1
|
Burchacka E, Pięta P, Łupicka-Słowik A. Recent advances in fungal serine protease inhibitors. Biomed Pharmacother 2021; 146:112523. [PMID: 34902742 DOI: 10.1016/j.biopha.2021.112523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Four types of antifungal drugs are available that include inhibitors of ergosterol synthesis, of fungal RNA biosynthesis, and of cell wall biosynthesis as well as physiochemical regulators of fungal membrane sterols. Increasing resistance to antifungal drugs can severely limit treatment options of fungal nail infections, vaginal candidiasis, ringworm, blastomycosis, histoplasmosis, and Candida infections of the mouth, throat, and esophagus, among other infections. Development of strategies focused on new fungicides can effectively help tackle troublesome fungal diseases. The virulence and optimal growth of fungi depend on various extracellular secreted factors, among which proteases, such as serine proteases, are of particular interest. A specific extracellular proteolytic system enables fungi to survive and penetrate the tissues. Given the role of fungal proteases in infection, any molecule capable of selectively and specifically inhibiting their activity can lead to the development of potential drugs. Owing to their specific mode of action, fungal protease inhibitors can avoid fungal resistance observed with currently available treatments. Although fungal secreted proteases have been extensively studied as potential virulence factors, our understanding of the substrate specificity of such proteases remains poor. In this review, we summarize the recent advances in the design and development of specific serine protease inhibitors and provide a brief history of the compounds that inhibit fungal serine protease activity.
Collapse
Affiliation(s)
- E Burchacka
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland.
| | - P Pięta
- Department of Bionic and Medical Experimental Biology, Poznań University of Medical Sciences, Parkowa 2 St, 60-775 Poznań, Poland
| | - A Łupicka-Słowik
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
A Summary on Up-To-Date Research on Fungal Siderophores on Disease, Treatment and Pathogenicity Based on Text Mining, Bioinformatics and Experts’ Opinion. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Vojdani A, Thrasher JD, Madison RA, Gray MR, Heuser G, Campbell AW. Antibodies to Molds and Satratoxin in Individuals Exposed in Water-Damaged Buildings. ACTA ACUST UNITED AC 2017; 58:421-32. [PMID: 15143855 DOI: 10.1080/00039896.2003.11879143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunoglobulin (Ig)A, IgM, and IgG antibodies against Penicillium notatum, Aspergillus niger, Stachybotrys chartarum, and satratoxin H were determined in the blood of 500 healthy blood donor controls, 500 random patients, and 500 patients with known exposure to molds. The patients were referred to the immunological testing laboratory for health reasons other than mold exposure, or for measurement of mold antibody levels. Levels of IgA, IgM, and IgG antibodies against molds were significantly greater in the patients (p < 0.001 for all measurements) than in the controls. However, in mold-exposed patients, levels of these antibodies against satratoxin differed significantly for IgG only (p < 0.001), but not for IgM or IgA. These differences in the levels of mold antibodies among the 3 groups were confirmed by calculation of z score and by Scheffé's significant difference tests. A general linear model was applied in the majority of cases, and 3 different subsets were formed, meaning that the healthy control groups were different from the random patients and from the mold-exposed patients. These findings indicated that mold exposure was more common in patients who were referred for immunological evaluation than it was in healthy blood donors. The detection of antibodies to molds and satratoxin H likely resulted from antigenic stimulation of the immune system and the reaction of serum with specially prepared mold antigens. These antigens, which had high protein content, were developed in this laboratory and used in the enzyme-linked immunosorbent assay (ELISA) procedure. The authors concluded that the antibodies studied are specific to mold antigens and mycotoxins, and therefore could be useful in epidemiological and other studies of humans exposed to molds and mycotoxins.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Beverly Hills, California, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
| | | | | | | | - John W. Taylor
- Department of Plant and Microbial Biology, 321 Koshland Hall, University of California, Berkeley, California, USA 94720-3102
| |
Collapse
|
5
|
Andersen B, Nielsen KF, Jarvis BB. Characterization ofStachybotrysfrom water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 2017. [DOI: 10.1080/15572536.2003.11833204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Birgitte Andersen
- The Mycology Group, BioCentrum-DTU, Søltofts Plads, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kristian F. Nielsen
- The Mycology Group, BioCentrum-DTU, Søltofts Plads, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark Energy and Indoor Climate Division, Danish Research Institute, Dr. Neergaardsvej 15, DK-2970, Hørsholm, Denmark
| | - Bruce B. Jarvis
- Department of Chemistry and Biochemistry and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
6
|
Kim JH, Harvey LA, Evans AL, Byfield GE, Betancourt DA, Dean TR. Biological responses of Raw 264.7 macrophage exposed to two strains of Stachybotrys chartarum spores grown on four different wallboard types. Inhal Toxicol 2016; 28:303-12. [PMID: 27097835 DOI: 10.3109/08958378.2016.1170909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The many benefits of building "green" have motivated the use of sustainable products in the design and execution of the built environment. However, the use of these natural or recycled materials, some of which have been treated with antimicrobials, provides a growth opportunity for microorganisms with the potential to elicit adverse health effects especially in the presence of an antimicrobial. The focus of this research was to determine the effects of Stachybotrys chartarum (strains Houston and 51-11) grown under different conditions on a macrophage cell line (Raw 264.7) using endpoints, including cytotoxicity, and those associated with immunity specifically inflammation and MHC class II expression. The fungi were grown on four different gypsum products, and macrophages were exposed to whole spores of both strains and fragmented spores of strain 51-11. Whole spores of the Houston strain elicited no cytotoxicity with some level of inflammation, while exposure to whole spores of 51-11 caused variable responses depending on the wallboard type supporting the fungal growth. High concentrations of fragmented 51-11 spores primarily resulted in the apoptosis of macrophage with no inflammation. None of the fungal strains caused elevated levels of major histocompatibility complex (MHC) class II expression on the surface of Raw cells. Mycotoxin levels of 51-11 spores from all of the wallboard types measured >250 ng/μL of T2 equivalent toxin based on activity. Collectively, the data demonstrated that all of the wallboard types supported growth of fungi with the ability to elicit harmful biological responses with the potential to negatively impact human health.
Collapse
Affiliation(s)
- J H Kim
- a RTI International, Microbiology, Research Triangle Park , Durham , NC , USA
| | - L A Harvey
- a RTI International, Microbiology, Research Triangle Park , Durham , NC , USA
| | - A L Evans
- a RTI International, Microbiology, Research Triangle Park , Durham , NC , USA
| | - G E Byfield
- a RTI International, Microbiology, Research Triangle Park , Durham , NC , USA .,b St. Augustine's University, Biological and Physical Sciences , Raleigh , NC , USA , and
| | - D A Betancourt
- c U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention Control Division, Research Triangle Park , NC , USA
| | - T R Dean
- c U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention Control Division, Research Triangle Park , NC , USA
| |
Collapse
|
7
|
Fromme H, Gareis M, Völkel W, Gottschalk C. Overall internal exposure to mycotoxins and their occurrence in occupational and residential settings – An overview. Int J Hyg Environ Health 2016; 219:143-65. [DOI: 10.1016/j.ijheh.2015.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
|
8
|
Gruenwald M, Rabenstein A, Remesch M, Kuever J. MALDI-TOF mass spectrometry fingerprinting: A diagnostic tool to differentiate dematiaceous fungi Stachybotrys chartarum and Stachybotrys chlorohalonata. J Microbiol Methods 2015; 115:83-8. [PMID: 26036596 DOI: 10.1016/j.mimet.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/17/2022]
Abstract
Stachybotrys chartarum and Stachybotrys chlorohalonata are two closely related species. Unambiguous identification of these two species is a challenging task if relying solely on morphological criteria and therefore smarter and less labor-intensive approaches are needed. Here we show that even such closely related species of fungi as S. chartarum and S. chlorohalonata are unequivocally discriminated by their highly reproducible MALDI-TOF-MS fingerprints (matrix assisted laser desorption/ionization time-of-flight mass spectrometry fingerprints). We examined 19 Stachybotrys and one Aspergillus isolate by MALDI-TOF-MS. All but one isolate produced melanin containing conidia on malt extract agar. Mass spectra were obtained in good quality from the analysis of hyaline and darkly pigmented conidia by circumventing the property of melanin which causes signal suppression. MALDI-TOF fingerprint analysis clearly discriminated not only the two morphologically similar species S. chartarum and S. chlorohalonata from each other but separated them precisely from Stachybotrys bisbyi and Aspergillus versicolor isolates. Furthermore, even S. chartarum chemotypes A and S could be differentiated into two distinct groups by their MALDI-TOF fingerprints. The chemotypes of S. chartarum isolates were identified by trichodiene synthase 5 (tri5) sequences prior to mass spectra analysis. Additionally, species identities of all isolates were verified by their 18S rRNA and tri5 gene sequences.
Collapse
Affiliation(s)
- Maike Gruenwald
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Andreas Rabenstein
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Markko Remesch
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Jan Kuever
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| |
Collapse
|
9
|
Sankaranarayanan R, Alagumaruthanayagam A, Sankaran K. A new fluorimetric method for the detection and quantification of siderophores using Calcein Blue, with potential as a bacterial detection tool. Appl Microbiol Biotechnol 2015; 99:2339-49. [PMID: 25634020 DOI: 10.1007/s00253-015-6411-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/31/2022]
Abstract
The presence of microorganisms in biological fluids like urine and blood is an indication of vulnerability to infections. Iron is one of the important micronutrients required for bacterial growth. In an iron-deficit environment, bacteria release high-affinity iron-chelating compounds called siderophores which can be used as non-invasive target molecules for the detection of such pathogens. However, only limited reagents and procedures are available to detect the presence of these organic molecules. The present study aims at detecting the presence of siderophores in the iron-depleted media, exploiting the reversible quenching of Calcein Blue and iron(III) complex. The fluorescence of Calcein Blue is known to be quenched in the presence of iron(III); if a stronger chelator removes this ion from the fluorophore, the fluorescence of the fluorophore is regained. This behaviour of the fluorophore was exploited to detect and quantify siderophores down to 50 and 800 nM equivalent of standard siderophore, deferroxamine mesylate (desferal) in Dulbecco's PBS and siderophore quantification (SPQ) medium, respectively. The siderophores released by pathogens, equivalent to standard desferal, were in the range of 1.29 to 5.00 μM and those for non-pathogens were below 1.19 μM. The simple, sensitive and cost-effective method performed in a 96-well plate was able to detect and quantify iron chelators within 7-8 h of incubation.
Collapse
|
10
|
Abstract
Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented.
Collapse
Affiliation(s)
- Ajay P Nayak
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
11
|
Andersen B, Nielsen KF, Thrane U, Szaro T, Taylor JW, Jarvis BB. Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings. Mycologia 2012; 95:1227-38. [PMID: 21149024 DOI: 10.1080/15572536.2004.11833031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Twenty-five Stachybotrys isolates from two previous studies have been examined and compared, using morphological, chemical and phylogenetic methods. The results show that S. chartarum sensu lato can be segregated into two chemotypes and one new species. The new species, S. chlorohalonata, differs morphologically from S. chartarum by having smooth conidia, being more restricted in growth and producing a green extracellular pigment on the medium CYA. S. chlorohalonata and S. chartarum also have different tri5, chs1 and tub1 gene fragment sequences. The two chemotypes of S. chartarum, chemotype S and chemotype A, have similar morphology but differ in production of metabolites. Chemotype S produces macrocyclic trichothecenes, satratoxins and roridins, while chemotype A produces atranones and dolabellanes. There is no difference between the two chemotypes in the tub1 gene fragment, but there is a one nucleotide difference in each of the tri5 and the chs1 gene fragments.
Collapse
Affiliation(s)
- Birgitte Andersen
- Mycology Group, BioCentrum-DTU, Søltofts Plads, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
12
|
Nayak AP, Green BJ, Janotka E, Blachere FM, Vesper SJ, Beezhold DH, Schmechel D. Production and characterization of IgM monoclonal antibodies against hyphal antigens of Stachybotrys species. Hybridoma (Larchmt) 2011; 30:29-36. [PMID: 21466283 DOI: 10.1089/hyb.2010.0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stachybotrys is a hydrophilic fungal genus that is well known for its ability to colonize water-damaged building materials in indoor environments. Personal exposure to Stachybotrys chartarum allergens, mycotoxins, cytolytic peptides, and other immunostimulatory macromolecules has been proposed to exacerbate respiratory morbidity. To date, advances in Stachybotrys detection have focused on the identification of unique biomarkers that can be detected in human serum; however, the availability of immunodiagnostic reagents to Stachybotrys species have been limited. In this study, we report the initial characterization of monoclonal antibodies (MAbs) against a semi-purified cytolytic S. chlorohalonata preparation (cScp) derived from hyphae. BALB/c mice were immunized with cScp and hybridomas were screened against the cScp using an antigen-mediated indirect ELISA. Eight immunoglobulin M MAbs were produced and four were specifically identified in the capture ELISA to react with the cScp. Cross-reactivity of the MAbs was tested against crude hyphal extracts derived from 15 Stachybotrys isolates representing nine Stachybotrys species as well as 39 other environmentally abundant fungi using a capture ELISA. MAb reactivity to spore and hyphal antigens was also tested by a capture ELISA and by fluorescent halogen immunoassay (fHIA). ELISA analysis demonstrated that all MAbs strongly reacted with extracts of S. chartarum but not with extracts of 39 other fungi. However, four MAbs showed cross-reactivity to the phylogenetically related genus Memnoniella. fHIA analysis confirmed that greatest MAb reactivity was ultrastructurally localized in hyphae and phialides. The results of this study further demonstrate the feasibility of specific MAb-based immunoassays for the detection of S. chartarum.
Collapse
Affiliation(s)
- Ajay P Nayak
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Molds are ubiquitous throughout the biosphere of planet earth and cause infectious, allergic, and toxic diseases. Toxic diseases arise from exposure to mycotoxins produced by molds. Throughout history, there have been a number of toxic epidemics associated with exposure to mycotoxins. Acute epidemics of ergotism are caused by consumption of grain infested by fungi of the genus Claviceps, which produce the bioactive amine ergotamine that mimics the neurotransmitters norepinephrine, serotonin, and dopamine. Acute aflatoxin outbreaks have occurred from ingestion of corn stored in damp conditions that potentiate growth of the molds of the species Aspergillus. Contemporary construction methods that use cellulose substrates such as fiber board and indoor moisture have caused an outbreak of contaminated buildings with Stachybotrys chartarum, with the extent of health effects still a subject of debate and ongoing research. This article reviews several of the more prominent epidemics and discusses the nature of the toxins. Two diseases that were leading causes of childhood mortality in England in the 1970s and vanished with changing dietary habits, putrid malignant fever, and slow nervous fever were most likely toxic mold epidemics.
Collapse
Affiliation(s)
- William J Meggs
- Division of Toxicology, Department of Emergency Medicine, Brody School of Medicine, East Carolina University, USA,
| |
Collapse
|
14
|
Thrasher JD, Crawley S. The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health 2009; 25:583-615. [DOI: 10.1177/0748233709348386] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nine types of biocontaminants in damp indoor environments from microbial growth are discussed: (1) indicator molds; (2) Gram negative and positive bacteria; (3) microbial particulates; (4) mycotoxins; (5) volatile organic compounds, both microbial (MVOCs) and non-microbial (VOCs); (6) proteins; (7) galactomannans; (8) 1-3-β-D-glucans (glucans) and (9) lipopolysaccharides (LPS — endotoxins). When mold species exceed those outdoors contamination is deduced. Gram negative bacterial endotoxins, LPS in indoor environments, synergize with mycotoxins. The gram positive Bacillus species, Actinomycetes (Streptomyces, Nocardia and Mycobacterium), produce exotoxins. The Actinomycetes are associated with hypersensitivity pneumonitis, lung and invasive infections. Mycobacterial mycobacterium infections not from M. tuberculosis are increasing in immunocompetent individuals. In animal models, LPS enhance the toxicity of roridin A, satratoxins G and aflatoxin B1 to damage the olfactory epithelium, tract and bulbs (roridin A, satratoxin G) and liver (aflatoxin B1). Aflatoxin B1 and probably trichothecenes are transported along the olfactory tract to the temporal lobe. Co-cultured Streptomyces californicus and Stachybotrys chartarum produce a cytotoxin similar to doxorubicin and actinomycin D (chemotherapeutic agents). Trichothecenes, aflatoxins, gliotoxin and other mycotoxins are found in dust, bulk samples, air and ventilation systems of infested buildings. Macrocyclic trichothecenes are present in airborne particles <2 μm. Trichothecenes and stachylysin are present in the sera of individuals exposed to S. chartarum in contaminated indoor environments. Haemolysins are produced by S. chartarum, Memnoniella echinata and several species of Aspergillus and Penicillium. Galactomannans, glucans and LPS are upper and lower respiratory tract irritants. Gliotoxin, an immunosuppressive mycotoxin, was identified in the lung secretions and sera of cancer patients with aspergillosis produced by A. fumigatus, A. terreus, A. niger and A. flavus.
Collapse
|
15
|
Pestka JJ, Yike I, Dearborn DG, Ward MDW, Harkema JR. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 2007; 104:4-26. [PMID: 18007011 DOI: 10.1093/toxsci/kfm284] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Damp building-related illnesses (DBRI) include a myriad of respiratory, immunologic, and neurologic symptoms that are sometimes etiologically linked to aberrant indoor growth of the toxic black mold, Stachybotrys chartarum. Although supportive evidence for such linkages is limited, there are exciting new findings about this enigmatic organism relative to its environmental dissemination, novel bioactive components, unique cellular targets, and molecular mechanisms of action which provide insight into the S. chartarum's potential to evoke allergic sensitization, inflammation, and cytotoxicity in the upper and lower respiratory tracts. Macrocyclic trichothecene mycotoxins, produced by one chemotype of this fungus, are potent translational inhibitors and stress kinase activators that appear to be a critical underlying cause for a number of adverse effects. Notably, these toxins form covalent protein adducts in vitro and in vivo and, furthermore, cause neurotoxicity and inflammation in the nose and brain of the mouse. A second S. chartarum chemotype has recently been shown to produce atranones-mycotoxins that can induce pulmonary inflammation. Other biologically active products of this fungus that might contribute to pathophysiologic effects include proteinases, hemolysins, beta-glucan, and spirocyclic drimanes. Solving the enigma of whether Stachybotrys inhalation indeed contributes to DBRI will require studies of the pathophysiologic effects of low dose chronic exposure to well-characterized, standardized preparations of S. chartarum spores and mycelial fragments, and, coexposures with other environmental cofactors. Such studies must be linked to improved assessments of human exposure to this fungus and its bioactive constituents in indoor air using both state-of-the-art sampling/analytical methods and relevant biomarkers.
Collapse
Affiliation(s)
- James J Pestka
- Center for Integrative Toxicology, 234 G.M. Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA.
| | | | | | | | | |
Collapse
|
16
|
Mader DR, Yike I, Distler AM, Dearborn DG. Acute pulmonary hemorrhage during isoflurane anesthesia in two cats exposed to toxic black mold (Stachybotrys chartarum). J Am Vet Med Assoc 2007; 231:731-5. [PMID: 17764432 DOI: 10.2460/javma.231.5.731] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION Acute pulmonary hemorrhage developed during isoflurane anesthesia in 2 Himalayan cats undergoing routine dental cleaning and prophylaxis. CLINICAL FINDINGS The cats were siblings and lived together. In both cats, results of pre-operative physical examinations and laboratory testing were unremarkable. Blood pressure and oxygen saturation were within reference ranges throughout the dental procedure. Approximately 15 to 20 minutes after administration of isoflurane was begun, frothy blood was noticed within the endotracheal tube. Blood was suctioned from the endotracheal tube, and the cats were allowed to recover from anesthesia. TREATMENT AND OUTCOME 1 cat initially responded to supportive care but developed a second episode of spontaneous pulmonary hemorrhage approximately 30 hours later and died. The other cat responded to supportive care and was discharged after 4 days, but its condition deteriorated, and the cat died 10 days later. Subsequently, it was discovered that the home was severely contaminated with mold as a result of storm damage that had occurred approximately 7 months previously. Retrospective analysis of banked serum from the cats revealed satratoxin G, a biomarker for Stachybotrys chartarum, commonly referred to as "toxic black mold." CLINICAL RELEVANCE Findings highlight the potential risk of acute pulmonary hemorrhage in animals living in an environment contaminated with mold following flood damage.
Collapse
Affiliation(s)
- Douglas R Mader
- Marathon Veterinary Hospital, 11187 Overseas Hwy, Marathon, FL 33050, USA
| | | | | | | |
Collapse
|
17
|
Shoemaker RC, House DE. A time-series study of sick building syndrome: chronic, biotoxin-associated illness from exposure to water-damaged buildings. Neurotoxicol Teratol 2005; 27:29-46. [PMID: 15681119 DOI: 10.1016/j.ntt.2004.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 07/30/2004] [Accepted: 07/30/2004] [Indexed: 11/15/2022]
Abstract
The human health risk for chronic illnesses involving multiple body systems following inhalation exposure to the indoor environments of water-damaged buildings (WDBs) has remained poorly characterized and the subject of intense controversy. The current study assessed the hypothesis that exposure to the indoor environments of WDBs with visible microbial colonization was associated with illness. The study used a cross-sectional design with assessments at five time points, and the interventions of cholestyramine (CSM) therapy, exposure avoidance following therapy, and reexposure to the buildings after illness resolution. The methodological approach included oral administration of questionnaires, medical examinations, laboratory analyses, pulmonary function testing, and measurements of visual function. Of the 21 study volunteers, 19 completed assessment at each of the five time points. Data at Time Point 1 indicated multiple symptoms involving at least four organ systems in all study participants, a restrictive respiratory condition in four participants, and abnormally low visual contrast sensitivity (VCS) in 18 participants. Serum leptin levels were abnormally high and alpha melanocyte stimulating hormone (MSH) levels were abnormally low. Assessments at Time Point 2, following 2 weeks of CSM therapy, indicated a highly significant improvement in health status. Improvement was maintained at Time Point 3, which followed exposure avoidance without therapy. Reexposure to the WDBs resulted in illness reacquisition in all participants within 1 to 7 days. Following another round of CSM therapy, assessments at Time Point 5 indicated a highly significant improvement in health status. The group-mean number of symptoms decreased from 14.9+/-0.8 S.E.M. at Time Point 1 to 1.2+/-0.3 S.E.M., and the VCS deficit of approximately 50% at Time Point 1 was fully resolved. Leptin and MSH levels showed statistically significant improvement. The results indicated that CSM was an effective therapeutic agent, that VCS was a sensitive and specific indicator of neurologic function, and that illness involved systemic and hypothalamic processes. Although the results supported the general hypothesis that illness was associated with exposure to the WDBs, this conclusion was tempered by several study limitations. Exposure to specific agents was not demonstrated, study participants were not randomly selected, and double-blinding procedures were not used. Additional human and animal studies are needed to confirm this conclusion, investigate the role of complex mixtures of bacteria, fungi, mycotoxins, endotoxins, and antigens in illness causation, and characterize modes of action. Such data will improve the assessment of human health risk from chronic exposure to WDBs.
Collapse
Affiliation(s)
- Ritchie C Shoemaker
- Chronic Fatigue Center, 500 Market Street, Suite 103, Pocomoke City, MD 21851, United States
| | | |
Collapse
|
18
|
|
19
|
Vesper SJ, Vesper MJ. Possible role of fungal hemolysins in sick building syndrome. ADVANCES IN APPLIED MICROBIOLOGY 2004; 55:191-213. [PMID: 15350795 DOI: 10.1016/s0065-2164(04)55007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Stephen J Vesper
- U.S. Environmental Protection Agency Office of Research and Development, National Exposure Research Laboratory 26 W. M. L. King Drive Cincinnati, Ohio 45268, USA
| | | |
Collapse
|
20
|
Campbell AW, Thrasher JD, Gray MR, Vojdani A. Mold and mycotoxins: effects on the neurological and immune systems in humans. ADVANCES IN APPLIED MICROBIOLOGY 2004; 55:375-406. [PMID: 15350803 DOI: 10.1016/s0065-2164(04)55015-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Gray MR, Thrasher JD, Crago R, Madison RA, Arnold L, Campbell AW, Vojdani A. Mixed mold mycotoxicosis: immunological changes in humans following exposure in water-damaged buildings. ACTA ACUST UNITED AC 2004; 58:410-20. [PMID: 15143854 DOI: 10.1080/00039896.2003.11879142] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study described was part of a larger multicenter investigation of patients with multiple health complaints attributable to confirmed exposure to mixed-molds infestation in water-damaged buildings. The authors present data on symptoms; clinical chemistries; abnormalities in pulmonary function; alterations in T, B, and natural killer (NK) cells; the presence of autoantibodies (i.e., antinuclear autoantibodies [ANA], autoantibodies against smooth muscle [ASM], and autoantibodies against central nervous system [CNS] and peripheral nervous system [PNS] myelins). A total of 209 adults, 42.7 +/- 16 yr of age (mean +/- standard deviation), were examined and tested with (a) self-administered weighted health history and symptom questionnaires; (b) standardized physical examinations; (c) complete blood counts and blood and urine chemistries; (d) urine and fecal cultures; (e) thyroid function tests (T4, free T3); (f) pulmonary function tests (forced vital capacity [FVC], forced expiratory volume in 1 sec [FEV1.0], and forced expiratory flow at 25%, 50%, 75%, and 25-75% of FVC [FEF25, FEF50, FEF75, and FEF2(25-75)]); (g) peripheral lymphocyte phenotypes (T, B, and NK cells) and mitogenesis determinations; and (h) a 13-item autoimmune panel. The molds-exposed patients reported a greater frequency and intensity of symptoms, particularly neurological and inflammatory symptoms, when compared with controls. The percentages of exposed individuals with increased lymphocyte phenotypes were: B cells (CD20+), 75.6%; CD5+CD25+, 68.9%; CD3+CD26+, 91.2%; CD8+HLR-DR+, 62%; and CD8+CD38+, 56.6%; whereas other phenotypes were decreased: CD8+CD11b+, 15.6% and CD3-CD16+CD56+, 38.5%. Mitogenesis to phytohemagglutinin was decreased in 26.2% of the exposed patients, but only 5.9% had decreased response to concanavalin A. Abnormally high levels of ANA, ASM, and CNS myelin (immunoglobulins [Ig]G, IgM, IgA) and PNS myelin (IgG, IgM, IgA) were found; odds ratios for each were significant at 95% confidence intervals, showing an increased risk for autoimmunity. The authors conclude that exposure to mixed molds and their associated mycotoxins in water-damaged buildings leads to multiple health problems involving the CNS and the immune system, in addition to pulmonary effects and allergies. Mold exposure also initiates inflammatory processes. The authors propose the term "mixed mold mycotoxicosis" for the multisystem illness observed in these patients.
Collapse
|
22
|
Affiliation(s)
- Michael B Levy
- Medical College of Wisconsin 9000 W. Wisconsin Avenue Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
23
|
Yike I, Dearborn DG. Pulmonary Effects of Stachybotrys chartarum in Animal Studies. ADVANCES IN APPLIED MICROBIOLOGY 2004; 55:241-73. [PMID: 15350797 DOI: 10.1016/s0065-2164(04)55009-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Iwona Yike
- Case Western Reserve University Mary Ann Swetland Center for Environmental Health Department of Pediatrics Rainbow Babies and Children Hospital, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
24
|
Chapman JA, Terr AI, Jacobs RL, Charlesworth EN, Bardana EJ. Toxic mold: phantom risk vs science. Ann Allergy Asthma Immunol 2003; 91:222-32. [PMID: 14533653 DOI: 10.1016/s1081-1206(10)63522-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To review the available literature on the subject of fungi (molds) and their potential impact on health and to segregate information that has scientific validity from information that is yet unproved and controversial. DATA SOURCES This review represents a synthesis of the available literature in this area with the authors' collective experience with many patients presenting with complaints of mold-related illness. STUDY SELECTION Pertinent scientific investigation on toxic mold issues and previously published reviews on this and related subjects that met the educational objectives were critically reviewed. RESULTS Indoor mold growth is variable, and its discovery in a building does not necessarily mean occupants have been exposed. Human response to fungal antigens may induce IgE or IgG antibodies that connote prior exposure but not necessarily a symptomatic state. Mold-related disease has been discussed in the framework of noncontroversial and controversial disorders. CONCLUSIONS When mold-related symptoms occur, they are likely the result of transient irritation, allergy, or infection. Building-related illness due to mycotoxicosis has never been proved in the medical literature. Prompt remediation of water-damaged material and infrastructure repair should be the primary response to fungal contamination in buildings.
Collapse
Affiliation(s)
- Jean A Chapman
- University of California Medical Center, San Francisco, California, USA. jachapmn@swbellnet
| | | | | | | | | |
Collapse
|
25
|
Abstract
This is a review of the literature of associations of the saprotrophic fungus Stachybotrys chartarum sensu lato with human and animal illnesses. This fungus grows on very wet cellulose-based building materials. S. chartarum has been the subject of considerable media attention because of temporal associations of exposure with unexpected and dramatic outcomes such as infant pulmonary hemosiderosis and neurocognitive damage. It is generally accepted that living or working in mouldy environments is associated with building related asthma, exacerbating asthma in mould-sensitive asthmatics and increased rates of upper respiratory disease. However, such relationships are with building-associated moulds, comprising many species that colonize wet or damp building materials, and are not specific to S. chartarum. There is limited evidence that severe lung damage can occur from building exposure to S. chartarum but possibly only under conditions of exposure that approach those associated with handling contaminated straw. There is no positive evidence in the literature to account for putative neurological damage resulting from exposure to this mould.
Collapse
Affiliation(s)
- J David Miller
- Department of Chemistry, NSERC Industrial Research, Carleton University, Ottawa, ON K1S 0M3, Canada.
| | | | | |
Collapse
|
26
|
Rand TG, White K, Logan A, Gregory L. Histological, immunohistochemical and morphometric changes in lung tissue in juvenile mice experimentally exposed to Stachybotrys chartarum spores. Mycopathologia 2003; 156:119-31. [PMID: 12733633 DOI: 10.1023/a:1022920205355] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stachybotrys chartarum is an important toxigenic fungus often associated with chronically wet cellulose-based building materials. The purpose of this study was to evaluate some histological, immunohistochemical and morphometric changes in mouse lung tissues exposed intratracheally to either 50 microl of 1.4 x 10(6) S. chartarum spores (< or = 35 ng toxin/kg BW), isosatratoxin-F (35 ng/kg BW), 50 microl of 1.4 x 10(6) Cladosporium cladosporioides spores, or 50 microl saline. Exposure of lung tissues to S. chartarum or C. cladosporioides spores resulted in granuloma formation at the sites of spore impaction. Some of the lung tissues impacted by S. chartarum spores also showed erythrocyte accumulation in the alveolar air space, dilated capillaries engorged with erythrocytes, and hemosiderin accumulation at spore impaction sites, which were features not noted in the C. cladosporioides-spore treated animals. Immunohistochemistry revealed reduced collagen IV distribution in lung granulomas in S. chartarum-treated animals especially at 48 and 72 hr post-exposure compared to that in lungs of mice with C. cladosporioides-spore induced granulomas. Quantitative analysis of pooled S. chartarum and C. cladosporioides spore impacted lungs revealed significant depression (P < 0.05) of alveolar air space from 71.4 +/- 6.1% in untreated animals to 56.04 +/- 6.1% in the S. chartarum- and 60.24 +/- 5.5% in the C. cladosporioides-spore treated animals. It also revealed that alveolus air space in S. chartarum treated animals declined significantly from 63.74 +/- 3.1% at 12 hr post-exposure to 42.94 +/- 7.9% at 72 hr post-exposure and was increased to 54.84 +/- 5.2% at 96 hr post-exposure. Alveolus air space in C. cladosporioides treated animals also decreased significantly from 64.84 +/- 7.1% at 12 hr exposure to 54.94 +/- 5.4% at 48 hr post-exposure and was increased to 64.64 +/- 10.1% at 96 hr post-exposure. It also revealed significant (P < 0.05) alveolar accumulation of erythrocytes from 1.24 +/- 1.4% in the untreated animals to 3.44 +/- 1.5% in the pooled S. chartarum spore treated animals. Erythrocyte abundance in S. chartarum treated animals increased significantly (P < 0.001) from 2.14 +/- 1.7% at 12 hr post-exposure to 5.54 +/- 1.5% at 72 hr and 4.94 +/- 1.4% at 96 hr post-exposure. These results further reveal that exposure to S. chartarum spores elicit tissue responses in vivo significantly different from those associated with exposure to pure trichothecene toxin and to spores of a non-toxigenic fungus.
Collapse
Affiliation(s)
- T G Rand
- Department of Biology Saint Mary's University, Halifax, Nova Scotia, Canada, B3H 3C3.
| | | | | | | |
Collapse
|
27
|
Yike I, Vesper S, Tomashefski JF, Dearborn DG. Germination, viability and clearance of Stachybotrys chartarum in the lungs of infant rats. Mycopathologia 2003; 156:67-75. [PMID: 12733626 DOI: 10.1023/a:1022924306264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Observing that the conidia of Stachybotrys chartarum can germinate in the lung of infant rats, it became important to ascertain whether an infection can ensue. Viable conidia of S. chartarum were instilled into the lungs of 4 and 14 day-old rat pups. Germination was observed frequently in the lungs of 4 day-old but rarely in the 14 day-old pups. In the 4 day-old pups, pulmonary inflammation with hemorrhagic exudates was observed and resulted in about 15% mortality rate compared to 0% for the controls instilled with phosphate buffered saline. Acute neutrophilic inflammation and intense interstitial pneumonia with poorly formed granulomas observed three days following exposure were associated with fungal hyphae and conidia. The surviving experimental pups showed significantly slower weight gain for seven days. Dilution plating and quantitative PCR analysis were used to follow total fungal load in the rat pups lung homogenates. In the 4 day-old rat pups viable fungi decreased rapidly and were less than 1% by day seven. Similarly, fungal DNA decreased exponentially and was only 0.03% by fourteen days after exposure. However, 14 day-old rat pups showed neither the lethal effects of exposures to viable conidia of S. chartarum nor the slower weight gain, and the fungal load decreased even more rapidly. We conclude that S. chartarum conidia can initially germinate and form hyphae but even in the immature rat pups do not establish an effective infection, although a very limited persistence cannot be excluded.
Collapse
Affiliation(s)
- Iwona Yike
- Case Western Reserve University, Department of Pediatrics, Rainbow Babies and Children Hospital, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
28
|
Gregory L, Rand TG, Dearborn D, Yike I, Vesper S. Immunocytochemical localization of stachylysin in Stachybotrys chartarum spores and spore-impacted mouse and rat lung tissue. Mycopathologia 2003; 156:109-17. [PMID: 12733632 DOI: 10.1023/a:1022968121285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Stachylysin is a proteinaceous hemolytic agent that is produced by Stachybotrys chartarum. Stachylysin was found, using immunohistochemical and immunocytochemical methods, to be localized in S. chartarum spores/mycelia primarily in the inner wall suggesting that it is constitutively produced. Spores instilled in mouse or rat lung tissues resulted in granuloma formation, which showed the highest stachylysin concentration in the inner wall of the spore and near the spore, with less at distance indicating that it had diffused out from the spore. The in vitro high stachylysin producing strain (58-06) was also highest in vivo, based on immunohistochemistical staining. More stachylysin was observed in the mouse lung tissue at 72 h than at 24 h indicating that production/release is a relatively slow process. The localization of stachylysin in macrophage phagolysosomes suggests that these cells may be involved with hemolysin inactivation. This would be consistent with what is known about asp-hemolysin produced by Aspergillus fumigatus.
Collapse
Affiliation(s)
- L Gregory
- Department of Biology Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | | | | | | | | |
Collapse
|
29
|
Van Emon JM, Reed AW, Yike I, Vesper SJ. ELISA measurement of stachylysin in serum to quantify human exposures to the indoor mold Stachybotrys chartarum. J Occup Environ Med 2003; 45:582-91. [PMID: 12802211 DOI: 10.1097/01.jom.0000071503.96740.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The goal of this research was to develop a measurable indicator of human exposure to Stachyborys chartarum. Antibodies were produced against the hemolytic agent stachylysin obtained from the mold S. chartarum. These antibodies were used to develop two enzyme-linked immunosorbent assay methods for the analysis of stachylysin in human and rat sera and environmental samples. Stachylysin was measured in rat pups that received nasal instillations of S. chartarum conidia but not in control rat serum. Stachylysin in the serum of five human adults exposed to S. chartarum in water-damaged environments was 371 ng/mL but none was detected in the control serum. Stachylysin was also quantified in spore, wallboard, mycelial, and dust samples. The measurement of stachylysin may be a useful indicator in assessing human exposure to S. chartarum and in determining the presence of this indoor mold.
Collapse
Affiliation(s)
- Jeanette M Van Emon
- United States Environmental Protection Agency (US EPA), Las Vegas, Nevada, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Stachybotrys is a toxin-producing fungus that grows indoors when both water and cellulose are available. Epidemiologic evidence has demonstrated an association between acute pulmonary hemorrhage in infants and exposure to Stachybotrys and other fungi in water-damaged home environments. In recent years, advances in understanding of this association have occurred in six major areas: animal models, biologic mechanism of lung injury, dose-response relationship, isolation from diseased patients, detection methods, and intervention. The association demonstrates strength, consistency, coherence, and specificity. While additional data are gathered, a preventive approach to reducing the exposure of infants with pulmonary hemorrhage is suggested.
Collapse
Affiliation(s)
- Ruth A Etzel
- Division of Occupational and Environmental Health, George Washington University School of Public Health and Health Services, Washington, DC USA.
| |
Collapse
|
31
|
Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 2003; 16:144-72. [PMID: 12525430 PMCID: PMC145304 DOI: 10.1128/cmr.16.1.144-172.2003] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Damp buildings often have a moldy smell or obvious mold growth; some molds are human pathogens. This has caused concern regarding health effects of moldy indoor environments and has resulted in many studies of moisture- and mold-damaged buildings. Recently, there have been reports of severe illness as a result of indoor mold exposure, particularly due to Stachybotrys chartarum. While many authors describe a direct relationship between fungal contamination and illness, close examination of the literature reveals a confusing picture. Here, we review the evidence regarding indoor mold exposure and mycotoxicosis, with an emphasis on S. chartarum. We also examine possible end-organ effects, including pulmonary, immunologic, neurologic, and oncologic disorders. We discuss the Cleveland infant idiopathic pulmonary hemorrhage reports in detail, since they provided important impetus for concerns about Stachybotrys. Some valid concerns exist regarding the relationship between indoor mold exposure and human disease. Review of the literature reveals certain fungus-disease associations in humans, including ergotism (Claviceps species), alimentary toxic aleukia (Fusarium), and liver disease (Aspergillys). While many papers suggest a similar relationship between Stachybotrys and human disease, the studies nearly uniformly suffer from significant methodological flaws, making their findings inconclusive. As a result, we have not found well-substantiated supportive evidence of serious illness due to Stachybotrys exposure in the contemporary environment. To address issues of indoor mold-related illness, there is an urgent need for studies using objective markers of illness, relevant animal models, proper epidemiologic techniques, and examination of confounding factors.
Collapse
Affiliation(s)
- D M Kuhn
- Division of Infectious Diseases, Department of Medicine, University Hospitals of Cleveland, and Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
32
|
Peltola J, Niessen L, Nielsen KF, Jarvis BB, Andersen B, Salkinoja-Salonen M, Möller EM. Toxigenic diversity of two different RAPD groups of Stachybotrys chartarum isolates analyzed by potential for trichothecene production and for boar sperm cell motility inhibition. Can J Microbiol 2002; 48:1017-29. [PMID: 12556129 DOI: 10.1139/w02-101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirty-one isolates of Stachybotrys chartarum from indoor and outdoor environments were analyzed for the presence of the trichodiene synthase (Tri5) gene, trichothecenes, boar sperm cell motility inhibition, and randomly amplified polymorphic DNA banding patterns (RAPDs). Twenty-two S. chartarum isolates tested positive for the Tri5 gene and nine were negative when tested using novel Tri5 gene-specific PCR primer pair. The Tri5 gene positive isolates contained satratoxins (five isolates) or the simple trichothecene, trichodermol (11 isolates). The Tri5 gene negative isolates did not produce satratoxins or trichodermol. Nineteen S. chartarum isolates, distributed among the Tri5 gene negative and positive groups, inhibited boar spermatozoan motility at concentrations of < or = 60 microg of crude cell extract/mL. The inhibition of motility was independent of satratoxins or atranones. Unweighted pair group method of arithmetic averages (UPGMA) cluster analysis of RAPD fragments clustered the 31 S. chartarum isolates in two distinct groups designated as RAPD groups 1 and 2. The grouping of S. chartarum isolates obtained by UPGMA cluster analysis of RAPD fragments was identical to the grouping obtained by Tri5 gene-specific PCR. This indicates that the S. chartarum isolates belonging to different groups were genetically distinct in a much wider area than just the Tri5 gene.
Collapse
Affiliation(s)
- J Peltola
- Department of Applied Chemistry and Microbiology, Division of Microbiology, University of Helsinki, P.O. Box 56, FIN-00014, Finland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Dearborn DG, Smith PG, Dahms BB, Allan TM, Sorenson WG, Montana E, Etzel RA. Clinical profile of 30 infants with acute pulmonary hemorrhage in Cleveland. Pediatrics 2002; 110:627-37. [PMID: 12205270 DOI: 10.1542/peds.110.3.627] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Between 1993 and 2000, 30 infants were hospitalized with acute pulmonary hemorrhage at Rainbow Babies and Children's Hospital in Cleveland. Most infants presented with severe pulmonary symptoms requiring intensive support, but a few infants had less severe hemorrhage. Three quarters of the patients required ventilator support and blood transfusions. Eleven patients had transitory hemoglobinuria. Five patients died, but infants who survived did well. There are currently no specific treatment modalities, although we have advised moving to a different home and avoiding environmental tobacco smoke. Subsequently, rebleeding from the lower respiratory tract has decreased from 5 of 7 infants to 1 in 21. On the basis of decreased subsequent fatal hemorrhage, high dose glucocorticoids seem to be of some value. Several patients revealed continued low-grade alveolar hemorrhage for months after their initial bleed, even after removal from their original home environments.
Collapse
Affiliation(s)
- Dorr G Dearborn
- Pediatric Pulmonary Division, Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland, Ohio 44106-5000, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hodgson M, Dearborn DG. Human pulmonary disease and exposure to Stachybotrys chartarum and other toxigenic fungi. J Occup Environ Med 2002; 44:705-7. [PMID: 12185790 DOI: 10.1097/00043764-200208000-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Barnes C, Buckley S, Pacheco F, Portnoy J. IgE-reactive proteins from Stachybotrys chartarum. Ann Allergy Asthma Immunol 2002; 89:29-33. [PMID: 12141716 DOI: 10.1016/s1081-1206(10)61907-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Stachybotrys chartarum has been associated with idiopathic pulmonary hemorrhage in infants. This is thought to be mycotoxin-related. There are increasing numbers of reports linking this fungus to the indoor environment of patients with other pulmonary problems, including allergies and asthma. OBJECTIVE Given the potential significance of this fungus as a pulmonary pathogen, this work evaluates the antigenic proteins of S. chartarum as to their molecular size and the prevalence of immunoglobulin (Ig)E and IgG directed against them in the general population. METHODS S. chartarum was isolated from a local home. S. chartarum for extract production was grown on minimum salts and glucose. Plasma from 132 healthy individuals was evaluated for IgE and IgG directed against S. chartarum using direct and inhibition enzyme immunoassay. The number and molecular size of those proteins that were bound by IgE from pooled sera known to contain IgE to S. chartarum were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis immunoblotting. RESULTS Enzyme immunoassay indicated 65 of 132 (49.2%) sera tested contained IgG against S. chartarum and 13 of 139 (9.4%) sera tested contained IgE against S. chartarum. Pooled sera identified two IgE-binding proteins from extracts of S. chartarum spores and mycelia. These proteins are 34 and 52 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis immunoblot. CONCLUSIONS We conclude sensitivity to S. chartarum is potentially much more widespread than previously appreciated. This fungus may impact the asthmatic and allergic population through both immunologic and toxic mechanisms. Its significance in the milieu of allergenic fungi may need to be re-evaluated.
Collapse
Affiliation(s)
- Charles Barnes
- Section of Allergy/Immunology, The Children's Mercy Hospital, Kansas City, Missouri 64108, USA
| | | | | | | |
Collapse
|
36
|
Assoulin-Daya Y, Leong A, Shoenfeld Y, Gershwin ME. Studies of sick building syndrome. IV. Mycotoxicosis. J Asthma 2002; 39:191-201. [PMID: 12043850 DOI: 10.1081/jas-120002468] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There has been increasing public attention to the potential health risks of mold exposure, particularly in wet buildings. A variety of molds has been isolated from both damaged homes and businesses, including agents that secrete toxigenic materials. One area that is attracting particular notice is the relative toxigenic potential of mycotoxins. Although exposure to molds can produce significant mucosal irritation, there are very few data to suggest long-term ill effects. More importantly, there is no evidence in humans that mold exposure leads to nonmucosal pathology. In fact, many of the data on toxigenic molds are derived from animal toxicity studies, and these are based primarily, on ingestion. Although every attempt should be made to improve the quality of indoor air, including avoidance of molds, the human illnesses attributed to fungal exposure are, with the exception of invasive infections and mold allergy, relatively rare. In this review we discuss selected aspects of the microbiology of mycotoxin-producing molds and their potential role in human immunopathology with respect to wet building environments.
Collapse
Affiliation(s)
- Yehudith Assoulin-Daya
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 95616, USA
| | | | | | | |
Collapse
|
37
|
Vesper SJ, Vesper MJ. Stachylysin may be a cause of hemorrhaging in humans exposed to Stachybotrys chartarum. Infect Immun 2002; 70:2065-9. [PMID: 11895972 PMCID: PMC127818 DOI: 10.1128/iai.70.4.2065-2069.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns such as nasal bleeding in adults and pulmonary hemosiderosis (PH) in infants. Seven of eight strains of S. chartarum isolated from homes of infants with PH in Cleveland, Ohio, and the strain from the lung of an infant with PH in Texas produced stachylysin in tryptic soy broth (TSB), whereas only one out of eight strains isolated from control homes produced stachylysin. However, all strains produced stachylysin when grown on TSB with 0.7% sheep's blood. When stachylysin was injected into Lumbricus terrestis, the erythrocruorin hemoglobin (absorbance peaks at 280 and 415 nm) was released, resulting in a lethal effect. These results support the hypothesis that stachylysin may be one agent responsible for hemorrhaging in humans.
Collapse
Affiliation(s)
- Stephen J Vesper
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, USA.
| | | |
Collapse
|
38
|
Abstract
Fungal diseases have become increasingly important in the past few years. Because few fungi are professional pathogens, fungal pathogenic mechanisms tend to be highly complex, arising in large part from adaptations of preexisting characteristics of the organisms' nonparasitic lifestyles. In the past few years, genetic approaches have elucidated many fungal virulence factors, and increasing knowledge of host reactions has also clarified much about fungal diseases. The literature on fungal pathogenesis has grown correspondingly; this review, therefore, will not attempt to provide comprehensive coverage of fungal disease but focuses on properties of the infecting fungus and interactions with the host. These topics have been chosen to make the review most useful to two kinds of readers: fungal geneticists and molecular biologists who are interested in learning about the biological problems posed by infectious diseases, and physicians who want to know the kinds of basic approaches available to study fungal virulence.
Collapse
Affiliation(s)
- J A van Burik
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
39
|
Kordula T, Banbula A, Macomson J, Travis J. Isolation and properties of stachyrase A, a chymotrypsin-like serine proteinase from Stachybotrys chartarum. Infect Immun 2002; 70:419-21. [PMID: 11748212 PMCID: PMC127626 DOI: 10.1128/iai.70.1.419-421.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A strain of the common mold Stachybotrys chartarum has been isolated from the lung of a child with pulmonary hemorrhage. We report the purification of stachyrase A, a new serine chymotrypsin-like proteinase from S. chartarum. This enzyme cleaves major protease inhibitors, several biologically active peptides, and collagen, all of which are found in the lung.
Collapse
Affiliation(s)
- Tomasz Kordula
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | |
Collapse
|
40
|
Abstract
LEARNING OBJECTIVES Recent public concern about the danger of environmental fungi has focused attention on one particular mold, Stachybotrys. The purpose of this review is to examine and critique the published literature on Stachybotrys for objective scientific and clinical evidence of disease caused by the presence of this fungal organism in the environment. DATA SOURCES Data were obtained from all published research and reviews of Stachybotrys indexed in MEDLINE since 1966. STUDY SELECTION The publications used for this review were those that contained information about human health effects of this microorganism. The critique of these publications is the author's. RESULTS Stachybotrys is a minor component of the indoor mycoflora, found on certain building material surfaces in water-damaged buildings, but airborne spores are present in very low concentrations. Published reports fail to establish inhalation of Stachybotrys spores as a cause of human disease even in water-damaged buildings. A possible exception may be mycotoxin-caused pulmonary hemorrhage/hemosiderosis in infants, although scientific evidence to date is suggestive but not conclusive. Based on old reports ingestion of food prepared from Stachybotrys-contaminated grains may cause a toxic gastroenteropathy. No convincing cases of human allergic disease or infection from this mold have been published. CONCLUSIONS The current public concern for adverse health effects from inhalation of Stachybotrys spores in water-damaged buildings is not supported by published reports in the medical literature.
Collapse
|
41
|
Vesper SJ, Magnuson ML, Dearborn DG, Yike I, Haugland RA. Initial characterization of the hemolysin stachylysin from Stachybotrys chartarum. Infect Immun 2001; 69:912-6. [PMID: 11159985 PMCID: PMC97969 DOI: 10.1128/iai.69.2.912-916.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stachybotrys chartarum is a toxigenic fungus that has been associated with human health concerns, including pulmonary hemorrhage and hemosiderosis. This fungus produces a hemolysin, stachylysin, which in its apparent monomeric form has a molecular mass of 11,920 Da as determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry. However, it appears to form polydispersed aggregates, which confounds understanding of the actual hemolytically active form. Exhaustive dialysis or heat treatment at 60 degrees C for 30 min inactivated stachylysin. Stachylysin is composed of about 40% nonpolar amino acids and contains two cysteine residues. Purified stachylysin required more than 6 h to begin lysing sheep erythrocytes, but by 48 h, lysis was complete. Stachylysin also formed pores in sheep erythrocyte membranes.
Collapse
Affiliation(s)
- S J Vesper
- U.S. Environmental Protection Agency, National Environmental Research Laboratory, Cincinnati, Ohio 45268, USA. Vesper.Stephen@EPA/gov
| | | | | | | | | |
Collapse
|