1
|
Crosby T, Stadler LB. Plasmid Backbone Impacts Conjugation Rate, Transconjugant Fitness, and Community Assembly of Genetically Bioaugmented Soil Microbes for PAH Bioremediation. ACS ENVIRONMENTAL AU 2025; 5:241-252. [PMID: 40125281 PMCID: PMC11926752 DOI: 10.1021/acsenvironau.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 03/25/2025]
Abstract
Many polycyclic aromatic hydrocarbons (PAHs) in the environment resulting from crude oil spills and the incomplete combustion of organic matter are highly toxic, mutagenic, or carcinogenic to microorganisms and humans. Bioremediation of PAHs using microorganisms that encode biodegradative genes is a promising approach for environmental PAH cleanup. However, the viability of exogenous microorganisms is often limited due to competition with the native microbial community. Instead of relying on the survival of one or a few species of bacteria, genetic bioaugmentation harnesses conjugative plasmids that spread functional genes to native microbes. In this study, two plasmid backbones that differ in copy number regulation, replication, and mobilization genes were engineered to contain a PAH dioxygenase gene (bphC) and conjugated to soil bacteria including Bacillus subtilis, Pseudomonas putida, and Acinetobacter sp., as well as a synthetic community assembled from these bacteria. Fitness effects of the plasmids in transconjugants significantly impacted the rates of conjugative transfer and biotransformation rates of a model PAH (2,3-dihydroxybiphenyl). A synergistic effect was observed in which synthetic communities bioaugmented with bphC had significantly higher PAH degradation rates than bacteria grown in monocultures. Finally, conjugation rates were significantly associated with the relative abundances of bacteria in synthetic communities, underscoring how fitness impacts of plasmids can shape the microbial community structure and function.
Collapse
Affiliation(s)
- Tessa
M. Crosby
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| |
Collapse
|
2
|
Marquiegui – Alvaro A, Kottara A, Chacón M, Cliffe L, Brockhurst M, Dixon N. Genetic Bioaugmentation-Mediated Bioremediation of Terephthalate in Soil Microcosms Using an Engineered Environmental Plasmid. Microb Biotechnol 2025; 18:e70071. [PMID: 39801293 PMCID: PMC11725763 DOI: 10.1111/1751-7915.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown. Our engineered plasmid caused a low fitness cost and was stably maintained in terephthalate-contaminated soil by the bacterium P. putida. Plasmid carriers efficiently bioremediated contaminated soil in model soil microcosms, achieving complete breakdown of 3.2 mg/g of terephthalate within 8 days. The engineered plasmid horizontally transferred the synthetic operon to P. fluorescens in situ, and the resulting transconjugants degraded 10 mM terephthalate during a 180-h incubation. Our findings show that environmental plasmids carrying synthetic catabolic operons can be useful tools for in situ engineering of microbial communities to perform clean-up even of complex environments like soil.
Collapse
Affiliation(s)
| | - Anastasia Kottara
- School of Biological SciencesThe University of ManchesterManchesterUK
| | - Micaela Chacón
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | - Lisa Cliffe
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | | | - Neil Dixon
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| |
Collapse
|
3
|
Hartig AM, Dai W, Zhang K, Kapoor K, Rottinghaus AG, Moon TS, Parker KM. Influence of Environmental Conditions on the Escape Rates of Biocontained Genetically Engineered Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22657-22667. [PMID: 39668804 PMCID: PMC11750180 DOI: 10.1021/acs.est.4c10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The development of genetically engineered microbes (GEMs) has resulted in an urgent need to control their persistence in the environment. The use of biocontainment such as kill switches is a critical approach to prevent the unintended proliferation of GEMs; however, the effectiveness of kill switches─reported as escape rates, i.e., the ratio of the number of viable microbes when the kill switch is triggered relative to the number when it is not triggered─is typically assessed under laboratory conditions that do not resemble environmental conditions under which biocontainment must perform. In this study, we discovered that the escape rate of an Escherichia coli GEM biocontained with a CRISPR-based kill switch triggered by anhydrotetracycline (aTc) increased by 3-4 orders of magnitude when deployed in natural surface waters as compared to rich laboratory media. We identified that environmental conditions (e.g., pH, nutrient levels) may contribute to elevated escape rates in multiple ways, including by altering the chemical speciation of the kill switch trigger to reduce its uptake and providing limited nutrients required for the kill switch to function. Our study demonstrated that conditions in the intended environment must be considered in order to design effective GEM biocontainment strategies.
Collapse
Affiliation(s)
- Anna M. Hartig
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Wentao Dai
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Ke Zhang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Krisha Kapoor
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Austin G. Rottinghaus
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, United States
| | - Kimberly M. Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| |
Collapse
|
4
|
Kumar M, Saggu SK, Pratibha P, Singh SK, Kumar S. Exploring the role of microbes for the management of persistent organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118492. [PMID: 37384989 DOI: 10.1016/j.jenvman.2023.118492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Persistent organic pollutants (POPs) are chemicals which have been persisting in the environment for many years due to their longer half-lives. POPs have gained attention over the last few decades due to the unsustainable management of chemicals which led to their widespread and massive contamination of biota from different strata and environments. Due to the widespread distribution, bio-accumulation and toxic behavior, POPs have become a risk for organisms and environment. Therefore, a focus is required to eliminate these chemicals from the environment or transform into non-toxic forms. Among the available techniques for the removal of POPs, most of them are inefficient or incur high operational costs. As an alternative to this, microbial bioremediation of POPs such as pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals and personal care products is much more efficient and cost-effective. Additionally, bacteria play a vital role in the biotransformation and solubilization of POPs, which reduces their toxicity. This review specifies the Stockholm Convention that evaluates the risk profile for the management of existing as well as emerging POPs. The sources, types and persistence of POPs along with the comparison of conventional elimination and bioremediation methods of POPs are discussed comprehensively. This study demonstrates the existing bioremediation techniques of POPs and summaries the potential of microbes which serve as enhanced, cost-effective, and eco-friendly approach for POPs elimination.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Allied and Healthcare Sciences, GNA University, Phagwara, Punjab, 144401, India
| | - Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Pritu Pratibha
- Center for Excellence in Molecular Plant Science, Plant Stress Center, CAS, Shanghai, 201602, China
| | - Sunil Kumar Singh
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, 211002, India.
| | - Shiv Kumar
- Department of Microbiology, Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab, 151203, India.
| |
Collapse
|
5
|
Rebello S, Nathan VK, Sindhu R, Binod P, Awasthi MK, Pandey A. Bioengineered Microbes for Soil Health Restoration - Present Status and Future. Bioengineered 2021; 12:12839-12853. [PMID: 34775906 PMCID: PMC8810056 DOI: 10.1080/21655979.2021.2004645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
According to the United Nations Environment Programme (UNEP), soil health is declining over the decades and it has an adverse impact on human health and food security. Hence, soil health restoration is a need of the hour. It is known that microorganisms play a vital role in remediation of soil pollutants like heavy metals, pesticides, hydrocarbons, etc. However, the indigenous microbes have a limited capacity to degrade these pollutants and it will be a slow process. Genetically modified organisms (GMOs) can catalyze the degradation process as their altered metabolic pathways lead to hypersecretions of various biomolecules that favor the bioremediation process. This review provides an overview on the application of bioengineered microorganisms for the restoration of soil health by degradation of various pollutants. It also sheds light on the challenges of using GMOs in environmental application as their introduction may affect the normal microbial community in soil. Since soil health also refers to the potential of native organisms to survive, the possible changes in the native microbial community with the introduction of GMOs are also discussed. Finally, the future prospects of using bioengineered microorganisms in environmental engineering applications to make the soil fertile and healthy have been deciphered. With the alarming rates of soil health loss, the treatment of soil and soil health restoration need to be fastened to a greater pace and the combinatorial efforts unifying GMOs, plant growth-promoting rhizobacteria, and other soil amendments will provide an effective solution to soil heath restoration ten years ahead.
Collapse
Affiliation(s)
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi - 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow - 226 001, India.,Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| |
Collapse
|
6
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
7
|
Carles L, Martin-Laurent F, Devers M, Spor A, Rouard N, Beguet J, Besse-Hoggan P, Batisson I. Potential of preventive bioremediation to reduce environmental contamination by pesticides in an agricultural context: A case study with the herbicide 2,4-D. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125740. [PMID: 33848793 DOI: 10.1016/j.jhazmat.2021.125740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
One of the major problems with pesticides is linked to the non-negligible proportion of the sprayed active ingredient that does not reach its intended target and contaminates environmental compartments. Here, we have implemented and provided new insights to the preventive bioremediation process based on the simultaneous application of the pesticide with pesticide-degrading microorganisms to reduce the risk of leaching into the environment. This study pioneers such a practice, in an actual farming context. The 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) and one of its bacterial mineralizing-strains (Cupriavidus necator JMP134) were used as models. The 2,4-D biodegradation was studied in soil microcosms planted with sensitive (mustard) and insensitive (wheat) plants. Simultaneous application of a 2,4-D commercial formulation (DAM®) at agricultural recommended doses with 105 cells.g-1 dw of soil of the JMP134 strain considerably accelerated mineralization of the herbicide since its persistence was reduced threefold for soil supplemented with the mineralizing bacterium without reducing the herbicide efficiency. Furthermore, the inoculation of the Cupriavidus necator strain did not significantly affect the α- and β-diversity of the bacterial community. By tackling the contamination immediately at source, the preventive bioremediation process proves to be an effective and promising way to reduce environmental contamination by agricultural pesticides.
Collapse
Affiliation(s)
- Louis Carles
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France.
| | - Fabrice Martin-Laurent
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Marion Devers
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Aymé Spor
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Nadine Rouard
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jérémie Beguet
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne, Univ., Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pascale Besse-Hoggan
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Jung CM, Carr M, Blakeney GA, Indest KJ. Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2019; 46:1273-1281. [PMID: 31119503 DOI: 10.1007/s10295-019-02185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) is the lateral movement of genetic material between organisms. The RDX explosive-degrading bacterium Gordonia sp. KTR9 has been shown previously to transfer the pGKT2 plasmid containing the RDX degradative genes (xplAB) by HGT. Overall, fitness costs to the transconjugants to maintain pGKT2 was determined through growth and survivability assessments. Rhodococcus jostii RHA1 transconjugants demonstrated a fitness cost while other strains showed minimal cost. Biogeochemical parameters that stimulate HGT of pGKT2 were evaluated in soil slurry mating experiments and the absence of nitrogen was found to increase HGT events three orders of magnitude. Experiments evaluating RDX degradation in flow-through soil columns containing mating pairs showed 20% greater degradation than columns with only the donor KTR9 strain. Understanding the factors governing HGT will benefit bioaugmentation efforts where beneficial bacteria with transferrable traits could be used to more efficiently degrade contaminants through gene transfer to native populations.
Collapse
Affiliation(s)
- Carina M Jung
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Matthew Carr
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - G Alon Blakeney
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Karl J Indest
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| |
Collapse
|
9
|
Castellani LG, Nilsson JF, Wibberg D, Schlüter A, Pühler A, Brom S, Pistorio M, Torres Tejerizo G. Insight into the structure, function and conjugative transfer of pLPU83a, an accessory plasmid of Rhizobium favelukesii LPU83. Plasmid 2019; 103:9-16. [DOI: 10.1016/j.plasmid.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
|
10
|
Nguyen TPO, Hansen MA, Hansen LH, Horemans B, Sørensen SJ, De Mot R, Springael D. Intra- and inter-field diversity of 2,4-dichlorophenoxyacetic acid-degradative plasmids and their tfd catabolic genes in rice fields of the Mekong delta in Vietnam. FEMS Microbiol Ecol 2019; 95:5149497. [PMID: 30380047 DOI: 10.1093/femsec/fiy214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
The tfd genes mediating degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) differ in composition and organization in bacterial isolates from different geographical origin and are carried by different types of mobile genetic elements (MGE). It is not known whether such global diversity of 2,4-D-catabolic MGE and their tfd gene cargo is reflected in the diversity at field scale. The genomic context of the 2,4-D catabolic genes of 2,4-D-degrading isolates from two rice fields with a 2,4-D application history, located in two distant provinces of the Vietnam Mekong delta, was compared. All isolates were β-proteobacteria, were unique for each rice field and carried the catabolic genes on MGE and especially plasmids. Most plasmids were IncP-1β plasmids and carried tfd clusters highly similar to those of the IncP-1β plasmid pJP4, typified by two chlorophenol catabolic gene modules (tfd-I and tfd-II). IncP-1β plasmids from the same field showed small deletions and/or insertions in accessory metabolic genes. One plasmid belonged to an unclassified plasmid group and carries a copy of both tfdA and tfd-II identical to those in the IncP-1β plasmids. Our results indicate intra-field evolution and inter-field exchange of 2,4-D-catabolic IncP-1β plasmids as well as the exchange of tfd genes between different plasmids within a confined local environment.
Collapse
Affiliation(s)
- Thi Phi Oanh Nguyen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium.,Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3/2 street, Ninh Kieu district, Can Tho City, Vietnam
| | - Martin Asser Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Lars Hestbjerg Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark.,Department of Environmental Science - Environmental Microbiology & Biotechnology, Aarhus University, Frederiksborgvej 399, Building 7411 B2.12, Roskilde DK-4000, Denmark
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Søren Johannes Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| |
Collapse
|
11
|
Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. Combination of bioaugmentation and biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:490-495. [PMID: 29705662 DOI: 10.1016/j.jhazmat.2018.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
The batch and fed-batch tests were performed to evaluate the efficiency of bioaugmentation in combination with biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D degrading enrichments were used for bioaugmentation, and effluents prepared through biological hydrogen production process were used as substrate for biostimulation. The batch tests indicated that 2,4-D degradation depended on the enrichment/substrate ratio (E/S), where E/S of 0.03 showed an excellent performance. The fed-batch tests showed that biostimulation only led to an improvement in 2,4-D degradation, while the pattern of repeated augmentation of enrichments (FRA) together with biostimulation obviously improved degradation of 2,4-D, 2-chlorophenol (2-CP) and phenol. DNA-sequencing approach showed that the FRA pattern altered the bacterial community composition, and high removal of 2,4-D, 2-CP and phenol may be attributed to the acclimation and persistence of Thauera. The findings demonstrated the importance of the FRA pattern on remediation of paddy soil contaminated with 2,4-D.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China.
| |
Collapse
|
12
|
Ren C, Wang Y, Tian L, Chen M, Sun J, Li L. Genetic Bioaugmentation of Activated Sludge with Dioxin-Catabolic Plasmids Harbored by Rhodococcus sp. Strain p52. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5339-5348. [PMID: 29608291 DOI: 10.1021/acs.est.7b04633] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Horizontal transfer of catabolic plasmids is used in genetic bioaugmentation for environmental pollutant remediation. In this study, we examined the effectiveness of genetic bioaugmentation with dioxin-catabolic plasmids harbored by Rhodococcus sp. strain p52 in laboratory-scale sequencing batch reactors (SBRs). During 100 days of operation, bioaugmentation decreased the dibenzofuran content (120 mg L-1) in the synthetic wastewater by 32.6%-100% of that in the nonbioaugmented SBR. Additionally, dibenzofuran was removed to undetectable levels in the bioaugmented SBR, in contrast, 46.8 ± 4.1% of that in the influent remained in the nonbioaugmented SBR after 96 days. Moreover, transconjugants harboring pDF01 and pDF02 were isolated from the bioaugmented SBR after 2 days, and their abilities to degrade dibenzofuran were confirmed. After 80 days, the copy numbers of strain p52 decreased by 3 orders of magnitude and accounted for 0.05 ± 0.01% of the total bacteria, while transconjugants were present at around 106 copies mL-1 sludge and accounted for 8.2 ± 0.3% of the total bacteria. Evaluation of the bacterial community profile of sludge by high-throughput 16S rRNA gene sequencing revealed that genetic bioaugmentation led to a bacterial community with an even distribution of genera in the SBR. This study demonstrates the promise of genetic bioaugmentation with catabolic plasmids for dioxins remediation.
Collapse
Affiliation(s)
- Chongyang Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Yiying Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Lili Tian
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Meng Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Jiao Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| |
Collapse
|
13
|
Castro-Gutiérrez V, Masís-Mora M, Carazo-Rojas E, Mora-López M, Rodríguez-Rodríguez CE. Impact of oxytetracycline and bacterial bioaugmentation on the efficiency and microbial community structure of a pesticide-degrading biomixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11787-11799. [PMID: 29442313 DOI: 10.1007/s11356-018-1436-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
An experimental study evaluating the effect of bioaugmentation and antibiotic (oxytetracycline) application on pesticide degradation and microbial community structure of a biomixture used in a biopurification system (BPR) was conducted. The bioaugmentation employed a carbofuran-degrading bacterial consortium. The non-bioaugmented biomixture showed excellent performance for removal of atrazine (t1/2: 9.9 days), carbendazim (t1/2: 3.0 days), carbofuran (t1/2: 2.8 days), and metalaxyl (t1/2: 2.7 days). Neither the addition of oxytetracycline nor bioaugmentation affected the efficiency of pesticide removal or microbial community (bacterial and fungal) structure, as determined by DGGE analysis. Instead, biomixture aging was mainly responsible for microbial population shifts. Even though the bioaugmentation did not enhance the biomixtures' performance, this matrix showed a high capability to sustain initial stresses related to antibiotic addition; therefore, simultaneous elimination of this particular mixture of pesticides together with oxytetracycline residues is not discouraged.
Collapse
Affiliation(s)
- Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Marielos Mora-López
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, San José, 2060, Costa Rica.
| |
Collapse
|
14
|
Ramborger BP, Ortis Gularte CA, Rodrigues DT, Gayer MC, Sigal Carriço MR, Bianchini MC, Puntel RL, Denardin ELG, Roehrs R. The phytoremediation potential of Plectranthus neochilus on 2,4-dichlorophenoxyacetic acid and the role of antioxidant capacity in herbicide tolerance. CHEMOSPHERE 2017; 188:231-240. [PMID: 28886557 DOI: 10.1016/j.chemosphere.2017.08.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/27/2017] [Accepted: 08/30/2017] [Indexed: 05/23/2023]
Abstract
The possible phytoremediation capacity of Plectranthus neochilus (boldo) exposed to the commercial pesticide (Aminol) in soil and water through consecutive extractions (days interval) was evaluated. After the exposure period, tea leaves from the plant were analyzed in terms of the presence of 2,4-D, total antioxidant capacity (DPPH), concentration of total polyphenols and flavonoids for plants exposed to soil and water. In water, 2,4-D remained up to 67% in the 60 days of experiment in the control group, which provided the use of two treatment groups with the plant (one group of plants for 30 days and another group in the remaining 30 days in the same system), thus, a decontamination up to 49% of the 2,4-D was obtained in this system with water. In both experiments (soil and water) the 2,4-D was not detected in tea leaves, the reduction of the antioxidant activity, polyphenols and flavonoids of plants exposed to the herbicide was also observed when compared to the non-exposed plants. In tea - plants in water - it was also possible to quantify the phenolic compounds and it was observed that in the group of plants of the first 30 days there was a decrease in caffeic acid and an increase in coumaric and ferulic acids, compared to the group of plants that were not exposed to 2,4-D. In the remaining 30 days with the new seedlings there was a decrease of the coumaric acid and an increase of the caffeic and ferulic acids.
Collapse
Affiliation(s)
- Bruna Piaia Ramborger
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Claudia Alves Ortis Gularte
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Daniela Teixeira Rodrigues
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Mateus Cristofari Gayer
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Murilo Ricardo Sigal Carriço
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Matheus Chimelo Bianchini
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Robson Luiz Puntel
- Laboratório de Bioquímica e Toxicologia de Produtos Naturais e Sintéticos, Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Grupo Interdisciplinar de Pesquisa em Práticas de Ensino (GIPPE), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
15
|
Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils. Front Microbiol 2017; 8:1966. [PMID: 29062312 PMCID: PMC5640721 DOI: 10.3389/fmicb.2017.01966] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022] Open
Abstract
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest.
Collapse
Affiliation(s)
- Carlos Garbisu
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | - Olatz Garaiyurrebaso
- Instituto Biofisika (UPV/EHU, CSIC), Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain
| | - Lur Epelde
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| | | | - Itziar Alkorta
- Soil Microbial Ecology Group, Department of Conservation of Natural Resources, Neiker Tecnalia, Derio, Spain
| |
Collapse
|
16
|
Sun J, Qiu Y, Ding P, Peng P, Yang H, Li L. Conjugative Transfer of Dioxin-Catabolic Megaplasmids and Bioaugmentation Prospects of a Rhodococcus sp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6298-6307. [PMID: 28485586 DOI: 10.1021/acs.est.7b00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Genetic bioaugmentation, in which bacteria harboring conjugative plasmids provide catabolic functions, is a promising strategy to restore dioxin-contaminated environments. Here we examined the conjugative transfer of the dioxin-catabolic plasmids pDF01 and pDF02 harbored by Rhodococcus sp. strain p52. A mating experiment using strain p52 as a donor showed that pDF01 and pDF02 were concomitantly and conjugatively transferred from strain p52 to a Pseudomonas aeruginosa recipient at a conjugation frequency of 3 × 10-4 colonies per recipient. pDF01 and pDF02 were isolated from the P. aeruginosa transconjugant and identified by Southern hybridization, and they were localized in the transconjugant cells by fluorescence in situ hybridization. Moreover, the catabolic plasmids functioned in the transconjugant, which gained the ability to use dibenzofuran and chlorodibenzofuran for growth, and they were maintained in 50% of the transconjugant cells for 30 generations without selective pressure. Furthermore, conjugative transfer of the catabolic plasmids to activated sludge bacteria was detected. Sequencing of pDF01 and pDF02 revealed the genetic basis for the plasmids' conjugative transfer and stable maintenance, as well as their cooperation during dioxin catabolism. Therefore, strain p52 harboring pDF01 and pDF02 has potential for genetic bioaugmentation in dioxin-contaminated environments.
Collapse
Affiliation(s)
- Jiao Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Yilun Qiu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Pengfei Ding
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Peng Peng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Haiyan Yang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University , Jinan, China
| |
Collapse
|
17
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Brom S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 2017; 91:82-89. [DOI: 10.1016/j.plasmid.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/25/2022]
|
18
|
Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35. Curr Microbiol 2016; 74:193-202. [PMID: 27933337 DOI: 10.1007/s00284-016-1173-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/25/2016] [Indexed: 01/18/2023]
Abstract
In this study, a bacterial strain of Achromobacter sp. LZ35, which was capable of utilizing 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole sources of carbon and energy for growth, was isolated from the soil in a disused pesticide factory in Suzhou, China. The optimal 2,4-D degradation by strain LZ35 occurred at 30 °C and pH 8.0 when the initial 2,4-D concentration was 200 mg L-1. Strain LZ35 harbored the conserved 2,4-D/alpha-ketoglutarate dioxygenase (96%) and 2,4-dichlorophenol hydroxylase (99%), and catabolized 2,4-D via the intermediate 2,4-dichlorophenol. The inoculation of 7.8 × 106 CFU g-1 soil of strain LZ35 cells to 2,4-D-contaminated soil could efficiently remove over 75 and 90% of 100 and 50 mg L-1 2,4-D in 12 days and significantly released the phytotoxicity of maize caused by the 2,4-D residue. This is the first report of an Achromobacter sp. strain that was capable of mineralizing both 2,4-D and MCPA. This study provides us a promising candidate for its application in the bioremediation of 2,4-D- or MCPA-contaminated sites.
Collapse
Affiliation(s)
- Zhen-Yuan Xia
- Yunnan Academy of Tobacco Agricultural Science, Kunming, 650031, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Zhao
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shun-Peng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Gu
- The Institute of Plant Protection, Jiangsu Agricultural Academy Science, Nanjing, People's Republic of China.
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
19
|
Karami S, Maleki A, Karimi E, Poormazaheri H, Zandi S, Davari B, Salimi YZ, Gharibi F, Kalantar E. Biodegradation of 2,4-dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:659. [PMID: 27832433 DOI: 10.1007/s10661-016-5673-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Recently, there has been increasing interest to clean up the soils contaminated with herbicide. Our aim was to determine the bioremediation of 2,4-dichlorophenoxyacetic acid (2,4-D) from wheat fields which have a long history of herbicide in Sanandaj. Based on our literature survey, this study is the first report to isolate and identify antimicrobial resistant bacteria from polluted wheat field soils in Sanandaj which has the capacity to degrade 2,4-D. From 150 2,4-D-exposed soil samples, five different bacteria were isolated and identified based on biochemical tests and 16S ribosomal RNA (rRNA). Pseudomonas has been the most frequently isolated genus. By sequencing the 16S rRNA gene of the isolated bacteria, the strains were detected and identified as a member of the genus Pseudomonas sp, Entrobacter sp, Bacillus sp, Seratia sp, and Staphylococcus sp. The sequence of Sanandaj 1 isolate displayed 87% similarity with the 16S rRNA gene of a Pseudomonas sp (HE995788). Similarly, all the isolates were compared to standard strains based on 16S rRNA. Small amounts of 2,4-D could be transmitted to a depth of 10-20 cm; however, in the depth of 20-40 cm, we could not detect the 2,4-D. The isolates were resistant to various antibiotics particularly, penicillin, ampicillin, and amoxicillin.
Collapse
Affiliation(s)
- Solmaz Karami
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Pasdaran Street, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Pasdaran Street, Sanandaj, Iran
| | - Ebrahim Karimi
- Agriculture Biotechnology Research Institute of Iran, Karaj, Iran
| | - Helen Poormazaheri
- Dietary and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shiva Zandi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Pasdaran Street, Sanandaj, Iran
| | - Behrooz Davari
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Pasdaran Street, Sanandaj, Iran
- Department of Medical Entomology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yahya Zand Salimi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Pasdaran Street, Sanandaj, Iran
| | - Fardin Gharibi
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Pasdaran Street, Sanandaj, Iran
| | - Enayatollah Kalantar
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Pasdaran Street, Sanandaj, Iran.
- Dietary and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
20
|
Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Appl Microbiol Biotechnol 2016; 100:7361-76. [DOI: 10.1007/s00253-016-7709-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
21
|
George KW, Hay AG. Bacterial strategies for growth on aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2016; 74:1-33. [PMID: 21459192 DOI: 10.1016/b978-0-12-387022-3.00005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.
Collapse
Affiliation(s)
- Kevin W George
- Field of Environmental Toxicology, Cornell University Ithaca, New York, USA; Department of Microbiology, Wing Hall, Cornell University Ithaca, New York, USA
| | | |
Collapse
|
22
|
Demeter MA, Lemire JA, Yue G, Ceri H, Turner RJ. Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation. Front Microbiol 2015; 6:936. [PMID: 26388865 PMCID: PMC4559649 DOI: 10.3389/fmicb.2015.00936] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Oil sands surface mining for bitumen results in the formation of oil sands process water (OSPW), containing acutely toxic naphthenic acids (NAs). Potential exists for OSPW toxicity to be mitigated by aerobic degradation of the NAs by microorganisms indigenous to the oil sands tailings ponds, the success of which is dependent on the methods used to exploit the metabolisms of the environmental microbial community. Having hypothesized that the xenobiotic tolerant biofilm mode-of-life may represent a feasible way to harness environmental microbes for ex situ treatment of OSPW NAs, we aerobically grew OSPW microbes as single and mixed species biofilm and planktonic cultures under various conditions for the purpose of assaying their ability to tolerate and degrade NAs. The NAs evaluated were a diverse mixture of eight commercially available model compounds. Confocal microscopy confirmed the ability of mixed and single species OSPW cultures to grow as biofilms in the presence of the NAs evaluated. qPCR enumeration demonstrated that the addition of supplemental nutrients at concentrations of 1 g L(-1) resulted in a more numerous population than 0.001 g L(-1) supplementation by approximately 1 order of magnitude. GC-FID analysis revealed that mixed species cultures (regardless of the mode of growth) are the most effective at degrading the NAs tested. All constituent NAs evaluated were degraded below detectable limits with the exception of 1-adamantane carboxylic acid (ACA); subsequent experimentation with ACA as the sole NA also failed to exhibit degradation of this compound. Single species cultures degraded select few NA compounds. The degradation trends highlighted many structure-persistence relationships among the eight NAs tested, demonstrating the effect of side chain configuration and alkyl branching on compound recalcitrance. Of all the isolates, the Rhodococcus spp. degraded the greatest number of NA compounds, although still less than the mixed species cultures. Overall, these observations lend support to the notion that harnessing a community of microorganisms as opposed to targeted isolates can enhance NA degradation ex situ. Moreover, the variable success caused by NA structure related persistence emphasized the difficulties associated with employing bioremediation to treat complex, undefined mixtures of toxicants such as OSPW NAs.
Collapse
Affiliation(s)
| | | | | | | | - Raymond J. Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| |
Collapse
|
23
|
Abstract
Herbicides remain the most effective, efficient and economical way to control weeds; and its market continues to grow even with the plethora of generic products. With the development of herbicide-tolerant crops, use of herbicides is increasing around the world that has resulted in severe contamination of the environment. The strategies are now being developed to clean these substances in an economical and eco-friendly manner. In this review, an attempt has been made to pool all the available literature on the biodegradation of key herbicides, clodinafop propargyl, 2,4-dichlorophenoxyacetic acid, atrazine, metolachlor, diuron, glyphosate, imazapyr, pendimethalin and paraquat under the following objectives: (1) to highlight the general characteristic and mode of action, (2) to enlist toxicity in animals, (3) to pool microorganisms capable of degrading herbicides, (4) to discuss the assessment of herbicides degradation by efficient microbes, (5) to highlight biodegradation pathways, (6) to discuss the molecular basis of degradation, (7) to enlist the products of herbicides under degradation process, (8) to highlight the factors effecting biodegradation of herbicides and (9) to discuss the future aspects of herbicides degradation. This review may be useful in developing safer and economic microbiological methods for cleanup of soil and water contaminated with such compounds.
Collapse
Affiliation(s)
- Baljinder Singh
- a Department of Biotechnology , Panjab University , Chandigarh , Punjab , India
| | - Kashmir Singh
- a Department of Biotechnology , Panjab University , Chandigarh , Punjab , India
| |
Collapse
|
24
|
Garipova SR. Perspectives on using endophytic bacteria for the bioremediation of arable soils polluted by residual amounts of pesticides and xenobiotics. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079086414040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Wang F, Fekete A, Harir M, Chen X, Dörfler U, Rothballer M, Jiang X, Schmitt-Kopplin P, Schroll R. Soil remediation with a microbial community established on a carrier: strong hints for microbial communication during 1,2,4-Trichlorobenzene degradation. CHEMOSPHERE 2013; 92:1403-1409. [PMID: 23601124 DOI: 10.1016/j.chemosphere.2013.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
The objective of the present study was to get more insight into the mechanisms that govern the high mineralization potential of a microbial community attached on a carrier material, as we found in an earlier study (Wang et al., 2010). A 1,2,4-Trichlorobenzene (1,2,4-TCB) degrading microbial community - attached (MCCP) and non-attached (MCLM) on clay particles - was inoculated into a simplified mineral medium system. Signaling molecules (AHLs), cell growth and 1,2,4-TCB mineralization were measured at different sampling points. The production of AHLs in the MCCP system increased continuously with increasing key degrader (Bordetella sp.) cell growth and a positive correlation was observed between the production of AHLs and 1,2,4-TCB mineralization. In the MCLM system, however, 1,2,4-TCB mineralization was lower than in the MCCP system; the AHLs production per Bordetella cell was higher than in MCCP and there was no correlation between AHLs and mineralization. Moreover, in the MCCP system less different AHLs were produced than in the MCLM system. These results indicate that a microbial community attached on a carrier material has an advantage over a non-attached community: it produces signaling molecules with much less energy and effort to achieve a well-directed cell-to-cell communication resulting in a high and effective mineralization.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ma H, Katzenmeyer KN, Bryers JD. Non-invasive in situ monitoring and quantification of TOL plasmid segregational loss within Pseudomonas putida biofilms. Biotechnol Bioeng 2013; 110:2949-58. [PMID: 23633286 DOI: 10.1002/bit.24953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 11/06/2022]
Abstract
Methods for the detection of plasmid loss in natural environments have typically relied on replica plating, selective markers and PCR. However, these traditional methods have the limitations of low sensitivity, underestimation of specific cell populations, and lack of insightful data for non-homogeneous environments. We have developed a non-invasive microscopic analytical method to quantify local plasmid segregational loss from a bacterial population within a developing biofilm. The probability of plasmid segregational loss in planktonic and biofilm cultures of Pseudomonas putida carrying the TOL plasmid (pWWO::gfpmut3b) was determined directly in situ, in the absence of any applied selection pressure. Compared to suspended liquid culture, we report that the biofilm mode of growth enhances plasmid segregational loss. Results based on a biofilm-averaged analysis reveal that the probability of plasmid loss in biofilm cultures (0.016 ± 0.004) was significantly greater than that determined in planktonic cultures (0.0052 ± 0.0011). Non-invasive assessments showed that probabilities of plasmid segregational loss at different locations in a biofilm increased dramatically from 0.1% at the substratum surface to 8% at outside layers of biofilm. Results suggest that higher nutrient concentrations and subsequentially higher growth rates resulted in higher probability of plasmid segregational loss at the outer layers of the biofilm.
Collapse
Affiliation(s)
- Hongyan Ma
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195
| | | | | |
Collapse
|
28
|
Zhang Q, Wang B, Cao Z, Yu Y. Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:178-84. [PMID: 22560241 DOI: 10.1016/j.jhazmat.2012.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 05/07/2023]
Abstract
To overcome the poor survival and low activity of the bacteria used for bioremediation, a plasmid-mediated bioaugmentation method was investigated, which could result in a persistent capacity for the degradation of chlorpyrifos in soil. The results indicate that the pDOC plasmid could transfer into soil bacteria, including members of the Pseudomonas and Staphylococcus genera. The soil bacteria acquired the ability to degrade chlorpyrifos within 5 days of the transfer of pDOC. The efficiency of the pDOC transfer in the soil, as measured by the chlorpyrifos degradation efficiency and the most probable number (MPN) of chlorpyrifos degraders, was influenced by the soil temperature, moisture level and type. The best performance for the transfer of pDOC was observed under conditions of 30°C and 60% water-holding capacity (WHC). The results presented in this paper show that the transfer of pDOC can enhance the degradation of chlorpyrifos in various soils, although the degradation efficiency did vary with the soil type. It may be concluded that the introduction of plasmids encoding enzymes that can degrade xenobiotics or donor strains harboring these plasmids is an alternative approach in bioaugmentation.
Collapse
Affiliation(s)
- Qun Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | |
Collapse
|
29
|
Shintani M, Takahashi Y, Yamane H, Nojiri H. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 2011; 25:253-65. [PMID: 21576880 DOI: 10.1264/jsme2.me10155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.
Collapse
Affiliation(s)
- Masaki Shintani
- Bioresource Center, Japan Collection of Microorganisms (BRC-JCM), Riken, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | |
Collapse
|
30
|
Inoue D, Yamazaki Y, Tsutsui H, Sei K, Soda S, Fujita M, Ike M. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community. Biodegradation 2011; 23:263-76. [DOI: 10.1007/s10532-011-9505-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/06/2011] [Indexed: 10/17/2022]
|
31
|
Zhang Y, Jiang Z, Cao B, Hu M, Wang Z, Dong X. Chemotaxis to atrazine and detection of a xenobiotic catabolic plasmid in Arthrobacter sp. DNS10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2951-2958. [PMID: 22351258 DOI: 10.1007/s11356-012-0805-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION A plasmid named pDNS10 was detected from an atrazine-degrading strain Arthrobacter sp. DNS10 which has been isolated previously in our laboratory. MATERIALS AND METHODS In this paper, a special plasmid-detecting method and drop assays experiments were mainly used to achieve research goals. RESULTS AND DISCUSSION pDNS10 exhibited an excellent stability because it also could be detected even when the strain DNS10 has been subcultured under nonselective conditions for eight times. Over a 48-h incubation period, the OD(600) of samples inoculated with strain DNS10 and strain DNS10-ST (both of them contained pDNS10) were 0.31 ± 0.042 and 0.305 ± 0.034, respectively ,whereas the OD(600) of samples inoculated strain without pDNS10 (strain DNS10-PE) was only 0.138 ± 0.018. No atrazine was detected in the inoculated strain DNS10 and strain DNS10-ST samples at this period. Contrarily, the atrazine-degrading rate of strain DNS10-PE was only 5.23 ± 0.71%. Furthermore, both the two types of strains containing pDNS10 confirmed the presence of known degrading genes such as trzN, atzB, and atzC. It suggests that pDNS10 is an atrazine catabolic plasmid. In drop assays experiments, the wild-type strain DNS10 cells were chemotactically attracted to atrazine, whereas strain DNS10-PE showed no chemotaxis to atrazine and hydroxyatrazine. There was some relationship between atrazine degradation and the chemotactic response towards atrazine in strain DNS10. CONCLUSIONS The biochemical characteristics of pDNS10 and the chemotaxis characteristics of strain DNS10 could help us in better understanding of the mechanism of atrazine degradation by strain DNS10.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
32
|
Jung C, Crocker F, Eberly J, Indest K. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol 2011; 110:1449-59. [DOI: 10.1111/j.1365-2672.2011.04995.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Quan X, Tang H, Ma J. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:689-695. [PMID: 20951494 DOI: 10.1016/j.jhazmat.2010.09.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/23/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation.
Collapse
Affiliation(s)
- Xiangchun Quan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | | | | |
Collapse
|
34
|
Akhmetov LI, Filonov AE, Puntus IF, Kosheleva IA, Nechaeva IA, Yonge DR, Petersen JN, Boronin AM. Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261708010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Vetrova AA, Ovchinnikova AA, Puntus IF, Filonov AE, Boronin AM. An enhanced biodegradation of crude oil by Psedomonas plasmid-bearing strains in model soil systems. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810070070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Perelo LW. Review: In situ and bioremediation of organic pollutants in aquatic sediments. JOURNAL OF HAZARDOUS MATERIALS 2010; 177:81-9. [PMID: 20138425 DOI: 10.1016/j.jhazmat.2009.12.090] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 12/01/2009] [Accepted: 12/18/2009] [Indexed: 05/24/2023]
Abstract
Organic pollutants in sediments are a worldwide problem because sediments act as sinks for hydrophobic, recalcitrant and hazardous compounds. Depending on biogeochemical processes these hydrocarbons are involved in adsorption, desorption and transformation processes and can be made available to benthic organisms as well as organisms in the water column through the sediment-water interface. Most of these recalcitrant hydrocarbons are toxic and carcinogenic, they may enter the food-chain and accumulate in biological tissue. Several approaches are being investigated or have been already used to remove organic hydrocarbons from sediments. This paper provides a review on types and sources of organic pollutants as well as their behavior in sediments. It presents the advantages and disadvantages of traditional sediment remediation techniques in use, such as dredging, capping and monitored natural attenuation. Furthermore, it describes new approaches with emphasis on bioremediation, like biostimulation, bioaugmentation and phytoremediation applied to sediments. These new techniques promise to be of lower impact and more cost efficient than traditional management strategies.
Collapse
Affiliation(s)
- Louisa Wessels Perelo
- Departamento de Engenharia Ambiental, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 02 - Federação, CEP 40210-910 Salvador, BA, Brazil.
| |
Collapse
|
37
|
Bathe S, Schwarzenbeck N, Hausner M. Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid. BIORESOURCE TECHNOLOGY 2009; 100:2902-2909. [PMID: 19268574 DOI: 10.1016/j.biortech.2009.01.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/29/2009] [Accepted: 01/31/2009] [Indexed: 05/27/2023]
Abstract
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.
Collapse
Affiliation(s)
- Stephan Bathe
- Institute of Water Quality Control and Waste Management, Technical University of Munich, Am Coulombwall, 85748 Garching, Germany.
| | | | | |
Collapse
|
38
|
Chong NM, Chang HW. Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid. BIORESOURCE TECHNOLOGY 2009; 100:1174-1179. [PMID: 18930390 DOI: 10.1016/j.biortech.2008.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/31/2008] [Accepted: 09/02/2008] [Indexed: 05/26/2023]
Abstract
The purpose of this research was to pursuit the quantification of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid (2,4-D) by detecting and quantifying a prominent 2,4-D degradation encoding plasmid. Batch reactor acclimation, de-acclimation, and re-acclimation tests were conducted during which periods the courses of 2,4-D dissipation and plasmid evolution were quantitatively measured. Pure cultures of bacterial strains were detected to give rise to a plasmid approximately the size of 90 kb after acclimation. The 90 kb plasmid content of Arthrobacter sp. increased when degradation occurred after acclimation, with a rate that corresponded closely to the degradation rate. During de-acclimation, plasmid content declined exponentially at a half-life of approximately 3.5 days. Re-acclimation saw a renewed induction of plasmid, but substrate consumption limited the rise of plasmid to a level much lower than after the first acclimation. This research recommends a method for measuring the microbial degradation capability for a xenobiotic.
Collapse
Affiliation(s)
- Nyuk-Min Chong
- Department of Environmental Engineering, Da-Yeh University, Dacun, Changhua, Taiwan, ROC.
| | | |
Collapse
|
39
|
|
40
|
Urgun-Demirtas M, Stark B, Pagilla K. Use of Genetically Engineered Microorganisms (GEMs) for the Bioremediation of Contaminants. Crit Rev Biotechnol 2008; 26:145-64. [PMID: 16923532 DOI: 10.1080/07388550600842794] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.
Collapse
Affiliation(s)
- Meltem Urgun-Demirtas
- Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | | | | |
Collapse
|
41
|
Behavior of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial environmental samples. Appl Microbiol Biotechnol 2008; 80:485-97. [PMID: 18592232 DOI: 10.1007/s00253-008-1564-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
In artificial environmental samples, the behavior of the IncP-7 conjugative plasmid pCAR1, which is involved in the catabolism of carbazole, was monitored. Sterile soil and water samples supplemented with carbazole were prepared. After inoculation with Pseudomonas putida harboring pCAR1, seven species of the genus Pseudomonas, and three other bacterial species, were monitored for carbazole degradation, bacterial survival, and conjugative transfer of pCAR1. In artificial soils, more than 90% of the carbazole was degraded in samples with high water content, suggesting that the water content is a key factor in carbazole degradation in artificial soils. In three of the artificial environmental water samples, more than 95% of the carbazole was degraded. Transconjugants were detected in some artificial water samples, but not in the artificial soil samples, suggesting that pCAR1 is preferably transferred in aqueous environments. Composition analysis of the artificial water samples and examination of conjugative transfer indicated that the presence of the divalent cations Ca(2+) and Mg(2+) promoted the plasmid transfer. The presence of carbazole also increases in incidence of transconjugants, probably by enhancing their growth. In contrast, humic acids in the liquid layer of artificial soil samples appeared to prevent conjugative transfer.
Collapse
|
42
|
Zakaria D, Lappin-Scott H, Burton S, Whitby C. Bacterial diversity in soil enrichment cultures amended with 2 (2-methyl-4-chlorophenoxy) propionic acid (mecoprop). Environ Microbiol 2008; 9:2575-87. [PMID: 17803781 DOI: 10.1111/j.1462-2920.2007.01375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary The tfdA gene encodes for an alpha-ketoglutarate-dependent dioxygenase enzyme which catalyses the first step of the degradation of phenoxyalkanoic acid herbicides such as 2 (2-methyl-4-chlorophenoxy) propionic acid (mecoprop). The bacterial diversity of soil enrichment cultures containing mecoprop was examined by Denaturing Gradient Gel Electrophoresis (DGGE) and clone libraries of both 16S rRNA genes and tfdA genes. The 16S rRNA gene sequences were diverse and clustered with either the Beta- or Gammaproteobacteria. The 16S rRNA gene sequence from a bacterial strain isolated from an enrichment culture, grown on R-mecoprop, which represented a dominant band in the DGGE profiles, had a high 16S rRNA sequence identity (100%) to Burkholderia glathei. This is the first report that B. glathei is implicated in mecoprop degradation. PCR amplification of the tfdA genes detected class III tfdA genes only, and no class I or class II tfdA sequences were detected. To understand the genes involved the degradation of specific mecoprop (R-) and (S-) enantiomers, oligonucleotide probes targeting the tfdA, rdpA, sdpA and cadA genes were hybridized to DNA extracted from enrichment cultures grown on either R-mecoprop or (R/S) racemic mecoprop. Strong hybridization signals were obtained with sdpA and tfdA probes using DNA extracted from cultures grown on racemic mecoprop. A strong hybridization signal was also obtained with the rdpA probe with DNA extracted from the cultures grown on R-mecoprop. This suggests the rdpA gene is involved in R-mecoprop degradation while tfdA, sdpA and cadA genes are involved in the degradation of both R- and S-mecoprop.
Collapse
Affiliation(s)
- Dalia Zakaria
- School of BioSciences, Prince of Wales Road, University of Exeter, Exeter EX4 4PS, UK
| | | | | | | |
Collapse
|
43
|
Huong NL, Itoh K, Suyama K. 2,4-Dichlorophenoxyacetic Acid (2,4-D)- and 2,4,5-Trichlorophenoxyacetic Acid (2,4,5-T)-Degrading Bacterial Community in Soil-Water Suspension during the Enrichment Process. Microbes Environ 2008; 23:142-8. [DOI: 10.1264/jsme2.23.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nguyen L. Huong
- Faculty of Life and Environmental Science, Shimane University
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University
| |
Collapse
|
44
|
Shymko JL, Farenhorst A. 2,4-D mineralization in unsaturated and near-saturated surface soils of an undulating, cultivated Canadian prairie landscape. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:34-43. [PMID: 18161571 DOI: 10.1080/03601230701735235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 x 3 x 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0-5 and 5-15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k(1)) varied from 0.03 to 0.22 day(- 1), while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k(1) and total 2,4-D mineralization was significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 microg (1-1/n)g(- 1) mL(1/n) and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.
Collapse
Affiliation(s)
- Janna L Shymko
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
45
|
Shintani M, Fukushima N, Tezuka M, Yamane H, Nojiri H. Conjugative transfer of the IncP-7 carbazole degradative plasmid, pCAR1, in river water samples. Biotechnol Lett 2007; 30:117-22. [PMID: 17851640 DOI: 10.1007/s10529-007-9519-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 11/27/2022]
Abstract
The transfer of the IncP-7 carbazole degradative plasmid pCAR1 from Pseudomonas putida SM1443 (derived from strain KT2440) into bacteria of river water samples was monitored using a reporter gene encoding red fluorescent protein (RFP). The number of transconjugants drastically increased in the presence of carbazole, and most appeared to belong to the genus Pseudomonas. The results suggest that the presence of carbazole benefits the appearance of transconjugants belonging to the genus Pseudomonas. Intriguingly, we also detected the transfer of pCAR1 into non-Pseudomonas, Stenotrophomonas-like bacteria.
Collapse
Affiliation(s)
- Masaki Shintani
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
46
|
Morono Y, Kitagawa W, Kimura N, Noda N, Nakamura K, Kamagata Y. “Mark the Gene”: a Method for Nondestructive Introduction of Marker Sequences Inside the Gene Frame of Transgenes. Appl Environ Microbiol 2007; 73:4915-21. [PMID: 17526781 PMCID: PMC1951010 DOI: 10.1128/aem.00068-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
A specific marking and detection technique is a fundamental requirement for the safer use of genetically modified (GM) organisms. Here we propose a simple and effective method for directly marking functional transgenes in GM organisms. For that purpose, we introduced nucleotide substitutions (NS), based on the degeneracy of codons as markers (NS markers), into the
bphC
(2,3-dihydroxybiphenyl dioxygenase) and
tomA3
(toluene-
ortho
-monooxygenase) gene frames using a PCR-based method. No change was observed in the enzyme activity of translated proteins, and alignments with homologous genes showed the uniqueness of the NS markers. Furthermore, we constructed
tomA3
variations harboring NS markers in different positions. Although the translational products were identical, the constructed variation genes could be distinguished through their marker patterns by multiplex PCR, showing that NS markers could serve as product-specific tags for identifying individual GM organisms. This direct method of marking the functional transgene provides a simple, low-risk, and robust marking method without causing the gene functions to deteriorate.
Collapse
Affiliation(s)
- Yuki Morono
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Merini LJ, Cuadrado V, Flocco CG, Giulietti AM. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study. CHEMOSPHERE 2007; 68:259-65. [PMID: 17316752 DOI: 10.1016/j.chemosphere.2007.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 05/14/2023]
Abstract
Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.
Collapse
Affiliation(s)
- Luciano J Merini
- Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires Junín 956 (1113), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
48
|
Chao WL, Cheng CY. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm. CHEMOSPHERE 2007; 67:482-8. [PMID: 17092544 DOI: 10.1016/j.chemosphere.2006.09.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 09/18/2006] [Accepted: 09/24/2006] [Indexed: 05/12/2023]
Abstract
Four previously isolated di-butyl-phthalate (DBP) degraders were tested for their abilities to degrade di-(2-ethylhexyl) phthalate (DEHP). In aqueous medium supplemented with 100mg/l of DEHP, both isolate G1 and Rhodococcus rhodochrous G2 showed excellent degradative activity; in three days they were able to degrade more than 97% of the added DEHP. Rhodococcus rhodochrous G7 degraded 32.5% of the added DEHP and Corynebacterium nitrilophilus G11 showed the least amount of DEHP degradation. The addition of surfactant Brij 30 at 0.1x critical micelle concentration (2mg/l) significantly improved DEHP degradation by Rhodococcus rhodochrous G2 (more than 90% of the added DEHP was degraded within 24 hours), but slightly inhibited the degradation of DEHP by the isolate G1 and Rhodococcus rhodochrous G7. Based on the 16S rDNA sequence data, isolate G1 was identified as Gordonia polyisoprenivorans. Soil inhibited DEHP degradation by G. polyisoprenivorans G1; fourteen days after a second addition of DEHP, 11.5% of the total added DEHP (i.e., 243.4 microg/g soil) remained detectable. Changes in the bacterial community were monitored using denaturing gradient gel electrophoresis (DGGE) and respective dendrogram analysis. It is clear that DEHP and DEHP plus G. polyisoprenivorans G1 substantially affected the bacterial community structure in the soils. However, as the population of indigenous DEHP degraders increased in the DEPH-treated soil, its bacterial communities resembled those in the DEHP plus G. polyisoprenivorans G1-inoculated soil by Day 17.
Collapse
Affiliation(s)
- W L Chao
- Department of Microbiology, Soochow University, Shih Lin, Taipei, Taiwan, ROC.
| | | |
Collapse
|
49
|
Abstract
Background Bacterial genomes develop new mechanisms to tide them over the imposing conditions they encounter during the course of their evolution. Acquisition of new genes by lateral gene transfer may be one of the dominant ways of adaptation in bacterial genome evolution. Lateral gene transfer provides the bacterial genome with a new set of genes that help it to explore and adapt to new ecological niches. Methods A maximum likelihood analysis was done on the five sequenced corynebacterial genomes to model the rates of gene insertions/deletions at various depths of the phylogeny. Results The study shows that most of the laterally acquired genes are transient and the inferred rates of gene movement are higher on the external branches of the phylogeny and decrease as the phylogenetic depth increases. The newly acquired genes are under relaxed selection and evolve faster than their older counterparts. Analysis of some of the functionally characterised LGTs in each species has indicated that they may have a possible adaptive role. Conclusion The five Corynebacterial genomes sequenced to date have evolved by acquiring between 8 – 14% of their genomes by LGT and some of these genes may have a role in adaptation.
Collapse
Affiliation(s)
- Pradeep Reddy Marri
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Weilong Hao
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
50
|
Manzano M, Morán AC, Tesser B, González B. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Antonie van Leeuwenhoek 2006; 91:115-26. [PMID: 17043913 DOI: 10.1007/s10482-006-9101-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Cupriavidus necator (formerly Ralstonia eutropha) JMP134, harbouring the catabolic plasmid pJP4, is the best-studied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide degrading bacterium. A study of the survival and catabolic performance of strain JMP134 in agricultural soil microcosms exposed to high levels of 2,4-D was carried out. When C. necator JMP134 was introduced into soil microcosms, the rate of 2,4-D removal increased only slightly. This correlated with the poor survival of the strain, as judged by 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) profiles, and the semi-quantitative detection of the pJP4-borne tfdA gene sequence, encoding the first step in 2,4-D degradation. After 3 days of incubation in irradiated soil microcosms, the survival of strain JMP134 dramatically improved and the herbicide was completely removed. The introduction of strain JMP134 into native soil microcosms did not produce detectable changes in the structure of the bacterial community, as judged by 16S rRNA gene T-RFLP profiles, but provoked a transient increase of signals putatively corresponding to protozoa, as indicated by 18S rRNA gene T-RFLP profiling. Accordingly, a ciliate able to feed on C. necator JMP134 could be isolated after soil enrichment. In native soil microcosms, C. necator JMP134 survived better than Escherichia coli DH5alpha (pJP4) and similarly to Pseudomonas putida KT2442 (pJP4), indicating that species specific factors control the survival of strains harbouring pJP4. The addition of cycloheximide to soil microcosms strongly improved survival of these three strains, indicating that the eukaryotic microbiota has a strong negative effect in bioaugmentation with catabolic bacteria.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/metabolism
- Animals
- Biodegradation, Environmental
- Biodiversity
- Ciliophora/isolation & purification
- Cupriavidus necator/genetics
- Cupriavidus necator/growth & development
- Cupriavidus necator/metabolism
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Escherichia coli/growth & development
- Eukaryota/genetics
- Eukaryota/isolation & purification
- Eukaryota/metabolism
- Microbial Viability
- Plasmids/genetics
- Polymorphism, Restriction Fragment Length
- Pseudomonas putida/growth & development
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Soil Microbiology
Collapse
Affiliation(s)
- Marlene Manzano
- Laboratorio de Microbiologia, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | |
Collapse
|