1
|
Hao J, Zhang J, He X, Wang Y, Su J, Long J, Zhang L, Guo Z, Zheng Y, Wang M, Sun Y. Unveiling the silent threat: A comprehensive review of Riemerella anatipestifer - From pathogenesis to drug resistance. Poult Sci 2025; 104:104915. [PMID: 40020410 PMCID: PMC11919424 DOI: 10.1016/j.psj.2025.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
Riemeralla anatipestifer, a predominant bacterium with multidrug resistance, has caused tremendous economic losses in the poultry farming industry. However, there are few studies on its identification, pathogenic mechanisms, and virulence factors and effective and systematic prevention and control strategies. The emergence and spread of antibacterial resistance has prompted increased focus on R. anatipestifer. However, studies on the mechanisms underlying gene aggregation and dissemination are lacking. This review summarizes recent studies on R. anatipestifer and explores its epidemiology, pathobiology, serotype classification, and preventive and treatment measures. Our findings illuminate the characteristics of virulence-related and drug resistance factors that have pivotal roles in the pathogenesis of R. anatipestifer infection. This study provides a comprehensive reference and guidance for in-depth research on R. anatipestifer.
Collapse
Affiliation(s)
- Jinzhen Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaolu He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yefan Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinyang Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiewen Long
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Leyi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zixing Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yizhang Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Wang J, Zou Z, Hu M, Shan X, Zhang Y, Miao Y, Zhang X, Islam N, Hu Q. Riemerella anatipestifer UvrC is required for iron utilization, biofilm formation and virulence. Avian Pathol 2024; 53:247-256. [PMID: 38420684 DOI: 10.1080/03079457.2024.2317431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
UvrC is a subunit of excinuclease ABC, which mediates nucleotide excision repair (NER) in bacteria. Our previous studies showed that transposon Tn4531 insertion in the UvrC encoding gene Riean_1413 results in reduced biofilm formation by Riemerella anatipestifer strain CH3 and attenuates virulence of strain YZb1. In this study, whether R. anatipestifer UvrC has some biological functions other than NER was investigated. Firstly, the uvrC of R. anatipestifer strain Yb2 was in-frame deleted by homologous recombination, generating deletion mutant ΔuvrC, and its complemented strain cΔuvrC was constructed based on Escherichia coli - R. anatipestifer shuttle plasmid pRES. Compared to the wild-type (WT) R. anatipestifer strain Yb2, uvrC deleted mutant ΔuvrC significantly reduced biofilm formation, tolerance to H2O2- and HOCl-induced oxidative stress, iron utilization, and adhesion to and invasion of duck embryonic hepatocytes, but not its growth curve and proteolytic activity. In addition, animal experiments showed that the LD50 value of ΔuvrC in ducklings was about 13-fold higher than that of the WT, and the bacterial loads in ΔuvrC infected ducklings were significantly lower than those in Yb2-infected ducklings, indicating uvrC deletion in R. anatipestifer attenuated virulence. Taken together, the results of this study indicate that R. anatipestifer UvrC is required for iron utilization, biofilm formation, oxidative stress tolerance and virulence of strain Yb2, demonstrating multiple functions of UvrC.RESEARCH HIGHLIGHTSDeletion of uvrC in R. anatipestfer Yb2 significantly reduced its biofilm formation.uvrC deletion led to reduced tolerance to H2O2- and HOCl-induced oxidative stress.The iron utilization of uvrC deleted mutant was significantly reduced.The uvrC deletion in R. anatipestifer Yb2 attenuated its virulence.
Collapse
Affiliation(s)
- Jialing Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zuocheng Zou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Mengmeng Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xinggen Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ying Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yiqin Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - XiaoYing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Nazrul Islam
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Deka NJ, Kalita DJ, Tamuly S, Sharma RK, Bora DP, Dutta R, Hazorika M, Chabukdhara P, George S. Calcium phosphate nanoparticles conjugated with outer membrane vesicle of Riemerella anatipestifer for vaccine development in ducklings. Microb Pathog 2023; 185:106446. [PMID: 37951409 DOI: 10.1016/j.micpath.2023.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/14/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biodegradable calcium phosphate nanoparticles offer a viable substitute for traditional adjuvants such as aluminum in vaccine production. Calcium phosphate nanoparticle adjuvanted with outer membrane vesicle (OMV) of gram negative bacteria may induce efficient immune response in the host. The present study was carried out to evaluate the potential of a mucosal vaccine formulation of calcium phosphate (CAP) nanoparticle using OMV of Riemerella anatipestifer (RA) as antigen against New Duck disease in ducks. The work was initiated with isolation, identification of RA, followed by OMV production and extraction. The CAP-OMV nanoparticle was prepared and characterized. The efficacy of the vaccine formulation and toxicity were studied in ducks. The average OMV yield in terms of protein concentration was found to be 122.33 ± 3.48 mg per liter of BHI broth. In SDS-PAGE, isolated OMVs exhibited presence of 16 distinct protein bands with molecular weight ranging from 142.1 to 12.1 kDa. Seven protein bands of 74.1, 69.3, 55.5, 50.6, 45.6, 25.1 and 13.1 kDa were detected relatively more distinct. The major bands detected in our findings were 42 kDa, 37 kDa and 16 kDa that corresponds to OmpA, OmpH, P6 respectively. The mean zeta size (±SD) and potential of the nanoparticle were 246.20 ± 0.53 nm and -25.60 ± 5.97 respectively. In transmission electron microscopy (TEM), the nanoparticles exhibited an average diameter of 129.80 ± 11.10 nm and displayed spherical morphology. The median protective dose (PD50) of CAP-OMV nanoparticle was 1881.10 μg of protein. Group I ducks received 3762 μg of protein (entrapped protein in CAP-OMV nanoparticle) via intra nasal route and it showed the highest serum IgG and secretory IgA level than other immunized groups. All experimental ducks were challenged with 10 × LD50 on 35 days of post primary immunization. Group I showed 100 % survivability in the challenge study. No gross and biochemical indication of acute or chronic toxicity were recorded. In conclusion, our results suggest that CAP-OMV nanoparticle can be a safe and efficient mucosal vaccine delivery system for RA, eliciting strong immune response in the host.
Collapse
Affiliation(s)
- Naba Jyoti Deka
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India.
| | - Dhruba Jyoti Kalita
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Shantanu Tamuly
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Rajeev Kumar Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Durlav Prasad Bora
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Rupam Dutta
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Assam, 781022, India
| | - Mousumi Hazorika
- Department of Veterinary Biochemistry, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Prasanta Chabukdhara
- Department of Veterinary Physiology & Biochemistry, Lakhimpur College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787 051, India
| | - Shiney George
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, North Lakhimpur, Assam, 787051, India
| |
Collapse
|
4
|
Zheng X, Xu S, Wang Z, Tao X, Liu Y, Dai L, Li Y, Zhang W. Sifting through the core-genome to identify putative cross-protective antigens against Riemerella anatipestifer. Appl Microbiol Biotechnol 2023; 107:3085-3098. [PMID: 36941438 DOI: 10.1007/s00253-023-12479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Infectious serositis of ducks, caused by Riemerella anatipestifer, is one of the main infectious diseases that harm commercial ducks. Whole-strain-based vaccines with no or few cross-protection were observed between different serotypes of R. anatipestifer, and so far, control of infection is hampered by a lack of effective vaccines, especially subunit vaccines with cross-protection. Since the concept of reverse vaccinology was introduced, it has been widely used to screen for protective antigens in important pathogens. In this study, pan-genome binding reverse vaccinology, an emerging approach to vaccine candidate screening, was used to screen for cross-protective antigens against R. anatipestifer. Thirty proteins were identified from the core-genome as potential cross-protective antigens. Three of these proteins were recombinantly expressed, and their immunoreactivity with five antisera (anti-serotypes 1, 2, 6, 10, and 11) was demonstrated by Western blotting. Our study established a method for high-throughput screening of cross-protective antigens against R. anatipestifer in silico, which will lay the foundation for the development of a cross-protective subunit vaccine controlling R. anatipestifer infection. KEY POINTS: • Pan-genome binding reverse vaccine approach was first established in R. anatipestifer to screen for subunit vaccine candidates. • Thirty potential cross-protective antigens against R. anatipestifer were identified by this method. • The reliability of the method was verified preliminarily by the results of Western blotting of three of these potential antigens.
Collapse
Affiliation(s)
- Xiangkuan Zheng
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sixiang Xu
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuohao Wang
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingyu Tao
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250100, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, 16 Xingdan Road, Haikou, 571100, China
| | - Yubao Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China.
| | - Wei Zhang
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Wang J, Chen Y, He X, Du X, Gao Y, Shan X, Hu Z, Hu Q. PaR1 secreted by the type IX secretion system is a protective antigen of Riemerella anatipestifer. Front Microbiol 2023; 13:1082712. [PMID: 36713192 PMCID: PMC9874225 DOI: 10.3389/fmicb.2022.1082712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Riemerella anatipestifer mainly infects domestic ducks, geese, turkeys, and other birds, and causes considerable economic losses to the global duck industry. Previous studies have shown that concentrated cell-free culture filtrates of R. anatipestifer induce highly significant protection against homologous challenge. In this study, 12 immunogenic proteins were identified in the culture supernatant of R. anatipestifer strain Yb2 with immunoproteomic analysis. Of these, three immunogenic proteins, AS87_RS06600 (designated "PaR1" in this study), AS87_RS09020, and AS87_RS09965, which appeared in more than three spots on the western-blotted membrane, were expressed in Escherichia coli and purified. Animal experiments showed that the recombinant PaR1 (rPaR1) protein protected 41.67% of immunized ducklings against challenge with virulent Yb2, whereas rAS87_RS09020 or rAS87_RS09965 did not, and that ducklings immunized once with rPaR1 were 20, 40, and 0% protected from challenge with R. anatipestifer strains WJ4 (serotype 1), Yb2 (serotype 2), and HXb2 (serotype 10), respectively. In addition, rPaR1 immunized rabbit serum showed bactericidal activity against strain Yb2 at a titer of 1:8. These results indicate that rPaR1 of strain Yb2 protects against homologous challenge. Amino acid homology analysis show that PaR1 is a non-serotype-specific protein among different R. anatipestifer serotypes. Furthermore, PaR1 is mainly secreted outside the cell through the T9SS. Overall, our results demonstrate that R. anatipestifer PaR1 is a non-serotype-specific protective protein secreted by the T9SS.
Collapse
|
6
|
Huang M, Liu M, Liu J, Wang M, Jia R, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Gao Q, Huang J, Ou X, Mao S, Tian B, Sun D, Cheng A. Evaluation of the immunoprotection efficacy of Riemerella anatipestifer fur-deficient mutant as an attenuated vaccine. Poult Sci 2022; 102:102450. [PMID: 36621099 PMCID: PMC9841290 DOI: 10.1016/j.psj.2022.102450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Riemerella anatipestifer (R. anatipestifer, RA) is an infectious pathogen that causes septicemia and polyserositis in ducks. Our previous studies showed that RA CH-1 ∆fur was significantly attenuated in ducklings, which highlights the potential of this strain as a live attenuated vaccine. In this study, it was shown that infection with 109 CFU of the fur mutant did not cause any clinical symptoms or significant histological lesions in 3-day-old ducklings and that the bacteria were readily cleared by the host within 3 d. Compared with the nonvaccinated group, the group inoculated with the mutant strain RA CH-1 ∆fur exhibited protection of ducklings against a high-dose (2.28 × 1010 CFU) challenge with the wild-type strain RA CH-1. Moreover, the average body weights and body weight gains of the Δfur-inoculated group were not significantly affected by the challenge. Further analysis revealed that RA CH-1 ∆fur elicited higher IgY titers and that the serum antibody levels persisted for at least 49 d after immunization. Overall, our study showed that RA CH-1 ∆fur is a safe and effective vaccine candidate that is expected to play an important role in RA CH-1 infection prevention in the duck industry.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Jiajun Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
7
|
Riemerella anatipestifer AS87_RS02955 Acts as a Virulence Factor and Displays Endonuclease Activity. Appl Environ Microbiol 2022; 88:e0127622. [PMID: 36106871 PMCID: PMC9552600 DOI: 10.1128/aem.01276-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is an important bacterial pathogen in the global duck industry and causes heavy economic losses. In our previous study, we demonstrated that R. anatipestifer type IX secretion system components GldK and GldM, and the secretion protein metallophosphoesterase, acted as virulence factors. In this study, R. anatipestifer AS87_RS02955 was investigated for virulence and enzymatic activity properties. We constructed AS87_RS02955 mutation and complementation strains to assess bacterial virulence. In vivo bacterial loads showed a significantly reduced bacterial loads in the blood of ducks infected with mutant strain Yb2Δ02955, which was recovered in the blood of ducks infected with the complementation strain cYb2Δ02955, demonstrating that AS87_RS02955 was associated with virulence. Further studies showed AS87_RS02955 was a novel nonspecific endonuclease with no functionally conserved domain, but enzymatic activity toward DNA and RNA was indicated. DNase activity was activated by Zn2+, Cu2+, Mg2+, Ca2+, and Mn2+ ions but inhibited by ethylenediaminetetraacetic acid. RNase activity was independent of metal cations, but stimulated by Mg2+, Ca2+, and Mn2+. RAS87_RS02955 enzymatic activity was active across a broad pH and temperature range. Moreover, we identified four sites in rAS87_RS02955, F39, F92, I134, and F145, which were critical for enzymatic activity. In summary, we showed that R. anatipestifer AS87_RS02955 encoded a novel endonuclease with important roles in bacterial virulence. IMPORTANCE R. anatipestifer AS87_RS02955 was identified as a novel T9SS effector and displayed a nonspecific endonuclease activity in this study. The protein did not contain a conserved His-Asn-His motif structure, which is similar to the endonuclease from Prevotella sp. Its mutant strain Yb2Δ02955 demonstrated significantly attenuated virulence, suggesting AS87_RS02955 is an important virulence factor. Moreover, AS87_RS02955 displayed nonspecific endonuclease activity to cleave λ DNA and MS2 RNA, while four protein sites were critical for endonuclease activity. In conclusion, R. anatipestifer AS87_RS02955 plays important roles in bacterial virulence.
Collapse
|
8
|
Ke T, Yang D, Yan Z, Yin L, Shen H, Luo C, Xu J, Zhou Q, Wei X, Chen F. Identification and Pathogenicity Analysis of the Pathogen Causing Spotted Spleen in Muscovy Duck. Front Vet Sci 2022; 9:846298. [PMID: 35677936 PMCID: PMC9169529 DOI: 10.3389/fvets.2022.846298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Since September 2020, the clinical symptoms of Muscovy duck spleen spots have appeared in Guangdong, Guangxi, Jiangxi, Hunan, Hubei, and other provinces, resulting in a large number of Muscovy duck deaths and great economic losses. The absence of the typical clinical symptoms caused by pathogenic microorganisms makes the cause of the spotted spleen a mystery. High-throughput sequencing results suggested that Riemerella anatipestifer (R. anatipestifer) may be the pathogen. Then, R. anatipestifer was regarded as the research target for isolation, identification, and pathogenicity assessment. After biochemical test, PCR amplification, and serotype determination, it was confirmed that the isolated strain CZG-1 was serotype 15 R. anatipestifer. Typical spotted spleen symptoms were observed after CZG-1 infection. Furthermore, drug sensitivity assays showed the similar drug-resistant spectrum of R. anatipestifer serotype 15 to other serotypes; for example, all test strains were resistant to polymyxin, gentamicin, and neomycin. The CZG-1 strain has high pathogenicity, and its lethal dose of 50% (LD50) is 35.122 CFU/ml. Virulence gene determination showed that the CZG-1 strain had at least five virulence genes, bioF, TSS9-1, TSS9-2, PncA, and 0373Right. Above all, this study identified and proved that the pathogen of spotted spleen in ducks was R. anatipestifer serotype 15, which caused death of ducks without the typical symptoms of bacterial infection. The results of this study enriched the knowledge of symptom after R. anatipestifer infection, provided a reference to the identification of the pathogen of spotted spleen, and provided theoretical basis for prevention and control of spotted spleen.
Collapse
Affiliation(s)
- Tianqiao Ke
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dehong Yang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Lijuan Yin
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Hanqin Shen
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Cuifen Luo
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Jingyu Xu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Qingfeng Zhou
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Xiaona Wei
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
- Xiaona Wei
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Feng Chen
| |
Collapse
|
9
|
Chen Z, Sun J, Guan Y, Li M, Lou C, Wu B. Engineered DNase-inactive Cpf1 variants to improve targeting scope for base editing in E. coli. Synth Syst Biotechnol 2021; 6:326-334. [PMID: 34632125 PMCID: PMC8484740 DOI: 10.1016/j.synbio.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
The development of base editing (BE) technology has opened a new avenue for research studies in bacteriology, particularly for bacterial species in which the DNA double-strand breaks (DSBs) introduced by CRISPR/Cas system would lead to cell death. However, a major limitation of BE-mediated gene editing is the restricted editable sites in the target bacterial genome due to highly diverse genomic compositions, such as GC content. Herein, we developed a broad-spectrum DNase-inactive Cpf1 (dCpf1) variant from Francisella novicida (bsdFnCpf1) through directed evolution. The resulting optimized mutant showed a substantially expanded targeting range, including previously non-canonical protospacer-adjacent motifs (PAMs), especially the GC-rich PAMs. Cytidine deaminase APOBEC1 and uracil DNA glycosylase inhibitor (UGI) were fused with bsdFnCpf1 to achieve specific C to T mutations at multiple target sites with canonical or non-canonical PAMs in the E. coli genome without compromising cell growth. We anticipate that bsdFnCpf1 could be applied for multiplex gene regulation and BE in species that have been reported to be suitable for Cpf1.
Collapse
Affiliation(s)
- Zehua Chen
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Jinyuan Sun
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Ying Guan
- Tsinghua University, Beijing, 100084, China
| | - Ming Li
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunbo Lou
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological & Metabolic Engineering and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Shousha A, Awad A, Younis G. Molecular Characterization, Virulence and Antimicrobial Susceptibility Testing of Riemerella anatipestifer Isolated from Ducklings. Biocontrol Sci 2021; 26:181-186. [PMID: 34556621 DOI: 10.4265/bio.26.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This pilot study aimed to characterize Riemerella anatipestifer from ducklings, testing their susceptibility to antimicrobial agents and to detect their virulence markers. Seven R. anatipestifer isolates with 11.67% infection rate were identified out of sixty freshly dead ducklings and confirmed by PCR assay targeting gyrB gene. The gyrB gene sequences of R. anatipestifer isolates were 100% identical to each other and also showed 100% sequence similarity to the published gyrB genes. Four virulence genes namely ompA, prtC, hagA, and sspA were identified in all isolates except sspA was detected in 5 isolates. The antibiogram revealed higher sensitive to imipenem, amikacin, and rifampin, while, a remarkably high resistance was displayed against ampicillin, penicillin, cefipime, trimethoprim/sulfamethoxazole, gentamicin, ceftazidime, streptomycin and cefoperazone. Proper and rapid identification of R. anatipestifer with detection of their antimicrobial susceptibility and its virulence potential is essential for understanding the epidemiology of R. anatipestifer and to apply the effective control strategies.
Collapse
Affiliation(s)
- Amany Shousha
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Mansoura University
| | - Amal Awad
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Mansoura University
| | - Gamal Younis
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Mansoura University
| |
Collapse
|
11
|
Li D, Wang X, Xu X, Gu J, Yang Y, Liu T, Wang S, Chen S, Li J. Duck Complement Factor H Binds to Outer Membrane Protein Omp24 of Riemerella anatipestifer. Avian Dis 2021; 65:261-268. [PMID: 34412457 DOI: 10.1637/0005-2086-65.2.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
The resistance to serum complement-mediated killing is a vital virulence property of microbial pathogens. Complement factor H (FH) is a key negative regulator of the complement alternative pathway (AP) that prevents formation and accelerates the decay of AP C3 convertase and acts as a cofactor in the inactivation of C3b. Pathogens can recruit host FH through their surface proteins to escape the clearance of the complement system. Riemerella anatipestifer could also evade the complement system attack to achieve host infection, but the mechanism is still unclear. In this study, the R. anatipestifer proteins that could interact with FH in host serum were screened and analyzed, and the functions were determined. Affinity chromatography with a Ni-nitrilotriacetic acid Sefinose column and mass spectrometry identified three outer membrane proteins (Omp) of R. anatipestifer, Omp54, Omp53, and Omp24, as potential FH-binding proteins. We then successfully conducted the prokaryotic expression and polyclonal antibody preparation of three candidate proteins. Indirect immunofluorescence assay showed that three candidate proteins were all present in R. anatipestifer. The affinity blotting assay, anti-serum-inhibiting assay, and serum bactericidal assay presented evidence that Omp24 could bind FH. Moreover, FH bound to Omp24 was associated with resistance to the alternative pathway and functional for R. anatipestifer survival in the normal duck serum. These results suggested that R. anatipestifer Omp24 was a FH-binding protein and the interaction with FH blocked the alternative pathway. Recruitment of complement regulatory proteins may facilitate better R. anatipestifer resistance to this vital line of host defense.
Collapse
Affiliation(s)
- Delong Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| | - Xiangli Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Xingsheng Xu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Jiulong Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Yunchuan Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Ting Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Siyuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Sihuai Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| | - Jixiang Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China, .,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| |
Collapse
|
12
|
XRE-Type Regulator BioX Acts as a Negative Transcriptional Factor of Biotin Metabolism in Riemerella anatipestifer. J Bacteriol 2021; 203:e0018121. [PMID: 33972354 DOI: 10.1128/jb.00181-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotin is essential for the growth and pathogenicity of microorganisms. Damage to biotin biosynthesis results in impaired bacterial growth and decreased virulence in vivo. However, the mechanisms of biotin biosynthesis in Riemerella anatipestifer remain unclear. In this study, two R. anatipestifer genes associated with biotin biosynthesis were identified. AS87_RS05840 encoded a BirA protein lacking the N-terminal winged helix-turn-helix DNA binding domain, identifying it as a group I biotin protein ligase, and AS87_RS09325 encoded a BioX protein, which was in the helix-turn-helix xenobiotic response element family of transcription factors. Electrophoretic mobility shift assays demonstrated that BioX bound to the promoter region of bioF. In addition, the R. anatipestifer genes bioF (encoding 7-keto-8-aminopelargonic acid synthase), bioD (encoding dethiobiotin synthase), and bioA (encoding 7,8-diaminopelargonic acid synthase) were in an operon and were regulated by BioX. Quantitative reverse transcription-PCR showed that transcription of the bioFDA operon increased in the mutant Yb2ΔbioX in the presence of excessive biotin, compared with that in the wild-type strain Yb2, suggesting that BioX acted as a repressor of biotin biosynthesis. Streptavidin blot analysis showed that BirA caused biotinylation of BioX, indicating that biotinylated BioX was involved in metabolic pathways. Moreover, as determined by the median lethal dose, the virulence of Yb2ΔbioX was attenuated 500-fold compared with that of Yb2. To summarize, the genes birA and bioX were identified in R. anatipestifer, and BioX was found to act as a repressor of the bioFDA operon involved in the biotin biosynthesis pathway and identified as a bacterial virulence factor. IMPORTANCE Riemerella anatipestifer is a causative agent of diseases in ducks, geese, turkeys, and various other domestic and wild birds. Our study reveals that biotin synthesis of R. anatipestifer is regulated by the BioX through binding to the promoter region of the bioF gene to inhibit transcription of the bioFDA operon. Moreover, bioX is required for R. anatipestifer pathogenicity, suggesting that BioX is a potential target for treatment of the pathogen. R. anatipestifer BioX has thus been identified as a novel negative regulator involved in biotin metabolism and associated with bacterial virulence in this study.
Collapse
|
13
|
A Riemerella anatipestifer Metallophosphoesterase That Displays Phosphatase Activity and Is Associated with Virulence. Appl Environ Microbiol 2021; 87:AEM.00086-21. [PMID: 33741629 DOI: 10.1128/aem.00086-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that bacterial virulence and secretion proteins of the type IX secretion system (T9SS) mutant strains Yb2ΔgldK and Yb2ΔgldM were significantly reduced, in comparison to those of wild-type strain Yb2. In this study, the T9SS secretion protein AS87_RS00980, which is absent from the secretion proteins of Yb2ΔgldK and Yb2ΔgldM, was investigated by construction of gene mutation and complementation strains. The virulence assessment showed >1,000-fold attenuated virulence and significantly reduced bacterial loads in the blood of ducks infected with Yb2Δ00980, the AS87_RS00980 gene deletion mutant strain. Bacterial virulence was recovered in complementation strain cYb2Δ00980 Further study indicated that the T9SS secretion protein AS87_RS00980 is a metallophosphoesterase (MPPE), which displayed phosphatase activity and was cytomembrane localized. Moreover, the optimal reactive pH and temperature were determined to be 7.0 and 60°C, respectively, and the Km and V max were determined to be 3.53 mM and 198.1 U/mg. The rMPPE activity was activated by Zn2+ and Cu2+ but inhibited by Fe3+, Fe2+, and EDTA. There are five conserved sites, namely, N267, H268 H351, H389, and H391, in the metallophosphatase domain. Mutant proteins Y267-rMPPE and Y268-rMPPE retained 29.30% and 19.81% relative activity, respectively, and mutant proteins Y351-rMPPE, Y389-rMPPE, and Y391-rMPPE lost almost all MPPE activity. Taken together, these results indicate that the R. anatipestifer AS87_RS00980 gene encodes an MPPE that is a secretion protein of T9SS that plays an important role in bacterial virulence.IMPORTANCE Riemerella anatipestifer T9SS was recently discovered to be associated with bacterial gliding motility and secretion of virulence factors. Several T9SS genes have been identified, but no effector has been reported in R. anatipestifer to date. In this study, we identified the T9SS secretion protein AS87_RS00980 as an MPPE that displays phosphatase activity and is associated with bacterial virulence. The enzymatic activity of the rMPPE was determined, and the Km and V max were 3.53 mM and 198.1 U/mg, respectively. Five conserved sites were also identified. The AS87_RS00980 gene deletion mutant strain was attenuated >1,000-fold, indicating that MPPE is an important virulence factor. In summary, we identified that the R. anatipestifer AS87_RS00980 gene encodes an important T9SS effector, MPPE, which plays an important role in bacterial virulence.
Collapse
|
14
|
Fernandez-Colorado CP, Cammayo PLT, Flores RA, Nguyen BT, Kim WH, Kim S, Lillehoj HS, Min W. Anti-inflammatory activity of diindolylmethane alleviates Riemerella anatipestifer infection in ducks. PLoS One 2020; 15:e0242198. [PMID: 33175869 PMCID: PMC7657562 DOI: 10.1371/journal.pone.0242198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
3,3’-Diindolylmethane (DIM) is found in cruciferous vegetables and is used to treat various inflammatory diseases because of its potential anti-inflammatory effects. To investigate effects of DIM in Riemerella anatipestifer-infected ducks which induce upregulation of inflammatory cytokines, ducks were treated orally with DIM at dose of 200 mg/kg/day and infected the following day with R. anatipestifer. Infected and DIM-treated ducks exhibited 14% increased survival rate and significantly decreased bacterial burden compared to infected untreated ducks. Next, the effect on the expression level of inflammatory cytokines (interleukin [IL]-17A, IL-17F, IL-6, IL-1β) of both in vitro and in vivo DIM-treated groups was monitored by quantitative reverse-transcription PCR (qRT-PCR). Generally, the expression levels of the cytokines were significantly reduced in DIM-treated splenic lymphocytes stimulated with killed R. anatipestifer compared to stimulated untreated splenic lymphocytes. Similarly, the expression levels of the cytokines were significantly reduced in the spleens and livers of DIM-treated R. anatipestifer–infected ducks compared to infected untreated ducks. This study demonstrated the ameliorative effects of DIM in ducks infected with R. anatipestifer. Thus, DIM can potentially be used to prevent and/or treat R. anatipestifer infection via inhibition of inflammatory cytokine expression.
Collapse
Affiliation(s)
- Cherry P. Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna, Philippines
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Paula Leona T. Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo H. Kim
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Tao M, Wang J, Li K, Xue Y, Xu X, Du X, He X, Tian X, Zou Z, Hu Z, Islam N, Hu Q. Development of signature-tagged mutagenesis in Riemerella anatipestifer to identify genes essential for survival and pathogenesis. Vet Microbiol 2020; 250:108857. [PMID: 32998086 DOI: 10.1016/j.vetmic.2020.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/13/2020] [Indexed: 11/30/2022]
Abstract
Riemerella anatipestifer causes epizootic infectious disease in ducks, geese, turkeys and other birds, and serious economic losses especially to the duck industry. However, little is known about the molecular basis of its pathogenesis. In this study, signature-tagged transposon mutagenesis based on Tn4351 was developed in R. anatipestifer to identify genes essential for survival and pathogenesis. Seventeen tagged Tn4351 random mutation libraries of the R. anatipestifer strain WJ4 containing 5100 mutants were screened for survive using a duckling infection model. Twenty mutants that could not be recovered from the infected ducklings, were identified, and 17 mutated genes were identified by inverse PCR or genome-walking PCR. Of these genes, FIP52_03215, FIP52_04350 and FIP52_09345, were inserted into two mutant strains, and FIP52_03215 and FIP52_03175 were found exclusively on the chromosome of serotype 1 R. anatipestifer strains. Twelve out of 17 genes encoding for proteins were predicted to be involved in amino acid, nucleotide, coenzyme, or lipid transport and metabolism, one gene was predicted to be involved in signal transduction, one gene was predicted to be involved in DNA replication, recombination and repair, the other three genes had an unknown function. Animal experiments showed that the virulence of mutants 16-284, 7-295, 24-231, 9-232 and 19-214 were significantly attenuated compared to that of the wild-type WJ4. Moreover, the median lethal dose of mutant 16-284 was greater than 1010 CFU, and its virulence to ducklings was partially restored when it was complemented with the shuttle expression plasmid pRES-FIP52_09345. The results in this study will be helpful to further study the molecular mechanisms of the pathogenesis of R. anatipestifer infection.
Collapse
Affiliation(s)
- Minjie Tao
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Jialing Wang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Ke Li
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Yafei Xue
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Xinxin Xu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Xiaoli Du
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Xiaohua He
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Xiangqiang Tian
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Zuocheng Zou
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Zhonghao Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Nazrul Islam
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China.
| |
Collapse
|
16
|
Han W, Chen Z, Niu P, Ren X, Ding C, Yu S. Development of a colloidal gold immunochromatographic strip for rapid detection of Riemerella anatipestifer in ducks. Poult Sci 2020; 99:4741-4749. [PMID: 32988508 PMCID: PMC7598101 DOI: 10.1016/j.psj.2020.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 06/07/2020] [Indexed: 10/28/2022] Open
Abstract
Riemerella anatipestifer is one of the major bacterial pathogens of ducks and causes significant economic losses in poultry agriculture. Usually, methods for detecting R. anatipestifer infection need specialized equipment and highly skilled personnel. In this study, a novel colloidal gold immunochromatographic strip was developed for rapid detection of R. anatipestifer in ducks. The monoclonal antibodies 2D5 and 2A6 against R. anatipestifer were used as colloidal gold-labeled protein and capture protein, respectively, to recognize the bacteria in tryptic soy broth medium culture and in hearts of infected ducks. The goat anti-mouse IgG antibody was labeled on nitrocellulose membrane as a control for C line. The labeling pH was optimized as 10.0, and the concentration of 2D5 labeled to colloidal gold particles was optimized as 18 μg/mL. The strip specifically detected serotypes 1, 2, and 10 R. anatipestifer strains and showed no cross-reaction with Escherichia coli, Salmonella enterica, and Pasteurella multocida strains. The sensitivity of the strip for detecting R. anatipestifer was 1.0 × 106 colony forming unit. The strips remained stable for up to 8 mo at 4°C, and the detection can be completed within 15 min. The strip can detect R. anatipestifer in hearts of the ducks experimentally infected with R. anatipestifer but not infected with E. coli, which were also confirmed with bacterial isolation followed by multiplex polymerase chain reaction. These results suggested that the strips are reliable methods for identification of R. anatipestifer in laboratories and in duck farms.
Collapse
Affiliation(s)
- Wenlong Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Zongchao Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Pengfei Niu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Xiaomei Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China; Jiangsu Agri-animal Husbandry Vocational College, Veterinary Bio-pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
17
|
Evaluation of the protective immunity of Riemerella anatipestifer OmpA. Appl Microbiol Biotechnol 2019; 104:1273-1281. [PMID: 31865436 DOI: 10.1007/s00253-019-10294-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Riemerella anatipestifer is responsible for an economically important disease of commercially raised ducks. No or only few cross-protection was observed between different serotypes of R. anatipestifer strains, and so far no protective antigen in this bacterium has been identified. OmpA is a predominant immunogenic protein of R. anatipestifer, and within the 1467 bp ompA ORF (ompA1467), there is another 1164 bp ORF (ompA1164) with the same C-terminal. In this study, our results showed that the full sequence of ompA1467 from some R. anatipestifer strains with different serotypes shared the same amino acid sequence. Animal experiments showed that the soluble recombinant protein rOmpA1164, but not rOmpA1467, could provide partial protective immunity against challenge. Moreover, there was no significant difference in protective immunity between ducklings immunized with Th4△ompA bacterin and those immunized with Th4 bacterin. In addition, OmpA1467 was the main existing form of OmpA in R. anatipestifer cells by gel electrophoresis and western blot analyses. The results suggested that OmpA1467 was not a protective antigen of R. anatipestifer, and antibodies against proteins other than OmpA play a critical role in the process of anti-R. anatipestifer infection.
Collapse
|
18
|
Evaluation of Long-term Antibody Response and Cross-serotype Reaction in Ducks Immunised with Recombinant Riemerella Anatipestifer Outer Membrane Protein A and CpG ODN. J Vet Res 2019; 63:543-548. [PMID: 31934665 PMCID: PMC6950437 DOI: 10.2478/jvetres-2019-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022] Open
Abstract
Introduction Riemerella anatipestifer (RA) infections can lead to high mortality in ducklings. Inactivated vaccines against RA are commercially available, but they fail to provide cross-protection against various serotypes. We have previously demonstrated that a subunit vaccine containing recombinant outer membrane protein A (rOmpA) antigen of serotype 2 formulated with CpG oligodeoxynucleotides (ODN) as the adjuvant was able to stimulate both humoral and cellular immunities. Material and Methods In the present study, thirty healthy 7-day-old Pekin ducks were randomly assigned to three equal treatment groups: rOmpA-vaccinated, rOmpA + CpG-vaccinated, and control. Vaccine was injected intramuscularly and a booster dose of the same vaccine was given two weeks after primary immunisation. The long-term antibody response and cross-serotype reaction of this vaccine were evaluated in ducks. Results Compared to ducks immunised with rOmpA alone, ducks immunised with rOmpA + CpG ODN had significantly (p < 0.05) increased serum antibody titre from two weeks until nine months after primary immunisation. In addition, expression of cytokines including interferon (IFN)-α, IFN-γ, interleukin (IL)-6, and IL-12 was significantly (p < 0.05) enhanced in PBMC of ducks immunised with rOmpA + CpG ODN two weeks after primary immunisation. Antibodies from ducks immunised with the rOmpA + CpG ODN vaccine could also detect RA serotypes 1 and 6 in Western blot analysis. Conclusion Combination of rOmpA and CpG ODN could be a feasible strategy for developing a subunit RA vaccine with long term and broader-ranging protection.
Collapse
|
19
|
Wang Y, Yin X, Zhou Z, Hu S, Li S, Liu M, Wang X, Xiao Y, Shi D, Bi D, Li Z. Cas9 regulated gene expression and pathogenicity in Riemerella anatipestifer. Microb Pathog 2019; 136:103706. [PMID: 31491547 DOI: 10.1016/j.micpath.2019.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Riemerellosis, a Riemerella anatipestifer infection, can cause meningitis, pericarditis, parahepatitis, and airsacculitis in ducks, leading to serious economic losses in the duck meat industry. However, the molecular mechanism of the pathogenesis and virulence factors of this infection are poorly understood. In the present study, we created a mutant strain RA-YMΔCas9 using trans-conjugation. Bacterial virulence tests indicated that the median lethal dose (LD50) of RA-YMΔCas9 was 5.01 × 107 CFU, significantly lower than that of the RA-YM strain, which was 1.58 × 105 CFU. The distribution and blood bacterial load from the infection groups showed no significant difference in the brain between the RA-YMΔCas9 mutant and the wild-type RA-YM strains, however, the number of mutant strains were significantly reduced in the liver, heart, and blood. Animal immunization experiments demonstrated that the intranasal administration of RA-YMΔCas9 in ducklings provided 80% protection after challenge with the wild-type strain, showing potential use as a live mucosal vaccine. RNAseq analysis indicated that Cas9 protein played a regulatory role in gene expression. This study is the first to report on the involvement of Cas9 in the regulation and pathogenesis of R. anatipestifer, and provides a theoretical basis for the development of relevant genetic engineering vaccines.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Xuehuan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Mei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China.
| |
Collapse
|
20
|
Yang S, Dong W, Li G, Zhao Z, Song M, Huang Z, Fu J, Jia F, Lin S. A recombinant vaccine of Riemerella anatipestifer OmpA fused with duck IgY Fc and Schisandra chinensis polysaccharide adjuvant enhance protective immune response. Microb Pathog 2019; 136:103707. [PMID: 31491549 DOI: 10.1016/j.micpath.2019.103707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
Abstract
Riemerella anatipestifer (R. anatipestifer) causes septicemia and infectious serositis in domestic ducks, leading to high mortality and great economic losses worldwide. Vaccination is currently considered the best strategy to prevent R. anatipestifer infection in ducklings. In this study, we fused the duck IgY Fc gene to the outer membrane protein A (ompA) of R. anatipestifer. The eukaryotic expression plasmid carrying the fusion gene was transformed into Pichia pastoris (P. pastoris) to express the recombinant ompA and ompA-Fc proteins. Then, the effects of fused Fc on the vitality and antigen processing efficiency of duck peritoneal macrophages (PMø) were evaluated in vitro, whereas their immunogenicity was evaluated in vivo. Furthermore, Schisandra chinensis polysaccharide (SCP) was used to evaluate its immune-conditioning effects on the activation of PMø. SCP was also used as adjuvant to investigate immunomodulation on immunoresponses induced by the fused ompA-Fc in ducklings. The conventional Freund's incomplete adjuvant served as the control of SCP. Notably, ompA-Fc promoted phagocytosis of PMø and significantly increased serum antibody titers, CD4+ and CD8+ T-lymphocyte counts, lymphocyte transformation rate, and serum levels of IL-2 and IL-4. In addition, ducklings injected with the ompA-Fc vaccine exhibited considerably greater resistance to the R. anatipestifer challenge than those that received vaccines based on standalone ompA. Of note, SCP was demonstrated to boost the secretion of nitric oxide (NO), IL-1β, IL-6, TNF-α, and IFN-β by duck macrophages. In addition, the supplementation of SCP adjuvant to the ompA-Fc vaccines led to the further enhancement of immune response and vaccine protection. The dose of 200 μg/mL showed the most pronounced effects. This study provided valuable insights into protective strategies against R. anatipestifer infection.
Collapse
Affiliation(s)
- Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| | - Wenwen Dong
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| | - Jian Fu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| | - Fengjuan Jia
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, 250100, Shandong, PR China.
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, PR China.
| |
Collapse
|
21
|
Tang T, Wu Y, Lin H, Li Y, Zuo H, Gao Q, Wang C, Pei X. The drug tolerant persisters of Riemerella anatipestifer can be eradicated by a combination of two or three antibiotics. BMC Microbiol 2018; 18:137. [PMID: 30340538 PMCID: PMC6194556 DOI: 10.1186/s12866-018-1303-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/04/2018] [Indexed: 11/29/2022] Open
Abstract
Background Riemerella anatipestifer (RA), the causative agent of duck infectious serositis, leads to high mortality in duck flocks and great economic losses in duck industry. Previous studies on RA are largely focused on its detection, virulence factors, serology, epidemiology as well as antibiotic resistance. Neither drug tolerant persisters nor the persister level under the treatment of antibiotics has been revealed. The persisters are non-growing or dormant cells within an isogenic bacterial population; they play important roles in recurrent infection and formation of drug resistant mutants. The aim of this study is to detect the drug tolerant persisters from the exponentially grown population of RA reference strain (RA 11845) or RA clinical isolate (RA TQ3), and address whether a single antibiotic or a combination of two or three antimicrobials can eradicate the persisters at respective maximum serum/plasma concentration (Cmax). Result With the concentration of a test antibiotic increased, a small fraction of cells in the exponentially grown culture of RA reference strain (RA 11845) or RA clinical isolate (RA TQ3) always survived, irrespective of treatment time, indicating the presence of drug tolerant presisters. A single antibiotic cannot eradicate the persisters of both RA strains at respective Cmax, except that the Cmax of ceftiofur wiped out the population of the reference strain (RA 11845). Besides, the clinical isolate RA TQ3 presented a higher tolerance to ceftiofur in comparison to that of the reference strain (RA 11845). Combination of any two or three antimicrobials eliminated the drug tolerant persisters of RA TQ3 completely at respective Cmax. Conclusion A sub-community of drug tolerant persisters was present in RA population. Persisters of RA TQ3 are single drug tolerant and not multidrug tolerant persisters. Electronic supplementary material The online version of this article (10.1186/s12866-018-1303-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Yanxia Wu
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Hua Lin
- Sichuan Entry-Exit Inspection and Quarantine Bureau, Chengdu, Sichuan, People's Republic of China
| | - Yongyu Li
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Haojiang Zuo
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China.
| | - Xiaofang Pei
- Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, 16#, Section 3, South Renmin Road, Chengdu, Sichuan, 610031, People's Republic of China.
| |
Collapse
|
22
|
Afrin F, Fernandez CP, Flores RA, Kim WH, Jeong J, Chang HH, Kim S, Lillehoj HS, Min W. Downregulation of common cytokine receptor γ chain inhibits inflammatory responses in macrophages stimulated with Riemerella anatipestifer. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:225-234. [PMID: 29241952 DOI: 10.1016/j.dci.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/09/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Th17-cell-mediated inflammation is affected by the soluble form of common cytokine receptor γ chain (γc). We previously suggested that inflammatory cytokines including interleukin (IL)-17A are associated with Riemerella anatipestifer infection, which a harmful bacterial pathogen in ducks. Here, the expression profiles of membrane-associated γc (duγc-a) and soluble γc (duγc-b) in R. anatipestifer-stimulated splenic lymphocytes and macrophages, and in the spleens and livers of R. anatipestifer-infected ducks, were investigated. In vitro and in vivo results indicated that the expression levels of both forms of γc were increased, showing that marked increases were detected in the expression of the duγc-b form rather than the duγc-a form. Treatment with γc-specific siRNA downregulated mRNA expression of Th17-related cytokines, including IL-17A and IL-17F, in duck splenic macrophages stimulated with R. anatipestifer, whereas the expressions of interferon (IFN)-γ and IL-2 were enhanced. The results showed that the upregulation of γc, especially the duγc-b form, was associated with expression of Th17-related cytokines during R. anatipestifer infection.
Collapse
Affiliation(s)
- Fahmida Afrin
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Cherry P Fernandez
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Rochelle A Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Woo H Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea; Department of Animal Science, College of Agriculture, Gyeongsang National University, Jinju 52828, South Korea
| | - Jipseol Jeong
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Hong H Chang
- Department of Animal Science, College of Agriculture, Gyeongsang National University, Jinju 52828, South Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
23
|
Phonvisay M, Liou JJ, Cheng LT, Chen YP, Wu HC, Liu CH, Lee JW, Chu CY. SURVEY OF ARIEMERELLA ANATIPESTIFEROUTBREAK IN SOUTHERN TAIWAN DUCK FARMS. ACTA ACUST UNITED AC 2017. [DOI: 10.1142/s1682648516500013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A septicemic outbreak in southern Taiwan duck farms in 2014 resulted in high mortality of ducklings. Samples from oral or cloacal sites of affected Muscovy and Pekin ducks were collected and the identity of the field isolates was confirmed using Riemerella anatipestifer (RA) 16S rRNA and outer membrane protein A (OmpA)-specific primers in polymerase chain reactions (PCR), with 15 isolates found positive for both 16S rRNA and OmpA. Detection of both the 16S rRNA and OmpA genes could be a rapid PCR test for RA. Serotyping of the isolates using gel-diffusion precipitin test identified serotypes 1, 4, 6, 17, and 19 while a number of isolates were unidentifiable. Sequence analysis of the OmpA gene found high identity (99.0–99.7%) among isolates in Taiwan. These results indicate that RA remains as a significant cause of duck septicemic disease in southern Taiwan.
Collapse
Affiliation(s)
- May Phonvisay
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Jhong-Jie Liou
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yen-Ping Chen
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, Taipei 25158, Taiwan
| | - Hsing-Chieh Wu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chia-Hui Liu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
24
|
Identifying the Genes Responsible for Iron-Limited Condition in Riemerella anatipestifer CH-1 through RNA-Seq-Based Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8682057. [PMID: 28540303 PMCID: PMC5429918 DOI: 10.1155/2017/8682057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
One of the important elements for most bacterial growth is iron, the bioavailability of which is limited in hosts. Riemerella anatipestifer (R. anatipestifer, RA), an important duck pathogen, requires iron to live. However, the genes involved in iron metabolism and the mechanisms of iron transport are largely unknown. Here, we investigated the transcriptomic effects of iron limitation condition on R. anatipestifer CH-1 using the RNA-Seq and RNA-Seq-based analysis. Data analysis revealed genes encoding functions related to iron homeostasis, including a number of putative TonB-dependent receptor systems, a HmuY-like protein-dependent hemin (an iron-containing porphyrin) uptake system, a Feo system, a gene cluster related to starch utilization, and genes encoding hypothetical proteins that were significantly upregulated in response to iron limitation. Compared to the number of upregulated genes, more genes were significantly downregulated in response to iron limitation. The downregulated genes mainly encoded a number of outer membrane receptors, DNA-binding proteins, phage-related proteins, and many hypothetical proteins. This information suggested that RNA-Seq-based analysis in iron-limited medium is an effective and fast method for identifying genes involved in iron uptake in R. anatipestifer CH-1.
Collapse
|
25
|
Fan M, Chen S, Zhang L, Bi J, Peng J, Huang X, Li X, Li H, Zhou Q, Jiang S, Li J. Riemerella anatipestifer extracellular protease S blocks complement activation via the classical and lectin pathways. Avian Pathol 2017; 46:426-433. [PMID: 28277777 DOI: 10.1080/03079457.2017.1301648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Riemerella anatipestifer (RA) is the causative agent of infectious serositis in ducklings and other avian species. It is difficult to control the disease due to its 21 serotypes, poor cross-protection, and bacterial resistance to antimicrobial agents. The complement system is an important component of the innate immune system. However, bacterial pathogens exploit several strategies to evade detection by the complement system. Here, we purified and identified a 59-kDa RA extracellular protease S (EcpS) consisting of a gelatinase. In this study, we aimed to determine how EcpS interferes with complement activation and whether it could block complement-dependent neutrophil function. We found that EcpS potently blocked RA phagocytosis and killing by duck neutrophils. Furthermore, EcpS inhibited the opsonization of bacteria by complement 3b. EcpS specifically blocked complement 3b and complement 4b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. In summary, we show that RA can survive the bactericidal activity of the duck complement system. These results indicate that RA has evolved mechanisms to evade the duck complement system that may increase the efficiency by which this pathogen can gain access and colonize the inner tissues where it may cause severe infections.
Collapse
Affiliation(s)
- Mengnan Fan
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Sihuai Chen
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Ludan Zhang
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Junxuan Bi
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Jiasun Peng
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Xinyan Huang
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Xin Li
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Huan Li
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Qin Zhou
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Sheng Jiang
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| | - Jixiang Li
- a Rongchang Campus, Southwest University , Chongqing , People's Republic of China
| |
Collapse
|
26
|
Sousa SA, Morad M, Feliciano JR, Pita T, Nady S, El-Hennamy RE, Abdel-Rahman M, Cavaco J, Pereira L, Barreto C, Leitão JH. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express 2016; 6:41. [PMID: 27325348 PMCID: PMC4916078 DOI: 10.1186/s13568-016-0212-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.
Collapse
|
27
|
Liu M, Wang M, Zhu D, Wang M, Jia R, Chen S, Sun K, Yang Q, Wu Y, Chen X, Biville F, Cheng A. Investigation of TbfA in Riemerella anatipestifer using plasmid-based methods for gene over-expression and knockdown. Sci Rep 2016; 6:37159. [PMID: 27845444 PMCID: PMC5109031 DOI: 10.1038/srep37159] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023] Open
Abstract
Riemerella anatipestifer is a duck pathogen that has caused serious economic losses to the duck industry worldwide. Despite this, there are few reported studies of the physiological and pathogenic mechanisms of Riemerella anatipestifer infection. In previous study, we have shown that TonB1 and TonB2 were involved in hemin uptake. TonB family protein (TbfA) was not investigated, since knockout of this gene was not successful at that time. Here, we used a plasmid based gene over-expression and knockdown to investigate its function. First, we constructed three Escherichia-Riemerella anatipestifer shuttle vectors containing three different native Riemerella anatipestifer promoters. The shuttle plasmids were introduced into Riemerella anatipestifer ATCC11845 by conjugation at an efficiency of 5 × 10-5 antibiotic-resistant transconjugants per recipient cell. Based on the high-expression shuttle vector pLMF03, a method for gene knockdown was established. Knockdown of TbfA in Riemerella anatipestifer ATCC11845 decreased the organism's growth ability in TSB medium but did not affect its hemin utilization. In contrast, over-expression of TbfA in Riemerella anatipestifer ATCC11845ΔtonB1ΔtonB2. Significantly promoted the organism's growth in TSB medium but significantly inhibited its hemin utilization. Collectively, these findings suggest that TbfA is not involved in hemin utilization by Riemerella anatipestifer.
Collapse
Affiliation(s)
- MaFeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - MengYi Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - DeKang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - MingShu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - RenYong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - KunFeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - XiaoYue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Francis Biville
- Unité des Infections Bactériennes Invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - AnChun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
28
|
Fernandez CP, Kim WH, Diaz JAR, Jeong J, Afrin F, Kim S, Jang HK, Lee BH, Yim D, Lillehoj HS, Min W. Upregulation of duck interleukin-17A during Riemerella anatipestifer infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 63:36-46. [PMID: 27212414 DOI: 10.1016/j.dci.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
Although IL-17 cytokines play critical roles in host defense immunity, dysregulated expression of these cytokines is associated with inflammation and autoimmune diseases. Riemerella anatipestifer is the most important infectious bacterium in the duck industry. Interestingly, not all avian species are equally susceptible to R. anatipestifer infection. This paper reports the first description of mortality rate, bacterial burden, and expression profiles of immune-related genes between ducks and chickens infected with R. anatipestifer. Ducks exhibited increased susceptibility to R. anatipestifer infection compared to chickens, as determined by mortality rate and bacterial burden. Comparative expression analyses of immune-related genes in R. anatipestifer-infected tissues obtained from both species revealed that TLR3, TLR7, IL-2, IL-4, and IFN-γ transcript levels were higher in chickens, whereas TLR4 and IL-17A transcript levels were higher in ducks. Marked increases in expression of IL-17A and IL-6, but not TGF-β, were associated with Th17 cell differentiation in duck splenic lymphocytes, but not in chicken splenic lymphocytes, stimulated with R. anatipestifer. Moreover, upregulation of IL-1β, IL-6, and IL-17A mRNA expressions, but not TGF-β, was confirmed in the liver and spleen of ducks infected with R. anatipestifer, indicating that IL-17A is strongly associated with Riemerella infection in ducks.
Collapse
Affiliation(s)
- Cherry P Fernandez
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Woo H Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Joyce Anne R Diaz
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jipseol Jeong
- Environmental Health Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Fahmida Afrin
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyung-Kwan Jang
- Departments of Infectious Diseases and Avian Diseases, College of Veterinary Medicine & Korea Zoonosis Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Byung-Hyung Lee
- Daesung Microbiological Laboratory, Samdong, Uiwangsi, Gyeonggido, 16103, Republic of Korea
| | - Dongjean Yim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
29
|
The Riemerella anatipestifer AS87_01735 Gene Encodes Nicotinamidase PncA, an Important Virulence Factor. Appl Environ Microbiol 2016; 82:5815-23. [PMID: 27451449 DOI: 10.1128/aem.01829-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Riemerella anatipestifer is a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of the AS87_01735 gene significantly decreased the bacterial virulence of R. anatipestifer strain Yb2 (mutant RA625). The AS87_01735 gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, the AS87_01735 gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated that R. anatipestifer PncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncA in this study) showed a similar growth rate but decreased NAD(+) quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that the R. anatipestifer AS87_01735 gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate. IMPORTANCE Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. The pncA gene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, we identified and characterized the pncA-homologous gene AS87_01735 in R. anatipestifer strain Yb2. R. anatipestifer PncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of the pncA mutant Yb2ΔpncA led to a decrease in the NAD(+) content, which was associated with decreased capacity for invasion and attenuated virulence in ducks. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Altogether, these results suggest that PncA contributes to the virulence of R. anatipestifer and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate.
Collapse
|
30
|
Chen X, Zhao J, Bao L, Wang L, Zhang Y. The investigation of different pollutants and operation processes on sludge toxicity in sequencing batch bioreactors. ENVIRONMENTAL TECHNOLOGY 2016; 37:2048-2057. [PMID: 26914341 DOI: 10.1080/09593330.2016.1140813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The influence of different target pollutants and operation modes in sequencing batch bioreactors (SBRs) on sludge toxicity was compared in this study. Sludge toxicity was characterized by the inhibiting luminosity through using luminescent bacterium Photobacterium phosphoreum (P. phosphoreum) during either gradual acclimation or impaction processes with synthetic wastewater containing high-strength bisphenol A (BPA) or N, N-dimethylformamide (DMF). When the activated sludge was first acclimated with either 120 mg/L DMF or 20 mg/L BPA, and then respectively increased to 200 mg/L DMF and 40 mg/L BPA it was defined as gradual acclimation process, whereas when the activated sludge was, respectively, injected with 200 mg/L DMF and 40 mg/L BPA directly it was defined as impaction process. Results showed that the toxicity of the impacted sludge was greater than that of the gradual acclimated sludge, especially in the initial stage before 10 d. Activated sludge treating BPA synthetic wastewater exhibited higher toxicity due to the more inhibition of BPA to sludge activity compared to that of DMF. The proteomics analysis indicated that the stress responses of activated sludge to DMF and BPA stimulation were both significant. In turn, the secretions from two kinds of sludge under stress conditions contributed to sludge toxicity.
Collapse
Affiliation(s)
- Xiurong Chen
- a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Jianguo Zhao
- a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
- b Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Key Laboratory for Environmental Pollution Control, Henan Normal University , Xinxiang 453007 , People's Republic of China
| | - Linlin Bao
- b Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Key Laboratory for Environmental Pollution Control, Henan Normal University , Xinxiang 453007 , People's Republic of China
| | - Lu Wang
- a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Yuying Zhang
- a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
31
|
Liao H, Liu M, Cheng X, Zhu D, Wang M, Jia R, Chen S, Sun K, Yang Q, Biville F, Cheng A. The Detection of Hemin-Binding Proteins in Riemerella anatipestifer CH-1. Curr Microbiol 2015; 72:152-158. [PMID: 26542531 DOI: 10.1007/s00284-015-0932-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
Riemerella anatipestifer (R. anatipestifer) is among the most prevalent duck pathogens, causing acute or chronic septicemia characterized by serositis. Riemerella anatipestifer can be grown on blood-enriched media, in vitro, which provides a hemin source essential for the sustainment of R. anatipestifer and activation of hemin-uptake systems. However, the genes associated with hemin uptake cannot be identified exclusively through genome sequence analysis. Here, we show that R. anatipestifer encodes outer-membrane hemin-binding proteins. Hemin-binding proteins were identified in the cytoplasm with apparent molecular mass of ~45/37/33/23/20/13 kDa, and outer membrane with apparent molecular mass of ~90/70/60/50/15 kDa by batch affinity chromatography and hemin-blotting assays. Our results indicate that these proteins are involved in hemin acquisition. Finally, hemin-binding assay further showed that R. anatipestifer can bind hemin and this capability is increased in iron limited medium, indicating the hemin-uptake system of R. anatipestifer was regulated by iron.
Collapse
Affiliation(s)
- Hebin Liao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| | - Xingjun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Francis Biville
- Unité des Infections Bactériennes Invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan, 625014, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
32
|
Gao JY, Ye CL, Zhu LL, Tian ZY, Yang ZB. A homolog of glyceraldehyde-3-phosphate dehydrogenase from Riemerella anatipestifer is an extracellular protein and exhibits biological activity. J Zhejiang Univ Sci B 2015; 15:776-87. [PMID: 25183032 DOI: 10.1631/jzus.b1400023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Riemerella anatipestifer is the causative agent of septicemia anserum exsudativa in ducks. Its pathogenesis and virulence factors are still unclear. The glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an anchorless and multifunctional protein on the surface of several pathogenic microorganisms, is involved in virulence and adhesion. Whether homologs of GAPDH exist, and display similar characteristics in R. anatipestifer (RaGAPDH) has not been determined. In our research, the RaGAPDH activity from various R. anatipestifer isolates was confirmed. Twenty-two gapdh genes from genomic DNA of R. anatipestifer isolates were cloned and sequenced for phylogenetic analysis. The distribution of RaGAPDH in R. anatipestifer CZ2 strain was confirmed by antisera to recombinant RaGAPDH. The ability of purified RaGAPDH to bind host proteins was analyzed by solid-phase ligand-binding assay. Results revealed that all R. anatipestifer isolates showed different levels of GAPDH activity except four strains, which contained a gapdh-like gene. The gapdh of R. anatipestifer, which is located phylogenetically in the same branch as enterohemorrhagic Escherichia coli (EHEC), belonged to class I GAPDH, and encoded a 36.7-kDa protein. All RaGAPDH-encoding gene sequences from field isolates of R. anatipestifer displayed 100% homology. The RaGAPDH localized on the extracellular membrane of several R. anatipestifer strains. Further, it was released into the culture medium, and exhibited GAPDH enzyme activity. We also confirmed the binding of RaGAPDH to plasminogen and fibrinogen. These results demonstrated that GAPDH was present in R. anatipestifer, although not in all strains, and that RaGAPDH might contribute to the microorganism's virulence.
Collapse
Affiliation(s)
- Ji-ye Gao
- Department of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | |
Collapse
|
33
|
Whole-Genome Sequence Analysis and Genome-Wide Virulence Gene Identification of Riemerella anatipestifer Strain Yb2. Appl Environ Microbiol 2015; 81:5093-102. [PMID: 26002892 DOI: 10.1128/aem.00828-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
Riemerella anatipestifer is a well-described pathogen of waterfowl and other avian species that can cause septicemic and exudative diseases. In this study, we sequenced the complete genome of R. anatipestifer strain Yb2 and analyzed it against the published genomic sequences of R. anatipestifer strains DSM15868, RA-GD, RA-CH-1, and RA-CH-2. The Yb2 genome contains one circular chromosome of 2,184,066 bp with a 35.73% GC content and no plasmid. The genome has 2,021 open reading frames that occupy 90.88% of the genome. A comparative genomic analysis revealed that genome organization is highly conserved among R. anatipestifer strains, except for four inversions of a sequence segment in Yb2. A phylogenetic analysis found that the closest neighbor of Yb2 is RA-GD. Furthermore, we constructed a library of 3,175 mutants by random transposon mutagenesis, and 100 mutants exhibiting more than 100-fold-attenuated virulence were obtained by animal screening experiments. Southern blot analysis and genetic characterization of the mutants led to the identification of 49 virulence genes. Of these, 25 encode cytoplasmic proteins, 6 encode cytoplasmic membrane proteins, 4 encode outer membrane proteins, and the subcellular localization of the remaining 14 gene products is unknown. The functional classification of orthologous-group clusters revealed that 16 genes are associated with metabolism, 6 are associated with cellular processing and signaling, and 4 are associated with information storage and processing. The functions of the other 23 genes are poorly characterized or unknown. This genome-wide study identified genes important to the virulence of R. anatipestifer.
Collapse
|
34
|
Luo H, Liu M, Wang L, Zhou W, Wang M, Cheng A, Jia R, Chen S, Sun K, Yang Q, Chen X, Zhu D. Identification of ribosomal RNA methyltransferase gene ermF in Riemerella anatipestifer. Avian Pathol 2015; 44:162-8. [PMID: 25690020 DOI: 10.1080/03079457.2015.1019828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Riemerella anatipestifer is a major bacterial pathogen of waterfowl, globally responsible for avian septicaemic disease. As chemotherapy is the predominant method for the prevention and treatment of R. anatipestifer infection in poultry, the widespread use of antibiotics has favoured the emergence of antibiotic-resistant strains. However, little is known about R. anatipestifer susceptibility to macrolide antibiotics and its resistance mechanism. We report for the first time the identification of a macrolide resistance mechanism in R. anatipestifer that is mediated by the ribosomal RNA methyltransferase ermF. We identified the presence of the ermF gene in 64/206 (31%) R. anatipestifer isolates from different regions in China. An ermF deletion strain was constructed to investigate the function of the ermF gene on the resistance to high levels of macrolides. The ermF mutant strain showed significantly decreased resistance to macrolide and lincosamide, exhibiting 1024-, 1024-, 4- and >2048-fold reduction in the minimum inhibitory concentrations for erythromycin, azithromycin, tylosin and lincomycin, respectively. Furthermore, functional analysis of ermF expression in E. coli XL1-blue showed that the R. anatipestifer ermF gene was functional in E. coli XL1-blue and conferred resistance to high levels of erythromycin (100 µg/ml), supporting the hypothesis that the ermF gene is associated with high-level macrolide resistance. Our work suggests that ribosomal RNA modification mediated by the ermF methyltransferase is the predominant mechanism of resistance to erythromycin in R. anatipestifer isolates.
Collapse
Affiliation(s)
- Hongyan Luo
- a Research Center of Avian Diseases , College of Veterinary Medicine of Sichuan Agricultural University , Sichuan , P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhu BF, Chao M, Yang XF, Zhou D. Multilocus Sequence Typing of the Guangdong Isolates of <i>Riemerella anatipestifer</i> from Ducks in China. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojas.2015.53037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Development of a subunit vaccine containing recombinant Riemerella anatipestifer outer membrane protein A and CpG ODN adjuvant. Vaccine 2014; 33:92-9. [PMID: 25448104 DOI: 10.1016/j.vaccine.2014.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 11/23/2022]
Abstract
Riemerella anatipestifer, a Gram-negative bacillus, causes septicemia that can result in high mortality for ducklings. In this study, we evaluated the immune response and protective efficacy provided by a subunit vaccine containing recombinant outer membrane protein A (rOmpA) and plasmid constructs containing CpG oligodeoxynucleotides (ODN). Results showed that CpG ODN enhanced both humoral and cell-mediated immunity elicited by rOmpA as early as two weeks after primary immunization. When compared to ducks immunized with rOmpA, ducks immunized with rOmpA+CpG ODN showed higher levels (p<0.05) of antibody titer, T cell proliferation, and percentages of CD4(+) and CD8(+) T cell in peripheral blood mononuclear cells (PBMCs). The relative fold inductions of mRNA expression of Th1-type (IFN-γ and IL-12), and Th2-type (IL-6) cytokines in PBMCs isolated from ducks immunized with rOmpA+CpG ODN were significantly higher than those of the rOmpA group. Homologous challenge result showed that the rOmpA+CpG ODN vaccine reduced the pathological score by 90% in comparison with the saline control. In conclusion, our study found that CpG ODN can enhance both humoral and cellular immunity elicited by a rOmpA vaccine. The rOmpA+CpG ODN vaccine can be further developed as a subunit vaccine against R. anatipestifer.
Collapse
|
37
|
Abstract
Capnocytophaga canimorsus, a dog mouth commensal and a member of the Bacteroidetes phylum, causes rare but often fatal septicemia in humans that have been in contact with a dog. Here, we show that C. canimorsus strains isolated from human infections grow readily in heat-inactivated human serum and that this property depends on a typical polysaccharide utilization locus (PUL), namely, PUL3 in strain Cc5. PUL are a hallmark of Bacteroidetes, and they encode various products, including surface protein complexes that capture and process polysaccharides or glycoproteins. The archetype system is the Bacteroides thetaiotaomicron Sus system, devoted to starch utilization. Unexpectedly, PUL3 conferred the capacity to acquire iron from serotransferrin (STF), and this capacity required each of the seven encoded proteins, indicating that a whole Sus-like machinery is acting as an iron capture system (ICS), a new and unexpected function for Sus-like machinery. No siderophore could be detected in the culture supernatant of C. canimorsus, suggesting that the Sus-like machinery captures iron directly from transferrin, but this could not be formally demonstrated. The seven genes of the ICS were found in the genomes of several opportunistic pathogens from the Capnocytophaga and Prevotella genera, in different isolates of the severe poultry pathogen Riemerella anatipestifer, and in strains of Bacteroides fragilis and Odoribacter splanchnicus isolated from human infections. Thus, this study describes a new type of ICS that evolved in Bacteroidetes from a polysaccharide utilization system and most likely represents an important virulence factor in this group.
Collapse
|
38
|
Wang X, Liu W, Zhu D, Yang L, Liu M, Yin S, Wang M, Jia R, Chen S, Sun K, Cheng A, Chen X. Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genomics 2014; 15:479. [PMID: 24935762 PMCID: PMC4103989 DOI: 10.1186/1471-2164-15-479] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Riemerella anatipestifer is one of the most important pathogens of ducks. However, the molecular mechanisms of R. anatipestifer infection are poorly understood. In particular, the lack of genomic information from a variety of R. anatipestifer strains has proved severely limiting. RESULTS In this study, we present the complete genomes of two R. anatipestifer strains, RA-CH-1 (2,309,519 bp, Genbank accession CP003787) and RA-CH-2 (2,166,321 bp, Genbank accession CP004020). Both strains are from isolates taken from two different sick ducks in the SiChuang province of China. A comparative genomics approach was used to identify similarities and key differences between RA-CH-1 and RA-CH-2 and the previously sequenced strain RA-GD, a clinical isolate from GuangDong, China, and ATCC11845. CONCLUSION The genomes of RA-CH-2 and RA-GD were extremely similar, while RA-CH-1 was significantly different than ATCC11845. RA-CH-1 is 140,000 bp larger than the three other strains and has 16 unique gene families. Evolutionary analysis shows that RA-CH-1 and RA-CH-2 are closed and in a branch with ATCC11845, while RA-GD is located in another branch. Additionally, the detection of several iron/heme-transport related proteins and motility mechanisms will be useful in elucidating factors important in pathogenicity. This information will allow a better understanding of the phenotype of different R. anatipestifer strains and molecular mechanisms of infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - MingShu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P,R, China.
| | | | | | | | | | | |
Collapse
|
39
|
The siderophore-interacting protein is involved in iron acquisition and virulence of Riemerella anatipestifer strain CH3. Vet Microbiol 2013; 168:395-402. [PMID: 24345412 DOI: 10.1016/j.vetmic.2013.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/09/2013] [Accepted: 11/15/2013] [Indexed: 11/23/2022]
Abstract
Riemerella anatipestifer causes epizootic infectious disease in poultry and serious economic losses especially to the duck industry. However, little is known regarding the molecular basis of its pathogenesis. The ability to acquire iron under low-iron conditions is related to the virulence of a variety of bacterial pathogens. In this study, a sip (Riean_1281) deletion mutant CH3Δsip was constructed and characterized for iron-limited growth, biofilm formation, and pathogenicity to ducklings. Results showed that siderophore-interacting protein (SIP) was involved in iron utilization and the sip deletion significantly reduced biofilm formation and adherence to and invasion of Vero cells. In addition, the sip gene was absent in 1 of 24 (4.17%) virulent strains and 2 of 3 (66.7%) avirulent strains of R. anatipestifer, and the sip gene from six R. anatipestifer strains, which belong to serotypes 1, 2, and 10, respectively, shared 100% amino acid identities to those of R. anatipestifer strains DSM15868 and RA-GD. These results suggested that siderophore-mediated iron acquisition may be an important iron-uptake pathway in R. anatipestifer. Animal experiments indicated that the median lethal dose of the CH3Δsip mutant in ducklings was about 35-fold higher than that of the wild-type CH3 strain. Thus, our results demonstrated that R. anatipestifer SIP was involved in iron acquisition and necessary for its optimal virulence.
Collapse
|
40
|
Zhou Z, Li X, Xiao Y, Wang X, Tian W, Peng X, Bi D, Sun M, Li Z. Gene expression responses to Riemerella anatipestifer infection in the liver of ducks. Avian Pathol 2013; 42:129-36. [PMID: 23581439 DOI: 10.1080/03079457.2013.770127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Riemerella anatipestifer is one of the most economically important pathogens of farm ducks worldwide. The molecular mechanisms that underlie its pathogenesis, particularly the host response to R. anatipestifer infection, are poorly understood. The differentially expressed gene profile of duck livers at 24 h following R. anatipestifer infection was therefore investigated using suppression subtractive hybridizaton analysis. A total of 45 differentially expressed genes were identified, which primarily included genes for proteins involved in acute-phase response, inflammatory response, immune response, wound healing and iron homeostasis. For the expression level of 20 genes from those 45 analysed by quantitative reverse transcriptase-polymerase chain reaction at 8, 24 and 48 h post infection, significant differences were observed among the three time points of measurements. The result from this study revealed a gene expression profile of duck liver during R. anatipestifer infection, and those genes with a role in the immune response and wound healing deserving further investigation to elucidate their respective roles during infection.
Collapse
Affiliation(s)
- Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Construction of a shuttle vector for use in Riemerella anatipestifer. J Microbiol Methods 2013; 95:262-7. [PMID: 24064367 DOI: 10.1016/j.mimet.2013.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 11/20/2022]
Abstract
Riemerella anatipestifer causes epizootic infectious disease in poultry and serious economic losses, especially to the duck industry. Four complete genome sequences of R. anatipestifer strains are now available. However, functional studies have been limited by the lack of an effective shuttle vector. In this study, we constructed a shuttle vector, pRES, which was able to transfer plasmid DNA between Escherichia coli and R. anatipestifer strains. The vector contains the putative replication origin from R. anatipestifer plasmid pRA7026 and a ColE1 ori for replication in R. anatipestifer and E. coli respectively. In addition, it contains oriT for transferring the vector into R. anatipestifer by conjugation, and the putative promoter of the streptothricin resistance gene of plasmid pRA0726 for heterologous gene expression in R. anatipestifer. The vector pRES will be useful in the investigation of gene function in R. anatipestifer.
Collapse
|
42
|
Lu F, Miao S, Tu J, Ni X, Xing L, Yu H, Pan L, Hu Q. The role of TonB-dependent receptor TbdR1 in Riemerella anatipestifer in iron acquisition and virulence. Vet Microbiol 2013; 167:713-8. [PMID: 24075356 DOI: 10.1016/j.vetmic.2013.08.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Riemerella anatipestifer is an important duck pathogen and causes serious economic losses to the duck industry worldwide. To date, four full R. anatipestifer genomic sequences have been submitted to the GenBank database and 31 TonB-dependent outer membrane receptors, which may play critical roles in host-bacteria interactions, were predicted for R. anatipestifer strain GSM15868. In our previous study, we reported that the TonB-dependent receptor TbdR1 was a cross immunogenic antigen among R. anatipestifer serotypes 1, 2, and 10. However, the biological functions of TbdR1 in R. anatipestifer remain unclear. In the present study, a tbdR1 (Riean_1607) deletion mutant CH3ΔtbdR1 of R. anatipestifer strain CH3 was constructed and characterized for iron-limited growth, biofilm formation, and pathogenicity to ducklings. Our results showed that TbdR1 was involved in hemin iron acquisition and the tbdR1 deletion significantly reduced biofilm formation and adhesion to and invasion of Vero cells. Animal experiments indicated that the median lethal dose of the CH3ΔtbdR1 mutant in ducklings was about 45-fold higher than that of the wild-type CH3 strain. Additional analysis indicated that bacterial loads in blood, liver, and brain tissues in CH3ΔtbdR1-infected ducklings were decreased significantly compared to those in wild-type CH3-infected ducklings. Thus, our results demonstrated that TbdR1 was involved in hemin iron acquisition and necessary for optimal bacterial virulence.
Collapse
Affiliation(s)
- Fengying Lu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Confer AW, Ayalew S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Vet Microbiol 2013; 163:207-22. [DOI: 10.1016/j.vetmic.2012.08.019] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
44
|
Development and evaluation of a trivalent Riemerella anatipestifer-inactivated vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:691-7. [PMID: 23467777 DOI: 10.1128/cvi.00768-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Riemerella anatipestifer infections cause major economic losses in the duck industry. In this study, a trivalent inactivated vaccine of R. anatipestifer, including strains CH3 (serotype 1), NJ3 (serotype 2), and HXb2 (serotype 10), was developed. Animal experiments showed that the ducks that received two immunizations with the vaccine were 100% protected from challenge with strains from any of the three serotypes (1, 2, or 10). No death or clinical signs of diarrhea, tremors, or limb swelling were shown in the protected ducks. Also, no R. anatipestifer bacteria were isolated from the livers or brains of the protected ducks. Furthermore, no histopathological changes were observed in the liver, spleen, or brain samples from the protected ducks during histological examination. The ducks that received two immunizations with the vaccine generated high antibody titers of 1:3,200 to 1:6,400 against the three serotypes of strains. The vaccine significantly enhanced the production of gamma interferon (IFN-γ) and interleukin 2 (IL-2) after one immunization and enhanced the production of IL-4 and IL-10 after two immunizations. In addition, real-time PCR indicated that the expression of major histocompatibility complex I (MHC-I), as well as that of CD40 and CD154 molecules, was significantly increased after one immunization, and the expressions of both MHC-I and MHC-II molecules were increased after two immunizations. Our study indicates that the vaccine can induce both humoral and cellular immunities in ducks and offer effective protection against R. anatipestifer infection.
Collapse
|
45
|
Li L, Zhu DK, Zhou Y, Wang MS, Cheng AC, Jia RY, Chen S, Liu F, Yang QM, Chen XY. Adhesion and invasion to duck embryo fibroblast cells by Riemerella anatipestifer. Poult Sci 2013; 91:3202-8. [PMID: 23155031 DOI: 10.3382/ps.2012-02552] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we investigated adhesion and invasion of Riemerella anatipestifer (RA) to primary duck embryo fibroblast (DEF) cells. The ability of RA to adhere to, and more importantly, to invade DEF cells was demonstrated by using a gentamicin invasion assay and was confirmed by transmission electron microscopy (TEM). Adhesion of RA could be found by TEM after 1 h of inoculation. Both apoptosis and necrocytosis of DEF were indicated by TEM after 10 h of incubation, which suggested a complex mechanism of DEF cell death induced by RA. Our results showed that internalized RA had the ability to leave the DEF cells. Inhibition studies indicated that RA proteins play a role in adhesion. Moreover, invasion of RA to DEF cells was shown to require rearrangement of actin microfilaments and microtubular cytoskeletal elements. Because the adhesion and invasion ability of RA to DEF cells could be demonstrated in vitro, similar processes might occur in vivo, where DEF cells play a crucial role in the diffusion of RA in ducks.
Collapse
Affiliation(s)
- L Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cheng LF, Chen HM, Zheng T, Fu GH, Shi SH, Wan CH, Huang Y. Complete genomic sequence of the virulent bacteriophage RAP44 of Riemerella anatipestifer. Avian Dis 2012; 56:321-7. [PMID: 22856189 DOI: 10.1637/9770-050411-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A virulent Riemerella anatipestifer bacteriophage, RAP44, belonging to the Siphoviridae family of tailed phages, was previously isolated from feces of healthy Muscovy ducks in China. A complete genomic sequence analysis indicates that the phage's genome consists of a linear, double-stranded DNA molecule of 49,329 nucleotides. Eighty open reading frames (ORF) were identified. Putative functions could be assigned to 24 of the ORFs. The location of these genes was consistent with organization of the genome in a modular format which includes modules for host cell lysis, tail morphogenesis, head morphogenesis, and DNA replication and modification modules. Until now, no R. anatipestifer phage genome sequence has been reported in the literature. Therefore, this study represents the first complete genomic and molecular description of the R. anatipestifer phage.
Collapse
Affiliation(s)
- Long-Fei Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Fujian Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
Hu Q, Ding C, Tu J, Wang X, Han X, Duan Y, Yu S. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet Microbiol 2012; 157:428-38. [PMID: 22317978 DOI: 10.1016/j.vetmic.2012.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/02/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhai Z, Cheng L, Tang F, Lu Y, Shao J, Liu G, Bao Y, Chen M, Shang K, Fan H, Yao H, Lu C, Zhang W. Immunoproteomic identification of 11 novel immunoreactive proteins ofRiemerella anatipestiferserotype 2. ACTA ACUST UNITED AC 2012; 65:84-95. [DOI: 10.1111/j.1574-695x.2012.00947.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
49
|
Han X, Hu Q, Ding S, Chen W, Ding C, He L, Wang X, Ding J, Yu S. Identification and immunological characteristics of chaperonin GroEL in Riemerella anatipestifer. Appl Microbiol Biotechnol 2011; 93:1197-205. [PMID: 22038245 DOI: 10.1007/s00253-011-3635-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/20/2011] [Accepted: 10/06/2011] [Indexed: 11/29/2022]
Abstract
Riemerella anatipestifer (RA) infections cause major economic losses in the duck industry. In this study, an immunogenic protein, chaperonin GroEL (GroEL), was identified from the outer membrane of RA strain WJ4 by immunoproteomic assay based on matrix-assisted laser desorption/ionization time of flight mass spectrometry. The complete sequence of the encoding gene, chaperonin groEL (groEL) was amplified and determined to be 1,629 base pairs in length. groEL was then cloned into expression vector pGEX-6P-1, and the expression of the recombinant GroEL (rGroEL) in Escherichia coli strain BL21 was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting analysis. Immunization assay showed that ducklings or rabbits immunized with purified rGroEL generated 53- or 160-fold more anti-GroEL antibodies than those with no immunization. Importantly, bactericidal assay showed that rabbit anti-GroEL serum killed 30.0-57.3% of bacteria representing different serotypes, while rabbit anti-bacterin serum killing activity exhibits large serotype-dependent variations between 0.2% and 63.6%. Animal challenge experiment showed that ducklings immunized with rGroEL were 50%, 37.5%, and 37.5% protected from the challenge with RA strains WJ4 (serotype 1), Th4 (serotype 2), and YXb-2 (serotype 10), respectively. In addition, groEL from 34 additional RA strains was amplified by polymerase chain reaction (PCR), and products from nine were sequenced. groEL is highly conserved among RA strains, as the DNA sequence identity was over 97.5% between WJ4 and the nine additional strains. Our results suggest that GroEL may be a good candidate for new RA vaccine development.
Collapse
Affiliation(s)
- Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu Q, Han X, Zhou X, Ding C, Zhu Y, Yu S. OmpA is a virulence factor of Riemerella anatipestifer. Vet Microbiol 2011; 150:278-83. [PMID: 21349662 DOI: 10.1016/j.vetmic.2011.01.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/13/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Riemerella anatipestifer infection is probably the most economically important disease of farm ducks worldwide. The pathogen R. anatipestifer causes septicemia anserum exsudativa in ducks, but little is known about the molecular basis of its pathogenesis and the virulence factors involved. In this study, by deleting ompA gene from R. anatipestifer serotype 2 strain Th4, we constructed a mutant strain Th4ΔompA to investigate whether R. anatipestifer OmpA is an important virulence factor. Results showed that although the growth curve, bacterial and colony morphology of Th4ΔompA in tryptic soybean broth (TSB) or on TSB agar were similar to its parent strain Th4, the adhesion and invasion capacities of mutant strain to Vero cells were decreased significantly. Furthermore, the median lethal dose (LD(50)) of both strains was determined to measure the virulence with 10-day-old Cherry Valley ducklings. The results showed that LD(50) of Th4ΔompA mutant was >10(10) colony forming units (CFU), it was attenuated significantly in comparison with that of Th4 which LD(50) was 4.41 × 10(8) CFU. Additional analysis indicated that blood bacterial loading of ducklings infected with the Th4ΔompA mutant were much lower than those of Th4-infected ducklings. The results demonstrate that OmpA is a virulence factor of R. anatipestifer, and that it may act as an adhesin.
Collapse
Affiliation(s)
- Qinghai Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | | | | | | | | | | |
Collapse
|