1
|
Matsuo A, Matsumura Y, Mori K, Noguchi T, Yamamoto M, Nagao M. Molecular epidemiology and β-lactam resistance mechanisms of Enterobacter cloacae complex isolates obtained from bloodstream infections, Kyoto, Japan. Microbiol Spectr 2025; 13:e0248524. [PMID: 40062888 PMCID: PMC11960451 DOI: 10.1128/spectrum.02485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/11/2025] [Indexed: 04/03/2025] Open
Abstract
The Enterobacter cloacae complex (ECC) comprises multiple species that require genomic analysis for precise identification. They produce inducible AmpC β-lactamase and may carry acquired β-lactamases, which are responsible for cefotaxime and cefepime resistance. To determine the molecular epidemiology, antimicrobial resistance, and β-lactam resistance mechanisms of the ECC, we conducted whole-genome sequencing analysis, antimicrobial susceptibility testing, and mutation analysis on bloodstream ECC isolates from patients in Kyoto, Japan. In 194 ECC isolates, 13 species and six unnamed taxa were identified, with Enterobacter xiangfangensis (36%) being the most common. A total of 38% of the isolates were nonsusceptible to cefotaxime and presented relatively high nonsusceptibility rates to all antimicrobial agents tested. Among the different species, Enterobacter hoffmannii presented the highest nonsusceptibility rates to both β-lactams and non-β-lactams. Among the cefotaxime-nonsusceptible isolates, 16% harbored genes encoding extended-spectrum β-lactamases (ESBLs), carbapenemase, and/or plasmid-mediated AmpC, and ampC derepression was the predominant resistance mechanism in the remaining isolates. The prevalent sequence types (STs) in cefotaxime-susceptible and cefotaxime-nonsusceptible isolates were different, although some STs were shared by both groups. Cefepime nonsusceptibility was detected in 7% of the isolates and was associated with E. hoffmannii ST78 and E. xiangfangensis ST93, which carry ESBLs. Sixty-four mutants, experimentally obtained from eight cefotaxime-susceptible isolates, had various ampD mutations, and 42% and 99% of the mutants were nonsusceptible to cefepime and piperacillin/tazobactam, respectively, indicating the risks associated with the use of these antimicrobials. Continuous surveillance via genomic and phenotypic analyses is needed to combat antimicrobial resistance in the ECC.IMPORTANCEThe Enterobacter cloacae complex (ECC) is a group of pathogenic bacteria that cause nosocomial infections. The ECC produces chromosomal inducible AmpC β-lactamases, which is associated with treatment failure despite initial susceptibility to third-generation cephalosporins in selected ampC-derepressed mutants. The complex antimicrobial resistance mechanisms of the ECC and challenges in species identification have complicated our understanding of the ECC and the selection of appropriate treatment. In this study, we performed phenotypic, whole-genome sequencing, and mutation analyses among ECC isolates from patients with bloodstream infections to determine the precise molecular-based epidemiology, resistance mechanisms to third-/fourth-generation cephalosporins, specific species and clones that contribute to antimicrobial resistance, and acquisition rates of fourth-generation cephalosporin resistance in ampC-derepressed mutants. These data will help elucidate the local epidemiology and complex β-lactam resistance mechanisms in the ECC and guide appropriate antimicrobial therapy and infection control strategies for ECC-related infections.
Collapse
Affiliation(s)
- Akihiko Matsuo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiichiro Mori
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Taro Noguchi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Wei C, Wu J, Zhang J, Liang Y, Yu K, Liao M, Liang X, Wang J, Long W, Wang J, Chen S, Yang Y, Gong X, Li J, Zhang X. Clinical characteristics, molecular epidemiology and mechanisms of colistin heteroresistance in Enterobacter cloacae complex. Front Cell Infect Microbiol 2025; 15:1536058. [PMID: 40115074 PMCID: PMC11922889 DOI: 10.3389/fcimb.2025.1536058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/10/2025] [Indexed: 03/23/2025] Open
Abstract
Introduction Colistin has emerged as the last resort for treating multidrug-resistant Enterobacter cloacae complex (ECC) infections. The primary purposes of this study were to demonstrate the presence of colistin heteroresistance in ECC and to further investigate their clinical characteristics, molecular epidemiology and mechanisms. Methods Population analysis profiles (PAP) were performed to confirm the heteroresistance phenotype. Average nucleotide identity (ANI) was determined to classify ECC species. Phylogenetic analysis based on core genome single nucleotide polymorphisms (cg-SNPs), multilocus sequence typing (MLST) and core genome MLST (cg-MLST). Risk factors and clinical outcomes of infections were analyzed through a retrospective case-control study. Potential mechanisms of colistin heteroresistance were evaluated using polymerase chain reaction (PCR), efflux pump inhibition assays and reverse transcription quantitative PCR (RT-qPCR). Results A high proportion (24.4%) of the non-resistant strains were colistin-heteroresistant isolates. Among the several ECC species, Enterobacter kobei had the largest percentage (29.4%) of colistin-heteroresistant isolates, followed by Enterobacter hormaechei (20.5%) and Enterobacter bugandensis (20.0%). Notably, only one strain (0.8%; 1/132) of Enterobacter hormaechei was fully resistant to colistin. Different ECC species showed varying heteroresistance levels: Enterobacter roggenkampii, Enterobacter kobei, Enterobacter asburiae and Enterobacter bugandensis displayed high heteroresistance levels (MIC ≥ 128 mg/L). 75% of all ST116 and ST56 strains were heteroresistant to colistin. The infection of ST116 and ST56 strains as well as exposure to cephalosporin antibiotics were independent risk factors for colistin-heteroresistant ECC infections. Mechanistic analysis revealed that heteroresistance strongly correlated with the overexpression of arnA, regulated by the PhoPQ two-component system (TCS). Notably, mgrB had minimal impact. AcrAB-TolC efflux pump genes showed unsynchronized expression; High acrB expression was strongly associated with colistin heteroresistance, while acrA and tolC were not. Discussion Colistin heteroresistance showed species-dependent variations in levels and prevalence rates. The colistin-heteroresistant mechanisms were complex, involving coordinated regulation of multiple genes. These results highlighted the need for tailored antimicrobial stewardship. In addition, the development of direct, reliable and rapid clinical methods for detecting heteroresistance is essential for improving infection management and prevention.
Collapse
Affiliation(s)
- Chunli Wei
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jiming Wu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Youtao Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaixin Yu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Basic Medicine of Jiamusi University, Jiamusi, China
| | - Mingjing Liao
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shijian Chen
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Gong
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Halder G, Chaudhury BN, Denny P, Chakraborty M, Mandal S, Dutta S. Emergence of concurrently transmissible mcr-9 and carbapenemase genes in bloodborne colistin-resistant Enterobacter cloacae complex isolated from ICU patients in Kolkata, India. Microbiol Spectr 2025; 13:e0154224. [PMID: 39912656 PMCID: PMC11878022 DOI: 10.1128/spectrum.01542-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/22/2024] [Indexed: 02/07/2025] Open
Abstract
Colistin resistance in carbapenem-resistant Enterobacter cloacae complex (CR-ECC) infections has grown expeditiously but detecting the underlying mechanism of resistance is often challenging in clinical settings. This study, first of its kind from India, determined the resistance mechanisms and characterized colistin-resistant hospital isolates. Twenty-nine bloodborne CR-ECC isolated from ICU patients of eight tertiary care hospitals in Kolkata, India between 2022 and 2023 were screened for colistin resistance. The plasmid-encoded mcr-9 gene, acrAB-tolC efflux pump (EP) & phoP/Q, and pmr A/B two-component system (TCS) involved in colistin resistance were examined. In addition, AMR gene profiling and molecular subtypes of mcr-9-producing CR-ECC isolates were also investigated. All study isolates showed resistance to ≥5 antimicrobial classes and six (21%) of them were colistin-resistant. The mcr-9 gene transferable by IncHI2-HI2A plasmid was detected in both colistin-resistant (67%) and colistin-sensitive (4%) CR-ECC isolates. The blaNDM-5 gene was significantly (P < 0.05) associated with isolates co-harboring mcr-9 genes. A ≥8-fold increase in minimum inhibitory concentration (MIC)colistin was observed in the mcr-9-producing colistin-sensitive strain after induction. Overexpression of acrA, ramA, soxS, phoP/Q, and pmrA/B genes was found in non-mcr-9-producing colistin-resistant isolates. The resistance to colistin in the wild-type appeared to be mediated in part by the mcr-9 gene, an active EP, and regulatory TCS. The mcr-9-producing isolates were typed into ST932, ST270, and ST1997 by MLST. Heterogeneity (29 pulsotypes; 48.40% similarity coefficient) among the circulating CR-ECC isolates was revealed by PFGE. Robust monitoring of mcr genes in both colistin-resistant and -sensitive strains is warranted to curb the menace of AMR in nosocomial pathogens. IMPORTANCE Carbapenem-resistant Enterobacter cloacae complex (CR-ECC) has become a global nosocomial pathogen in last few years. Colistin, the "last resort antibiotic," is being widely used in the treatment of CR-ECC and, consequently, there has been a brisk rise in colistin-resistant CR-ECC isolates. This study was necessitated by the dearth of a comprehensive molecular investigation of colistin-resistant CR-ECC from India. The notorious IncHI2-HI2A plasmid-borne mcr-9 gene along with active acrAB-tolC efflux pump and phoP/Q-pmr A/B two-component system was found to mediate colistin resistance in the study isolates. Interestingly, the mcr-9 gene was also discovered in colistin-sensitive strains and MIC of colistin was found to increase under colistin pressure. Diverse phylogenetic clones along with novel sequence types were detected. This study highlights the necessity for intense monitoring of mcr-9 in conjunction with the existing epidemic clones of CR-ECC strains harboring diverse arrays of transmissible AMR genes.
Collapse
Affiliation(s)
- Gourab Halder
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections formerly ICMR-NICED, Kolkata, West Bengal, India
| | | | - Priyanka Denny
- Collaborative Research Center for Infectious Diseases in India, Okayama University, JICA Building, ICMR-NIRBI, Kolkata, West Bengal, India
| | - Mandira Chakraborty
- Division of Microbiology, Calcutta Medical College, Kolkata, West Bengal, India
| | - Subhranshu Mandal
- Division of Microbiology, CNCI, Rajarhat, Kolkata, West Bengal, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute for Research in Bacterial Infections formerly ICMR-NICED, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Perault AI, John AS, DuMont AL, Shopsin B, Pironti A, Torres VJ. Enterobacter hormaechei replaces virulence with carbapenem resistance via porin loss. Proc Natl Acad Sci U S A 2025; 122:e2414315122. [PMID: 39977318 PMCID: PMC11874173 DOI: 10.1073/pnas.2414315122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Pathogenic Enterobacter species are of increasing clinical concern due to the multidrug-resistant nature of these bacteria, including resistance to carbapenem antibiotics. Our understanding of Enterobacter virulence is limited, hindering the development of new prophylactics and therapeutics targeting infections caused by Enterobacter species. In this study, we assessed the virulence of contemporary clinical Enterobacter hormaechei isolates in a mouse model of intraperitoneal infection and used comparative genomics to identify genes promoting virulence. Through mutagenesis and complementation studies, we found two porin-encoding genes, ompC and ompD, to be required for E. hormaechei virulence. These porins imported clinically relevant carbapenems into the bacteria, and thus loss of OmpC and OmpD desensitized E. hormaechei to the antibiotics. Our genomic analyses suggest porin-related genes are frequently mutated in E. hormaechei, perhaps due to the selective pressure of antibiotic therapy during infection. Despite the importance of OmpC and OmpD during infection of immunocompetent hosts, we found the two porins to be dispensable for virulence in a neutropenic mouse model. Moreover, porin loss provided a fitness advantage during carbapenem treatment in an ex vivo human whole blood model of bacteremia. Our data provide experimental evidence of pathogenic Enterobacter species gaining antibiotic resistance via loss of porins and argue antibiotic therapy during infection of immunocompromised patients is a conducive environment for the selection of porin mutations enhancing the multidrug-resistant profile of these pathogens.
Collapse
Affiliation(s)
- Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN38105
| |
Collapse
|
5
|
Yaikhan T, Singkhamanan K, Luenglusontigit P, Chukamnerd A, Nokchan N, Chintakovid N, Chusri S, Pomwised R, Wonglapsuwan M, Leetanaporn K, Sangkhathat S, Surachat K. Genomic analysis of Enterobacter cloacae complex from Southern Thailand reveals insights into multidrug resistance genotypes and genetic diversity. Sci Rep 2025; 15:4670. [PMID: 39920182 PMCID: PMC11806111 DOI: 10.1038/s41598-024-81595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 02/09/2025] Open
Abstract
In this study, we conducted a comprehensive investigation into the Enterobacter cloacae complex (ECC), a group of notorious pathogens responsible for various hospital-acquired infections. We aimed to gain critical insights into antimicrobial resistance profiles and genomic diversity among 17 ECC isolates, which were previously collected as part of a short-term surveillance effort for 6 months in 2019. We identified two novel sequence types (ST-1936 in E. bugandensis PSU30 and ST-1937 in E. roggenkampii PSU45) among the 14 distinct STs identified in our ECC isolates. Furthermore, our expanded investigation revealed 296 novel STs within the NCBI Reference Sequence database. We identified six isolates carrying the mcr-9 gene, highlighting a significant concern in antimicrobial resistance (AMR). These genes confer a reduced susceptibility to colistin, a critical last-resort drug for the treatment of multidrug-resistant (MDR) infection. In addition to the AMR complexity, we found that three isolates carried the blaNDM gene on IncN2 plasmids, further emphasizing the urgency of monitoring and managing ECC-related infections. Our study provided evidence of intra-hospital transmission involving E. asburiae isolates PSU37, PSU39, and PSU40, all collected from the nasopharynx of three individuals in the intensive care unit (ICU) of the same hospital. These findings highlight the need for stringent infection control measures to prevent similar outbreaks and emphasize the importance of effective surveillance and management strategies to address ECC-related challenges.
Collapse
Affiliation(s)
- Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Pawarisa Luenglusontigit
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Nutwadee Chintakovid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand.
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
6
|
Alemayehu A, Fantahun S, Eshetu Y, Mekonnen E. A Lemierre's like syndrome in a 50 days old infant with Enterobacter cloaca bacteremia: A case report. Radiol Case Rep 2024; 19:6274-6280. [PMID: 39387023 PMCID: PMC11461933 DOI: 10.1016/j.radcr.2024.08.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Lemierre syndrome describes septic thrombophlebitis of the internal jugular vein (IJV) and metastatic spread of the infection following a recent oropharyngeal infection in a setting of bacteremia caused by Fusobacterium necrophorum. Lemierre-like syndrome describes similar clinical scenario with no preceding oropharyngeal infection and/or in the setting of non-Fusobacterium cause. We report a case of Lemierre-like syndrome in a setting of Enterobacter cloaca bacteremia without known preceding oropharyngeal infection. History and physical exam revealed an irritable infant with cough, tachypnea, low grade fever, bilateral lung crepitations and features of infantile seborrheic dermatitis on the scalp. Imaging revealed thrombosis of right internal jugular vein and superior vena cava, bilateral pulmonary cavitary lesions and collections consistent with septic pulmonary emboli. Multiple rim enhancing hypo-dense liver lesions and chest wall collections consistent with abscesses were also seen. He was managed with parental antibiotics, drainage of the chest wall abscesses and discharged with clinical and radiologic improvement.
Collapse
Affiliation(s)
- Abdi Alemayehu
- Department of Radiology, Adama Comprehensive Specialized Hospital Medical College, Adama, Ethiopia
| | - Suleyman Fantahun
- Department of Radiology, Adama Comprehensive Specialized Hospital Medical College, Adama, Ethiopia
| | - Yohannes Eshetu
- Department of Radiology, Adama Comprehensive Specialized Hospital Medical College, Adama, Ethiopia
| | - Eyosait Mekonnen
- Department of Pediatrics and Child health, Adama Comprehensive Specialized Hospital Medical College, Adama, Ethiopia
| |
Collapse
|
7
|
Chen R, Li C, Xu H, Liu R, Ge H, Qiao J, Liu Y, Liu X, Fang L, Shen Y, Guo X. First documentation of a clinical multidrug-resistant Enterobacter chuandaensis ST2493 isolate co-harboring bla NDM-1 and two bla KPC-2 bearing plasmids. Sci Rep 2024; 14:26817. [PMID: 39500966 PMCID: PMC11538481 DOI: 10.1038/s41598-024-78163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The increasing prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection treatment in the clinical setting. In this study, we reported the emergence of carbapenemase in a rare species, Enterobacter chuandaensis, belonging to the Enterobacter cloacae complex (ECC). We elucidated the genetic characteristics of carbapenem-resistant isolate FAHZZU5885, co-harboring blaNDM-1 and blaKPC-2. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and average nucleotide identity (ANI) analysis were used to identify E. chuandaensis. S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting were used to clarify the number and size of the plasmids in FAHZZU5885. Antimicrobial phenotypes were identified by antimicrobial susceptibility testing (AST), and the characteristics of the strain were examined with whole-genome sequencing (WGS). The conjugation experiment and stability assay were conducted to verify the transferability and stability of the plasmid carrying carbapenemase-encoding genes. E. chuandaensis FAHZZU5885 was isolated from a perianal swab of a patient admitted to the ICU. This strain simultaneously carried blaNDM-1 and two blaKPC-2 genes. FAHZZU5885 was resistant to most of the tested antibiotics except for amikacin, tigecycline, and colistin. Two blaKPC-2 were located separately on two different plasmids, the ~ 120 kb IncFIA-IncFII plasmid and the ~ 80 kb IncR plasmid. Both plasmids shared the conserved sequence klcA-korC-ISkpn6-blaKPC-2-ISkpn27-tnpR-tnpA. The blaNDM-1-bearing plasmid had the potential to transfer and can remain stable after successive passages. In addition, the blaNDM-1 was carried on a ~ 80 kb IncFII plasmid with the conserved sequence ISAba125-blaNDM-1-ble-trpF-dsbD-cutA-groS-groL. In summary, this study marks the first report of the multidrug-resistant E. chuandaensis strain FAHZZU5885 harboring two blaKPC-2-bearing plasmids, indicating the potential for the further dissemination of carbapenemase-encoding genes in novel species. The findings contribute to enhancing our understanding of CREC strains, emphasizing the need for continued and comprehensive surveillance of this species.
Collapse
Affiliation(s)
- Ruyan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenyu Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruishan Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoyu Ge
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Qiao
- Department of Laboratory Medicine, the Eight Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Fang
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanhao Shen
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Angammana H, Omadevuae K, Bengualid V, Khader R. Silent Invader: A Rare Case of Enterobacter aerogenes Empyema in a Hospice Patient With Complex Comorbidities. Cureus 2024; 16:e73397. [PMID: 39659331 PMCID: PMC11631160 DOI: 10.7759/cureus.73397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024] Open
Abstract
Enterobacter aerogenes (recently renamed Klebsiella aerogenes) is an uncommon pathogen in pleural infections and empyema, typically associated with nosocomial urinary and gastrointestinal infections. This case report describes a 69-year-old male patient with chronic kidney disease, diabetes mellitus, and other comorbidities, who developed empyema despite broad-spectrum antibiotics. Pleural fluid cultures revealed E. aerogenes, known for its ability to develop resistance through beta-lactamase production and efflux pumps, which complicates treatment. Despite initial improvement with cefepime and metronidazole, the patient's respiratory status deteriorated, and due to his do not resuscitate/do not intubate (DNR/DNI) status and extensive comorbidities, no further aggressive interventions were pursued, leading to his passing. This case highlights the diagnostic and therapeutic challenges posed by E. aerogenes in pleural infections, emphasizing its rarity in pulmonary involvement and its potential for antibiotic resistance. It also underscores the importance of considering atypical pathogens in complex infections and the need for multidisciplinary management while balancing aggressive treatments with patient-centered care, particularly in end-of-life scenarios.
Collapse
Affiliation(s)
- Hansani Angammana
- Internal Medicine, Saint Barnabas Hospital Health System, New York, USA
| | - Kafayat Omadevuae
- Internal Medicine, Saint Barnabas Hospital Health System, New York, USA
| | - Victoria Bengualid
- Infectious Diseases, Saint Barnabas Hospital Health System, New York, USA
| | - Rawand Khader
- Geriatrics, Saint Barnabas Hospital Health System, New York, USA
| |
Collapse
|
9
|
Niyazi D, Vergiev S, Markovska R, Stoeva T. Prevalence and Molecular Epidemiology of Intestinal Colonization by Multidrug-Resistant Bacteria among Hematopoietic Stem-Cell Transplantation Recipients: A Bulgarian Single-Center Study. Antibiotics (Basel) 2024; 13:920. [PMID: 39452187 PMCID: PMC11504062 DOI: 10.3390/antibiotics13100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Intestinal colonization by multidrug-resistant (MDR) bacteria is considered one of the main risk factors for invasive infections in the hematopoietic stem-cell transplant (HSCT) setting, associated with hard-to-eradicate microorganisms. The aim of this study was to assess the rate of intestinal colonization by MDR bacteria and their microbial spectrum in a group of post-HSCT patients to study the genetic determinants of beta-lactam and glycopeptide resistance in the recovered isolates, as well as to determine the epidemiological relation between them. Methods: The intestinal colonization status of 74 patients admitted to the transplantation center of University Hospital "St. Marina"-Varna in the period January 2019 to December 2021 was investigated. Stool samples/rectal swabs were screened for third-generation cephalosporin and/or carbapenem-resistant Gram-negative bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and Stenotrophomonas maltophilia. Identification and antimicrobial susceptibility testing were performed by Phoenix (BD, Sparks, MD, USA) and MALDI Biotyper sirius (Bruker, Bremen, Germany). Molecular genetic methods (PCR, DNA sequencing) were used to study the mechanisms of beta-lactam and glycopeptide resistance in the collected isolates, as well as the epidemiological relationship between them. Results: A total of 28 patients (37.8%) were detected with intestinal colonization by MDR bacteria. Forty-eight non-duplicate MDR bacteria were isolated from their stool samples. Amongst them, the Gram-negative bacteria prevailed (68.8%), dominated by ESBL-producing Escherichia coli (30.3%), and followed by carbapenem-resistant Pseudomonas sp. (24.2%). The Gram-positive bacteria were represented exclusively by Enterococcus faecium (31.2%). The main beta-lactam resistance mechanisms were associated with CTX-M and VIM production. VanA was detected in all vancomycin-resistant enterococci. A clonal relationship was observed among Enterobacter cloacae complex and among E. faecium isolates. Conclusions: To the best of our knowledge, this is the first Bulgarian study that presents detailed information about the prevalence, resistance genetic determinants, and molecular epidemiology of MDR gut-colonizing bacteria in HSCT patients.
Collapse
Affiliation(s)
- Denis Niyazi
- Clinical Microbiology Laboratory, University Hospital “St. Marina”—Varna, 9010 Varna, Bulgaria;
- Department of Microbiology and Virology, Medical University—Varna, 9002 Varna, Bulgaria
| | - Stoyan Vergiev
- Department of Ecology and Environmental Protection, Technical University of Varna, 9010 Varna, Bulgaria;
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University—Sofia, 1431 Sofia, Bulgaria;
| | - Temenuga Stoeva
- Clinical Microbiology Laboratory, University Hospital “St. Marina”—Varna, 9010 Varna, Bulgaria;
- Department of Microbiology and Virology, Medical University—Varna, 9002 Varna, Bulgaria
| |
Collapse
|
10
|
Elsafi SH, Al Zahrani EM, Al Zaid RF, Alshagifi SA, Farghal TA, Alshamuse KB, Albalawi AS, Alkhalaf F, Sumaily AA, Almusabi S, George SK. Antibiotic-resistant bacteria contaminating leafy vegetables in Saudi Arabia's eastern region. BMC Microbiol 2024; 24:303. [PMID: 39135186 PMCID: PMC11321146 DOI: 10.1186/s12866-024-03456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Food-associated antibiotic-resistant bacteria can cause infections that may critically impact human health. The objectives of this study were to determine the microbial contamination level of green leafy vegetables and their antibiotic resistance pattern. METHODS Sixty-three samples of leafy vegetables were collected from Dammam Central Fruit and Vegetables Market from January to June 2023. The vegetables included lettuce (Lactuca sativa), parsley (Petroselinum crispum), and watercress (Nasturtium officinale). Samples were tested by standard microbiological techniques for identification and antibiotic susceptibility testing. RESULT Eight types of bacteria belonging to six different genera were detected. Enterobacteriaceae family was represented by four genera: Klebsiella, Proteus, Morganella, and Enterobacter. The other two genera were Pseudomonas and Aeromonas. Enterobacter cloacae was the most abundant organism, followed by Pseudomonas putida and Aeromonas sobria. On the other hand, Morganella morganii, Aeromonas hydrophila, and Proteus mirabilis were the least abundant. The three vegetable types had different levels of bacterial contamination. All isolated organisms were sensitive to penicillin, cephalosporin, aminoglycoside, and fluoroquinolone. However, Klebsiella oxytoca, M. morganii, and K. pneumonia showed resistance to ampicillin. A. hydrophila, Morganella morganii, and E. cloacae showed resistance to amoxicillin. M. morganii and E. cloacae were found to be resistant to cefalotin. Moreover, A. hydrophila, M. morganii, and E. cloacae were resistant to cefoxitin. Again, A. hydrophila was found to be resistant to imipenem. Only M. morganii was resistant to Ciprofloxacin. Two isolates, P. mirabilis and M. morganii were resistant to tigecycline. Another two, M. morganii and P. mirabilis were resistant to Nitrofurantoin. Only M. morganii was found to be resistant to trimethoprim. CONCLUSION This study aligns with the broad consensus in the literature about the significance of bacterial contamination in vegetables and the public health implications. The unique focus on antibiotic resistance patterns adds an essential dimension to the existing body of knowledge.
Collapse
Affiliation(s)
- Salah H Elsafi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia.
| | - Eidan M Al Zahrani
- Physical Therapy Department, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Raneem F Al Zaid
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Shahad A Alshagifi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Taif A Farghal
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Khlood B Alshamuse
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Aseel S Albalawi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Faisal Alkhalaf
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Amr A Sumaily
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Saleh Almusabi
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| | - Siju K George
- Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, P.O. Box 33048, Dammam, 31448, Saudi Arabia
| |
Collapse
|
11
|
Ranta K, Skurnik M, Kiljunen S. fENko-Kae01 is a flagellum-specific jumbo phage infecting Klebsiella aerogenes. BMC Microbiol 2024; 24:234. [PMID: 38951769 PMCID: PMC11218385 DOI: 10.1186/s12866-024-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Halder G, Chaudhury BN, Mandal S, Denny P, Sarkar D, Chakraborty M, Khan UR, Sarkar S, Biswas B, Chakraborty A, Maiti S, Dutta S. Whole genome sequence-based molecular characterization of blood isolates of carbapenem-resistant Enterobacter cloacae complex from ICU patients in Kolkata, India, during 2017-2022: emergence of phylogenetically heterogeneous Enterobacter hormaechei subsp. xiangfangensis. Microbiol Spectr 2024; 12:e0352923. [PMID: 38385742 PMCID: PMC10986559 DOI: 10.1128/spectrum.03529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/14/2023] [Indexed: 02/23/2024] Open
Abstract
Blood-borne infections caused by the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) are major public threats with respect to the challenges encountered during treatment. This study describes the whole genome sequencing-based molecular characteristics of blood isolates (n = 70) of CR-ECC from patients admitted to the intensive care unit of tertiary care hospitals in Kolkata, India, during 2017-2022 with respect to species identification, antimicrobial resistance (AMR) profiling, mechanism of drug resistance, and molecular subtypes. Vitek2 MALDI and species-specific PCR identified Enterobacter hormaechei subsp. xiangfangensis (47.14%) as the emerging CR-ECC subspecies in Kolkata. The predominating carbapenemase and extended-spectrum β-lactamase genes found were blaNDM-1 (51.42%) and blaCTX-M-15 (27%), respectively. Besides, blaNDM-4, blaNDM-5, blaNDM-7, blaCMH-3, blaSFO-1, blaOXA-181, blaOXA-232, blaKPC-3, and blaDHA-7 genes were also detected, which were not previously reported from India. A multitude of Class 1 integrons (including In180, In4874, In4887, and In4888, which were novel) and plasmid replicon types (IncFIB, IncFII, IncX3, IncHI1-HI2, IncC, and IncR) involved in AMR dissemination were identified. Reverse transcription-PCR and western blot revealed that carbapenem resistance in non-carbapenemase-producing CR-ECC isolates was contributed by elevated levels of ampC, overexpression of acrAB, and loss of ompF. A total of 30 distinct sequence types (STs) were ascertained by multi-locus sequence typing; of which, ST2011, ST2018, ST2055, ST2721, and ST2722 were novel STs. Pulsed-field gel electrophoresis analysis showed heterogeneity (69 pulsotypes with a similarity coefficient of 48.40%) among the circulating isolates, suggesting multiple reservoirs of infections in humans. Phylogenetically and genetically diverse CR-ECC with multiple AMR mechanisms mandates close monitoring of nosocomial infections caused by these isolates to forestall the transmission and dissemination of AMR.IMPORTANCEThe emergence and extensive dissemination of the carbapenem-resistant Enterobacter cloacae complex (CR-ECC) have positioned it as a critical nosocomial global pathogen. The dearth of a comprehensive molecular study pertaining to CR-ECC necessitated this study, which is the first of its kind from India. Characterization of blood isolates of CR-ECC over the last 6 years revealed Enterobacter hormaechei subsp. xiangfangensis as the most prevalent subsp., exhibiting resistance to almost all antibiotics currently in use and harboring diverse transmissible carbapenemase genes. Besides the predominating blaNDM-1 and blaCTX-M-15, we document diverse carbapenemase and AmpC genes, such as blaNDM-4, blaNDM-7, blaOXA-181, blaOXA-232, blaKPC-3, blaCMH-3, blaSFO-1, and blaDHA-7, in CR-ECC, which were not previously reported from India. Furthermore, novel integrons and sequence types were identified. Our findings emphasize the need for strengthened vigilance for molecular epidemiological surveillance of CR-ECC due to the presence of epidemic clones with a phylogenetically diverse and wide array of antimicrobial resistance genes in vulnerable populations.
Collapse
Affiliation(s)
- Gourab Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | | | - Priyanka Denny
- Collaborative Research Center for Infectious Diseases in India, Okayama University, JICA Building, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Deotima Sarkar
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mandira Chakraborty
- Division of Microbiology, Calcutta Medical College, College Square, Kolkata, India
| | - Ujjwayini Ray Khan
- Division of Microbiology, Apollo Gleneagles Hospital, Phool Bagan, Kolkata, India
| | - Soma Sarkar
- Division of Microbiology, NRS Medical College, Sealdah, Kolkata, India
| | | | | | - Sourav Maiti
- Division of Microbiology, Ruby General Hospital, Kasba, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
13
|
Bennett W, Mende K, Campbell WR, Beckius M, Stewart L, Shaikh F, Rahman A, Tribble DR, Yabes JM. Enterobacter cloacae infection characteristics and outcomes in battlefield trauma patients. PLoS One 2023; 18:e0290735. [PMID: 37643169 PMCID: PMC10464967 DOI: 10.1371/journal.pone.0290735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Enterobacter cloacae is a Gram-negative rod with multidrug-resistant potential due to chromosomally-induced AmpC β-lactamase. We evaluated characteristics, antibiotic utilization, and outcomes associated with battlefield-related E. cloacae infections (2009-2014). Single initial and serial E. cloacae isolates (≥24 hours from initial isolate from any site) associated with a clinical infection were examined. Susceptibility profiles of initial isolates in the serial isolation group were contrasted against last isolate recovered. Characteristics of 112 patients with E. cloacae infections (63 [56%] with single initial isolation; 49 [44%] with serial isolation) were compared to 509 patients with bacterial infections not attributed to E. cloacae. E. cloacae patients sustained more blast trauma (78%) compared to non-E. cloacae infections patients (75%; p<0.001); however, injury severity scores were comparable (median of 34.5 and 33, respectively; p = 0.334). Patients with E. cloacae infections had greater shock indices (median 1.07 vs 0.92; p = 0.005) and required more initial blood products (15 vs. 14 units; p = 0.032) compared to patients with non-E. cloacae infections. Although E. cloacae patients had less intensive care unit admissions (80% vs. 90% with non-E. cloacae infection patients; p = 0.007), they did have more operating room visits (5 vs. 4; p = 0.001), longer duration of antibiotic therapy (43.5 vs. 34 days; p<0.001), and lengthier hospitalizations (57 vs. 44 days; p<0.001). Patients with serial E. cloacae had isolation of infecting isolates sooner than patients with single initial E. cloacae (median of 5 vs. 8 days post-injury; p = 0.046); however, outcomes were not significantly different between the groups. Statistically significant resistance to individual antibiotics did not develop between initial and last isolates in the serial isolation group. Despite current combat care and surgical prophylaxis guidelines recommending upfront provision of AmpC-inducing antibiotics, clinical outcomes did not differ nor did significant antibiotic resistance develop in patients who experienced serial isolation of E. cloacae versus single initial isolation.
Collapse
Affiliation(s)
- William Bennett
- Brooke Army Medical Center, JBSA Fort Sam Houston, Texas, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Katrin Mende
- Brooke Army Medical Center, JBSA Fort Sam Houston, Texas, United States of America
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Wesley R. Campbell
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - Miriam Beckius
- Brooke Army Medical Center, JBSA Fort Sam Houston, Texas, United States of America
| | - Laveta Stewart
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Faraz Shaikh
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - Azizur Rahman
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| | - David R. Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joseph M. Yabes
- Brooke Army Medical Center, JBSA Fort Sam Houston, Texas, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
14
|
Khine S, Rabah L, Palanisamy N, Liroff K, Bachuwa G. Enterobacter cloacae as sole organism responsible for vertebral osteomyelitis/discitis and vertebral collapse in a patient with intravenous drug abuse. BMJ Case Rep 2023; 16:e254988. [PMID: 37553172 PMCID: PMC10414099 DOI: 10.1136/bcr-2023-254988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Staphylococcus aureus is the most commonly isolated organism in osteomyelitis, while gram-negative bacteria (GNB) comprises only a minor portion. GNB osteomyelitis is usually seen in patients with bacteraemia, recent genitourinary infection, open fractures or trauma and is rarely seen in the spines. Our case is a man in his 30s with no significant risk factors except an extended history of intravenous drug use (IVDU), who presented with back pain and subsequently developed vertebral collapse. Bone culture grew Enterobacter cloacae, yet blood cultures were negative. To date, there are limited data on the prevalence of GNB osteomyelitis in IVDU and its association. Due to rising rates of IVDU, further research must be done into associated medical complications to provide comprehensive care. Moreover, the emergence of multidrug-resistant GNB strains limits the number of effective antibiotics and is expected to pose more serious public concerns in the future.
Collapse
Affiliation(s)
- Su Khine
- Internal Medicine, Hurley Medical Center, Flint, Michigan, USA
| | - Lara Rabah
- Internal Medicine, Hurley Medical Center, Flint, Michigan, USA
| | | | - Kaitlin Liroff
- Infectious Disease Department, Hurley Medical Center, Flint, Michigan, USA
| | - Ghassan Bachuwa
- Internal Medicine, Hurley Medical Center, Flint, Michigan, USA
| |
Collapse
|
15
|
Fukuzawa S, Sato T, Aoki K, Yamamoto S, Ogasawara N, Nakajima C, Suzuki Y, Horiuchi M, Takahashi S, Yokota SI. High prevalence of colistin heteroresistance in specific species and lineages of Enterobacter cloacae complex derived from human clinical specimens. Ann Clin Microbiol Antimicrob 2023; 22:60. [PMID: 37454128 DOI: 10.1186/s12941-023-00610-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Colistin (CST) is a last-line drug for multidrug-resistant Gram-negative bacterial infections. CST-heteroresistant Enterobacter cloacae complex (ECC) has been isolated. However, integrated analysis of epidemiology and resistance mechanisms based on the complete ECC species identification has not been performed. METHODS Clinical isolates identified as "E. cloacae complex" by MALDI-TOF MS Biotyper Compass in a university hospital in Japan were analyzed. Minimum inhibitory concentrations of CST were determined by the broth microdilution method. The population analysis profiling (PAP) was performed for detecting the heteroresistant phenotype. The heat shock protein 60 (hsp60) cluster was determined from its partial nucleotide sequence. From the data of whole-genome sequencing, average nucleotide identity (ANI) for determining ECC species, multilocus sequence type, core genome single-nucleotide-polymorphism-based phylogenetic analysis were performed. phoPQ-, eptA-, and arnT-deleted mutants were established to evaluate the mechanism underlying colistin heteroresistance. The arnT mRNA expression levels were determined by reverse transcription quantitative PCR. RESULTS Thirty-eight CST-resistant isolates, all of which exhibited the heteroresistant phenotype by PAP, were found from 138 ECC clinical isolates (27.5%). The prevalence of CST-resistant isolates did not significantly differ among the origin of specimens (29.0%, 27.8%, and 20.2% for respiratory, urine, and blood specimens, respectively). hsp60 clusters, core genome phylogeny, and ANI revealed that the CST-heteroresistant isolates were found in all or most of Enterobacter roggenkampii (hsp60 cluster IV), Enterobacter kobei (cluster II), Enterobacter chuandaensis (clusters III and IX), and Enterobacter cloacae subspecies (clusters XI and XII). No heteroresistant isolates were found in Enterobacter hormaechei subspecies (clusters VIII, VI, and III) and Enterobacter ludwigii (cluster V). CST-induced mRNA upregulation of arnT, which encodes 4-amino-4-deoxy-L-arabinose transferase, was observed in the CST-heteroresistant isolates, and it is mediated by phoPQ pathway. Isolates possessing mcr-9 and mcr-10 (3.6% and 5.6% of total ECC isolates, respectively) exhibited similar CST susceptibility and PAP compared with mcr-negative isolates. CONCLUSIONS Significant prevalence (approximately 28%) of CST heteroresistance is observed in ECC clinical isolates, and they are accumulated in specific species and lineages. Heteroresistance is occurred by upregulation of arnT mRNA induced by CST. Acquisition of mcr genes contributes less to CST resistance in ECC.
Collapse
Affiliation(s)
- Shota Fukuzawa
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Clinical Laboratory, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Toyotaka Sato
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan.
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Hokkaido University, International Institute for Zoonosis Control, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Guérin F, Gravey F, Reissier S, Penven M, Michaux C, Le Hello S, Cattoir V. Temocillin Resistance in the Enterobacter cloacae Complex Is Conferred by a Single Point Mutation in BaeS, Leading to Overexpression of the AcrD Efflux Pump. Antimicrob Agents Chemother 2023; 67:e0035823. [PMID: 37195180 PMCID: PMC10269110 DOI: 10.1128/aac.00358-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
The Enterobacter cloacae complex (ECC) has become a major opportunistic pathogen with antimicrobial resistance issues. Temocillin, an "old" carboxypenicillin that is remarkably stable toward β-lactamases, has been used as an alternative for the treatment of multidrug-resistant ECC infections. Here, we aimed at deciphering the never-investigated mechanisms of temocillin resistance acquisition in Enterobacterales. By comparative genomic analysis of two clonally related ECC clinical isolates, one susceptible (Temo_S [MIC of 4 mg/L]) and the other resistant (Temo_R [MIC of 32 mg/L]), we found that they differed by only 14 single-nucleotide polymorphisms, including one nonsynonymous mutation (Thr175Pro) in the two-component system (TCS) sensor histidine kinase BaeS. By site-directed mutagenesis in Escherichia coli CFT073, we demonstrated that this unique change in BaeS was responsible for a significant (16-fold) increase in temocillin MIC. Since the BaeSR TCS regulates the expression of two resistance-nodulation-cell division (RND)-type efflux pumps (namely, AcrD and MdtABCD) in E. coli and Salmonella, we demonstrated by quantitative reverse transcription-PCR that mdtB, baeS, and acrD genes were significantly overexpressed (15-, 11-, and 3-fold, respectively) in Temo_R. To confirm the role of each efflux pump in this mechanism, multicopy plasmids harboring mdtABCD or acrD were introduced into either Temo_S or the reference strain E. cloacae subsp. cloacae ATCC 13047. Interestingly, only the overexpression of acrD conferred a significant increase (from 8- to 16-fold) of the temocillin MIC. Altogether, we have shown that temocillin resistance in the ECC can result from a single BaeS alteration, likely resulting in the permanent phosphorylation of BaeR and leading to AcrD overexpression and temocillin resistance through enhanced active efflux.
Collapse
Affiliation(s)
- François Guérin
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | - François Gravey
- Normandie Université, UNICAEN, UNIROUEN, INSERM UMR 1311 DYNAMICURE, Caen, France
- Microbiology Department, CHU Caen, Caen, France
| | - Sophie Reissier
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | - Malo Penven
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| | | | - Simon Le Hello
- Normandie Université, UNICAEN, UNIROUEN, INSERM UMR 1311 DYNAMICURE, Caen, France
- Microbiology Department, CHU Caen, Caen, France
| | - Vincent Cattoir
- Department of Clinical Microbiology, Rennes University Hospital, Rennes, France
- University of Rennes, INSERM UMR 1230 BRM, Rennes, France
| |
Collapse
|
17
|
Debroy R, Ramaiah S. Translational protein RpsE as an alternative target for novel nucleoside analogues to treat MDR Enterobacter cloacae ATCC 13047: network analysis and molecular dynamics study. World J Microbiol Biotechnol 2023; 39:187. [PMID: 37150764 PMCID: PMC10164620 DOI: 10.1007/s11274-023-03634-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
The pathogenic Enterobacter cloacae subsp. cloacae str. ATCC 13047 has contemporarily emerged as a multi-drug resistant strain. To formulate an effective treatment option, alternative therapeutic methods need to be explored. The present study focused on Gene Interaction Network study of 46 antimicrobial resistance genes to reveal the densely interconnecting and functional hub genes in E. cloacae ATCC 13047. The AMR genes were subjected to clustering, topological and functional enrichment analysis, revealing rpsE (RpsE), acrA (AcrA) and arnT (ArnT) as novel therapeutic drug targets for hindering drug resistance in the pathogenic strain. Network topology further indicated translational protein RpsE to be exploited as a promising drug-target candidate for which the structure was predicted, optimized and validated through molecular dynamics simulations (MDS). Absorption, distribution, metabolism and excretion screening recognized ZINC5441082 (N-Isopentyladenosine) (Lead_1) and ZINC1319816 (cyclopentyl-aminopurinyl-hydroxymethyl-oxolanediol) (Lead_2) as orally bioavailable compounds against RpsE. Molecular docking and MDS confirmed the binding efficacy and protein-ligand complex stability. Furthermore, binding free energy (Gbind) calculations, principal component and free energy landscape analyses affirmed the predicted nucleoside analogues against RpsE protein to be comprehensively examined as a potential treatment strategy against E. cloacae ATCC 13047.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
18
|
Fu X, Du B, Meng Y, Li Y, Zhu X, Ou Z, Zhang M, Wen H, Ma'pol A, Hashim JH, Hashim Z, Wieslander G, Chen Q, Jiang J, Wang J, Norbäck D, Xia Y, Chen Q, Sun Y. Associations between environmental characteristics, high-resolution indoor microbiome, metabolome and allergic and non-allergic rhinitis symptoms for junior high school students. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:791-804. [PMID: 36883483 DOI: 10.1039/d2em00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rhinitis is one of the most prevalent chronic diseases globally. Microbiome exposure affects the occurrence of rhinitis. However, previous studies did not differentiate allergic rhinitis (AR) and non-allergic rhinitis (NAR) in the microbial association analysis. In this study, we investigate 347 students in 8 junior high schools, Terengganu, Malaysia, who were categorized as healthy (70.9%), AR (13.8%) and NAR (15.3%) based on a self-administered questionnaire and skin prick tests of pollen, pet, mould and house dust mite allergens. Classroom microbial and metabolite exposure in vacuumed dust was characterized by PacBio long-read amplicon sequencing, quantitative PCR and LC-MS-based untargeted metabolomics. Our findings indicate a similar microbial association pattern between AR and NAR. The richness in Gammaproteobacteria was negatively associated with AR and NAR symptoms, whereas total fungal richness was positively associated with AR and NAR symptoms (p < 0.05). Brasilonema bromeliae and Aeromonas enteropelogenes were negatively associated with AR and NAR, and Deinococcus was positively associated with AR and NAR (p < 0.01). Pipecolic acid was protectively associated with AR and NAR symptoms (OR = 0.06 and 0.13, p = 0.009 and 0.045). A neural network analysis showed that B. bromeliae was co-occurring with pipecolic acid, suggesting that the protective role of this species may be mediated by releasing pipecolic acid. Indoor relative humidity and the weight of vacuum dust were associated with AR and NAR, respectively (p < 0.05), but the health effects were mediated by two protective bacterial species, Aliinostoc morphoplasticum and Ilumatobacter fluminis. Overall, our study reported a similar microbial association pattern between AR and NAR and also revealed the complex interactions between microbial species, environmental characteristics, and rhinitis symptoms.
Collapse
Affiliation(s)
- Xi Fu
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Bingqian Du
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Yi Meng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yanling Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xunhua Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zheyuan Ou
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Huarong Wen
- Baling Health Center, Dangyang, Hubei, 444100, PR China
| | - Aminnuddin Ma'pol
- Gombak District Health Office, Ministry of Health, Batu Caves, Selangor Darul Ehsan, Malaysia
| | | | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang, Selangor, Malaysia
| | - Gunilla Wieslander
- Occupational and Environmental Medicine, Department of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Qingmei Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Juan Wang
- Occupational and Environmental Medicine, Department of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Dan Norbäck
- Occupational and Environmental Medicine, Department of Medical Science, University Hospital, Uppsala University, 75237 Uppsala, Sweden
| | - Yun Xia
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Qingsong Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
19
|
García Cardona C, Bernaus Johnson MC, Martínez Ros J, Hernández-Gonzalez N, Auñon Rubio Á, Anglès Crespo F, Arteagoitia-Colino I, Coifman-Lucena I, Esteban-Moreno J, Moral Escudero E, Gómez García L, Nóvoa Martínez R, Ortega Columbrans A, Veloso Duran M, Font-Vizcarra L. Enterobacter cloacae Infection After Surgical Treatment of Ankle Fractures, a Multicenter Observational Study. Foot Ankle Int 2023; 44:424-430. [PMID: 36923994 DOI: 10.1177/10711007231157688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Infection is one of the challenging complications after open reduction and internal fixation for ankle fractures. Previously published case series conclude that Staphylococcus aureus is the most frequent causative microorganism. An unexpected increase in Enterobacter cloacae infections after this surgery was observed in a preliminary analysis of data at the promoting center of the study. In traumatology, its incidence has been reported in chronic osteomyelitis, prosthetic infections, septic osteoarthritis, open fractures in children and adults, and fractures other than the ankle. Because of this unexpected finding, we decided to perform this study to analyze the demographic and microbiological variables of acute osteosynthesis infection after ankle fracture and determine the distinctive features of the patients with E cloacae infection. METHODS We performed a retrospective multicenter study including 4 university hospitals. All patients diagnosed with acute osteosynthesis infection after ankle fracture fixation between January 2015 and December 2018 were included. We analyzed demographic data, type of fracture, surgical technique, and microorganisms responsible for the infection. We performed a descriptive statistical analysis of the variables. Univariate and multivariate regression analysis were performed to compare patients with E cloacae infection to patients with infection caused by other microorganisms. RESULTS A total of 65 patients were included. A predominance of polymicrobial infections (24.62%), followed by infections caused by S aureus (23.07%) and E cloacae (23.07%) was observed. When E cloacae isolated in polymicrobial infections were added, the incidence of E cloacae as a causative microorganism increased to 32.3%. Patients with E cloacae infection were older (64/53, P = .008) and had a higher requirement of negative-pressure therapy after surgical debridement (71%/40%, P = .017). CONCLUSION A high incidence of E cloacae infections was observed. Patients with E cloacae infection were generally older and required a higher use of negative-pressure therapy after debridement. LEVEL OF EVIDENCE Level V, mechanism-based reasoningr.
Collapse
Affiliation(s)
- Carlos García Cardona
- Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Martí Carles Bernaus Johnson
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Javier Martínez Ros
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Nerea Hernández-Gonzalez
- Department of Orthopedics and Traumatology, Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - Álvaro Auñon Rubio
- Department of Orthopedics and Traumatology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Francesc Anglès Crespo
- Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Iraia Arteagoitia-Colino
- Department of Orthopedics and Traumatology, Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - Ismael Coifman-Lucena
- Department of Orthopedics and Traumatology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Jaime Esteban-Moreno
- Department of Microbiology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Encarnación Moral Escudero
- Osteoarticular Infection Unit, Department of Infectious Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Lucía Gómez García
- Osteoarticular Infection Unit, Department of Infectious Diseases, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Ricardo Nóvoa Martínez
- Department of Orthopedics and Traumatology, Hospital Universitario de Cruces, Barakaldo, Bizkaia, Spain
| | - Ana Ortega Columbrans
- Department of Orthopedics and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Margarita Veloso Duran
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Lluís Font-Vizcarra
- Osteoarticular Infection Unit, Department of Orthopedics and Traumatology, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain
| |
Collapse
|
20
|
Merhi G, Amayri S, Bitar I, Araj GF, Tokajian S. Whole Genome-Based Characterization of Multidrug Resistant Enterobacter and Klebsiella aerogenes Isolates from Lebanon. Microbiol Spectr 2023; 11:e0291722. [PMID: 36651778 PMCID: PMC9927356 DOI: 10.1128/spectrum.02917-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Enterobacter spp. and Klebsiella aerogenes are rod-shaped Gram-negative opportunistic pathogens. This study aimed at the molecular and genomic characterization of multidrug resistant Enterobacter spp. and K. aerogenes isolates recovered from hospitalized patients in a tertiary care hospital in Lebanon. A total of 59 Enterobacter spp. clinical isolates consisting of 41 carbapenem-resistant and 18 susceptible by Etest were included in this study. Genotypic identification through whole-genome sequencing (WGS) was performed and confirmed in silico. Resistance and plasmid profiles were studied using ResFinder4.0 and Plasmid-Finder2.1. Multilocus sequence typing (MLST) was used to determine the isolates' clonality. Using the average nucleotide identity (ANI) we identified and confirmed that 47 (80%) isolates were E. hormaechei, 11 (18%) were Klebsiella aerogenes and 1 (2%) was an E. cloacae. Carbapenem-resistance was detected among 41 isolates all showing an MIC90 of ≥ 32 μg/mL for ertapenem, imipenem, and meropenem. blaNDM-1 (58.5%), blaACT-16 (54%), and blaOXA-1 (54%) were the most common detected β-lactamases, while blaCTX-M-15 (68%) was the main detected extended-spectrum β-lactamase (ESBL) encoding gene. Chromosomal ampC, carbapenemase encoding genes, and porin modifications were among the detected carbapenem resistance determinants. The carbapenemase encoding genes were linked to three well-defined plasmid Inc groups, IncFII/IncFIB, IncX3, and IncL. MLST typing revealed the diversity within the studied isolates, with ST114 being the most common among the studied E. hormaechei.: The spread of carbapenem-resistant isolates in clinical settings in Lebanon is a serious challenge. Screening and continuous monitoring through WGS analysis could effectively limit the dissemination of drug-resistant isolates in hospitalized patients. IMPORTANCE Drug resistance is an increasing global public health threat that involves most disease-causing organisms and antimicrobial drugs. Drug-resistant organisms spread in health care settings, and resistance to multiple drugs is common. Our study demonstrated the mechanisms leading to resistance against the last resort antimicrobial agents among members of the Enterobacteriaceae family. The spread of carbapenem-resistant bacteria in clinical settings is a serious challenge. Screening and continuous monitoring could effectively limit the dissemination of drug-resistant isolates in hospitalized patients.
Collapse
Affiliation(s)
- Georgi Merhi
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Sara Amayri
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - George F. Araj
- Department of Pathology & Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
21
|
Hafiz TA, Albloshi A, Alhumaidan OS, Mubaraki MA, Alyami AS, Alrashoudi R, Alrabiah MA, Alotaibi F. The Epidemiological Pattern, Resistance Characteristics and Clinical Outcome of Enterobacter cloacae: Recent Updates and Impact of COVID-19 Pandemic. Healthcare (Basel) 2023; 11:healthcare11030312. [PMID: 36766887 PMCID: PMC9914498 DOI: 10.3390/healthcare11030312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES E. cloacae is an opportunistic organism that causes serious infections, particularly in immuno-compromised and hospitalized patients, along with the emergence of resistance traits. The COVID-19 pandemic has impacted the epidemiological pattern and resistance traits of E. cloacae infections as well as those of other bacteria. The study aims to assess the epidemiological patterns, resistance characteristics and clinical outcomes of E. cloacae in Saudi Arabia and the impact of the COVID-19 pandemic. METHODS King Fahad Medical City in Riyadh provided the data between January 2019 and December 2021 for the retrospective study of 638 isolates of E. cloacae. The clinical outcome of an E. cloacae infection was also determined by collecting and statistically analyzing the clinical records of 153 ICU patients. RESULTS The total percentage of resistant E. cloacae isolates decreased from 48.36% in 2019 to 38% in 2020 and 37.6% in 2021. The overall mortality rate among ICU patients was 40.5%, with an adult age group having a substantial relative risk value of 1.37. CONCLUSION E. cloacae is a prevalent nosocomial infection in which adult age is a significant risk factor for mortality. Moreover, this study emphasizes the importance of comparing E. cloacae resistance trends before and throughout the pandemic period in order to better understand the bacteria's behaviour.
Collapse
Affiliation(s)
- Taghreed A. Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence:
| | - Alaa Albloshi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ohoud S. Alhumaidan
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Murad A. Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed S. Alyami
- Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Reem Alrashoudi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mona A. Alrabiah
- Microbiology and Immunology Department, King Khaled University Hospital, Riyadh 12372, Saudi Arabia
| | - Fawzia Alotaibi
- Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
22
|
Vargas JM, Moreno Mochi MP, Nuñez JM, Mochi S, Cáceres M, Del Campo R, Jure MA. Emergence and clonal spread of KPC-2-producing clinical Klebsiella aerogenes isolates in a hospital from northwest Argentina. J Med Microbiol 2023; 72. [PMID: 36748600 DOI: 10.1099/jmm.0.001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction. Klebsiella aerogenes is a nosocomial pathogen associated with drug resistance and healthcare-associated infections.Gap Statement. K. aerogenes is associated with hospital-acquired infections with the ability to acquire mechanisms of resistance to reserve antimicrobials; its clinical behaviour has been poorly documented.Objective. We proposed to investigate an outbreak of carbapenem-resistant K. aerogenes in a hospital that persisted for 4 months.Methods. The primary aim was to evaluate the molecular characteristics and the clonal relationships among the isolates. We characterized isolates by polymerase chain reaction (PCR) and pulsed-field gel electrophoresis (PFGE). The information was integrated with clinical and epidemiological data.Results. Fourteen strains were disseminated in an intensive care unit and different wards at the hospital. The overall mortality was 42.8 %, and mortality attributed to infection was 21.4 %; strains showed high rates of resistance to most of the antimicrobials tested and carried bla KPC-2, bla SHV-2 and bla CTXM-15 genes. PFGE analysis indicated 2 PFGE groups; 12/14 isolates were associated with subgroup A and were likely to be primarily responsible for the first isolation and subsequent dissemination. The outbreak characteristics data showed prolonged hospitalization and previous use of antibiotics as potential risk factors.Conclusion. We consider that it is essential to perform phenotypic and genotypic identification of early genetic resistance mechanisms in K. aerogenes isolates, not only from infection sites but also from colonization, to prevent the spread of these multidrug-resistant (MDR) isolates.
Collapse
Affiliation(s)
- Juan Martín Vargas
- LABACER, Institute of Microbiology 'Luis C. Verna', Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| | - Maria Paula Moreno Mochi
- LABACER, Institute of Microbiology 'Luis C. Verna', Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| | | | | | | | - Rosa Del Campo
- Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, España
| | - María Angela Jure
- LABACER, Institute of Microbiology 'Luis C. Verna', Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman, Argentina
| |
Collapse
|
23
|
Ganbold M, Seo J, Wi YM, Kwon KT, Ko KS. Species identification, antibiotic resistance, and virulence in Enterobacter cloacae complex clinical isolates from South Korea. Front Microbiol 2023; 14:1122691. [PMID: 37032871 PMCID: PMC10076837 DOI: 10.3389/fmicb.2023.1122691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
This study aimed to identify the species of Enterobacter cloacae complex (ECC) isolates and compare the genotype, antibiotic resistance, and virulence among them. A total of 183 ECC isolates were collected from patients in eight hospitals in South Korea. Based on partial sequences of hsp60 and phylogenetic analysis, all ECC isolates were identified as nine species and six subspecies. Enterobacter hormaechei was the predominant species (47.0%), followed by Enterobacter kobei, Enterobacter asburiae, Enterobacter ludiwigii, and Enterobacter roggenkampii. Multilocus sequence typing analysis revealed that dissemination was not limited to a few clones, but E. hormaechei subsp. xiangfangensis, E. hormaechei subsp. steigerwaltii, and E. ludwigii formed large clonal complexes. Antibiotic resistance rates were different between the ECC species. In particular, E. asburiae, E. kobei, E. roggenkampii, and E. cloacae isolates were highly resistant to colistin, whereas most E. hormaechei and E. ludwigii isolates were susceptible to colistin. Virulence was evaluated through serum bactericidal assay and the Galleria mellonella larvae infection model. Consistency in the results between the serum resistance and the G. mellonella larvae infection assay was observed. Serum bactericidal assay showed that E. hormaechei, E. kobei, and E. ludwigii were significantly more virulent than E. asburiae and E. roggenkampii. In this study, we identified the predominant ECC species in South Korea and observed the differences in antibiotic resistance and virulence between the species. Our findings suggest that correct species identification, as well as continuous monitoring is crucial in clinical settings.
Collapse
Affiliation(s)
- Michidmaral Ganbold
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jungyu Seo
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Yu Mi Wi
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Ki Tae Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- *Correspondence: Kwan Soo Ko,
| |
Collapse
|
24
|
Li B, Zhang J, Li X. A comprehensive description of the TolC effect on the antimicrobial susceptibility profile in Enterobacter bugandensis. Front Cell Infect Microbiol 2022; 12:1036933. [PMID: 36569193 PMCID: PMC9780596 DOI: 10.3389/fcimb.2022.1036933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Enterobacter bugandensis is an emerging human pathogen in which multidrug resistant strains have been continuously isolated from various environments. Thus, this organism possesses the potential to pose challenges in human healthcare. However, the mechanisms, especially the efflux pumps, responsible for the multidrug resistance in E. bugandensis remain to be well elucidated. Methods The Enterobacter strain CMCC(B) 45301 was specifically identified using whole genome sequencing. The specific CMCC(B) 45301 homologues of the TolC dependent efflux-pump genes characterized in Escherichia coli were identified. The tolC deletion mutant in CMCC(B) 45301 was constructed and subjected to susceptibility tests using 26 different antimicrobial agents, along with the wild type strain. The synergistic effects combining the Bacillus crude extract (BCE) and several other TolC-affected compounds against CMCC(B) 45301 were assayed. Results We reclassified the Enterobacter CMCC(B) 45301 strain from species cloacae to bugandensis, on the basis of its whole genome sequence. We found that the CMCC(B) 45301 TolC, AcrAB, AcrD, AcrEF, MdtABC, EmrAB, and MacAB exhibit high similarity with their respective homologues in E. coli and Enterobacter cloacae. Our results for the susceptibility tests revealed that lacking tolC causes 4- to 256-fold decrease in the minimal inhibitory concentrations of piperacillin, gentamicin, kanamycin, tetracycline, norfloxacin, ciprofloxacin, chloramphenicol, and erythromycin against CMCC(B) 45301. In addition, the inhibition zones formed by cefuroxime, cefoperazone, amikacin, streptomycin, minocycline, doxycycline, levofloxacin, florfenicol, trimethoprim-sulfamethoxazole, azithromycin, lincomycin, and clindamycin for the tolC mutant were larger or more obvious than that for the parent. Our data suggested the important role played by TolC in CMCC(B) 45301 susceptibility to common antibiotic families covering ß-lactam, aminoglycoside, tetracycline, fluoroquinolone, phenicol, folate pathway antagonist, macrolide, and lincosamide. Deletion for tolC also increased the susceptibility of CMCC(B) 45301 to berberine hydrochloride and BCE, two natural product-based agents. Finally, we found that erythromycin, norfloxacin, and ciprofloxacin can potentiate the antibacterial activity of BCE against CMCC(B) 45301. Discussion The present study elaborated the comprehensive TolC effect on the antimicrobial susceptibility profile in E. bugandensis, which might contribute to the development of more therapeutic options against this nosocomial pathogen.
Collapse
Affiliation(s)
- Bingyu Li
- Health Science Center, Shenzhen University, Shenzhen, Guangdong, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| | - Ji Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China,Research and Development Center, Panjin Guanghe Crab Industry Co., Ltd., Panjin, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| |
Collapse
|
25
|
Almuhayawi MS, Al Jaouni SK, Selim S, Alkhalifah DHM, Marc RA, Aslam S, Poczai P. Integrated Pangenome Analysis and Pharmacophore Modeling Revealed Potential Novel Inhibitors against Enterobacter xiangfangensis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214812. [PMID: 36429532 PMCID: PMC9691136 DOI: 10.3390/ijerph192214812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/02/2023]
Abstract
Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there is currently no registered E. xiangfangensis drug on the market that has been shown to be effective. Hence, there is an urgent need to identify novel therapeutic targets and effective treatments for E. xiangfangensis. In the current study, a bacterial pan genome analysis and subtractive proteomics approach was employed to the core proteomes of six strains of E. xiangfangensis using several bioinformatic tools, software, and servers. However, 2611 nonredundant proteins were predicted from the 21,720 core proteins of core proteome. Out of 2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins. After the subtractive proteomics and subcellular localization analysis, only 133 proteins were found in cytoplasm. All cytoplasmic proteins were examined using BLASTp against the virulence factor database, which classifies 20 therapeutic targets as virulent. Out of these 20, 3 cytoplasmic proteins: ferric iron uptake transcriptional regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as potential drug targets. These drug targets are important for bacterial survival, virulence, and growth and could be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly dock these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin demonstrated optimum binding against all three target proteins. Furthermore, molecular dynamics simulations and MM/GBSA analyses validated the stability of ligand-protein complexes and revealed that these compounds could serve as potential E. xiangfangensis replication inhibitors. Consequently, this study marks a significant step forward in the creation of new and powerful drugs against E. xiangfangensis. Future studies should validate these targets experimentally to prove their function in E. xiangfangensis survival and virulence.
Collapse
Affiliation(s)
- Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănă ¸stur Street, 400372 Cluj-Napoca, Romania
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Punjab 38000, Pakistan
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland
| |
Collapse
|
26
|
Exploring Cluster-Dependent Antibacterial Activities and Resistance Pathways of NOSO-502 and Colistin against Enterobacter cloacae Complex Species. Antimicrob Agents Chemother 2022; 66:e0077622. [PMID: 36200761 DOI: 10.1128/aac.00776-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Enterobacter cloacae complex (ECC) is a group of diverse environmental and clinically relevant bacterial species associated with a variety of infections in humans. ECC have emerged as one of the leading causes of nosocomial infections worldwide. The purpose of this paper is to evaluate the activity of NOSO-502 and colistin (CST) against a panel of ECC clinical isolates, including different Hoffmann's clusters strains, and to investigate the associated resistance mechanisms. NOSO-502 is the first preclinical candidate of a novel antibiotic class, the odilorhabdins (ODLs). MIC50 and MIC90 of NOSO-502 against ECC are 1 μg/mL and 2 μg/mL, respectively, with a MIC range from 0.5 μg/mL to 32 μg/mL. Only strains belonging to clusters XI and XII showed decreased susceptibility to both NOSO-502 and CST while isolates from clusters I, II, IV, and IX were only resistant to CST. To understand this phenomenon, E. cloacae ATCC 13047 from cluster XI was chosen for further study. Results revealed that the two-component system ECL_01761-ECL_01762 (ortholog of CrrAB from Klebsiella pneumoniae) induces NOSO-502 hetero-resistance by expression regulation of the ECL_01758 efflux pump component (ortholog of KexD from K. pneumoniae) which could compete with AcrB to work with the multidrug efflux pump proteins AcrA and TolC. In E. cloacae ATCC 13047, CST-hetero-resistance is conferred via modification of the lipid A by addition of 4-amino-4-deoxy-l-arabinose controlled by PhoPQ. We identified that the response regulator ECL_01761 is also involved in this resistance pathway by regulating the expression of the ECL_01760 membrane transporter.
Collapse
|
27
|
Laidoudi Y, Ngaiganam EP, Marié JL, Pagnier I, Rolain JM, Mouhamadou Diene S, Davoust B. Colistin Resistance Mechanism in Enterobacter hormaechei subsp. steigerwaltii Isolated from Wild Boar (Sus scrofa) in France. Pathogens 2022; 11:pathogens11091022. [PMID: 36145454 PMCID: PMC9504195 DOI: 10.3390/pathogens11091022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Wild animals may act as efficient antimicrobial-resistance reservoirs and epidemiological links between humans, livestock, and natural environments. By using phenotypic and genotypic characterization, the present study highlighted the occurrence of an antimicrobial-resistant (i.e., amoxicillin, amoxicillin–clavulanic acid, cephalothin, and colistin) Enterobacter hormaechei subsp. steigerwaltii strain in wild boar (Sus scrofa) from France. The molecular analysis conducted showed non-synonymous mutations in the pmrA/pmrB and phoQ/phoP operons and the phoP/Q regulator mgrB gene, leading to colistin resistance. The present data highlight the need for continuous monitoring of multidrug-resistant bacteria in wild animals to limit the spread of these threatening pathogens.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Edgarthe Priscilla Ngaiganam
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jean-Lou Marié
- Animal Epidemiology Expert Group, French Military Health Service, 37076 Tours, France
| | - Isabelle Pagnier
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Seydina Mouhamadou Diene
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Bernard Davoust
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
- Animal Epidemiology Expert Group, French Military Health Service, 37076 Tours, France
- Correspondence:
| |
Collapse
|
28
|
Rajarajan M, Madduri B, Mohan N, Fernandes M. Enterobacter cloacae Keratitis: Clinicomicrobiological Profiles, Risk Factors, and Outcomes. Cornea 2022; 41:1110-1115. [PMID: 35587442 DOI: 10.1097/ico.0000000000003036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of the study was to report the clinical features, risk factors, antibiotic susceptibility, and treatment outcomes in a series of Enterobacter cloacae keratitis. METHODS A retrospective analysis was performed of the electronic medical records of microbial keratitis caused by E. cloacae identified by the Vitek 2 system (BioMerieux, Craponne, France). We collected data pertaining to demographics, risk factors, ulcer characteristics, antibiogram, visual acuity at presentation and final follow-up, and management outcome. The main outcome measure was resolution of infection. The final visual acuity was the secondary outcome measure. RESULTS Ten episodes of E. cloacae keratitis in 9 patients were identified between January 2009 and December 2019. Nine (90%) cases had undergone penetrating keratoplasty and 8 were failed grafts. Other risk factors included topical steroid use and irregular ocular surface due to epithelial bullae. The mean ulcer size was 17.55 ± 13.99 mm 2 . More than 80% of isolates were sensitive to chloramphenicol, gentamicin, and colistin. Nine (90%) cases healed on medical management within 56.55 ± 26.74 days (range 9-120 d), although almost all required adjunctive procedures: tissue adhesive application (n = 6) and/or tarsorrhaphy (n = 4). One case with a near total infiltrate had a mixed infection with Kocuria kristinae requiring therapeutic penetrating keratoplasty. One case developed endophthalmitis and phthisis after the corneal infiltrate resolved. CONCLUSIONS E. cloacae keratitis is a rare clinical entity seen more often in immunocompromised host conditions such as failed corneal transplants with concomitant topical steroids. Most cases healed with medical management.
Collapse
Affiliation(s)
- Mugundhan Rajarajan
- Cornea and Anterior Segment Service, The Cornea Institute, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India; and
| | - Bhagyasree Madduri
- Ocular Microbiology Service, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India
| | - Nitin Mohan
- Ocular Microbiology Service, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India
| | - Merle Fernandes
- Cornea and Anterior Segment Service, The Cornea Institute, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India; and
| |
Collapse
|
29
|
Zandi R, Talebi S, Sheibani S, Ehsani A. Klebsiella pneumoniae and Enterobacter cloacae Induced Septic Arthritis in a Healthy Adolescent: A Rare Case Report. Hip Pelvis 2022; 34:185-190. [PMID: 36299475 PMCID: PMC9577308 DOI: 10.5371/hp.2022.34.3.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 11/07/2022] Open
Abstract
Septic arthritis (SA) is a joint inflammation that develops secondary to infectious causes. SA in children is associated with a high rate of morbidity and mortality; therefore, it is regarded as an orthopedic emergency. Because SA of the hip joint usually mimics other musculoskeletal diseases, diagnosis remains challenging. Although this lesion usually shows a good outcome, treatment at an inappropriate time, neglect, or inadequate treatment could lead to poor outcomes. We report on the case of a healthy adolescent who complained of episodes of fever and chills, weight loss, pain in his left hip, and limping. After performing necessary workups, two differential diagnoses of tumor and SA were made. The results of Gram stain and culture of the synovial fluid after surgical excision showed Klebsiella pneumoniae and Enterobacter cloacae complex. To the best of our knowledge, this is the first report of SA due to co-infection with K. pneumoniae and E. cloacae in a healthy patient.
Collapse
Affiliation(s)
- Reza Zandi
- Department of Orthopedic Surgery, Taleghani Hospital Research Development Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Talebi
- Department of Orthopedic Surgery, Taleghani Hospital Research Development Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Sheibani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Akbar Ehsani
- Department of Orthopedic Surgery, Taleghani Hospital Research Development Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Alzarea SI. Identification and construction of a multi-epitopes vaccine design against Klebsiella aerogenes: molecular modeling study. Sci Rep 2022; 12:14402. [PMID: 36002561 PMCID: PMC9399595 DOI: 10.1038/s41598-022-18610-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
A rapid rise in antibiotic resistance by bacterial pathogens is due to these pathogens adaptation to the changing environmental conditions. Antibiotic resistance infections can be reduced by a number of ways such as development of safe and effective vaccine. Klebsiella aerogene is a gram-negative, rod-shaped bacterium resistant to a variety of antibiotics and no commercial vaccine is available against the pathogen. Identifying antigens that can be easily evaluated experimentally would be crucial to successfully vaccine development. Reverse vaccinology (RV) was used to identify vaccine candidates based on complete pathogen proteomic information. The fully sequenced proteomes include 44,115 total proteins of which 43,316 are redundant and 799 are non-redundant. Subcellular localization showed that only 1 protein in extracellular matrix, 7 were found in outer-membrane proteins, and 27 in the periplasm space. A total of 3 proteins were found virulent. Next in the B-cell-derived T-cell epitopes mapping phase, the 3 proteins (Fe2+- enterobactin, ABC transporter substrate-binding protein, and fimbriae biogenesis outer membrane usher protein) were tested positive for antigenicity, toxicity, and solubility. GPGPG linkers were used to prepare a vaccine construct composed of 7 epitopes and an adjuvant of toxin B subunit (CTBS). Molecular docking of vaccine construct with major histocompatibility-I (MHC-I), major histocompatibility-II (MHC-II), and Toll-like receptor 4 (TLR4) revealed vaccine robust interactions and stable binding pose to the receptors. By using molecular dynamics simulations, the vaccine-receptors complexes unveiled stable dynamics and uniform root mean square deviation (rmsd). Further, binding energies of complex were computed that again depicted strong intermolecular bindings and formation of stable conformation.
Collapse
Affiliation(s)
- Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia.
| |
Collapse
|
31
|
Yao Y, Doijad S, Falgenhauer J, Schmiedel J, Imirzalioglu C, Chakraborty T. Co-occurrence of dual carbapenemases KPC-2 and OXA-48 with the mobile colistin resistance gene mcr-9.1 in Enterobacter xiangfangensis. Front Cell Infect Microbiol 2022; 12:960892. [PMID: 36061873 PMCID: PMC9428693 DOI: 10.3389/fcimb.2022.960892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial infections with the genus Enterobacter are notoriously difficult to treat and often associated with resistance to penicillin, aminoglycosides, fluoroquinolones, and third-generation cephalosporins. Also, Enterobacter species have emerged as the third most common hosts for carbapenemases worldwide, forcing the use of colistin as a “last-resort” antibiotic for the treatment. Studies on the population structure of the genus Enterobacter repeatedly detect E. xiangfangensis as a common clinical species present worldwide. Here, we report on the characteristics of an extreme drug-resistant E. xiangfangensis isolate va18651 (ST88), obtained from a cervical swab of an expectant mother. The isolate was resistant to almost all the classes of antibiotics tested, including β-lactams (viz., penicillins, carbapenems, cephalosporin, monobactams, and their combinations), quinolone, aminoglycosides, and sulfonamide/dihydrofolate reductase inhibitor, and exhibited heteroresistance towards colistin. Analysis of its complete genome sequence revealed 37 antibiotic resistance genes (ARGs), including mcr-9.1, blaKPC-2, and blaOXA-48, encoded on three of the four different plasmids (cumulative plasmidome size 604,632 bp). An unusually high number of plasmid-based heavy metal resistance gene (HRG) clusters towards silver, arsenate, cadmium, copper, mercury, and tellurite were also detected. Virulence genes (VGs) for the lipopolysaccharide and capsular polysaccharide structures, iron acquisition (iroBCDEN, ent/fep/fes, sitABCD, iut, and fur), and a type VI secretion system, together with motility genes and Type IV pili, were encoded chromosomally. Thus, a unique combination of chromosomally encoded VGs, together with plasmid-encoded ARGs and HRGs, converged to result in an extreme drug-resistant, pathogenic isolate with survival potential in environmental settings. The use of a disinfectant, octenidine, led to its eradication; however, the existence of a highly antibiotic-resistant isolate with significant virulence potential is a matter of concern in public health settings and warrants further surveillance for extreme drug-resistant Enterobacter isolates.
Collapse
Affiliation(s)
- Yancheng Yao
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Swapnil Doijad
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Jane Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
| | - Judith Schmiedel
- Institute of Medical Microbiology, University Hospital Giessen, Giessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
- Institute of Medical Microbiology, University Hospital Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus-Liebig University Giessen, Giessen, Germany
- Institute of Medical Microbiology, University Hospital Giessen, Giessen, Germany
- *Correspondence: Trinad Chakraborty,
| |
Collapse
|
32
|
Dey S, Shahrear S, Afroj Zinnia M, Tajwar A, Islam ABMMK. Functional Annotation of Hypothetical Proteins From the Enterobacter cloacae B13 Strain and Its Association With Pathogenicity. Bioinform Biol Insights 2022; 16:11779322221115535. [PMID: 35958299 PMCID: PMC9358594 DOI: 10.1177/11779322221115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022] Open
Abstract
Enterobacter cloacae B13 strain is a rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. It can cause respiratory and urinary tract infections, and is responsible for several outbreaks in hospitals. E. cloacae has become an important pathogen and an emerging global threat because of its opportunistic and multidrug resistant ability. However, little knowledge is present about a large portion of its proteins and functions. Therefore, functional annotation of the hypothetical proteins (HPs) can provide an improved understanding of this organism and its virulence activity. The workflow in the study included several bioinformatic tools which were utilized to characterize functions, family and domains, subcellular localization, physiochemical properties, and protein-protein interactions. The E. cloacae B13 strain has overall 604 HPs, among which 78 were functionally annotated with high confidence. Several proteins were identified as enzymes, regulatory, binding, and transmembrane proteins with essential functions. Furthermore, 23 HPs were predicted to be virulent factors. These virulent proteins are linked to pathogenesis with their contribution to biofilm formation, quorum sensing, 2-component signal transduction or secretion. Better knowledge about the HPs’ characteristics and functions will provide a greater overview of the proteome. Moreover, it will help against E. cloacae in neonatal intensive care unit (NICU) outbreaks and nosocomial infections.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sazzad Shahrear
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Ahnaf Tajwar
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
33
|
Liu H, Wang D, Tang M, Jia P, Huo Y, Wei E, Xu H, Chi X, Wang H. Genetic Characterization of Enterobacter hormaechei Co-Harboring blaNDM-1 and mcr-9 Causing Upper Respiratory Tract Infection. Infect Drug Resist 2022; 15:5035-5042. [PMID: 36068833 PMCID: PMC9441144 DOI: 10.2147/idr.s367073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose With the spread of multiple drug-resistant bacteria, blaNDM-1 and mcr-9 have been detected in various bacteria worldwide. However, the simultaneous detection of blaNDM-1 and mcr-9 in Enterobacter hormaechei has been rarely reported. This study identified an E. hormaechei strain carrying both blaNDM-1 and mcr-9. We investigated the genetic characteristics of these two resistance genes in detail, elucidating various potential mechanisms by which they may be transmitted. Methods Bacterial genomic features and possible origins were assessed by whole-genome sequencing (WGS) with Illumina and PacBio platforms and phylogenetic analysis. Subsequent investigations were performed, including antimicrobial susceptibility testing and multilocus sequence typing (MLST). Results We isolated an E. hormaechei strain DY1901 carrying both blaNDM-1 and mcr-9 from the sputum sample. Susceptibility testing showed that the isolate was multidrug-resistant. Multiple antibiotic resistance genes and virulence genes are widely distributed in DY1901. S1-PFGE, Southern blotting, and plasmid replicon typing showed that DY1901 carried four plasmids. The plasmid carrying mcr-9 was 259Kb in size and belonged to IncHI2, while the plasmid carrying blaNDM-1 was 45Kb in length and belonged to IncX3. Conclusion The E. hormaechei strain isolated in this study has a broad antibiotic resistance spectrum, posing a challenge to clinical treatment. Plasmids carrying mcr-9 are fusion plasmids, and those taking NDM are widely disseminated in China, suggesting that we should conduct routine genomic surveillance on such plasmids to curb the spread of drug-resistant bacteria in the region.
Collapse
Affiliation(s)
- Huiqiong Liu
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Dao Wang
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Miaomiao Tang
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Peisheng Jia
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Yufeng Huo
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Erhu Wei
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Huaili Wang
- Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Correspondence: Huaili Wang, Department of Pediatric Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, No. 1 Longhu East Zhonghuan Road, Zhengzhou, 450052, People’s Republic of China, Tel +86-371-66271057, Email
| |
Collapse
|
34
|
Genome Analysis of Enterobacter asburiae and Lelliottia spp. Proliferating in Oligotrophic Drinking Water Reservoirs and Lakes. Appl Environ Microbiol 2022; 88:e0047122. [PMID: 35862664 PMCID: PMC9317948 DOI: 10.1128/aem.00471-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Surface waters are one of the main sources for drinking water production, and thus microbial contamination should be as minimal as possible. However, high concentrations of coliform bacteria were detected in reservoirs and lakes used for drinking water production during summer months due to autochthonous proliferation processes. Here, we present the genomic analyses of 17 strains of Enterobacter asburiae and Lelliottia spp. proliferating in reservoirs and lakes with special focus on the hygienic relevance, antibiotic resistance, and adaptations to the oligotrophic environments. The genomes contain neither genes for the type III secretion system nor cytotoxins or hemolysins, which are considered typical virulence factors. Examination of antibiotic resistance genes revealed mainly efflux pumps and β-lactamase class C (ampC) genes. Phenotypically, single isolates of Enterobacter asburiae showed resistance to fosfomycin and ceftazidime. The genome analyses further suggest adaptations to oligotrophic and changing environmental conditions in reservoirs and lakes, e.g., genes to cope with low nitrate and phosphate levels and the ability to utilize substances released by algae, like amino acids, chitin, alginate, rhamnose, and fucose. This leads to the hypothesis that the proliferation of the coliform bacteria could occur at the end of summer due to algae die-off. IMPORTANCE Certain strains of coliform bacteria have been shown to proliferate in the oligotrophic water of drinking water reservoirs and lakes, reaching values above 104 per 100 mL. Such high concentrations challenge drinking water treatment, and occasionally the respective coliform bacteria have been detected in the treated drinking water. Thus, the question of their hygienic relevance is of high importance for water suppliers and authorities. Our genomic analyses suggest that the strains are not hygienically relevant, as typical virulence factors are absent and antibiotic resistance genes in the genomes most likely are of natural origin. Furthermore, their presence in the water is not related to fecal contamination. The proliferation in reservoirs and lakes during stable summer stratification is an autochthonic process of certain E. asburiae and Lelliottia strains that are well adapted to the surrounding oligotrophic environment.
Collapse
|
35
|
Guo L, Guan Q, Duan W, Ren Y, Zhang XJ, Xu HY, Shi JS, Wang FZ, Lu R, Zhang HL, Xu ZH, Li H, Geng Y. Dietary Goji Shapes the Gut Microbiota to Prevent the Liver Injury Induced by Acute Alcohol Intake. Front Nutr 2022; 9:929776. [PMID: 35898713 PMCID: PMC9309278 DOI: 10.3389/fnut.2022.929776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diet is a major driver of the structure and function of the gut microbiota, which influences the host physiology. Alcohol abuse can induce liver disease and gut microbiota dysbiosis. Here, we aim to elucidate whether the well-known traditional health food Goji berry targets gut microbiota to prevent liver injury induced by acute alcohol intake. The results showed that Goji supplementation for 14 days alleviated acute liver injury as indicated by lowering serum aspartate aminotransferase, alanine aminotransferase, pro-inflammatory cytokines, as well as lipopolysaccharide content in the liver tissue. Goji maintained the integrity of the epithelial barrier and increased the levels of butyric acid in cecum contents. Furthermore, we established the causal relationship between gut microbiota and liver protection effects of Goji with the help of antibiotics treatment and fecal microbiota transplantation (FMT) experiments. Both Goji and FMT-Goji increased glutathione (GSH) in the liver and selectively enriched the butyric acid-producing gut bacterium Akkermansia and Ruminococcaceae by using 16S rRNA gene sequencing. Metabolomics analysis of cecum samples revealed that Goji and its trained microbiota could regulate retinoyl β-glucuronide, vanillic acid, and increase the level of glutamate and pyroglutamic acid, which are involved in GSH metabolism. Our study highlights the communication among Goji, gut microbiota, and liver homeostasis.
Collapse
Affiliation(s)
- Lin Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qijie Guan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Wenhui Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yilin Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Juan Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Hong-Yu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | | | - Ran Lu
- Ningxia Red Power Goji Co., Ltd, Zhongwei, China
| | - Hui-Ling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Huazhong Li
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Yan Geng
| |
Collapse
|
36
|
Zhu J, Wang J, Chen YP, Qing T, Zhang P, Feng B. Quantitative proteomics and phosphoproteomics elucidate the molecular mechanism of nanostructured TiO 2-stimulated biofilm formation. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128709. [PMID: 35325859 DOI: 10.1016/j.jhazmat.2022.128709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
With the increasing concerns regarding bacterial adaption to nanomaterials, it is critical to explore the main mechanism behind the adaptive morphogenesis of microorganisms. In this work, the biofilms formed from activated sludge exposed to 5 and 50 mg/L nTiO2 in the dark had increased biomass and selectively enriched pathogens. To further elaborate adaptive mechanism of biofilm formation induced by nTiO2, the protein response and protein phosphorylation modification of Escherichia coli K12 were determined using integrative systems biology analyses of proteomics and phosphoproteomics. Results identified that E. coli cultivated with nTiO2 considerably upregulated iron acquisition, and regulated protein phosphorylation states associated with of transcription and translation and biofilm formation relative to unexposed controls. Accordingly, bacteria increased siderophores and exopolysaccharide content (increased by about 57% and 231%, respectively), and enhanced resistance to transcriptional inhibitory antibiotics. Moreover, a dose of an iron chelator, i.e., deferoxamine mesylate salt, effectively retarded the biofilm development of bacteria exposed to 50 mg/L nTiO2. Overall, this work will provide a new insight for biofouling control, and contribute to an improved understanding of microbial adaption to nanomaterials.
Collapse
Affiliation(s)
- Jing Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jingyu Wang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
37
|
First Report of the Colistin Resistance Gene mcr-10.1 Carried by Inc pA1763-KPC Plasmid pSL12517-mcr10.1 in Enterobacter cloacae in Sierra Leone. Microbiol Spectr 2022; 10:e0112722. [PMID: 35695522 PMCID: PMC9431528 DOI: 10.1128/spectrum.01127-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile colistin resistance (mcr) gene mcr-10.1 has been distributed widely since it was initially identified in 2020. The aim of this study was to report the first mcr-10.1 in Africa and the first mcr in Sierra Leone; furthermore, we presented diverse modular structures of mcr-10.1 loci. Here, the complete sequence of one mcr-10.1-carrying plasmid in one clinical Enterobacter cloacae isolate from Sierra Leone was determined. Detailed genetic dissection and comparison were applied to this plasmid, together with a homologous plasmid carrying mcr-10.1 from GenBank. Moreover, a genetic comparison of 19 mcr-10.1 loci was performed. In this study, mcr-10.1 was carried by an IncpA1763-KPC plasmid from one Enterobacter cloacae isolate. A total of 19 mcr-10.1 loci displayed diversification in modular structures through complex transposition and homologous recombination. A site-specific tyrosine recombinase XerC was located upstream of mcr-10.1, and at least one insertion sequence element was inserted adjacent to a conserved xerC-mcr-10.1-orf336-orf177 region. Integration of mcr-10.1 into a different gene context and carried by various Inc plasmids contributed to the wide distribution of mcr-10.1 and enhanced the ability of bacteria to survive under colistin selection pressure. IMPORTANCE Colistin is used as one of the last available choices of antibiotics for patients infected by carbapenem-resistant bacterial strains, but the unrestricted use of colistin aggravated the acquisition and dissemination of mobile colistin resistance (mcr) genes. So far, 10 mcr genes have been reported in four continents around the world. This study presented one mcr-10.1-carrying Enterobacter cloacae isolate from Sierra Leone. The mcr-10.1 gene was identified on an IncpA1763-KPC plasmid. According to the results of genetic comparison of 19 mcr-10.1 loci, the mcr-10.1 gene was found to be located in a conserved xerC-mcr-10.1-orf336-orf177 region, and at least one insertion sequence element was inserted adjacent to this region. To our knowledge, this is the first report of identifying the mcr-10.1 gene in Africa and the mcr gene in Sierra Leone.
Collapse
|
38
|
Manandhar S, Nguyen Q, Nguyen Thi Nguyen T, Pham DT, Rabaa MA, Dongol S, Basnyat B, Dixit SM, Baker S, Karkey A. Genomic epidemiology, antimicrobial resistance and virulence factors of Enterobacter cloacae complex causing potential community-onset bloodstream infections in a tertiary care hospital of Nepal. JAC Antimicrob Resist 2022; 4:dlac050. [PMID: 35663828 PMCID: PMC9155248 DOI: 10.1093/jacamr/dlac050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Community-onset bloodstream infections (BSIs) caused by carbapenemase-producing Enterobacter cloacae complex (ECC) species are increasing internationally. This observation suggests that ECC are emerging pathogens, requiring for detailed understanding on their genomic epidemiology including transmission dynamics and antimicrobial resistance profiles. Patients and methods We performed WGS on 79 Enterobacter spp. isolated from the patients with clinically significant BSIs and admitted to emergency department of a major tertiary hospital in Nepal between April 2016 and October 2017. Results We identified 5 species and 13 STs of ECC. Enterobacter xiangfangensis ST171, one of the globally emerging carbapenem resistant ECC clones with epidemic potential, was the most prevalent (42%). Phylogenetic analysis showed a large (>19 400 SNPs) core genome SNP distance across major STs, which was minimal (<30 SNPs) among the isolates of each prevalent ST, suggesting the relatively recent importation of major STs followed by local clonal expansions. Genomic evidence for resistance to all major antimicrobial classes except for colistin and macrolides was detected. A limited number of isolates also carried bla NDM-1 (n = 2) and bla OXA-48 (n = 1) carbapenemase genes. Virulence factors encoding siderophores (24%), T6SSD (25%) and fimbriae (54%) were detected. Conclusions Our study highlighted that MDR ECC clones are important pathogens of BSIs in community. Though of low prevalence, carbapenem resistance observed in our ECC isolates raised concern about further community dissemination, underscoring the need for community surveillance to identify MDR ECC clones with epidemic potential.
Collapse
Affiliation(s)
- Sulochana Manandhar
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Quynh Nguyen
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - To Nguyen Thi Nguyen
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - Duy Thanh Pham
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - Maia A. Rabaa
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, Hospital for tropical diseases, Ho Chi Minh City, Vietnam
| | - Sabina Dongol
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Abhilasha Karkey
- Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
- Centre for Tropical Medicine and Global Health, Medical sciences division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Boutet E, Djerroud S, Perreault J. Small RNAs beyond Model Organisms: Have We Only Scratched the Surface? Int J Mol Sci 2022; 23:ijms23084448. [PMID: 35457265 PMCID: PMC9029176 DOI: 10.3390/ijms23084448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
Small RNAs (sRNAs) are essential regulators in the adaptation of bacteria to environmental changes and act by binding targeted mRNAs through base complementarity. Approximately 550 distinct families of sRNAs have been identified since their initial characterization in the 1980s, accelerated by the emergence of RNA-sequencing. Small RNAs are found in a wide range of bacterial phyla, but they are more prominent in highly researched model organisms compared to the rest of the sequenced bacteria. Indeed, Escherichia coli and Salmonella enterica contain the highest number of sRNAs, with 98 and 118, respectively, with Enterobacteriaceae encoding 145 distinct sRNAs, while other bacteria families have only seven sRNAs on average. Although the past years brought major advances in research on sRNAs, we have perhaps only scratched the surface, even more so considering RNA annotations trail behind gene annotations. A distinctive trend can be observed for genes, whereby their number increases with genome size, but this is not observable for RNAs, although they would be expected to follow the same trend. In this perspective, we aimed at establishing a more accurate representation of the occurrence of sRNAs in bacteria, emphasizing the potential for novel sRNA discoveries.
Collapse
|
40
|
Wang X, Zhang Y, Li C, Li G, Wu D, Li T, Qu Y, Deng W, He Y, Penttinen P, Zhang H, Huang Y, Zhao K, Zou L. Antimicrobial resistance of Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp. isolated from the feces of giant panda. BMC Microbiol 2022; 22:102. [PMID: 35421931 PMCID: PMC9008915 DOI: 10.1186/s12866-022-02514-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp., common gut bacteria in giant pandas, include opportunistic pathogens. The giant panda is an endangered species, classified as vulnerable by the World Wildlife Foundation. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from giant pandas is vital not only for their protection but also for public health. Results A total of 166 E. coli, 68 Enterobacter spp., 116 K. pneumoniae and 117 Enterococcus spp. isolates were collected from fecal samples of 166 giant pandas. In the antimicrobial susceptibility tests, 144 E. coli isolates, 66 Enterobacter spp. isolates, 110 K. pneumoniae isolates and 43 Enterococcus spp. isolates were resistant to at least one antimicrobial. The resistant isolates carried antimicrobial resistance genes (ARGs), including sul3, blaTEM, blaSHV and tetA. The differences in the prevalence of the bla types implied that the genetic basis for β-lactam resistance among the E. coli, Enterobacter spp. and K. pneumoniae isolates was different. The strain K. pneumoniae K85 that was resistant to sixteen antimicrobials was selected for whole genome sequencing. The genome contained Col440I, IncFIBK and IncFIIK plasmids and altogether 258 ARGs were predicted in the genome; 179 of the predicted ARGs were efflux pump genes. The genetic environment of the β-lactamase genes blaCTX-M-3 and blaTEM-1 in the K. pneumoniae K85 genome was relatively similar to those in other sequenced K. pneumoniae genomes. In comparing the giant panda age groups, the differences in the resistance rates among E. coli, K. pneumoniae and Enterobacter spp. isolates suggested that the infections in giant pandas of different age should be treated differently. Conclusions Antimicrobial resistance was prevalent in the bacterial isolates from the giant pandas, implying that the gut bacteria may pose serious health risks for captive giant pandas. The resistance genes in the genome of K. pneumoniae K85 were associated with insertion sequences and integron-integrase genes, implying a potential for the further spread of the antimicrobial resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02514-0.
Collapse
|
41
|
Sabirin F, Lim SM, Neoh CF, Ramasamy K. Hepatoprotection of Probiotics Against Non-Alcoholic Fatty Liver Disease in vivo: A Systematic Review. Front Nutr 2022; 9:844374. [PMID: 35479741 PMCID: PMC9035816 DOI: 10.3389/fnut.2022.844374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
Probiotic supplements have been increasingly reported for their usefulness in delaying the development and progression of non-alcoholic fatty liver disease (NAFLD). Literature on the impact of probiotics on NAFLD covered various aspects of the disease. This study was undertaken to systematically review in vivo findings on hepatoprotection of probiotics against NAFLD. The literature search was performed through Cochrane, PubMed/MEDLINE, Embase, and Web of Science databases. Interventions of known probiotics in NAFLD-induced animal model with at least one measurable NAFLD-related parameter were included. The data were extracted by all authors independently. Quality assessment was conducted using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE's) Risk of Bias (RoB) tool. P-values of measures were compared inter- and intra-study for each parameter. Forty-four probiotic-based studies of NAFLD-induced rodents were shortlisted. The majority of the studies were presented with low/unclear risk of bias. Probiotics improved the histopathology of NAFLD rodents (primary outcome). Most of the probiotic-supplemented NAFLD rodents were presented with mixed effects on serum liver enzymes but with improved hepatic and serum lipid profiles (including increased serum high-density lipoprotein cholesterol). The findings were generally accompanied by downregulation of hepatic lipogenic, oxidative, and inflammatory signallings. Probiotics were found to modulate gut microbiota composition and its products, and intestinal permeability. Probiotics also resulted in better glycaemic control and reduced liver weight. Altogether, the present qualitative appraisals strongly implied the hepatoprotective potential of probiotics against NAFLD in vivo.
Collapse
Affiliation(s)
- Faezah Sabirin
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Malaysia
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Malaysia
| | - Chin Fen Neoh
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Malaysia
- *Correspondence: Kalavathy Ramasamy
| |
Collapse
|
42
|
Finney AG, Perry JM, Evans DR, Westbrook KJ, McElheny CL, Iovleva A, Doi Y, Shields RK, Van Tyne D. Isolation and Characterization of Lytic Bacteriophages Targeting Diverse Enterobacter spp. Clinical Isolates. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:50-58. [PMID: 36147219 PMCID: PMC9041515 DOI: 10.1089/phage.2021.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Enterobacter spp. are opportunistic pathogens that cause nosocomial infections. Bacteriophages could be used to treat antibiotic-resistant Enterobacter infections. Materials and Methods: We used 10 genetically diverse clinical Enterobacter spp. isolates to identify lytic bacteriophages in hospital and municipal wastewater. Comparative genomics was performed on host bacterial isolates and isolated phages. Activity of each phage against all 10 host isolates was determined. We also tested phage activity against paired isolates from two patients who developed ceftazidime-avibactam resistance. Results: Bacteria belonged to three Enterobacter species and Klebsiella aerogenes. We isolated 12 bacteriophages, most of which belonged to the Myoviridae and Autographiviridae families. Most phages were able to lyse multiple bacterial isolates, and many lysed isolates of different species. Ceftazidime-avibactam-resistant isolates were still phage susceptible, and one isolate showed increased susceptibility compared with the parent isolate. Conclusion: The phages we isolated expand the diversity of Enterobacter-targeting phages, and could be useful for treating antibiotic-resistant Enterobacter infections.
Collapse
Affiliation(s)
- Amanda G. Finney
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jalyne M. Perry
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel R. Evans
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin J. Westbrook
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christi L. McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan K. Shields
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Seo DW, Yum SJ, Lee HR, Kim SM, Jeong HG. Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive ( Allium tuberosum Rottler) Depending on Retail Types. J Microbiol Biotechnol 2022; 32:195-204. [PMID: 34949749 PMCID: PMC9628847 DOI: 10.4014/jmb.2112.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26°C, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.
Collapse
Affiliation(s)
- Dong Woo Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Su-jin Yum
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Heoun Reoul Lee
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Seung Min Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hee Gon Jeong
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-764, Republic of Korea,Corresponding author Phone: +82-42-821-6726 E-mail:
| |
Collapse
|
44
|
Scheithauer TP, Davids M, Winkelmeijer M, Verdoes X, Aydin Ö, de Brauw M, van de Laar A, Meijnikman AS, Gerdes VE, van Raalte D, Herrema H, Nieuwdorp M. Compensatory intestinal antibody response against pro-inflammatory microbiota after bariatric surgery. Gut Microbes 2022; 14:2031696. [PMID: 35130127 PMCID: PMC8824225 DOI: 10.1080/19490976.2022.2031696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are growing burdens for individuals and the health-care system. Bariatric surgery is an efficient, but drastic treatment to reduce body weight, normalize glucose values, and reduce low-grade inflammation. The gut microbiome, which is in part controlled by intestinal antibodies, such as IgA, is involved in the development of both conditions. Knowledge of the effect of bariatric surgery on systemic and intestinal antibody response is limited. Here, we determined the fecal antibody and gut microbiome response in 40 T2D and non-diabetic (ND) obese individuals that underwent bariatric surgery (N = 40). Body weight, fasting glucose concentrations and inflammatory parameters decreased after bariatric surgery, whereas pro-inflammatory bacterial species such as lipopolysaccharide (LPS), and flagellin increased in the feces. Simultaneously, concentrations of LPS- and flagellin-specific intestinal IgA levels increased with the majority of pro-inflammatory bacteria coated with IgA after surgery. Finally, serum antibodies decreased in both groups, along with a lower inflammatory tone. We conclude that intestinal rearrangement by bariatric surgery leads to expansion of typical pro-inflammatory bacteria, which may be compensated by an improved antibody response. Although further evidence and mechanistic insights are needed, we postulate that this apparent compensatory antibody response might help to reduce systemic inflammation by neutralizing intestinal immunogenic components and thereby enhance intestinal barrier function after bariatric surgery.
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,CONTACT Torsten P.M. Scheithauer Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Location AMC, Amsterdam, AZ1105, The Netherlands
| | - Mark Davids
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Ömrüm Aydin
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Maurits de Brauw
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | | | - Abraham S. Meijnikman
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Victor E.A. Gerdes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Daniël van Raalte
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| |
Collapse
|
45
|
Mosby CA, Bhar S, Phillips MB, Edelmann MJ, Jones MK. Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria. J Extracell Vesicles 2022; 11:e12172. [PMID: 34981901 PMCID: PMC8725172 DOI: 10.1002/jev2.12172] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/22/2023] Open
Abstract
Intestinal commensal bacteria contribute to maintaining gut homeostasis. Disruptions to the commensal flora are linked to the development and persistence of disease. The importance of these organisms is further demonstrated by the widespread ability of enteric viruses to exploit commensal bacteria to enhance viral infection. These viruses interact directly with commensal bacteria, and while the impact of this interaction on viral infection is well described for several viruses, the impact on the commensal bacteria has yet to be explored. In this article, we demonstrate, for the first time, that enteric viruses alter the gene expression and phenotype of individual commensal bacteria. Human and murine norovirus interaction with bacteria resulted in genome-wide differential gene expression and marked changes in the surface architecture of the bacterial cells. Furthermore, the interaction of the virus with bacteria led to increased production of smaller outer membrane vesicles (OMVs). Enhanced production of smaller vesicles was also observed when noroviruses were incubated with other commensal bacteria, indicating a potentially broad impact of norovirus interaction. The vesicle production observed in the in vivo model followed a similar trend where an increased quantity of smaller bacterial vesicles was observed in stool collected from virus-infected mice compared to mock-infected mice. Furthermore, changes in vesicle size were linked to changes in protein content and abundance, indicating that viral binding induced a shift in the mechanism of the OMV biogenesis. Collectively, these data demonstrate that enteric viruses induce specific changes in bacterial gene expression, leading to changes in bacterial extracellular vesicle production that can potentially impact host responses to infection.
Collapse
Affiliation(s)
- Chanel A. Mosby
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Sutonuka Bhar
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Matthew B. Phillips
- Department of Molecular Genetics and MicrobiologyCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Mariola J. Edelmann
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Melissa K. Jones
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
46
|
Rahimzadeh Torabi L, Doudi M, Naghavi NS, Monajemi R. Bacteriophages PɸEn-CL and PɸEn-HO can eliminate MDR Enterobacter cloacae and Enterobacter hormaechei isolated from burn wound infections without toxicity for human skin cells. FEMS Microbiol Lett 2021; 368:6438434. [PMID: 34849758 DOI: 10.1093/femsle/fnab143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
The prevalence of multidrug-resistant (MDR) strains has caused serious problems in the treatment of burn infections. MDR Enterobactercloacae and Enterobacterhormaechei have been defined as the causative agents of nosocomial infections in burn patients. In this situation, examination of phages side effects on human cell lines before any investigation on human or animal that can provide beneficial information about the safety of isolated phages. The aim of this study was to isolate and identify the specific bacteriophages on MDR E. cloacae and E. hormaechei isolated from burn wounds and to analyze the efficacy, cell viability and cell cytotoxicity of phages on A-375 and HFSF-PI cell lines by MTT (3-(4, 5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide) colorimetric assay and lactate dehydrogenase (LDH) release assay. Phages were isolated from urban sewage Isfahan, Iran. Enterobactercloacae strain Iau-EC100 (GenBank accession number: MZ314381) and E. hormaechei strain Iau-EHO100 (GenBank accession number: MZ348826) were sensitive to the isolated phages. Transmission electron microscopy (TEM) results revealed that PɸEn-CL and PɸEn-HO that were described had the morphologies of Myovirus and Inovirus, respectively. Overall, MTT and LDH assays showed moderate to excellent correlation in the evaluation of cytotoxicity of isolated phages. The results of MTT and LDH assays showed that, phages PɸEn-CL and PɸEn-HO had no significant toxicity effect on A375 and HFSF-PI 3 cells. Phage PɸEn-HO had a better efficacy on the two tested cell lines than other phage. Our results indicated that, there were significant differences between the two cytotoxicity assays in phage treatment compared to control.
Collapse
Affiliation(s)
- Ladan Rahimzadeh Torabi
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| | - Monir Doudi
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| | - Nafiseh Sadat Naghavi
- Department of Microbiology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Faculty of Biological Sciences, Falavarjan Branch, Islamic Azad University, University Boulevard, Falavarjan 84515/155, Isfahan, Iran
| |
Collapse
|
47
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
48
|
Filatov AV, Perepelov AV, Shashkov AS, Burygin GL, Gogoleva NE, Khlopko YA, Grinev VS. Structure and genetics of the O-antigen of Enterobacter cloacae K7 containing di-N-acetylpseudaminic acid. Carbohydr Res 2021; 508:108392. [PMID: 34274818 DOI: 10.1016/j.carres.2021.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
The O-antigen (O-polysaccharide) is an essential component of lipopolysaccharide on the surface of Gram-negative bacteria and plays an important role in interaction with host organisms. In this study, we investigated the chemical structure and characterized the gene cluster of Enterobacter cloacae K7 O-antigen. As judged by sugar analyses along with NMR spectroscopy data, E. cloacae K7 antigen has a tetrasaccharide O-unit with the following structure: →8)-β-Psep5Ac7Ac-(2 → 2)-β-l-Rhap-(1 → 4)-α-l-Rhap-(1 → 3)-α-d-Galp-(1→ The O-antigen gene cluster of E. cloacae K7 between conserved genes galF and gnd was sequenced. Most genes necessary for the O-antigen synthesis were found in the cluster and their functions were tentatively assigned by comparison with sequences in the available databases.
Collapse
Affiliation(s)
- Andrei V Filatov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russian Federation; Vavilov Saratov State Agrarian University, 410012, Saratov, Russian Federation
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, 420111, Kazan, Russian Federation; Kazan Federal University, 420111, Kazan, Russian Federation
| | - Yuriy A Khlopko
- Institute for Cellular and Intracellular Symbiosis, Urals Branch, Russian Academy of Sciences, 460000, Orenburg, Russian Federation
| | - Vyacheslav S Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russian Federation
| |
Collapse
|
49
|
Liu S, Huang N, Zhou C, Lin Y, Zhang Y, Wang L, Zheng X, Zhou T, Wang Z. Molecular Mechanisms and Epidemiology of Carbapenem-Resistant Enterobacter cloacae Complex Isolated from Chinese Patients During 2004-2018. Infect Drug Resist 2021; 14:3647-3658. [PMID: 34522107 PMCID: PMC8434891 DOI: 10.2147/idr.s327595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background The emergence and spread of carbapenem-resistant Enterobacter cloacae complex (ECC) have posed a serious threat to human health worldwide. This study aimed to investigate the molecular mechanism of carbapenem resistance and its prevalence among ECC in China. Methods A total of 1314 ECC clinical isolates were collected from the First Affiliated Hospital of Wenzhou Medical University from 2004 to 2018. Sensitivity to antibiotics was determined using the agar dilution method. The production of carbapenemases and the prevalence of resistance-associated genes were investigated using PCR. The expression of outer membrane porin (OMP) genes (ompC/ompF) and cephalosporinase gene ampC was analyzed by quantitative real-time PCR. The effect of efflux pump mechanism on carbapenem resistance was tested. ECC was typed by multilocus sequence typing (MLST). Results In this study, 113 carbapenem-nonsusceptible ECC strains were identified. The prevalence rates of carbapenemase genes bla KPC-2 and bla NDM were 12.4% (14/113) and 17.7% (20/113), and that of the extended-spectrum β-lactamase (ESBL) genes bla CTX-M, bla TEM, and bla SHV were 28.3% (32/113), 27.4% (31/113), and 14.2% (16/113), respectively. Among 67 carbapenem-nonsusceptible ECC isolates producing non-carbapenemase, low expression of ompC/ompF and overexpression of ampC were found in 46 and 40 strains, respectively. In addition, the carbapenem resistance was related to the overexpression of the efflux pump in the study. Finally, the 113 carbapenem-nonsusceptible ECC strains were categorized into 39 different sequence types using MLST. Conclusion Carbapenem-nonsusceptible ECC strains producing non-carbapenemase were predominant. The low expression of OMP with the overexpression of cephalosporinase or production of ESBLs and overexpression of efflux pump might contribute to the resistance to carbapenem for carbapenem-nonsusceptible ECC strains producing non-carbapenemase. The bla NDM and bla KPC comprised the principal resistance mechanism of carbapenemase-producing ECC in the hospital, causing a threat to public health. Therefore, monitoring programs to prevent the emergence and further spread of antibiotic resistance are urgently needed.
Collapse
Affiliation(s)
- Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
50
|
Ecology and Function of the Transmissible Locus of Stress Tolerance in Escherichia coli and Plant-Associated Enterobacteriaceae. mSystems 2021; 6:e0037821. [PMID: 34402641 PMCID: PMC8407380 DOI: 10.1128/msystems.00378-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transmissible locus of stress tolerance (tLST) is a genomic island which confers resistance to heat and chlorine. In this study, we determined that the tLST is frequent in genomes of those Enterobacteriaceae that occur in association with plants as well as the intestines of humans and animals and are relevant as nosocomial pathogens, e.g., Klebsiella and Cronobacter species. The tLST is more frequent in environmental and clinical isolates of Klebsiella pneumoniae than in animal isolates, and heat and chlorine resistance of tLST-positive strains of K. pneumoniae matched the resistance of tLST-positive strains of Escherichia coli. The function of 13 tLST genes was determined by assessing the heat and chlorine resistance of E. coli MG1655 mutants. The deletion of sHsp20, clpKGI, sHspGI, pscA, pscB, and hdeDGI reduced both heat and chlorine resistance; deletion of kefB reduced only chlorine resistance. Genes coding for heat shock proteins sHsp20, clpKGI, and sHspGI decreased the oxidation of cytoplasmic proteins, while kefB decreased the oxidation of membrane lipids. The fitness cost of the tLST for E. coli MG1655 was assessed by pairwise competition experiments with isogenic tLST-positive or tLST-negative strains. The tLST imposes a fitness cost that is compensated for by frequent and lethal challenges with chlorine. All core genes need to be present to maintain the ecological advantage relative to the fitness cost. Taken together, core tLST genes are necessary to provide protection for E. coli against heat and chlorine stress, and the selective pressure for the tLST maintains core genes. IMPORTANCE The transmissible locus of stress tolerance (tLST) is a genomic island comprising 10 core genes that occurs in diverse Enterobacteriaceae and confers resistance to heat and chlorine. Experimentation described in the manuscript describes the physiological function of the core genes by characterization of the resistance of 13 single-knockout (KO) mutants and by characterization of protein and membrane oxidation in these strains after chlorine challenge. Results identify tLST resistance as a genomic island that is specific for those Enterobacteriaceae that occur in plant-associated habitats as well in the intestines of vertebrates. In addition, the ecological function of the genomic island was characterized by large-scale genomic analysis and competition experiments of wild-type and mutant strains. Results suggest that tLST-mediated resistance to chlorine may contribute to the persistence of nosocomial pathogens in hospitals.
Collapse
|