rua Talim, 330, São José dos Campos, 12231-280 SP, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada − CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900 SP, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada − CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900 SP, Brazil
| | - Alexandre K. Tashima
- Departamento
de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua 3 de maio, 100 - Vila Clementino, São
Paulo, 04023-062 SP, Brazil
| | - Wagner L. Batista
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
- Departamento
de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema, 09913-030 SP, Brazil
| |
Collapse
|
18
|
Malavazi I, Goldman GH, Brown NA. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Brief Funct Genomics 2014; 13:456-70. [PMID: 25060881 DOI: 10.1093/bfgp/elu027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed.
Collapse
|
19
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
20
|
Production of recombinant proteins by filamentous fungi. Biotechnol Adv 2012; 30:1119-39. [DOI: 10.1016/j.biotechadv.2011.09.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
|
21
|
Ohno A, Maruyama JI, Nemoto T, Arioka M, Kitamoto K. A carrier fusion significantly induces unfolded protein response in heterologous protein production by Aspergillus oryzae. Appl Microbiol Biotechnol 2011; 92:1197-206. [PMID: 21822643 DOI: 10.1007/s00253-011-3487-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/14/2011] [Indexed: 11/26/2022]
Abstract
In heterologous protein production by filamentous fungi, target proteins are expressed as fusions with homologous secretory proteins, called carriers, for higher production yields. Although carrier fusion is thought to overcome the bottleneck in transcriptional and (post)translational processes during heterologous protein production, there is limited knowledge of its physiological effects on the host strain. In this study, we performed DNA microarray analysis by comparing gene expression patterns of two Aspergillus oryzae strains expressing either carrier- or non-carrier-fused bovine chymosin (CHY). When CHY was expressed as a fusion with α-amylase (AmyB), the production level increased by approximately 2-fold as compared with the non-carrier-fused CHY. DNA microarray analysis revealed that the carrier fusion significantly up-regulated many genes involved in endoplasmic reticulum (ER) protein-folding and secretion. Consistently, hacA transcripts were efficiently spliced in the strain expressing the carrier-fused CHY, indicating an unfolded protein response (UPR). The carrier-fused CHY was detected intracellularly without processing at the Kex2 cleavage site, which is likely recognized in the Golgi, and the carrier fusion delayed extracellular CHY production in the early growth phase as compared with the non-carrier-fused expression. Taken together, our data suggest a proposal that the carrier fusion temporarily accumulates the carrier-fused CHY in the ER and significantly induces UPR.
Collapse
Affiliation(s)
- Ayako Ohno
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
22
|
Salame TM, Ziv C, Hadar Y, Yarden O. RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 2010; 89:501-12. [DOI: 10.1007/s00253-010-2928-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022]
|
23
|
Harvey AR, Ward M, Archer DB. Identification and characterisation of eroA and ervA, encoding two putative thiol oxidases from Aspergillus niger. Gene 2010; 461:32-41. [PMID: 20438816 DOI: 10.1016/j.gene.2010.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/15/2010] [Accepted: 04/22/2010] [Indexed: 12/17/2022]
Abstract
The oxidative folding of proteins in the secretory pathway involves the formation and isomerisation of disulphide bonds and is catalysed by foldases in the lumen of the endoplasmic reticulum (ER). The transfer of reducing equivalents, from disulphide bond formation, to oxygen involves the participation of thiol oxidases. Here, we describe the identification and functional characterisation of the eroA and ervA genes from Aspergillus niger, encoding functional orthologues of S. cerevisiae ERO1 and ERV2, respectively. The eroA gene encodes a product of 600 amino acids, EroA, and the ervA gene encodes a product of 215 amino acids, ErvA, both of which share common motifs and features with their S. cerevisiae orthologues. In contrast to Ero1p in S. cerevisiae, A. niger EroA appears to be retained in the ER lumen by a C-terminal retention motif. Real-time PCR analysis indicated that eroA is transcriptionally up-regulated in response to ER stress, whereas ervA is slightly down-regulated in response to DTT stress yet up-regulated in response to expression of a heterologous protein. Gene disruption studies indicated that, unlike ervA, eroA is essential for viability. When expressed in the thermosensitive S. cerevisiae ero1-1 strain, both eroA and ervA were able to complement the temperature and DTT sensitive phenotype, although a truncated eroA, missing the putative HEEL ER-retention signal was unable to complement as well as the full-length eroA gene.
Collapse
Affiliation(s)
- Anna R Harvey
- School of Biology, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
24
|
Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol 2010; 76:5344-55. [PMID: 20562270 DOI: 10.1128/aem.00450-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiology of filamentous fungi at growth rates approaching zero has been subject to limited study and exploitation. With the aim of uncoupling product formation from growth, we have revisited and improved the retentostat cultivation method for Aspergillus niger. A new retention device was designed allowing reliable and nearly complete cell retention even at high flow rates. Transcriptomic analysis was used to explore the potential for product formation at very low specific growth rates. The carbon- and energy-limited retentostat cultures were highly reproducible. While the specific growth rate approached zero (<0.005 h(-1)), the growth yield stabilized at a minimum (0.20 g of dry weight per g of maltose). The severe limitation led to asexual differentiation, and the supplied substrate was used for spore formation and secondary metabolism. Three physiologically distinct phases of the retentostat cultures were subjected to genome-wide transcriptomic analysis. The severe substrate limitation and sporulation were clearly reflected in the transcriptome. The transition from vegetative to reproductive growth was characterized by downregulation of genes encoding secreted substrate hydrolases and cell cycle genes and upregulation of many genes encoding secreted small cysteine-rich proteins and secondary metabolism genes. Transcription of known secretory pathway genes suggests that A. niger becomes adapted to secretion of small cysteine-rich proteins. The perspective is that A. niger cultures as they approach a zero growth rate can be used as a cell factory for production of secondary metabolites and cysteine-rich proteins. We propose that the improved retentostat method can be used in fundamental studies of differentiation and is applicable to filamentous fungi in general.
Collapse
|
25
|
Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 2010; 87:1255-70. [DOI: 10.1007/s00253-010-2672-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/07/2010] [Accepted: 05/08/2010] [Indexed: 11/26/2022]
|
26
|
New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 2010; 86:51-62. [DOI: 10.1007/s00253-009-2416-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
|
27
|
Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0128-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
HacA-dependent transcriptional switch releases hacA mRNA from a translational block upon endoplasmic reticulum stress. EUKARYOTIC CELL 2009; 8:665-75. [PMID: 19181870 DOI: 10.1128/ec.00131-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of the unfolded protein response (UPR) in eukaryotes involves the splicing of an unconventional intron from the mRNA encoding the transcriptional activator of the pathway. In Saccharomyces cerevisiae a 252-nucleotide (nt) unconventional intron is spliced out of the transcript of HAC1, changing the 3' end of the HAC1 open reading frame and relieving the transcript from a translational block in a single step. The translational block is caused by the base pairing of part of the unconventional intron with the 5'-untranslated region (5'UTR). In Aspergillus niger and other aspergilli, the unconventional intron in hacA mRNA is only 20 nt long. Since this intron is part of a stable stem-loop structure, base pairing with the 5'UTR, in contrast to the case with yeast HAC1, is not possible. However, analysis of the hacA mRNA revealed a GC-rich inverted repeat (18 base pairings). Upon the activation of the UPR, the 5'UTR of hacA mRNA is truncated by 230 nt, removing the left part of this inverted repeat. This implies a similar release of a translational block as in the case of S. cerevisiae HAC1 but in two steps. The mechanism behind the 5' truncation, which does not take place in either yeast HAC1 or mammalian xbp1 mRNA, has been hitherto unknown. Here we show that during secretion stress in A. niger, hacA transcription starts from a new start site closer to the ATG, relieving the transcript from translational attenuation. This transcriptional switch is mediated by HacA itself and the unfolded protein response element 2 (UPRE2) in the hacA promoter.
Collapse
|
29
|
Jørgensen TR, Goosen T, Hondel CAMJJVD, Ram AFJ, Iversen JJL. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway. BMC Genomics 2009; 10:44. [PMID: 19166577 PMCID: PMC2639373 DOI: 10.1186/1471-2164-10-44] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A. niger genome sequence and availability of microarrays allow high resolution studies of transcriptional regulation of basal cellular processes, like those of glycoprotein synthesis and secretion. It is known that the activities of certain secretory pathway enzymes involved N-glycosylation are elevated in response to carbon source induced secretion of the glycoprotein glucoamylase. We have investigated whether carbon source dependent enhancement of protein secretion can lead to upregulation of secretory pathway elements extending beyond those involved in N-glycosylation. Results This study compares the physiology and transcriptome of A. niger growing at the same specific growth rate (0.16 h-1) on xylose or maltose in carbon-limited chemostat cultures. Transcription profiles were obtained using Affymetrix GeneChip analysis of six replicate cultures for each of the two growth-limiting carbon sources. The production rate of extracellular proteins per gram dry mycelium was about three times higher on maltose compared to xylose. The defined culture conditions resulted in high reproducibility, discriminating even low-fold differences in transcription, which is characteristic of genes encoding basal cellular functions. This included elements in the secretory pathway and central metabolic pathways. Increased protein secretion on maltose was accompanied by induced transcription of > 90 genes related to protein secretion. The upregulated genes encode key elements in protein translocation to the endoplasmic reticulum (ER), folding, N-glycosylation, quality control, and vesicle packaging and transport between ER and Golgi. The induction effect of maltose resembles the unfolded protein response (UPR), which results from ER-stress and has previously been defined by treatment with chemicals interfering with folding of glycoproteins or by expression of heterologous proteins. Conclusion We show that upregulation of secretory pathway genes also occurs in conditions inducing secretion of endogenous glycoproteins – representing a more normal physiological state. Transcriptional regulation of protein synthesis and secretory pathway genes may thus reflect a general mechanism for modulation of secretion capacity in response to the conditional need for extracellular enzymes.
Collapse
Affiliation(s)
- Thomas R Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| | | | | | | | | |
Collapse
|
30
|
Zhang J, Pan J, Guan G, Li Y, Xue W, Tang G, Wang A, Wang H. Expression and high-yield production of extremely thermostable bacterial xylanaseB in Aspergillus niger. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Filamentous fungi for production of food additives and processing aids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [PMID: 18253709 DOI: 10.1007/10_2007_094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic.
Collapse
|
32
|
Alcaíno J, Barahona S, Carmona M, Lozano C, Marcoleta A, Niklitschek M, Sepúlveda D, Baeza M, Cifuentes V. Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 2008; 8:169. [PMID: 18837978 PMCID: PMC2575211 DOI: 10.1186/1471-2180-8-169] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/06/2008] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid with high commercial interest. The proposed biosynthetic route in this organism is isopentenyl-pyrophosphate (IPP) --> geranyleranyl pyrophosphate (GGPP) --> phytoene --> lycopene --> beta-carotene --> astaxanthin. Recently, it has been published that the conversion of beta-carotene into astaxanthin requires only one enzyme, astaxanthin synthase or CrtS, encoded by crtS gene. This enzyme belongs to the cytochrome P450 protein family. RESULTS In this work, a crtR gene was isolated from X. dendrorhous yeast, which encodes a cytochrome P450 reductase (CPR) that provides CrtS with the necessary electrons for substrate oxygenation. We determined the structural organization of the crtR gene and its location in the yeast electrophoretic karyotype. Two transformants, CBSTr and T13, were obtained by deleting the crtR gene and inserting a hygromycin B resistance cassette. The carotenoid composition of the transformants was altered in relation to the wild type strain. CBSTr forms yellow colonies because it is unable to produce astaxanthin, hence accumulating beta-carotene. T13 forms pale colonies because its astaxanthin content is reduced and its beta-carotene content is increased. CONCLUSION In addition to the crtS gene, X. dendrorhous requires a novel gene, crtR, for the conversion of beta-carotene to astaxanthin.
Collapse
Affiliation(s)
- Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marisela Carmona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carla Lozano
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés Marcoleta
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Niklitschek
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
33
|
Meyer V. Genetic engineering of filamentous fungi--progress, obstacles and future trends. Biotechnol Adv 2007; 26:177-85. [PMID: 18201856 DOI: 10.1016/j.biotechadv.2007.12.001] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 01/09/2023]
Abstract
Filamentous fungi are widely used in biotechnology as cell factories for the production of chemicals, pharmaceuticals and enzymes. In order to improve their productivities, genetic engineering strategies can be powerful approaches. Different transformation techniques as well as DNA- and RNA-based methods to rationally design metabolic fluxes have been developed for industrially important filamentous fungi. However, the lack of efficient genetic engineering approaches still forms an obstacle for a multitude of fungi producing new and commercially interesting metabolites. This review summarises the variety of options that have recently become available to introduce and control gene expression in filamentous fungi and discusses their advantages and disadvantages. Furthermore, important considerations that have to be taken into account to design the best engineering strategy will be discussed.
Collapse
Affiliation(s)
- Vera Meyer
- TU Berlin, Institut für Biotechnologie, Fachgebiet Mikrobiologie und Genetik, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany.
| |
Collapse
|
34
|
Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2007; 64:923-37. [PMID: 17501918 PMCID: PMC3694341 DOI: 10.1111/j.1365-2958.2007.05694.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Frank
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Koers
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Peter Strauch
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Weitner
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Carol Ringelberg
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jay C. Dunlap
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jennifer J. Loros
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Ulrich Kück
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- For correspondence. ; Tel. (+49) 0 234 3226212; Fax (+49) 0 234 3214184
| |
Collapse
|
35
|
Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 2007; 8:158. [PMID: 17561995 PMCID: PMC1894978 DOI: 10.1186/1471-2164-8-158] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/11/2007] [Indexed: 11/29/2022] Open
Abstract
Background Filamentous fungi such as Aspergillus niger have a high capacity secretory system and are therefore widely exploited for the industrial production of native and heterologous proteins. However, in most cases the yields of non-fungal proteins are significantly lower than those obtained for fungal proteins. One well-studied bottleneck appears to be the result of mis-folding of heterologous proteins in the ER during early stages of secretion, with related stress responses in the host, including the unfolded protein response (UPR). This study aims at uncovering transcriptional and translational responses occurring in A. niger exposed to secretion stress. Results A genome-wide transcriptional analysis of protein secretion-related stress responses was determined using Affymetrix DNA GeneChips and independent verification for selected genes. Endoplasmic reticulum (ER)-associated stress was induced either by chemical treatment of the wild-type cells with dithiothreitol (DTT) or tunicamycin, or by expressing a human protein, tissue plasminogen activator (t-PA). All of these treatments triggered the UPR, as shown by the expression levels of several well-known UPR target genes. The predicted proteins encoded by most of the up-regulated genes function as part of the secretory system including chaperones, foldases, glycosylation enzymes, vesicle transport proteins, and ER-associated degradation proteins. Several genes were down-regulated under stress conditions and these included several genes that encode secreted enzymes. Moreover, translational regulation under ER stress was investigated by polysomal fractionation. This analysis confirmed the post-transcriptional control of hacA expression and highlighted that differential translation also occurs during ER stress, in particular for some genes encoding secreted proteins or proteins involved in ribosomal biogenesis and assembly. Conclusion This is first genome-wide analysis of both transcriptional and translational events following protein secretion stress. Insight has been gained into the molecular basis of protein secretion and secretion-related stress in an effective protein-secreting fungus, and provides an opportunity to identify target genes for manipulation in strain improvement strategies.
Collapse
|
36
|
van den Brink HJM, Petersen SG, Rahbek-Nielsen H, Hellmuth K, Harboe M. Increased production of chymosin by glycosylation. J Biotechnol 2006; 125:304-10. [PMID: 16621086 DOI: 10.1016/j.jbiotec.2006.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Filamentous fungi are well known in the industry as producers of large amounts of extracellular proteins. However, production levels of heterologous proteins are often disappointing low. In this paper it is shown that increasing glycosylation is a powerful strategy for increasing production levels of chymosin in filamentous fungi. Two different concepts based on glycosylation were tested. First, we improved a poorly used N-glycosylation site within the prochymosin molecule. The resulting highly glycosylated chymosin molecule was expressed in Aspergillus niger. It was shown that production of the glycosylated protein was much more efficient, giving a yield increase of more than 100% compared to production of the native chymosin molecule. In an alternative strategy the N-glycosylation site was located outside of the native chymosin molecule, on a linker separating prochymosin from its carrier molecule. Also in this case significantly increased production levels were obtained. This strategy might offer a powerful tool for increasing production levels of other heterologous proteins as well.
Collapse
|
37
|
Davé A, Jeenes DJ, Mackenzie DA, Archer DB. HacA-independent induction of chaperone-encoding gene bipA in Aspergillus niger strains overproducing membrane proteins. Appl Environ Microbiol 2006; 72:953-5. [PMID: 16391143 PMCID: PMC1352284 DOI: 10.1128/aem.72.1.953-955.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of two unfolded protein response genes, hacA and bipA, was examined in Aspergillus niger strains overproducing membrane proteins. Despite elevated bipA mRNA levels, no 5'-truncated hacA transcript was detected, raising the possibility of a hacA-independent induction of bipA mRNA under the stress of membrane protein overproduction in A. niger.
Collapse
Affiliation(s)
- Anoushka Davé
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | |
Collapse
|
38
|
Semova N, Storms R, John T, Gaudet P, Ulycznyj P, Min XJ, Sun J, Butler G, Tsang A. Generation, annotation, and analysis of an extensive Aspergillus niger EST collection. BMC Microbiol 2006; 6:7. [PMID: 16457709 PMCID: PMC1434744 DOI: 10.1186/1471-2180-6-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 02/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aspergillus niger, a saprophyte commonly found on decaying vegetation, is widely used and studied for industrial purposes. Despite its place as one of the most important organisms for commercial applications, the lack of available information about its genetic makeup limits research with this filamentous fungus. RESULTS We present here the analysis of 12,820 expressed sequence tags (ESTs) generated from A. niger cultured under seven different growth conditions. These ESTs identify about 5,108 genes of which 44.5% code for proteins sharing similarity (E < or = 1e(-5)) with GenBank entries of known function, 38% code for proteins that only share similarity with GenBank entries of unknown function and 17.5% encode proteins that do not have a GenBank homolog. Using the Gene Ontology hierarchy, we present a first classification of the A. niger proteins encoded by these genes and compare its protein repertoire with other well-studied fungal species. We have established a searchable web-based database that includes the EST and derived contig sequences and their annotation. Details about this project and access to the annotated A. niger database are available. CONCLUSION This EST collection and its annotation provide a significant resource for fundamental and applied research with A. niger. The gene set identified in this manuscript will be highly useful in the annotation of the genome sequence of A. niger, the genes described in the manuscript, especially those encoding hydrolytic enzymes will provide a valuable source for researchers interested in enzyme properties and applications.
Collapse
Affiliation(s)
- Natalia Semova
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Reginald Storms
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Department of Biology, Concordia University, Montreal, Canada
| | - Tricia John
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Pascale Gaudet
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Northwestern University, 676 N. St. Clair Street, Chicago, IL 60611
| | - Peter Ulycznyj
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Xiang Jia Min
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Jian Sun
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Greg Butler
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
- Department of Biology, Concordia University, Montreal, Canada
| |
Collapse
|
39
|
Inan M, Aryasomayajula D, Sinha J, Meagher MM. Enhancement of protein secretion inPichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 2006; 93:771-8. [PMID: 16255058 DOI: 10.1002/bit.20762] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins.
Collapse
Affiliation(s)
- Mehmet Inan
- Biological Process Development Facility, Department of Chemical Engineering, University of Nebraska, Lincoln, 207P Othmer Hall, Nebraska 68588-0643, USA.
| | | | | | | |
Collapse
|
40
|
Liang Y, Li W, Ma Q, Zhang Y. Functional analysis of tunicamycin-inducible gene A polypeptide from Aspergillus niger. Biochem Cell Biol 2005; 83:654-8. [PMID: 16234854 DOI: 10.1139/o05-117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tunicamycin-inducible gene A polypeptide (TIGA) is a member of the protein disulfide isomerase (PDI) family and is suggested to facilitate the folding of nascent polypeptides. The functional properties of TIGA were investigated here. TIGA acted as an isomerase, catalyzing the refolding of denatured and reduced ribonuclease A. TIGA also exhibited chaperone activity in the refolding of denatured prochymosin but not in the refolding of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), indicating that it had substrate specificity with respect to chaperone activity. Detailed study with a series of thioredoxin-motif (trx-motif) mutants revealed that the 2 trx-motifs of TIGA were not equal in activity. The N-terminal trx-motif was more active than the C-terminal trx-motif, and the first cysteine in each trx-motif was necessary for isomerase activity.
Collapse
Affiliation(s)
- Yurong Liang
- Institute ofMicrobiology, Chinese Academy of Sciences, Beijing 100080,China
| | | | | | | |
Collapse
|
41
|
MacKenzie DA, Guillemette T, Al-Sheikh H, Watson AJ, Jeenes DJ, Wongwathanarat P, Dunn-Coleman NS, van Peij N, Archer DB. UPR-independent dithiothreitol stress-induced genes in Aspergillus niger. Mol Genet Genomics 2005; 274:410-8. [PMID: 16160852 DOI: 10.1007/s00438-005-0034-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
A subtraction library was prepared from cultures of Aspergillus niger that had or had not been exposed to dithiothreitol (DTT), in order to identify genes involved in the unfolded protein response (UPR) or in the response to reductive stress. A large fraction of the clones in the library (40%) encoded two putative methyltransferases (MTs) whose function has yet to be determined. Other stress-responsive genes included a homologue of the Mn2+-containing superoxide dismutase gene (sodB) and a number of genes predicted to code for products that function in protein turnover and in intra- and extracellular transport of molecules. Transcriptional microarray analysis was carried out with a group of 15 genes, comprising 11 from the cDNA library, two genes linked to the putative MT genes but not represented in the library, and two UPR control genes (bipA and pdiA). Eleven of the 15 genes were inducible with DTT. This was either reflected by the presence of transcripts in cells subjected to DTT stress compared to absence under control conditions, or by an induction ratio of between 1.4 and 8.0 in cases where transcripts were already detectable under control conditions. The MT genes were among the four most highly induced. None of the genes, apart from bipA and pdiA, showed significant induction in response to other stresses that are known to induce the UPR in fungi. We conclude that DTT alone does not provide for specific induction of UPR genes and that other stress conditions must also be examined.
Collapse
Affiliation(s)
- D A MacKenzie
- Department of Food Safety Science, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nevalainen KMH, Te'o VSJ, Bergquist PL. Heterologous protein expression in filamentous fungi. Trends Biotechnol 2005; 23:468-74. [PMID: 15967521 DOI: 10.1016/j.tibtech.2005.06.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 05/06/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
Filamentous fungi are commonly used in the fermentation industry for the large-scale production of proteins--mainly industrial enzymes. Recent advances in fungal genomics and related experimental technologies such as gene arrays and proteomics are rapidly changing the approaches to the development and use of filamentous fungi as hosts for the production of both homologous and heterologous gene products. The emphasis is moving towards sourcing new genes of interest through database mining and unravelling the circuits related to fungal gene regulation, applying, for example, transcriptomics. However, although heterologous fungal proteins are efficiently expressed, expression of gene products from other organisms is subject to several bottlenecks that reduce yield. Current approaches emphasize the study of pathways involved in protein modification and degradation in general rather than gene-by-gene approaches.
Collapse
Affiliation(s)
- K M Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | | | | |
Collapse
|
43
|
Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttilä M, Contreras R. Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 2005; 71:2910-24. [PMID: 15932985 PMCID: PMC1151825 DOI: 10.1128/aem.71.6.2910-2924.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe isolation and characterization of the gene encoding the glucosidase II alpha subunit (GIIalpha) of the industrially important fungus Trichoderma reesei. This subunit is the catalytic part of the glucosidase II heterodimeric enzyme involved in the structural modification within the endoplasmic reticulum (ER) of N-linked oligosaccharides present on glycoproteins. The gene encoding GIIalpha (gls2alpha) in the hypercellulolytic strain Rut-C30 contains a frameshift mutation resulting in a truncated gene product. Based on the peculiar monoglucosylated N-glycan pattern on proteins produced by the strain, we concluded that the truncated protein can still hydrolyze the first alpha-1,3-linked glucose residue but not the innermost alpha-1,3-linked glucose residue from the Glc2Man9GlcNAc2 N-glycan ER structure. Transformation of the Rut-C30 strain with a repaired T. reesei gls2alpha gene changed the glycosylation profile significantly, decreasing the amount of monoglucosylated structures and increasing the amount of high-mannose N-glycans. Full conversion to high-mannose carbohydrates was not obtained, and this was probably due to competition between the endogenous mutant subunit and the introduced wild-type GIIalpha protein. Since glucosidase II is also involved in the ER quality control of nascent polypeptide chains, its transcriptional regulation was studied in a strain producing recombinant tissue plasminogen activator (tPA) and in cultures treated with the stress agents dithiothreitol (DTT) and brefeldin A (BFA), which are known to block protein transport and to induce the unfolded protein response. While the mRNA levels were clearly upregulated upon tPA production or BFA treatment, no such enhancement was observed after DTT addition.
Collapse
Affiliation(s)
- Steven Geysens
- Fundamental and Applied Molecular Biology, Department for Molecular Biomedical Research, Ghent University and VIB (Flemish Interuniversity Institute for Biotechnology), Ghent-Zwijnaarde, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Collén A, Saloheimo M, Bailey M, Penttilä M, Pakula TM. Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. Biotechnol Bioeng 2005; 89:335-44. [PMID: 15619324 DOI: 10.1002/bit.20350] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of induction of protein production was studied in bioreactor cultures of T. reesei strain Rut-C30 and its transformant expressing endoglucanase I core domain (EGI, Cel7B) fused with a hydrophobic peptide tag. The tag was previously designed for efficient purification of the fusion protein in aqueous two-phase separation. The fungi were first grown on glucose-containing minimal medium after which rich medium with lactose as a carbon source was added to induce cellulase production. Production of extracellular protein and cellulase activity and the transcript levels of the major cellulase genes were analyzed during the cultivations. Induction of the cellulase genes followed a similar temporal pattern in both strains. The first phase of induction took place after addition of lactose as soon as glucose was depleted, and the second phase after lactose was consumed. Western analysis showed that a decreased amount of fusion protein was produced in the culture medium compared with the endogenous EGI, although the strain harbors several copies of the recombinant gene under the strong cbh1 promoter. The fusion protein appeared to accumulate within the cells, indicating impaired secretion of the protein. The mRNA levels of the UPR (unfolded protein response) target genes, bip1 and pdi1, and the level of the active form of hac1 transcript encoding the UPR transcription factor increased concurrently with induction of the cellulase genes in both strains, indicating increased requirement of the folding machinery under these conditions. However, only a minor increase in bip1 and pdi1 transcript level was observed in the transformant compared with the parental strain.
Collapse
Affiliation(s)
- Anna Collén
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
45
|
Liang Y, Li W, Ma Q, Zhang Y. Functional properties of PDIA from Aspergillus niger in renaturation of proteins. FEMS Microbiol Lett 2005; 245:363-8. [PMID: 15837393 DOI: 10.1016/j.femsle.2005.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/09/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022] Open
Abstract
Functional properties of protein disulfide isomerase A (PDIA) from Aspergillus niger were investigated using ribonuclease A, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and prochymosin as substrates. PDIA was shown to function as an isomerase catalyzing the refolding of denatured and reduced ribonuclease A. PDIA also exhibited trx-independent chaperone activity preventing the aggregation of reduced, denatured GAPDH, an enzyme lacking disulfide bonds. Both isomerase activity and chaperone function of PDIA were essential for the efficient refolding of the reduced, denatured prochymosin.
Collapse
Affiliation(s)
- Yurong Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
46
|
Nevalainen H, Te'o V, Penttilä M, Pakula T. Heterologous Gene Expression in Filamentous Fungi: A Holistic View. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
47
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
48
|
Al-Sheikh H, Watson AJ, Lacey GA, Punt PJ, MacKenzie DA, Jeenes DJ, Pakula T, Penttilä M, Alcocer MJC, Archer DB. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol Microbiol 2004; 53:1731-42. [PMID: 15341651 DOI: 10.1111/j.1365-2958.2004.04236.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a new endoplasmic reticulum (ER)-associated stress response in the filamentous fungus Aspergillus niger. The inhibition of protein folding within the ER leads to cellular responses known collectively as the unfolded protein response (UPR) and we show that the selective transcriptional downregulation of the gene encoding glucoamylase, a major secreted protein, but not two non-secreted proteins, is an additional consequence of ER stress. The transcriptional downregulation effect is shown by nuclear run-on studies to be at the level of transcription, rather than mRNA stability, and is found to be mediated through the promoter of glaA in a region more than 1 kb upstream of the translational start. The inhibition of protein folding in the ER can be induced in a variety of ways. We examined the effects of dithiothreitol (DTT), a reducing agent that causes the formation of unfolded proteins. Although a general downregulation of transcription was seen with DTT treatment, we show that selective downregulation was observed with the glaA gene compared with genes encoding the non-secreted proteins gamma-actin and glyceraldehyde 3'-phosphate dehydrogenase. The DTT-treated fungal cells also showed evidence for the induction of the UPR because expression of bipA and pdiA, encoding an ER-resident chaperone and foldase, respectively, are upregulated and splicing of hacA, the gene encoding the transcription factor responsible for induction of the UPR, occurs allowing the production of an active HacA protein. As a preliminary attempt to investigate if the transcriptional downregulation effect was mediated through HacA (i.e. part of the UPR), we examined ER stress induced through antisense technology to lower the level of PDI in the ER of A. niger. Although the transcription of glaA was attenuated in that strain of A. niger, UPR was not evident, suggesting that the transcriptional downregulation mechanism is controlled differently from the UPR.
Collapse
Affiliation(s)
- Hashem Al-Sheikh
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lombraña M, Moralejo FJ, Pinto R, Martín JF. Modulation of Aspergillus awamori thaumatin secretion by modification of bipA gene expression. Appl Environ Microbiol 2004; 70:5145-52. [PMID: 15345393 PMCID: PMC520887 DOI: 10.1128/aem.70.9.5145-5152.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two different strains, Aspergillus awamori TGDTh-4 and A. awamori TGP-3 overexpressing a synthetic gene encoding the plant sweet protein thaumatin, showed an unfolded protein response. To facilitate protein secretion, the chaperone BiPA gene was expressed in A. awamori under control of the strong constitutive promoter of the gpdA gene. A good correlation was observed between the level of the bipA transcript in different strains and the amount of thaumatin secreted. Thaumatin secretion was increased 2- to 2.5-fold in transformants overexpressing the bipA gene compared with the parental strain. Secretion of the homologous proteins alpha-amylase and glucoamylase was not affected by the bipA gene overexpression. The requirement for BiPA for secretion of thaumatin was confirmed by attenuation of the endogenous bipA gene expression with an antisense RNA cassette. The decrease in bipA expression reduced the amount of secreted thaumatin up to 80% without affecting the secretion of the homologous alpha-amylase and glucoamylase proteins. The BiPA protein is, therefore, very important for secretion of some heterologous proteins, such as thaumatin in A. awamori.
Collapse
Affiliation(s)
- Marta Lombraña
- INBIOTEC, Faculad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | |
Collapse
|
50
|
Zhou H, Zhang Y, Jia C, Yang K. Chaperone characteristics of PDI-related protein A from Aspergillus niger. Biochem Biophys Res Commun 2004; 321:31-7. [PMID: 15358211 DOI: 10.1016/j.bbrc.2004.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Indexed: 04/30/2023]
Abstract
The functional properties of a novel protein, protein disulfide isomerase-related protein A (PRPA) from Aspergillus niger T21, have been characterized. (1) PRPA possesses disulfide isomerase activity. (2) In Hepes buffer, at substoichiometric concentrations, PRPA facilitates the formation of inactive lysozyme aggregates associated with PRPA (anti-chaperone activity); while at a high molar excess, PRPA inhibits aggregation by maintaining lysozyme in a soluble, yet inactive, state (chaperone-like activity). However, PRPA only exhibits chaperone-like activity during lysozyme refolding in phosphate buffer. (3) Experiments have indicated that disulfide cross-linkage is not required for the interaction between PRPA and lysozyme, and hydrophobic interaction may be responsible for PRPA effect on lysozyme. (4) Co-expression of PRPA and prochymosin in Escherichia coli leads to reduction of inclusion bodies, rendering part of prochymosin molecules soluble yet inactive. The structural and functional characteristics of PRPA suggest that PRPA may play an important role in protein folding, aggregation, and retention in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Haiping Zhou
- Institute of Microbiology, Chinese Academe of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|