1
|
Cheng Q, Zhang L, Wang D, Niu B. Bioaugmentation mitigates ammonia and hydrogen sulfide emissions during the mixture compost of dewatered sewage sludge and reed straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68487-68497. [PMID: 34273078 DOI: 10.1007/s11356-021-15446-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effectiveness of bio-augmenting aerobic cell culture to mitigate ammonia and hydrogen sulfide emission in sewage sludge composting amended with reed straw (with the weight ratio of 1:0.3-0.4). During the 20-day aerated lab-scale composting, adding 200-mL culture (56.80 NTU) reduced ammonia and hydrogen sulfide emissions by 38.00% and 54.32%, and conserved total nitrogen and sulfate by 39.42% and 70.75%, respectively. Organic matters degradation was quick started 1 day ahead. Comparing to the control, nitrate content increased 38.75% at the end of the compost. Bioaugmentation evened the distributions of bacterial communities in the thermophilic phase. The shift was mainly due to 22.97% of relative abundance of Proteobacteria depressed and 157.16% of Bacteroidetes increased, which were beneficial for nitrogen conservation and glycan breakdown, respectively. In summary, the results demonstrated that bioaugmentation addition could be an effective strategy for enhanced sludge composting.
Collapse
Affiliation(s)
- Qingli Cheng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, No. 36, Beihuan Road, Zhengzhou, 450045, Henan, China.
| | - Longlong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, No. 36, Beihuan Road, Zhengzhou, 450045, Henan, China
| | - Dawei Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, No. 36, Beihuan Road, Zhengzhou, 450045, Henan, China
| | - Bochao Niu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, No. 36, Beihuan Road, Zhengzhou, 450045, Henan, China
| |
Collapse
|
2
|
Mechanism of Membrane Fouling Control by HMBR: Effect of Microbial Community on EPS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051681. [PMID: 32150812 PMCID: PMC7084492 DOI: 10.3390/ijerph17051681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 11/16/2022]
Abstract
A hybrid membrane bioreactor (HMBR) employing activated sludge and biofilm simultaneously is proved to represent a good performance on membrane fouling control compared to conventional membrane bioreactor (CMBR) by reducing extracellular polymeric substances (EPS), especially bound EPS (B-EPS). In order to better understand the mechanism of membrane fouling control by the HMBR in regard of microbial community composition, a pilot scale HMBR operated to treat domestic wastewater for six months, and a CMBR operated at the same time as control group. Results showed that HMBR can effectively control membrane fouling. When transmembrane pressure reached 0.1 MPa, the membrane module in the HMBR operated for about 26.7% longer than that in the CMBR. In the HMBR, the quantity of EPS was significantly lower than that in the CMBR. In this paper, soluble EPS was also found to have a close relationship with cake layer resistance. The species richness and diversity in the HMBR were higher than those in the CMBR, and a certain difference between the compositions of microbial communities in the two reactors was confirmed. Therefore, the difference in microbial community compositions may be the direct reason why EPS in the HMBR was lower than that in the CMBR.
Collapse
|
3
|
Huang L, Chen Z, Wen Q, Zhao L, Lee DJ, Yang L, Wang Y. Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: Microbial community succession, relationships with system function and underlying driving forces. WATER RESEARCH 2018; 131:167-176. [PMID: 29281810 DOI: 10.1016/j.watres.2017.12.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
The Feast-Famine (FF) process has been frequently used to select polyhydroxyalkanoate (PHA)-accumulating mixed cultures (MCs), but there has been little insight into the ecophysiology of the microbial community during the selection process. In three FF systems with well-defined conditions, synchronized variations in higher-order properties of MCs and complicate microbial community succession mainly including enrichment and elimination of non-top competitors and unexpected turnover of top competitors, were observed. Quantification of PHA-accumulating function genes (phaC) revealed that the top competitors maintained the PHA synthesis by playing consecutive roles when the highly dynamic turnover occurred. Due to its specific physiological characteristics during the PHA-accumulating process, Thauera strain OTU 7 was found to be responsible for the fluctuating SVI, which threatened the robustness of the FF system. This trait was also responsible for its later competitive exclusion by the other PHA-producer, Paracoccus strain OTU 1. Deterministic processes dominated the entire FF system, resulting in the inevitable microbial community succession in the acclimation phase and maintenance of the stable PHA-accumulating function in the maturation phase. However, neutral processes, likely caused by predation from bacterial phages, also occurred, which led to the unpredictable temporal dynamics of the top competitors.
Collapse
Affiliation(s)
- Long Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lizhi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Lian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Lin W, Sun S, Wu C, Xu P, Ye Z, Zhuang S. Effects of toxic organic flotation reagent (aniline aerofloat) on an A/O submerged membrane bioreactor (sMBR): Microbial community dynamics and performance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:14-21. [PMID: 28384499 DOI: 10.1016/j.ecoenv.2017.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Bio-treatment of flotation wastewater has been proven to be both effective and economical, as a treatment method. Despite this, little is known regarding the effects of toxic organic floatation reagents such as Dianilinodithiophosphoric acid (DDA), on the microbial community performance or dynamics, which are critical to the effective performance of the bio-treatment reactor. A submerged membrane bioreactor (sMBR) was constructed to continuously treat simulated wastewater contaminated with DDA, an organic flotation reagent that is now considered a significant pollutant. The performance of the sMBR system was investigated at different DDA loading concentrations, with assessment of the effects of DDA on the microbial communities within the sMBR, in particular the biodiversity and succession within the microbial community. Results showed that, with increased DDA loadings, the performance of the sMBR was initially negatively affected, but the system adapted efficiently and consistently reached a COD removal rate of up to 80%. Increased DDA loading concentrations had an adverse effect on the activity of both the activated sludge and microbial communities, resulting in a large alteration in microbial dynamics, especially during the start-up stage and the high DDA loading stage. Strains capable of adapting to the presence of DDA, capable of degrading DDA or utilizing its byproducts, were enriched within the sMBR community, such as Zoogloea, Clostridium, Sideroxydans lithotrophicus, Thiobacillus, Thauera amino aromatica and Alicycliphilus denitrificans.
Collapse
Affiliation(s)
- Weixiong Lin
- Guangdong Polytechnic of Environmental Protection Engineering,Foshan 528216, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Polytechnic of Environmental Protection Engineering,Foshan 528216, China.
| | - Chun Wu
- Guangdong Polytechnic of Environmental Protection Engineering,Foshan 528216, China
| | - Pingting Xu
- Guangdong Polytechnic of Environmental Protection Engineering,Foshan 528216, China
| | - Ziwei Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengwei Zhuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Tan G, Xu N, Liu Y, Hao H, Sun W. Effects of lead concentration and accumulation on the performance and microbial community of aerobic granular sludge in sequencing batch reactors. ENVIRONMENTAL TECHNOLOGY 2016; 37:2905-2915. [PMID: 27012589 DOI: 10.1080/09593330.2016.1168870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
The present study investigated the effects of lead on the morphological structure, physical and chemical properties, wastewater treatment performance and microbial community structure of aerobic granular sludge (AGS) in sequencing batch reactors (SBRs). The results showed that at Pb(2+) concentration of 1 mg/L, the mixed liquid suspended solids decreased, the settling velocity increased and the sludge volume index increased sharply. Meanwhile, AGS began to disintegrate and show an irregular shape. In terms of wastewater treatment in an SBR, the phosphorus removal rate was affected only until the Pb(2+) concentration was up to 1 mg/L. The [Formula: see text] removal efficiency began to decline when the Pb(2+) concentration increased to 6 mg/L, while the removal of chemical oxygen demand increased slightly within the Pb(2+) concentration range of 1-6 mg/L. Significant changes were observed in the microbial community structure, especially the dominant bacteria. Compared to the Pb(2+) accumulation on the sludge, the Pb(2+) concentration in the aqueous phase played a more important role in the performance and microbial community of AGS in SBRs.
Collapse
Affiliation(s)
- Guangcai Tan
- a Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen , People's Republic of China
| | - Nan Xu
- a Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen , People's Republic of China
| | - Yong Liu
- a Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen , People's Republic of China
| | - Hongshan Hao
- a Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen , People's Republic of China
| | - Weiling Sun
- b College of Environmental Sciences and Engineering, Peking University , The Key Laboratory of Water and Sediment Sciences, Ministry of Education , Beijing , People's Republic of China
| |
Collapse
|
6
|
Anti-biofouling property studies on carboxyl-modified multi-walled carbon nanotubes filled PDMS nanocomposites. World J Microbiol Biotechnol 2016; 32:148. [DOI: 10.1007/s11274-016-2094-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
|
7
|
Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor. Appl Microbiol Biotechnol 2016; 100:8507-21. [DOI: 10.1007/s00253-016-7617-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/01/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
8
|
Dash HR, Das S. Diversity, community structure, and bioremediation potential of mercury-resistant marine bacteria of estuarine and coastal environments of Odisha, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6960-6971. [PMID: 26686519 DOI: 10.1007/s11356-015-5991-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Both point and non-point sources increase the pollution status of mercury and increase the population of mercury-resistant marine bacteria (MRMB). They can be targeted as the indicator organism to access marine mercury pollution, besides utilization in bioremediation. Thus, sediment and water samples were collected for 2 years (2010-2012) along Odisha coast of Bay of Bengal, India. Mercury content of the study sites varied from 0.47 to 0.99 ppb irrespective of the seasons of sampling. A strong positive correlation was observed between mercury content and MRMB population (P < 0.05) suggesting the utilization of these bacteria to assess the level of mercury pollution in the marine environment. Seventy-eight percent of the MRMB isolates were under the phylum Firmicutes, and 36 and 31% of them could resist mercury by mer operon-mediated volatilization and mercury biosorption, respectively. In addition, most of the isolates could resist a number of antibiotics and toxic metals. All the MRMB isolates possess the potential of growth and survival at cardinal pH (4-8), temperature (25-37 °C), and salinity (5-35 psu). Enterobacteria repetitive intergenic consensus (ERIC) and repetitive element palindromic PCR (REP-PCR) produced fingerprints corroborating the results of 16S rRNA gene sequencing. Fourier transform infrared (FTIR) spectral analysis also revealed strain-level speciation and phylogenetic relationships.
Collapse
Affiliation(s)
- Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
9
|
Metagenomes reveal microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor. Appl Microbiol Biotechnol 2016; 100:5109-21. [PMID: 26816093 DOI: 10.1007/s00253-016-7312-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/21/2022]
Abstract
Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.
Collapse
|
10
|
Monophyletic group of unclassified γ- Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode. Bioelectrochemistry 2015; 106:167-76. [DOI: 10.1016/j.bioelechem.2015.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 12/31/2022]
|
11
|
Langer SG, Ahmed S, Einfalt D, Bengelsdorf FR, Kazda M. Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage. Microb Biotechnol 2015. [PMID: 26200922 PMCID: PMC4554470 DOI: 10.1111/1751-7915.12308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Numerous observations indicate a high flexibility of microbial communities in different biogas reactors during anaerobic digestion. Here, we describe the functional redundancy and structural changes of involved microbial communities in four lab-scale continuously stirred tank reactors (CSTRs, 39°C, 12 L volume) supplied with different mixtures of maize silage (MS) and sugar beet silage (SBS) over 80 days. Continuously stirred tank reactors were fed with mixtures of MS and SBS in volatile solid ratios of 1:0 (Continuous Fermenter (CF) 1), 6:1 (CF2), 3:1 (CF3), 1:3 (CF4) with equal organic loading rates (OLR 1.25 kgVS m(-3) d(-1) ) and showed similar biogas production rates in all reactors. The compositions of bacterial and archaeal communities were analysed by 454 amplicon sequencing approach based on 16S rRNA genes. Both bacterial and archaeal communities shifted with increasing amounts of SBS. Especially pronounced were changes in the archaeal composition towards Methanosarcina with increasing proportion of SBS, while Methanosaeta declined simultaneously. Compositional shifts within the microbial communities did not influence the respective biogas production rates indicating that these communities adapted to environmental conditions induced by different feedstock mixtures. The diverse microbial communities optimized their metabolism in a way that ensured efficient biogas production.
Collapse
Affiliation(s)
- Susanne G Langer
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sharif Ahmed
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniel Einfalt
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Marian Kazda
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
12
|
Zhao X, Chen Z, Wang X, Li J, Shen J, Xu H. Remediation of pharmaceuticals and personal care products using an aerobic granular sludge sequencing bioreactor and microbial community profiling using Solexa sequencing technology analysis. BIORESOURCE TECHNOLOGY 2015; 179:104-112. [PMID: 25531682 DOI: 10.1016/j.biortech.2014.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
Recently, a new type of organic pollution derived from pharmaceuticals and personal care products (PPCPs) is gradually on the rise. Wastewater treatment to remove PPCPs was investigated using an aerobic granular sludge sequencing bioreactor (GSBR). After optimization of influent organic load, hydraulic shear stress, sludge settling time, etc., aerobic granular sludge was analyzed for its physiological and biochemical characteristics and tested for its efficacy to remove PPCPs wastewater. The granular sludge effectively removed some but not all of the PPCPs tested; removal correlated with the microbial profiles in the granules, as assessed using Solexa sequencing technology. Sequencing revealed the presence of five phylogenetic groups: Proteobacteria, Bacteroidetes, Betaproteobacteria, an unclassified genus, and Zoogloea. The results demonstrated changes in the microbial profiles with time in response to the presence of PPCPs. The effects of PPCPs on microbial communities in granular sludge process are discussed.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jinchunzi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Hao Xu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
13
|
Zhang Q, Shuwen G, Zhang J, Fane AG, Kjelleberg S, Rice SA, McDougald D. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor. J Appl Microbiol 2015; 118:940-53. [PMID: 25604265 PMCID: PMC4409088 DOI: 10.1111/jam.12759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/01/2015] [Accepted: 01/11/2015] [Indexed: 12/23/2022]
Abstract
Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance.
Collapse
Affiliation(s)
- Q Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore City, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | | | | | | | | | | | | |
Collapse
|
14
|
Xin XD, He JG, Qiu W, Tang J, Liu TT. Microbial community related to lysozyme digestion process for boosting waste activated sludge biodegradability. BIORESOURCE TECHNOLOGY 2015; 175:112-119. [PMID: 25459811 DOI: 10.1016/j.biortech.2014.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Waste activated sludge from a lab-scale sequencing batch reactor was used to investigate the potential relation of microbial community with lysozyme digestion process for sludge solubilization. The results showed the microbial community shifted conspicuously as sludge suffered lysozyme digestion. Soluble protein and polysaccharide kept an increasing trend in solution followed with succession of microbial community. The rise of lysozyme dosage augmented the dissimilarity among communities in various digested sludge. A negative relationship presented between community diversity and lysozyme digestion process under various lysozyme/TS from 0 to 240min (correlation coefficient R(2) exceeded 0.9). Pareto-Lorenz curves demonstrated that microbial community tended to be even with sludge disintegration process by lysozyme. Finally, with diversity (H) decrease and community distribution getting even, the SCOD/TCOD increased steadily in solution which suggested the sludge with high community diversity and uneven population distribution might have tremendous potential for improving their biodegradability by lysozyme digestion.
Collapse
Affiliation(s)
- Xiao-Dong Xin
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jun-Guo He
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Jian Tang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Tian-Tian Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Sekar S, Zintchem AA, Keshri J, Kamika I, Momba MN. Bacterial profiling in brine samples of the Emalahleni Water Reclamation Plant, South Africa, using 454-pyrosequencing method. FEMS Microbiol Lett 2014; 359:55-63. [DOI: 10.1111/1574-6968.12557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/14/2014] [Accepted: 07/20/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sudharshan Sekar
- Department of Environmental, Water and Earth Sciences; Water Care Unit; TUT; Pretoria South Africa
| | - Armand A.E.A. Zintchem
- Department of Environmental, Water and Earth Sciences; Water Care Unit; TUT; Pretoria South Africa
| | - Jitendra Keshri
- Department of Environmental, Water and Earth Sciences; Water Care Unit; TUT; Pretoria South Africa
| | - Ilunga Kamika
- Department of Environmental, Water and Earth Sciences; Water Care Unit; TUT; Pretoria South Africa
| | - Maggy N.B. Momba
- Department of Environmental, Water and Earth Sciences; Water Care Unit; TUT; Pretoria South Africa
| |
Collapse
|
16
|
Vanysacker L, Boerjan B, Declerck P, Vankelecom IFJ. Biofouling ecology as a means to better understand membrane biofouling. Appl Microbiol Biotechnol 2014; 98:8047-72. [DOI: 10.1007/s00253-014-5921-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
|
17
|
Munro JE, Liew EF, Coleman NV. Adaptation of a membrane bioreactor to 1,2-dichloroethane revealed by 16S rDNA pyrosequencing and dhlA qPCR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13668-13676. [PMID: 24175727 DOI: 10.1021/es403292s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A pilot-scale membrane bioreactor (MBR) was tested for bioremediation of 1,2-dichloroethane (DCA) in groundwater. Pyrosequencing of 16S rDNA was used to study changes in the microbiology of the MBR over 137 days, including a 67 day initial adaptation phase of increasing DCA concentration. The bacterial community in the MBR was distinct from those in soil and groundwater at the same site, and was dominated by alpha- and beta- proteobacteria, including Rhodobacter, Methylibium, Rhodopseudomonas, Methyloversatilis, Caldilinea, Thiobacillus, Azoarcus, Hyphomicrobium, and Leptothrix. Biodegradation of DCA in the MBR began after 26 days, and was sustained for the remainder of the experiment. A quantitative PCR (qPCR) assay for the dehalogenase gene dhlA was developed to monitor DCA-degrading bacteria in the MBR, and a positive correlation was seen between dhlA gene abundance and the cumulative amount of DCA that had entered the MBR. Genera previously associated with aerobic DCA biodegradation (Xanthobacter, Ancylobacter, Azoarcus) were present in the MBR, and the abundance of Azoarcus correlated well with dhlA gene abundance. This study shows that MBRs can be an effective method for removal of DCA from groundwater, and that the dhlA qPCR is a rapid and sensitive method for detection of DCA-degrading bacteria.
Collapse
Affiliation(s)
- Jacob E Munro
- School of Molecular Bioscience, Building G08, University of Sydney , Darlington, New South Wales, 2006, Australia
| | | | | |
Collapse
|
18
|
Wen D, Zhang J, Xiong R, Liu R, Chen L. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J Environ Sci (China) 2013; 25:2265-2271. [PMID: 24552055 DOI: 10.1016/s1001-0742(12)60278-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The bacterial strain Paracoccus denitrificans W12, which could utilize pyridine as its sole source of carbon and nitrogen, was added into a membrane bioreactor (MBR) to enhance the treatment of a pharmaceutical wastewater. The treatment efficiencies investigated showed that the removal of chemical oxygen demand, total nitrogen, and total phosphorus were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of pyridine was obtained in the bioaugmented reactor. When the hydraulic retention time was 60 hr and the influent concentration of pyridine was 250-500 mg/L, the mean effluent concentration of pyridine without adding W12 was 57.2 mg/L, while the pyridine was degraded to an average of 10.2 mg/L with addition of W12. The bacterial community structure of activated sludge during the bioaugmented treatment was analyzed using polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that the W12 inoculum reversed the decline of microbial community diversity, however, the similarity between bacterial community structure of the original sludge and that of the sludge after bioaugmentation decreased steadily during the wastewater treatment. Sequencing of the DNA recovered from DGGE gel indicated that Flavobacteriaceae sp., Sphingobium sp., Comamonas sp., and Hyphomicrobium sp. were the dominant organisms in time sequence in the bacterial community in the bioaugmented MBR. This implied that the bioaugmentation was affected by the adjustment of whole bacterial community structure in the inhospitable environment, rather than being due solely to the degradation performance of the bacterium added.
Collapse
Affiliation(s)
- Donghui Wen
- College of Environmental Sciences and Engineering, the Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University Beijing 100871, China.
| | - Jing Zhang
- College of Environmental Sciences and Engineering, the Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University Beijing 100871, China
| | - Ruilin Xiong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Luo J, Liang H, Yan L, Ma J, Yang Y, Li G. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality. BIORESOURCE TECHNOLOGY 2013; 148:189-95. [PMID: 24055963 DOI: 10.1016/j.biortech.2013.08.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 05/16/2023]
Abstract
This is the first report on the characterization of the microbial biofilm community structure and water quality change along a closed and stable raw water distribution system. 454-pyrosequencing was employed to investigate the microbial communities in four biofilm samples. 25,426 optimized sequences were obtained. Results showed Proteobacteria was the dominant phylum in each biofilm sample. The abundance of Nitrospiraes in M6 biofilm, Firmicutes in M8 biofilm, Actinobacteria in M9 biofilm were higher by comparing with other three biofilm samples. The M6 microbial biofilm community structure was similar to that of M7, dissimilar to that of M9. Dissolved oxygen and nitrogen was probably major factors to influence the microbial biofilm communities. Nitrospiraes in M6 biofilm and Firmicutes in M8 biofilm were crucial to remove ammonia nitrogen and nitrate in raw water. How to enrich functional microbes in biofilm to pretreat raw water is an important area of future research.
Collapse
Affiliation(s)
- Jianghan Luo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China; Institute of Cell and Molecular Biology, Harbin University of Commerce, No. 1 Xuehai Street, Songbei District, Harbin, Heilongjiang Province 150028, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Qiu G, Song Y, Zeng P, Duan L, Xiao S. Combination of upflow anaerobic sludge blanket (UASB) and membrane bioreactor (MBR) for berberine reduction from wastewater and the effects of berberine on bacterial community dynamics. JOURNAL OF HAZARDOUS MATERIALS 2013; 246-247:34-43. [PMID: 23280052 DOI: 10.1016/j.jhazmat.2012.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 11/02/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
Berberine is a broad-spectrum antibiotic extensively used in personal medication. The production of berberine results in the generation of wastewater containing concentrated residual berberine. However, few related studies up to date focus on berberine removal from wastewaters. In this study, a lab-scale upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process was developed for berberine removal from synthetic wastewater. The performance of the UASB-MBR system on berberine, COD and NH(4)(+)--N removal was investigated at different berberine loadings. And the effects of berberine on bacterial communities were evaluated using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Results showed that, as the increase of berberine loadings, UASB performance was affected remarkably, whereas, efficient and stable performance of MBR ensured the overall removal rates of berberine, COD and NH(4)(+)--N consistently reached up to 99%, 98% and 98%, respectively. Significant shifts of bacterial community structures were detected in both UASB and MBR, especially in the initial operations. Along with the increase of berberine loadings, high antibiotic resisting species and some functional species, i.e. Acinetobacter sp., Clostridium sp., Propionibacterium sp., and Sphingomonas sp. in UASB, as well as Sphingomonas sp., Methylocystis sp., Hydrogenophaga sp. and Flavobacterium sp. in MBR were enriched in succession.
Collapse
Affiliation(s)
- Guanglei Qiu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai Beiyuan, Beijing 100012, China
| | | | | | | | | |
Collapse
|
21
|
Sun X, Sheng Z, Liu Y. Effects of silver nanoparticles on microbial community structure in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:828-835. [PMID: 23246663 DOI: 10.1016/j.scitotenv.2012.11.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
Due to the antimicrobial properties and the widespread use of Ag nanoparticles (NPs) in commercial products, the prevalent Ag NPs in waste streams can decrease the effectiveness of biological wastewater treatments. To determine the effects of Ag NPs on the complex microbial communities present in activated sludge, detailed knowledge of the Ag NPs toxicity on microorganism communities is necessary. Experiments were performed to determine the effects of 1mg/L Ag NPs on microbial communities in activated sludge. Activated sludge samples with and without gravity settling were compared to evaluate the impact of activated sludge flocs structure on the response of microbial communities to Ag NPs. The effects of Ag NPs on the entire microbial community in activated sludge were analyzed using 16S rRNA gene based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results suggest that certain microbial species in the intact activated sludge were highly sensitive to Ag NPs treatment, although no reduction in cell culturability was detected through heterotrophic plate counts (HPCs) during the 24h Ag NPs treatment. Conversely, one log unit reduction in the HPCs with no microbial community structure changes was observed for unsettled activated sludge flocs (intact activated sludge treated by 3h gravity-settling) after 24h Ag NPs treatment. This study strongly suggests that Ag NPs can impact the activated sludge microbial community and cell culturability depending on the physical structure of the activated sludge flocs, the spatial distribution of microorganisms in activated sludge flocs, and the community structures in the activated sludge.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada T6G 2W2
| | | | | |
Collapse
|
22
|
Cabrol L, Malhautier L, Poly F, Roux XL, Lepeuple AS, Fanlo JL. Resistance and resilience of removal efficiency and bacterial community structure of gas biofilters exposed to repeated shock loads. BIORESOURCE TECHNOLOGY 2012; 123:548-557. [PMID: 22944489 DOI: 10.1016/j.biortech.2012.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Since full-scale biofilters are often operated under fluctuating conditions, it is critical to understand their response to transient states. Four pilot-scale biofilters treating a composting gas mixture and undergoing repeated substrate pulses of increasing intensity were studied. A systematic approach was proposed to quantify the resistance and resilience capacity of their removal efficiency, which enabled to distinguish between recalcitrant (ammonia, DMDS, ketones) and easily degradable (esters and aldehyde) compounds. The threshold of disturbing shock intensity and the influence of disturbance history depended on the contaminant considered. The spatial and temporal distribution of the bacterial community structure in response to the perturbation regime was analysed by Denaturing Gradient Gel Electrophoresis (DGGE). Even if the substrate-pulses acted as a driving force for some community characteristics (community stratification), the structure-function relationships were trickier to evidence: the distributions of resistance and composition were only partially coupled, with contradictory results depending on the contaminant considered.
Collapse
Affiliation(s)
- Léa Cabrol
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Rue Jules Renard, 30100 Alès, France.
| | | | | | | | | | | |
Collapse
|
23
|
Monsalvo VM, Shanmugam P, Horan NJ. Application of microbial indices to assess the performance of a sequencing batch reactor and membrane bioreactor treating municipal wastewater. ENVIRONMENTAL TECHNOLOGY 2012; 33:2143-2148. [PMID: 23240209 DOI: 10.1080/09593330.2012.660652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microbial indexes of filamentous bacterial density were evaluated for their potential to act as indicators of sludge settling characteristics for sequencing batch reactor (SBR) and membrane bioreactor (MBR) treatment options. These options were operated using settled sewage over a range of aerated loading rates from 0.05 to 0.4/d and the evolution of protozoan and metazoan populations analysed. A filament density score ranging between 0 and 5, which has previously been applied to conventional activated sludge processes, was shown also to be a useful tool for the SBR and MBR, and was correlated to the settleability of the mixed liquor from both reactors. Due to the hydrodynamics of both systems and the subsequent differences in mixed liquors, optimum performance for each bioreactor was obtained under different operating conditions. Although there was no correlation between the numbers of any given protozoan species and plant operating conditions, there was a clear dependence between operating conditions and protozoan diversity. The highest diversity was found when operating conditions were optimum for both the SBR and MBR.
Collapse
Affiliation(s)
- V M Monsalvo
- Chemical Engineering, Faculty of Science, University Autonoma of Madrid, Spain.
| | | | | |
Collapse
|
24
|
Hu M, Wang X, Wen X, Xia Y. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. BIORESOURCE TECHNOLOGY 2012; 117:72-9. [PMID: 22609716 DOI: 10.1016/j.biortech.2012.04.061] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 05/20/2023]
Abstract
In this study, 454-pyrosequencing technology was employed to investigate the microbial communities in 12 municipal wastewater treatment plants (WWPTs) with different treatment processes. In total, 202,968 effective sequences of the 16S rRNA gene were generated from 16 samples that widely represented the diversity of the microbial communities. While Proteobacteria was found to be the dominant phylum in some samples, in other samples it was Bacteroidetes. The Simpson's diversity index and evenness index were lowest in samples from membrane bioreactors (MBRs), possibly due to the long sludge retention time (SRT) and low food/microorganism ratio (F/M). For one WWTP which had two disparate treatment processes operating in parallel, the structures of microbial communities in the two systems were compared. The differences found between the two indicated that the treatment process likely had effects on the structure of microbial communities.
Collapse
Affiliation(s)
- Man Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
25
|
Cabrol L, Malhautier L, Poly F, Lepeuple AS, Fanlo JL. Bacterial dynamics in steady-state biofilters: beyond functional stability. FEMS Microbiol Ecol 2012; 79:260-71. [PMID: 22029727 DOI: 10.1111/j.1574-6941.2011.01213.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.
Collapse
Affiliation(s)
- Léa Cabrol
- Veolia Environnement Recherche et Innovation, Maisons Laffitte, France
| | | | | | | | | |
Collapse
|
26
|
Lay WCL, Zhang Q, Zhang J, McDougald D, Tang C, Wang R, Liu Y, Fane AG. Effect of Pharmaceuticals on the Performance of a Novel Osmotic Membrane Bioreactor (OMBR). SEP SCI TECHNOL 2012. [DOI: 10.1080/01496395.2011.630249] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
27
|
Bin Z, Zhe C, Zhigang Q, Min J, Zhiqiang C, Zhaoli C, Junwen L, Xuan W, Jingfeng W. Dynamic and distribution of ammonia-oxidizing bacteria communities during sludge granulation in an anaerobic-aerobic sequencing batch reactor. WATER RESEARCH 2011; 45:6207-6216. [PMID: 21955984 DOI: 10.1016/j.watres.2011.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/10/2011] [Accepted: 09/10/2011] [Indexed: 05/27/2023]
Abstract
The structure dynamic of ammonia-oxidizing bacteria (AOB) community and the distribution of AOB and nitrite-oxidizing bacteria (NOB) in granular sludge from an anaerobic-aerobic sequencing batch reactor (SBR) were investigated. A combination of process studies, molecular biotechniques and microscale techniques were employed to identify and characterize these organisms. The AOB community structure in granules was substantially different from that of the initial pattern of the inoculants sludge. Along with granules formation, the AOB diversity declined due to the selection pressure imposed by process conditions. Denaturing gradient gel electrophoresis (DGGE) and sequencing results demonstrated that most of Nitrosomonas in the inoculating sludge were remained because of their ability to rapidly adapt to the settling-washing out action. Furthermore, DGGE analysis revealed that larger granules benefit more AOB species surviving in the reactor. In the SBR were various size granules coexisted, granule diameter affected the distribution range of AOB and NOB. Small and medium granules (d<0.6 mm) cannot restrict oxygen mass transfer in all spaces of the sludge. Larger granules (d>0.9 mm) can result in smaller aerobic volume fraction and inhibition of NOB growth. All these observations provide support to future studies on the mechanisms responsible for the AOB in granules systems.
Collapse
Affiliation(s)
- Zhang Bin
- Institute of Hygiene and Environmental Medicine, Academy of Military Medical Sciences, Tianjin 300050, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu S, Zhu N, Li LY, Yuan H. Isolation, identification and utilization of thermophilic strains in aerobic digestion of sewage sludge. WATER RESEARCH 2011; 45:5959-5968. [PMID: 21937074 DOI: 10.1016/j.watres.2011.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 08/18/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
Two representative thermophilic bacterial strains (T1 and T2) were isolated from a one-stage autothermal thermophilic aerobic digestion pilot-scale reactor. 16S rRNA gene analysis indicated that they were Hydrogenophilaceae and Xanthomonodaceae. These isolated strains were inoculated separately and/or jointly in sewage sludge, to investigate their effects on sludge stabilization under thermophilic aerobic digestion condition. Four digestion conditions were tested for 480 h. Digestion without inoculation and inoculation with strain T2, as well as joint- inoculation with strains T1 and T2, achieved 32.6%, 43.0%, and 38.2% volatile solids (VS) removal, respectively. Removal in a digester inoculated with stain T1 only reached 27.2%. For the first 144 h, the three inoculated digesters all experienced higher VS removal than the digester without inoculations. Both specific thermophilic strains and micro-environment significantly affected the VS removal. DGGE profiles revealed that the isolated strains T1 and T2 can successfully establish in the thermophilic digesters. Other viable bacteria (including anaerobic or facultative microbes) also appeared in the digestion system, enhancing the microbial activity.
Collapse
Affiliation(s)
- Shugen Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai 200240, China
| | | | | | | |
Collapse
|
29
|
Yan R, Yang F, Wu Y, Hu Z, Nath B, Yang L, Fang Y. Cadmium and mercury removal from non-point source wastewater by a hybrid bioreactor. BIORESOURCE TECHNOLOGY 2011; 102:9927-9932. [PMID: 21903380 DOI: 10.1016/j.biortech.2011.08.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 05/31/2023]
Abstract
The purpose of this study was to remove cadmium (Cd) and mercury (Hg) from non-point source wastewater by a hybrid bioreactor consisting of two different processes (anaerobic-anoxic-aerobic and photoautotrophic). The results showed that the bioreactor could concurrently culture heterotrophic and autotrophic microorganisms, and removed Cd and Hg from the wastewater successfully. The average removal efficiencies were 79% and 66%, respectively for Cd and Hg. The relationship between Cd removal rate and biofilm mass was observed to be significant (p<0.05) during different seasons. The Hg removal was mainly due to the bioaccumulation in macrophytes via a photoautotrophic process. Due to the increase of the bacterial diversity under the rejuvenated conditions modulated by the hybrid bioreactor, the growth conditions of the native bacterial habitat were improved. The results demonstrate that the environmentally benign, easily-deployed, sludge free and cost-effective hybrid bioreactor can efficiently remove Cd and Hg from non-point source wastewater.
Collapse
Affiliation(s)
- Rong Yan
- College of Forest Resource and Environment Science, Nanjing Forestry University, Nanjing 210037, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wu B, Yi S, Fane AG. Microbial community developments and biomass characteristics in membrane bioreactors under different organic loadings. BIORESOURCE TECHNOLOGY 2011; 102:6808-6814. [PMID: 21531548 DOI: 10.1016/j.biortech.2011.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/30/2023]
Abstract
Microbial community developments and biomass characteristics (concentration, particle size, extracellular polymeric substances (EPS), and membrane fouling propensity) were compared when three MBRs were fed with the synthetic wastewater at different organic loadings. Results showed that the bacterial communities dynamically shifted in different ways and the EPS displayed dissimilar profiles under various organic loadings, which were associated with the ratios of food to microorganism and dissolved oxygen levels in the MBRs. The membrane fouling tendency of biomass in the low-loading MBR (0.57 g COD/L day) was insignificantly different from that in the medium-loading MBR (1.14 g COD/L day), which was apparently lower than that in the high-loading MBR (2.28 g COD/L day). The membrane fouling propensity of biomass was strongly correlated with their bound EPS contents, indicating cake layer fouling (i.e., deposition of microbial flocs) was predominant in membrane fouling at a high flux of 30 L/m(2)h.
Collapse
Affiliation(s)
- Bing Wu
- Singapore Membrane Technology Centre, Nanyang Technological University, Singapore 639798, Singapore.
| | | | | |
Collapse
|
31
|
Di Bella G, Torregrossa M, Viviani G. The role of EPS concentration in MBR foaming: analysis of a submerged pilot plant. BIORESOURCE TECHNOLOGY 2011; 102:1628-1635. [PMID: 20933394 DOI: 10.1016/j.biortech.2010.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 05/27/2023]
Abstract
Foaming in Membrane BioReactor (MBR) is a frequently discussed topic. Some authors reported that the phenomenon is due to filamentous organisms, like at Conventional Activated Sludge (CAS) plants. However, in recent years, other authors reported that the Extra-cellular Polymer Substances (EPSs) concentration is an important factor for controlling foam as well. Nevertheless, even if a number of MBR plants are affected by foaming, presently there are no suitable methods to evaluate the phenomenon. To facilitate the study of this controversial phenomenon in an MBR system, certain foam tests proposed in the past for CASPs were investigated. The results of the tests were able to adequately measure quantity, stability and quality of the foam. In particular, the Scum Index increased proportionally with the EPS concentration and mixed liquor viscosity; Foam Power was mainly correlated with the protein concentration of in the EPS; Foam Rating was also correlated with the EPS concentration.
Collapse
Affiliation(s)
- Gaetano Di Bella
- Dipartimento di Ingegneria Idraulica ed Applicazioni Ambientali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | | | | |
Collapse
|
32
|
Wu Y, Hu Z, Kerr PG, Yang L. A multi-level bioreactor to remove organic matter and metals, together with its associated bacterial diversity. BIORESOURCE TECHNOLOGY 2011; 102:736-741. [PMID: 20846855 DOI: 10.1016/j.biortech.2010.08.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 05/29/2023]
Abstract
The purpose of this study was to treat complex wastewater consisting of domestic wastewater, tobacco processing and building materials washings. The proposed multi-level bioreactor consists of a biopond-biofilter, anoxic/aerobic (A/O) fluidized beds and a photoautotrophic system. The results show that when the hydraulic load of the bioreactor was 200 m3/d, it successfully and simultaneously removed the organic matter and metals. When the bioreactor was in a relatively steady-state condition, the overall average organic matter and metals removal efficiencies are as follows, COD (89%), UV245 nm-matter (91%), Cu (78%), Zn (79%) and Fe (84%). The growth conditions of the native bacterial habitat were improved, which resulted from the increase of the in bacterial diversity under the rejuvenated conditions induced by the bioreactor. The results demonstrate that the multi-level bioreactor, without a sludge treatment system, can remove heterogeneous organic matter and metals from wastewater.
Collapse
Affiliation(s)
- Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71, East Beijing Rd, Nanjing 210008, Jiangsu, People's Republic of China.
| | | | | | | |
Collapse
|
33
|
Wan CY, De Wever H, Diels L, Thoeye C, Liang JB, Huang LN. Biodiversity and population dynamics of microorganisms in a full-scale membrane bioreactor for municipal wastewater treatment. WATER RESEARCH 2011; 45:1129-1138. [PMID: 21112606 DOI: 10.1016/j.watres.2010.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/30/2010] [Accepted: 11/04/2010] [Indexed: 05/27/2023]
Abstract
The total, ammonia-oxidizing, and denitrifying Bacteria in a full-scale membrane bioreactor (MBR) were evaluated monthly for over one year. Microbial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) and clone library analysis of the 16S rRNA and ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes. The community fingerprints obtained were compared to those from a conventional activated sludge (CAS) process running in parallel treating the same domestic wastewater. Distinct DGGE profiles for all three molecular markers were observed between the two treatment systems, indicating the selection of specific bacterial populations by the contrasting environmental and operational conditions. Comparative 16S rRNA sequencing indicated a diverse bacterial community in the MBR, with phylotypes from the α- and β-Proteobacteria and Bacteroidetes dominating the gene library. The vast majority of sequences retrieved were not closely related to classified organisms or displayed relatively low levels of similarity with any known 16S rRNA gene sequences and thus represent organisms that constitute new taxa. Similarly, the majority of the recovered nosZ sequences were novel and only moderately related to known denitrifiers from the α- and β-Proteobacteria. In contrast, analysis of the amoA gene showed a remarkably simple ammonia-oxidizing community with the detected members almost exclusively affiliated with the Nitrosomonas oligotropha lineage. Major shifts in total bacteria and denitrifying community were detected and these were associated with change in the external carbon added for denitrification enhancement. In spite of this, the MBR was able to maintain a stable process performance during that period. These results significantly expand our knowledge of the biodiversity and population dynamics of microorganisms in MBRs for wastewater treatment.
Collapse
Affiliation(s)
- Cai-Yun Wan
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Ozdemir B, Mertoglu B, Yapsakli K, Aliyazicioglu C, Saatci A, Yenigun O. Investigation of nitrogen converters in membrane bioreactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:500-508. [PMID: 21469010 DOI: 10.1080/10934529.2011.551733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this study, the activity and diversity of nitrogen converters, ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), ammonia-oxidizing archaea (AOA) and Anammox bacteria in a pilot-scale membrane bioreactor (MBR) were investigated and monitored using amoA and 16S rDNA-based molecular tools. The pilot-scale MBR (100 m(3)/day) was located inside the full-scale Pasakoy Advanced Wastewater Treatment Plant (WWTP), and operated for approximately 5 months without sludge purge. During 148 days of operation, volatile suspended solids (VSS) concentration increased from 2,454 mg/L to 10,855 mg/L and the average organic carbon and ammonia nitrogen removal rates were 92% and 99%, respectively. Real-time PCR results indicated that the fraction of AOB increased from 2.94% to 4.05% when VSS concentration reached to 3,750 mg/L throughout 148 days of operation. At higher VSS concentrations, the fraction of AOB declined gradually to 1.15% while the fraction of Nitrospira population was varied between 8.23 and 13.01%. However, significant change or any positive and negative correlations between VSS concentration and Nitrospira population were not observed in this period. The phylogenetic analysis revealed that MBR harbored diverse AOB community which was related to the Nitrosomonas and Nitrosospira lineage. Candidatus Nitrospira defluvii was the only detected NOB in this study.
Collapse
Affiliation(s)
- Burcu Ozdemir
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
35
|
Yu T, Li D, Qi R, Li ST, Xu SW, Yang M. Structure and dynamics of nitrifier populations in a full-scale submerged membrane bioreactor during start-up. Appl Microbiol Biotechnol 2010; 90:369-76. [DOI: 10.1007/s00253-010-3030-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
|
36
|
Ballesteros Martín MM, Garrido L, Casas López JL, Sánchez O, Mas J, Maldonado MI, Sánchez Pérez JA. An analysis of the bacterial community in a membrane bioreactor fed with photo-Fenton pre-treated toxic water. J Ind Microbiol Biotechnol 2010; 38:1171-8. [PMID: 21061043 DOI: 10.1007/s10295-010-0892-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 10/21/2010] [Indexed: 11/26/2022]
Abstract
A photo-Fenton-membrane bioreactor (MBR) coupled system is an innovative tool for the treatment of wastewater containing high quantities of contaminants. In this paper, wastewater with 200 mg l(-1) of dissolved organic carbon (DOC) of a selected mixture of five commercial pesticides: Vydate®, Metomur®, Couraze®, Ditimur-40®, and Scala® was treated by combining photo-Fenton and MBR. The effect of photo-treated pollutants on MBR operation was investigated by studying the population changes that occurred with time in the activated sludge of the biological system. Pre-treatment with photo-Fenton was carried out (only up to 34% of mineralization of DOC) and, after MBR treatment, 98% of biodegradation efficiency was obtained. During the biological treatment, little changes in the activated sludge population were detected by DGGE analysis, maintaining acceptable biodegradation efficiency, which points out the robustness of the MBR treatment versus changes in feed composition.
Collapse
|
37
|
Kvennefors ECE, Sampayo E, Ridgway T, Barnes AC, Hoegh-Guldberg O. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates. PLoS One 2010; 5:e10401. [PMID: 20454460 PMCID: PMC2861602 DOI: 10.1371/journal.pone.0010401] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 03/28/2010] [Indexed: 02/04/2023] Open
Abstract
Background Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. Methodology/Principal Findings Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. Conclusions/Significance This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates. Finally, the results did not support the contention that a single bacterial pathogen may be the causative agent of WS Acroporids on the GBR.
Collapse
|
38
|
Changes in bacterial communities from swine feces during continuous culture with starch. Anaerobe 2010; 16:516-21. [PMID: 20371295 DOI: 10.1016/j.anaerobe.2010.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 02/19/2010] [Accepted: 03/28/2010] [Indexed: 11/21/2022]
Abstract
Bacteria from swine feces were grown in continuous culture with starch as the sole carbohydrate in order to monitor changes during fermentation and to determine how similar fermenter communities were to each other. DNA extracted from fermenter samples was analyzed by denaturing gradient gel electrophoresis (DGGE). A significant decrease in diversity was observed, the Shannon-Weaver index dropped from 1.92 to 1.13 after 14 days of fermentation. Likewise, similarity of fermenter communities to those in the fecal inoculum also decreased over time. Both diversity and similarity to the inoculum decreased most rapidly in the first few days of fermentation, reflecting a period of adaptation. Sequencing of DGGE bands indicated that the same species were present in replicate fermenters. Most of these bacteria were placed in the Clostridium coccoides/Eubacterium rectale group (likely saccharolytic butyrate producers), a dominant bacterial group in the intestinal tract of pigs. DGGE proved useful to monitor swine fecal communities in vitro and indicated the selection and maintenance of native swine intestinal bacteria during continuous culture.
Collapse
|
39
|
Molina-Muñoz M, Poyatos JM, Rodelas B, Pozo C, Manzanera M, Hontoria E, Gonzalez-Lopez J. Microbial enzymatic activities in a pilot-scale MBR experimental plant under different working conditions. BIORESOURCE TECHNOLOGY 2010; 101:696-704. [PMID: 19748774 DOI: 10.1016/j.biortech.2009.08.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 05/28/2023]
Abstract
Phosphatases, glucosidase, protease, esterase and dehydrogenase activities in a MBR (membrane bioreactor) system equipped with ultrafiltration membranes for the treatment of real urban wastewater were measured at different volatile suspended solid (VSS) concentrations, total suspended solid (TSS) concentrations, hydraulic retention times (HRT), temperatures and inflow rates. The results showed the capacity of the MBR system to remove COD and BOD(5) at TSS between 7200 and 13,300 mg/L; HRT values of 8.05 and 15.27 h; inflow rates of 14.67 and 27.81 L/h; and temperatures between 4 and 27 degrees C. The enzymatic activities are influenced by increases in VSS and TSS concentrations. These results suggest that the ability to get adapted to environmental changes of the bacterial populations and their microbial enzymatic activities is essential to understand the biological processes that occur in MBR systems and crucial for proper urban wastewater treatment when using MBR technologies.
Collapse
Affiliation(s)
- M Molina-Muñoz
- Institute of Water Research, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang M, Yang G, Min H, Lv Z, Jia X. Bioaugmentation with the nicotine-degrading bacterium Pseudomonas sp. HF-1 in a sequencing batch reactor treating tobacco wastewater: degradation study and analysis of its mechanisms. WATER RESEARCH 2009; 43:4187-4196. [PMID: 19665163 DOI: 10.1016/j.watres.2009.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 06/29/2009] [Accepted: 07/01/2009] [Indexed: 05/28/2023]
Abstract
The highly effective nicotine-degrading bacterium Pseudomonas sp. HF-1 was augmented in an SBR system that is used to treat tobacco wastewater. Compared to the non-bioaugmented (non-BA) system, the bioaugmented (BA) system exhibited considerably stronger pollution disposal abilities, with 100% nicotine degradation and more than 84% chemical oxygen demand (COD) removal within 12h. Nicotine degradation had a significant effect on COD removal in SBRs (r=0.928, p<0.01). The mechanisms of bioaugmentation were systematically investigated using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and a toxicity assay (protein carbonyl (PC) and DNA-protein crosslinking (DPC)). DGGE fingerprint profiles showed that the number of bands and the Shannon-Wiener index decreased at a nicotine load of 250mg/L compared to a 40-130mg/L nicotine load in the non-BA system. However, a stepwise increase in the Shannon-Wiener index was found during all periods in the BA system. A comparison of sequences excised from DGGE gels demonstrated significant differences in the dominant microbial species between the two SBRs. This result suggested that bioaugmentation of strain HF-1 could select cooperators for treating complicated tobacco wastewater. The PC content and the DPC coefficient increased significantly at levels higher than 80mg/L in the non-BA system; nevertheless, no increase was observed in the BA system during the stepwise nicotine load. This indicated that bioaugmentation of strain HF-1 resulted in the maintenance of high treatment activity by minimizing the nicotine toxicity for other microbes in the BA system. In conclusion, the rapid nicotine degradation of strain HF-1 performed a vital function in SBR by influencing the microbial community structure, dynamics and activity of the activated sludge system.
Collapse
Affiliation(s)
- Meizhen Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
41
|
Duan L, Moreno-Andrade I, Huang CL, Xia S, Hermanowicz SW. Effects of short solids retention time on microbial community in a membrane bioreactor. BIORESOURCE TECHNOLOGY 2009; 100:3489-3496. [PMID: 19329300 DOI: 10.1016/j.biortech.2009.02.056] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 05/27/2023]
Abstract
Effects of operating lab-scale nitrifying membrane bioreactors (MBR) at short solids retention times (SRT=3, 5 and 10d) were presented with focus on reactor performance and microbial community composition. The process was capable of achieving over 87% removal of ammonia and 95% removal of chemical oxygen demand (COD), almost regardless of SRT. The denaturing gradient gel electrophoresis (DGGE) analysis shown that bacterial communities evolved in time in a similar way at different SRT. The results of clone library analysis indicated that Betaproteobacteria was the dominant bacterial group in all the reactors but there were significant difference of species for different SRT with higher species diversity at longer SRT. Ammonia and COD removal efficiencies were not correlated with the number of bacterial species or their diversity.
Collapse
Affiliation(s)
- Liang Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
42
|
Molina-Muñoz M, Poyatos JM, Sánchez-Peinado M, Hontoria E, González-López J, Rodelas B. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3994-4003. [PMID: 19394070 DOI: 10.1016/j.scitotenv.2009.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/17/2009] [Accepted: 03/22/2009] [Indexed: 05/27/2023]
Abstract
A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community in the sludge and its ability to get adapted to environmental changes play an important role for the stable performance of MBRs.
Collapse
Affiliation(s)
- M Molina-Muñoz
- Institute of Water Research, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Kuang Y, Tani K, Synnott AJ, Ohshima K, Higuchi H, Nagahata H, Tanji Y. Characterization of bacterial population of raw milk from bovine mastitis by culture-independent PCR–DGGE method. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Yan ST, Chu LB, Xing XH, Yu AF, Sun XL, Jurcik B. Analysis of the mechanism of sludge ozonation by a combination of biological and chemical approaches. WATER RESEARCH 2009; 43:195-203. [PMID: 18976790 DOI: 10.1016/j.watres.2008.09.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/30/2008] [Accepted: 09/30/2008] [Indexed: 05/27/2023]
Abstract
Using the practical sludge obtained from municipal sewage treatment plants, the mechanism of the sludge ozonation process was systematically investigated by a combination of biological and chemical approaches, including analysis of the changes in biological response by CFU and PCR-DGGE, bio-macromolecular activity and radical scavenging activity. The results indicated that after the sludge was exposed to ozone at less than 0.02 g O(3)/g TSS, the DGGE fingerprint remained constant and there was still some enzyme activity, indicating that the sludge solubilization was the main process. At greater than 0.02 g O(3)/g TSS, the bacteria began to be broken down and ozone was used to oxidize the bio-macromolecules such as proteins and DNA released from the sludge. Bacteria belonging to 'G-Bacteria' were able to conserve their DNA in the presence of less than 0.08 g O(3)/g TSS. At levels higher than 0.10 g O(3)/g TSS, the disintegration of the sludge matrix became slow and the microbes lost most of their activity, and ozone was used to transform the bio-macromolecules into small molecules. However, at levels higher than 0.14 g O(3)/g TSS, the ozone failed to oxidize the sludge efficiently, because several radical scavengers such as lactic acid and SO(4)(2-) were released from the microbial cells in the sludge.
Collapse
Affiliation(s)
- Sang-Tian Yan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
45
|
Zhang K, Choi H, Dionysiou DD, Oerther DB. Application of membrane bioreactors in the preliminary treatment of early planetary base wastewater for long-duration space missions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2008; 80:2209-2218. [PMID: 19146098 DOI: 10.2175/106143008x325809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Membrane bioreactors (MBRs) are the preferred technology for the preliminary treatment of Early Planetary Base Wastewater (EPBW) because of their compact configuration and promising treatment performance. For long-duration space missions, irreversible membrane biofouling resulting from the strong attachment of biomass and the formation of biofilms are major concerns for the MBR process. In this study, a MBR was operated for 230 days treating synthetic EPBW. The reactor demonstrated excellent treatment performance, in terms of chemical oxygen demand removal and nitrification. Filtration resistance is mainly caused by concentration polarization, reversible fouling, and irreversible fouling. Analysis of the microbial communities in the planktonic and corresponding sessile biomass suggested that the microbial community of the planktonic biomass was significantly different from the one of the sessile biomass. This study provides valuable information for the development of the water reuse component in the National Aeronautics and Space Administration's (Washington, D.C.) Advanced Life Support system for long-term space missions.
Collapse
Affiliation(s)
- Kai Zhang
- Jones Edmunds & Associates Inc., Gainesville, Florida, USA
| | | | | | | |
Collapse
|
46
|
Stamper DM, Montgomery MT. Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater). Can J Microbiol 2008; 54:687-93. [DOI: 10.1139/w08-053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biodegradability and toxicity of low concentrations of oily wastewater (bilgewater) were tested under simulated sanitary wastewater treatment conditions. This was done to establish the feasibility of a combined shipboard oily and nonoily wastewater treatment system. The biodegradability of oily wastewater was determined by proxy;14C-labeled dodecane, toluene, and phenanthrene (representing alkane, aromatic, and polyaromatic compounds, respectively) were mineralized in petroleum fuels and lubricants. We found that low concentrations of oily wastewater components were mineralized, even in the presence of more abundant substrates (such as synthetic graywater, containing vegetable oil, detergent, gelatin, and starch). The toxic effects of diesel fuel and several other components of oily wastewater (such as surfactants and a synthetic lubricant) on a naïve wastewater assemblage was also tested. In concentrations much higher than would be expected under normal shipboard conditions, we found no evidence of toxic effects of the bilgewater compounds tested. Thus, a combined shipboard bilgewater and sanitary wastewater system might be feasible.
Collapse
Affiliation(s)
- David M. Stamper
- NAVSEA Carderock Division, Biological Sciences Group, Code 617, 9500 MacArthur Blvd, West Bethesda, MD 20817, USA
- Naval Research Laboratory, Marine Biochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375, USA
| | - Michael T. Montgomery
- NAVSEA Carderock Division, Biological Sciences Group, Code 617, 9500 MacArthur Blvd, West Bethesda, MD 20817, USA
- Naval Research Laboratory, Marine Biochemistry Section, Code 6114, 4555 Overlook Avenue, Washington, DC 20375, USA
| |
Collapse
|
47
|
Li AJ, Yang SF, Li XY, Gu JD. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. WATER RESEARCH 2008; 42:3552-3560. [PMID: 18541284 DOI: 10.1016/j.watres.2008.05.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 04/19/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
Laboratory experiments were carried out to investigate the evolution of the bacterial community during aerobic sludge granulation. The experiments were conducted in three 2.4L sequencing batch reactors (SBRs) that were seeded with activated sludge and fed with glucose-based synthetic wastewater. Three different influent organic concentrations were introduced into the three SBRs, R1, R2 and R3, resulting in chemical oxygen demand (COD) loading rates of 1.5 (R1), 3.0 (R2) and 4.5 (R3)kg/m(3)d, respectively. Changes in bacterial diversity throughout the granulation process were monitored and analysed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The experimental results demonstrate that glucose-fed aerobic granules could be formed without significant presence of filamentous bacteria. Granules formed at different loading rates had different morphology, structural properties and bacterial species. A higher loading rate resulted in faster formation of larger and loose granules, while a lower loading rate resulted in slower formation of smaller and more tightly packed granules. The biomass underwent a dynamic transformation in terms of bacterial species richness and dominance during the granulation process. The reactor with the highest substrate loading rate had the lowest species diversity, while the reactor with the lowest substrate loading rate had the highest species diversity. Different dominant species of beta- and gamma-Proteobacteria and Flavobacterium within the granule communities from the three different SBRs were confirmed by analysis of 16S rDNA sequences of the PCR products separated by DGGE. It is apparent that a few common bacterial species play an important role in the formation and growth of aerobic granules and help sustain the granular sludge structure in the bioreactors.
Collapse
Affiliation(s)
- An-jie Li
- Department of Civil Engineering, Environmental Engineering Research Centre, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
48
|
Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2007.12.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S. Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 2007; 16:3721-33. [PMID: 17845444 DOI: 10.1111/j.1365-294x.2007.03403.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reef-building corals are fundamental to the most diverse marine ecosystems, yet a detailed understanding of the processes involved in the establishment, persistence and ecology of the coral-dinoflagellate association remains largely unknown. This study explores symbiont diversity in relation to habitat by employing a broad-scale sampling regime using ITS2 and denaturing gradient gel electrophoresis. Samples from Pocillopora damicornis, Stylophora pistillata and Seriatopora hystrix all harboured host-specific clade C symbiont types at Heron Island (Great Barrier Reef, Australia). While Ser. hystrix associated with a single symbiont profile along its entire depth distribution, both P. damicornis and Sty. pistillata associated with multiple symbiont profiles that showed a strong zonation with depth. It is shown that, with an increased sampling effort, previously identified 'rare' symbiont types within this group of host species are in fact environmental specialists. A multivariate approach was used to expand on the common distinction of symbionts by a single genetic identity. It shows merit in its capacity not only to include all the variability present within the marker region but also to reliably represent ecological diversification of symbionts. Furthermore, the cohesive species concept is explored to explain how niche partitioning may drive diversification of closely related symbiont lineages. This study provides thus evidence that closely related symbionts are ecologically distinct and fulfil their own niche within the ecosystem provided by the host and external environment.
Collapse
Affiliation(s)
- Eugenia M Sampayo
- Centre for Marine Studies, The University of Queensland, St Lucia, Qld 4072, Australia.
| | | | | | | |
Collapse
|
50
|
Coats ER, Loge FJ, Smith WA, Thompson DN, Wolcott MP. Functional stability of a mixed microbial consortium producing PHA from waste carbon sources. Appl Biochem Biotechnol 2007; 137-140:909-25. [DOI: 10.1007/s12010-007-9107-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|