1
|
Hsueh FC, Chien CY, Chang SW, Lian BR, Lin HY, Ellerma L, Chiou MT, Lin CN. Field Evaluation of a Ready-to-Use Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Vaccine in Naturally Infected Farms in Taiwan. Vet Sci 2025; 12:304. [PMID: 40284806 PMCID: PMC12031627 DOI: 10.3390/vetsci12040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHP) are both important and common pathogens in the pig industry. Both pathogens are major contributors to the porcine respiratory disease complex and serve to potentiate other bacterial infections such as Actinobacillus pleuropneumonia. This study aims to evaluate the efficacy of a ready-to-use bivalent PCV2 and MHP vaccine in the field under naturally PCV2-infected farms against existing monovalent options. We evaluated PCV2 viremia, PCV2 antibodies, and lung lesion scores in slaughtered pigs in our study across four farms in Taiwan. Our results found that in two out of four farms, the piglets vaccinated with Porcilis® PCV M Hyo had superior whole-life PCV2 viremia reduction compared to the existing vaccination program on farms. In the lung lesion scoring, the Porcilis® PCV M Hyo group had significantly lower Actinobacillus pleuropneumonia-type lesions in pigs than in the competitor group in two out of three farms evaluated. In this field trial, Porcilis® PCV M Hyo proved to be efficacious in protecting piglets against both PCV2 viremia and the impact of MHP secondary infection, in the context of a reduction in viremia and reduced APP-like lesions found at slaughter.
Collapse
Affiliation(s)
- Fu-Chun Hsueh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
| | - Chia-Yi Chien
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
| | - Shu-Wei Chang
- Intervet Animal Health Taiwan Ltd., Taipei 11047, Taiwan; (S.-W.C.); (B.-R.L.)
| | - Bo-Rong Lian
- Intervet Animal Health Taiwan Ltd., Taipei 11047, Taiwan; (S.-W.C.); (B.-R.L.)
| | - Hong-Yao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore;
| | - Leonardo Ellerma
- MSD Animal Health (Phils.), Inc., Makati City 1226, Philippines;
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (F.-C.H.); (C.-Y.C.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research and Technical Center for Sustainable and Intelligent Swine Production, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
2
|
Jezdimirović N, Savić B, Milovanović B, Glišić D, Ninković M, Kureljušić J, Maletić J, Aleksić Radojković J, Kasagić D, Milićević V. Molecular Detection of Porcine Cytomegalovirus, Porcine Parvovirus, Aujeszky Disease Virus and Porcine Reproductive and Respiratory Syndrome Virus in Wild Boars Hunted in Serbia during 2023. Vet Sci 2024; 11:249. [PMID: 38921996 PMCID: PMC11209600 DOI: 10.3390/vetsci11060249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Porcine cytomegalovirus (PCMV) infection is widespread worldwide and has a high prevalence in swine herds, especially in countries with intensive swine production. PCMV is zoonotic and can impact xenotransplants. It is the third swine virus known to be zoonotic, following swine influenza virus (influenza A) and hepatitis E virus genotype 3 (HEVgt3 or HEV-3). Wild boars, serving as reservoirs for various pathogens, including PCMV, pose a risk to both the pig industry and public health. This study aimed to investigate PCMV infection in Serbian wild boars using real-time PCR and assess other viral infections. We also tested samples for the presence of other viral infections: Aujeszky disease virus (ADV), Porcine parvovirus (PPV) and Porcine reproductive respiratory syndrome (PRRSV). Samples from 50 wild boars across 3 districts were tested. Results showed 8% positivity for PCMV DNA, with females showing higher infection rates. Porcine parvovirus (PPV) was detected in 56% of samples, while Porcine reproductive respiratory syndrome virus (PRRSV) was absent. ADV was found in 18% of samples, primarily in younger animals. This research contributes to understanding PCMV prevalence in Serbian wild boars and emphasizes the importance of monitoring viral infections in wild populations, considering the potential zoonotic and economic implications.
Collapse
Affiliation(s)
- Nemanja Jezdimirović
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Božidar Savić
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Bojan Milovanović
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Dimitrije Glišić
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Milan Ninković
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Jasna Kureljušić
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Jelena Maletić
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| | - Jelena Aleksić Radojković
- Forensic Veterinary Medicine, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dragan Kasagić
- PI Veterinary Institute of the Republic of Srpska “Dr. Vaso Butozan” Banja Luka, Branka Radičevića 18, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Vesna Milićević
- Scientific Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Dei Giudici S, Mura L, Bonelli P, Hawko S, Angioi PP, Sechi AM, Denti S, Sulas A, Burrai GP, Madrau MP, Antuofermo E, Oggiano A. Evidence of Porcine Circovirus Type 2 (PCV2) Genetic Shift from PCV2b to PCV2d Genotype in Sardinia, Italy. Viruses 2023; 15:2157. [PMID: 38005836 PMCID: PMC10674684 DOI: 10.3390/v15112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Porcine Circovirus type 2 (PCV2) is the etiological agent of a disease syndrome named Porcine Circovirus disease (PCVD), representing an important threat for the pig industry. The increasing international trade of live animals and the development of intensive pig farming seem to have sustained the spreading of PCVD on a global scale. Recent classification criteria allowed the identification of nine different PCV2 genotypes (PCV2a-i). PCV2a was the first genotype detected with the highest frequency from the late 1990s to 2000, which was then superseded by PCV2b (first genotype shift). An ongoing genotype shift is now determining increasing prevalence rates of PCV2d, in replacement of PCV2b. In Italy, a complete genotype replacement was not evidenced yet. The present study was carried out on 369 samples originating from domestic pigs, free-ranging pigs, and wild boars collected in Sardinia between 2020 and 2022, with the aim to update the last survey performed on samples collected during 2009-2013. Fifty-seven complete ORF2 sequences were obtained, and the phylogenetic and network analyses evidenced that 56 out of 57 strains belong to the PCV2d genotype and only one strain to PCV2b, thus showing the occurrence of a genotype shift from PCV2b to PCV2d in Sardinia.
Collapse
Affiliation(s)
- Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Piero Bonelli
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (S.H.); (G.P.B.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Anna Maria Sechi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Stefano Denti
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Antonella Sulas
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (S.H.); (G.P.B.); (E.A.)
| | - Maria Paola Madrau
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (S.H.); (G.P.B.); (E.A.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (L.M.); (P.B.); (P.P.A.); (A.M.S.); (S.D.); (A.S.); (M.P.M.); (A.O.)
| |
Collapse
|
4
|
Vaccination Failures in Pigs-The Impact of Chosen Factors on the Immunisation Efficacy. Vaccines (Basel) 2023; 11:vaccines11020230. [PMID: 36851108 PMCID: PMC9964700 DOI: 10.3390/vaccines11020230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Infectious diseases that often lead to economic losses still pose a severe problem in the pig production sector. Because of increasing restrictions on antibiotic usage, vaccines may become one of the major approaches to controlling infectious diseases; much research has proved that they could be very efficient. Nevertheless, during their life, pigs are exposed to various factors that can interfere with vaccination efficacy. Therefore, in the present paper, we reviewed the influence of chosen factors on the pig immunisation process, such as stress, faecal microbiota, host genetics, the presence of MDAs, infections with immunosuppressive pathogens, and treatment with antibiotics and mycotoxins. Many of them turned out to have an adverse impact on vaccine efficacy.
Collapse
|
5
|
The gC1qR Binding Site Mutant PCV2 Is a Potential Vaccine Strain That Does Not Impair Memory CD4 + T-Cell Generation by Vaccines. J Virol 2022; 96:e0095922. [PMID: 36121300 PMCID: PMC9555195 DOI: 10.1128/jvi.00959-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCV2 has been reported to reduce the protective effects of various vaccines on immunized pigs. Our previous studies showed that the interaction of Cap and host protein gC1qR mediated the PCV2 infection-induced suppression of immune response. Thus, we wondered whether the gC1qR binding site mutant PCV2RmA could be a vaccine strain and whether this mutant PCV2RmA impairs other vaccines. Herein, we showed that PCV2 infection reduced the classic swine fever virus (CSFV) vaccine-induced generation of memory CD4+ T cells through the interaction of Cap with gC1qR. PCV2RmA can effectively induce the production of PCV2-specific antibodies, neutralizing antibodies, and peripheral blood lymphocyte proliferation in piglets at the same levels as the commercial inactivated PCV2 vaccine. The PCV2RmA-induced anti-PCV2 immune responses could eliminate the serum virus and would not lead to pathological lesions like wild-type PCV2. Moreover, compared to the commercial inactivated PCV2 vaccine, PCV2RmA is capable of inducing more durable protective immunity against PCV2 that induced production of PCV2-specific antibodies and neutralizing antibodies for a longer time via stronger induction of memory CD4+ T cells. Importantly, PCV2RmA infection did not impair the CSFV vaccine-induced generation of memory CD4+ T cells. Collectively, our findings showed that PCV2 infection impairs memory CD4+ T-cell generation to affect vaccination and provide evidence for the use of PCV2RmA as an efficient vaccine to prevent PCV2 infection. IMPORTANCE PCV2 is one of the costliest pathogens in pigs worldwide. Usage of PCV2 vaccines can prevent the PCV2 infection-induced clinical syndromes but not the viral spread. Our previous work found that PCV2 infection suppresses the host type I interferon innate immune response and CD4+ T-cell-mediated Th1 immune response through the interaction of Cap with host gC1qR. Here, we showed that the gC1qR binding site mutant PCV2RmA could effectively induce anti-PCV2 immunity and provide more durable protective immunity against wild-type PCV2 infection in pigs. PCV2RmA would not impair the generation of memory CD4+ T cells induced by classic swine fever virus (CSFV) vaccines as wild-type PCV2 did. Therefore, PCV2RmA can serve as a potential vaccine strain to better protect pigs against PCV2 infection.
Collapse
|
6
|
Eddicks M, Eddicks L, Stadler J, Hermanns W, Ritzmann M. [The porcine respiratory disease complex (PRDC) - a clinical review]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:120-132. [PMID: 33902142 DOI: 10.1055/a-1403-1976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The porcine respiratory disease complex describes a clinical condition that often manifests as treatment-resistant respiratory disease of growing to finishing pigs. Its multifactorial etiology includes infectious and non-infectious factors. Besides management and hygiene conditions, particularly viral and bacterial pathogens contribute to the development and course of PRDC. The porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), influenza A virus (IAV) and Mycoplasma (M.) hyopneunoniae are considered as the major pathogens involved in PRDC. The clinical outcome and necropsy findings may differ depending on the involvement of the different pathogens. The complex nature of the PRDC impedes the diagnostic and preventive measures on affected farms. The present review provides insight into the pathomorphology, pathogenesis and inter-pathogen-interactions and aims to support practitioners in implementing purposeful diagnostic and preventive measures.
Collapse
Affiliation(s)
- Matthias Eddicks
- Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Lina Eddicks
- Institut für Tierpathologie, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Julia Stadler
- Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Walter Hermanns
- Institut für Tierpathologie, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| | - Mathias Ritzmann
- Klinik für Schweine, Zentrum für Klinische Tiermedizin, Ludwig-Maximilians-Universität München
| |
Collapse
|
7
|
Wang HY, Song JK, Shin S, Kim H. Comparison of Multiplex Real-Time PCR and PCR-Reverse Blot Hybridization Assays for the Direct and Rapid Detection of Porcine Circovirus Type 2 Genotypes. Front Vet Sci 2020; 7:200. [PMID: 32426379 PMCID: PMC7204941 DOI: 10.3389/fvets.2020.00200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023] Open
Abstract
Porcine circovirus type 2 (PCV2), the causative agent of porcine circovirus-associated diseases (PCVAD), poses a serious economic threat for the swine industry. Currently, PCV2 is classified into five major genotypes: PCV2a, PCV2b, PCV2c, PCV2d, and PCV2e. The aim of this study is to evaluate the performance of two commercially available methods, multiplex real-time PCR assay and PCR-reverse blot hybridization assay (REBA), for the rapid detection of PCV2 and direct identification of PCV2 genotypes from clinical samples as well as to compare the results with that of sequence analysis. Molecular diagnostic methods were used to evaluate a total of 180 samples, including tissues and blood samples from pigs that were suspected of PCVAD infection. The results of this study showed that the detection rate for positive PCV2 was 48.3% (n = 87) in both multiplex real-time PCR and PCR-REBA methods. Using sequence analysis, which is the gold standard, and multiplex real time PCR assay, the sensitivity, specificity, positive predictive value, and negative predictive value of PCV2 genotyping were found to be 97.1% (n = 67, 95% CI 0.894–0.998, p < 0.001), 100% (n = 93, 95% CI 0.966–1.000, p < 0.001), 100% (95% CI 0.953–1.000, p < 0.001), 97.9% (95% CI 0.921–0.998, p < 0.001), respectively. The results of PCR-REBA were found to be consistent with those of sequence analysis for all the samples and showed good agreement (κ = 1). The most prevalent genotypes detected in this study were PCV2d (n = 53, 60.9%), followed by PCV2a (n = 17, 19.5%), PCV2b (n = 14, 16.1%), and PCV2a/b co-infection (n = 3, 3.5%). Both the methods required ~3 h for completion. Therefore, we conclude that two molecular methods are rapid and reliable for the characterization of the causative pathogen with PCV2 genotypes.
Collapse
Affiliation(s)
| | - Joong Ki Song
- Optipharm Animal Disease Diagnostic Center, Cheongju-Si, South Korea
| | - Seongho Shin
- Optipharm Animal Disease Diagnostic Center, Cheongju-Si, South Korea
| | - Hyunil Kim
- Optipharm, Inc., Cheongju-Si, South Korea
| |
Collapse
|
8
|
The Performance of Seven Molecular Methods for the Detection of PRRSV. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Porcine Reproductive and Respiratory Syndrome is a viral disease of swine characterized by reproductive failure of breeding animals and respiratory disorders in all categories. The first PRRS case in Serbia was recorded in 2001 after illegal import of boar semen. PRRS is economically the most important disease due to significant direct and indirect losses. Today, for routine diagnosis of PRRS in infected herds serological methods (ELISA) and molecular methods are used. Although modern diagnostic techniques are very robust, exceptional diversity of the viral strains is often the obstacle for an accurate diagnosis. To estimate the performance of seven different methods for PRRSV genome detection, twenty samples were used. However, none of the methods was able to detect all PRRSV strains. The best sensitivity was obtained by combining two methods. Until today, there is no absolutely accurate test which enables the detection of all circulating strains.
Collapse
|
9
|
Eclercy J, Larcher T, Andraud M, Renson P, Bernard C, Bigault L, Ledevin M, Paboeuf F, Grasland B, Rose N, Bourry O. PCV2 co-infection does not impact PRRSV MLV1 safety but enhances virulence of a PRRSV MLV1-like strain in infected SPF pigs. Vet Microbiol 2020; 244:108656. [PMID: 32402344 DOI: 10.1016/j.vetmic.2020.108656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Co-infection by a type 1 modified live vaccine-like strain (MLV1-like) of porcine reproductive and respiratory syndrome virus (PRRSV) and a type 2 porcine circovirus (PCV2) was identified on a French pig farm with post-weaning multisystemic wasting syndrome (PMWS). An in vivo experiment was set up to characterize the virulence level of the MLV1-like strain compared with the parental MLV1 strain, and to assess the impact of PCV2 co-infection on the pathogenicity of both PRRSV strains. Six groups of six pigs each were inoculated only with either one of the two PRRSV strains or with PCV2, or co-inoculated with PCV2 and MLV1 or PCV2 and MLV1-like strains. Six contact pigs were added to each inoculated group to assess viral transmission. The animals were monitored daily for 35 days post-inoculation for clinical symptoms. Blood and nasal swabs were sampled twice a week, and tissue samples were collected during necropsy for viral quantification. Compared to MLV1-infected pigs, animals infected with the MLV1-like strain had increased PRRSV viremia and nasal shedding, a higher viral load in the tonsils, and lymph node hypertrophy at microscopic level. PCV2 co-infection did not influence clinical, virologic or transmission parameters for MLV1, but co-infected MLV1-like/PCV2 pigs had the most severe lung lesions, the highest viremia in contact animals and the highest transmission rate. Our study demonstrated that the MLV1 strain tested was safe when co-inoculated with PCV2 in piglets. However, co-infection by the MLV1-like strain and PCV2 resulted in increased virulence compared with that due to a single infection.
Collapse
Affiliation(s)
- Julie Eclercy
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Thibaut Larcher
- Institut National de Recherche Agronomique (INRA), APEX, La Chantrerie, CS 40706, 44307 Nantes Cedex 3, France; Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes Atlantique (Oniris), CS 40706, 44307 Nantes Cedex 3, France
| | - Mathieu Andraud
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Patricia Renson
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Cécilia Bernard
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Lionel Bigault
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Mireille Ledevin
- Institut National de Recherche Agronomique (INRA), APEX, La Chantrerie, CS 40706, 44307 Nantes Cedex 3, France; Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes Atlantique (Oniris), CS 40706, 44307 Nantes Cedex 3, France
| | - Frédéric Paboeuf
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Béatrice Grasland
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Nicolas Rose
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Olivier Bourry
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France.
| |
Collapse
|
10
|
Khatun A, Nazki S, Jeong CG, Gu S, Mattoo SUS, Lee SI, Yang MS, Lim B, Kim KS, Kim B, Lee KT, Park CK, Lee SM, Kim WI. Effect of polymorphisms in porcine guanylate-binding proteins on host resistance to PRRSV infection in experimentally challenged pigs. Vet Res 2020; 51:14. [PMID: 32075688 PMCID: PMC7031929 DOI: 10.1186/s13567-020-00745-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Guanylate-binding proteins (GBP1 and GBP5) are known to be important for host resistance against porcine reproductive and respiratory syndrome virus (PRRSV) infection. In this study, the effects of polymorphisms in GBP1 (GBP1E2 and WUR) and GBP5 on host immune responses against PRRSV were investigated to elucidate the mechanisms governing increased resistance to this disease. Seventy-one pigs [pre-genotyped based on three SNP markers (GBP1E2, WUR, and GBP5)] were assigned to homozygous (n = 36) and heterozygous (n = 35) groups and challenged with the JA142 PRRSV strain. Another group of nineteen pigs was kept separately as a negative control group. Serum and peripheral blood mononuclear cells (PBMCs) were collected at 0, 3, 7, 14, 21 and 28 days post-challenge (dpc). Viremia and weight gain were measured in all pigs at each time point, and a flow cytometry analysis of PBMCs was performed to evaluate T cell activation. In addition, 15 pigs (5 pigs per homozygous, heterozygous and negative groups) were sacrificed at 3, 14 and 28 dpc, and the local T cell responses were evaluated in the lungs, bronchoalveolar lavage cells (BALc), lymph nodes and tonsils. The heterozygous pigs showed lower viral loads in the serum and lungs and higher weight gains than the homozygous pigs based on the area under the curve calculation. Consistently, compared with the homozygous pigs, the heterozygous pigs exhibited significantly higher levels of IFN-α in the serum, proliferation of various T cells (γδT, Th1, and Th17) in PBMCs and tissues, and cytotoxic T cells in the lungs and BALc. These results indicate that the higher resistance in the pigs heterozygous for the GBP1E2, WUR and GBP5 markers could be mediated by increased antiviral cytokine (IFN-α) production and T cell activation.
Collapse
Affiliation(s)
- Amina Khatun
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.,Department of Pathology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Suna Gu
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Sameer Ul Salam Mattoo
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Sim-In Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Myun-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Byeonghwi Lim
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Kwan-Suk Kim
- College of Agriculture, Life & Environment Sciences, Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea
| | - Kyoung-Tae Lee
- National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyoungpook National University, Daegu, South Korea
| | - Sang-Myeong Lee
- College of Environmental & Biosource Science, Division of Biotechnology, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, South Korea.
| |
Collapse
|
11
|
López-Lorenzo G, Díaz-Cao JM, Prieto A, López-Novo C, López CM, Díaz P, Rodríguez-Vega V, Díez-Baños P, Fernández G. Environmental distribution of Porcine Circovirus Type 2 (PCV2) in swine herds with natural infection. Sci Rep 2019; 9:14816. [PMID: 31616055 PMCID: PMC6794300 DOI: 10.1038/s41598-019-51473-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the aetiological agent of PCV2-Systemic Disease (PCV2-SD) and PCV2-Subclinical Infection (PCV2-SI). PCV2 is highly resistant to environmental conditions, being able to remain in the farm environment and thus represent a risk for infection maintenance. The aim of this study was to identify, under field conditions, the possible critical points in the environment of non-vaccinated farrow-to-weaning swine farms where PCV2 could accumulate and persist. For that, environmental samples from five swine farms with PCV2-SD or PCV2-SI were taken and analysed by qPCR, including different farm areas, farm personnel and management implements. PCV2 DNA was detected in the environment of all farms (42.9% of positive samples). Overall, the PCV2-SD herd seemed to present more positive samples and higher viral loads than the PCV2-SI herds. At individual farm level, weaning areas appeared to be the most contaminated facilities. In addition, PCV2 was found at high levels in most samples from farm workers, especially work boots, suggesting that they may play a role in within-farm transmission. In addition, PCV2 was detected in areas without animals the like warehouses, offices and farm perimeter. Therefore, this study is helpful to improve measures to reduce within-farm PCV2 dissemination.
Collapse
Affiliation(s)
- Gonzalo López-Lorenzo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - José Manuel Díaz-Cao
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Alberto Prieto
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Cynthia López-Novo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Ceferino Manuel López
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Díaz
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | | | - Pablo Díez-Baños
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Gonzalo Fernández
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
12
|
Zhai N, Liu K, Li H, Liu Z, Wang H, Korolchuk VI, Carroll B, Pan C, Gan F, Huang K, Chen X. PCV2 replication promoted by oxidative stress is dependent on the regulation of autophagy on apoptosis. Vet Res 2019; 50:19. [PMID: 30836990 PMCID: PMC6399867 DOI: 10.1186/s13567-019-0637-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is an economically important swine pathogen but some extra trigger factors are required for the development of PCV2-associated diseases. By evaluating cap protein expression, viral DNA copies and the number of infected cells, the present study further confirmed that oxidative stress can promote PCV2 replication. The results showed that oxidative stress induced autophagy in PCV2-infected PK15 cells. Blocking autophagy with inhibitor 3-methyladenine or ATG5-specific siRNA significantly inhibited oxidative stress-promoted PCV2 replication. Importantly, autophagy inhibition significantly increased apoptosis in oxidative stress-treated PK15 cells. Suppression of apoptosis by benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone in conditions of autophagy inhibition restored PCV2 replication. Taken together, autophagy protected host cells against potential apoptosis and then contributed to PCV2 replication promotion caused by oxidative stress. Our findings can partly explain the pathogenic mechanism of PCV2 related to the oxidative stress-induced autophagy.
Collapse
Affiliation(s)
- Nianhui Zhai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Bernadette Carroll
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.,School of Biochemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Evaluation of the Inhibitory Effects of (E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one (DiNap), a Natural Product Analog, on the Replication of Type 2 PRRSV In Vitro and In Vivo. Molecules 2019; 24:molecules24050887. [PMID: 30832429 PMCID: PMC6429065 DOI: 10.3390/molecules24050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 11/25/2022] Open
Abstract
DiNap [(E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one], an analog of a natural product (the chalcone flavokawain), was synthesized and characterized in this study. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most challenging threat to the swine industry worldwide. Currently, commercially available vaccines are ineffective for controlling porcine reproductive and respiratory syndrome (PRRS) in pigs. Therefore, a pharmacological intervention may represent an alternative control measure for PRRSV infection. Hence, the present study evaluated the effects of DiNap on the replication of VR2332 (a prototype strain of type 2 PRRSV). Initially, in vitro antiviral assays against VR2332 were performed in MARC-145 cells and porcine alveolar macrophages (PAMs). Following this, a pilot study was conducted in a pig model to demonstrate the effects of DiNap following VR2332 infection. DiNap inhibited VR2332 replication in both cell lines in a dose-dependent manner, and viral growth was completely suppressed at concentrations ≥0.06 mM, without significant cytotoxicity. Consistent with these findings, in the pig study, DiNap also reduced viral loads in the serum and lungs and enhanced the weight gain of pigs following VR2332 infection, as indicated by comparison of the DiNap-treated groups to the untreated control (NC) group. In addition, DiNap-treated pigs had fewer gross and microscopic lesions in their lungs than NC pigs. Notably, virus transmission was also delayed by approximately 1 week in uninfected contact pigs within the same group after treatment with DiNap. Taken together, these results suggest that DiNap has potential anti-PRRSV activity and could be useful as a prophylactic or post-exposure treatment drug to control PRRSV infection in pigs.
Collapse
|
14
|
Shabir N, Khatun A, Nazki S, Gu S, Lee SM, Hur TY, Yang MS, Kim B, Kim WI. In vitro immune responses of porcine alveolar macrophages reflect host immune responses against porcine reproductive and respiratory syndrome viruses. BMC Vet Res 2018; 14:380. [PMID: 30509265 PMCID: PMC6278023 DOI: 10.1186/s12917-018-1675-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, an in vitro immunogenicity screening system for the immunological assessment of potential porcine reproductive and respiratory syndrome virus (PRRSV) vaccine candidates is highly desired. Thus, in the present study, two genetically divergent PRRSVs were characterized in vitro and in vivo to identify an in vitro system and immunological markers that predict the host immune response. Porcine alveolar macrophages (PAMs) and peripheral blood mononuclear cells (PBMCs) collected from PRRSV-negative pigs were used for in vitro immunological evaluation, and the response of these cells to VR2332c or JA142c were compared with those elicited in pigs challenged with the same viruses. RESULTS Compared with VR2332c or mock infection, JA142c induced increased levels of type I interferons and pro-inflammatory cytokines (TNF-α, IL-1α/β, IL-6, IL-8, and IL-12) in PAMs, and these elevated levels were comparable to the cytokine induction observed in PRRSV-challenged pigs. Furthermore, significantly greater numbers of activated CD4+ T cells, type I helper T cells, cytotoxic T cells and total IFN-γ+ cells were observed in JA142c-challenged pigs than in VR2332c- or mock-challenged pigs. CONCLUSIONS Based on these results, the innate immune response patterns (particularly IFN-α, TNF-α and IL-12) to specific PRRSV strains in PAMs might reflect those elicited by the same viruses in pigs.
Collapse
Affiliation(s)
- Nadeem Shabir
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea.,Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Amina Khatun
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Salik Nazki
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Suna Gu
- College of Environmental & Biosource Science, Division of Biotechnology, Chonbuk National University, Iksan, South Korea
| | - Sang-Myoung Lee
- College of Environmental & Biosource Science, Division of Biotechnology, Chonbuk National University, Iksan, South Korea
| | - Tai-Young Hur
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, South Korea
| | - Myoun-Sik Yang
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk, Korea.
| |
Collapse
|
15
|
Crystal Structure of the Dimerized N Terminus of Porcine Circovirus Type 2 Replicase Protein Reveals a Novel Antiviral Interface. J Virol 2018; 92:JVI.00724-18. [PMID: 29976661 DOI: 10.1128/jvi.00724-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023] Open
Abstract
Two replicase (Rep) proteins, Rep and Rep', are encoded by porcine circovirus (PCV) ORF1; Rep is a full ORF1 transcript, and Rep' is a truncated transcript generated by splicing. These two proteins are crucial for the rolling-circle replication (RCR) of PCV. The N-terminal sequences of Rep and Rep' are identical and interact to form homo- or heterodimers. The three types of dimers perform different functions during replication. A structural examination of the interfacing termini has not been performed. In this study, a crystal structure of dimerized Rep protein N termini was resolved at 2.7 Å. The dimerized protein was maintained by nine intermolecular hydrogen bonds and 15 pairs of hydrophobic interactions. The amino acid residue Ile37 participates in 11 of the hydrophobic interactions, mostly with its side chain. To find the predominant sites for protein dimerization and virus replication, a series of mutant proteins and virus replicons were generated by alanine substitution. Of all the single amino acid substitutions, the mutation at Ile37 showed the greatest effect on protein dimerization and virus replication. A double mutation at Leu35 and Ile37 almost eliminated protein dimerization and had the greatest negative effect on virus replication. These studies demonstrate that Leu35 and Ile37 are the most important residues for protein dimerization and are crucial for virus replication. Our results also show that PCV replication can be decreased by disrupting the dimerization of Rep or Rep' at the N terminus, suggesting that the structural interface responsible for dimerization offers a promising antiviral target.IMPORTANCE Porcine circovirus type 2 (PCV2) is one of the most economically damaging pathogens affecting the swine industry. Although vaccines have been available for more than 10 years, the virus still remains prevalent. More effective strategies for disease prevention are clearly required. The Rep and Rep' proteins of the virus have identical N-terminal regions that interact with each other, allowing the formation of homo- or heterodimers. The heterodimer has crucial functions during different stages of viral replication. Here, we resolved the crystal structure of the Rep (Rep') dimerization domain. The individual residues involved in the intermolecular interaction were visualized in the protein structure, and several interactions were verified by mutant analysis. Our studies show that disrupting the interaction decreases viral replication, thus revealing a new target for the design of antiviral agents.
Collapse
|
16
|
Evaluation of the Cross-Protective Efficacy of a Chimeric Porcine Reproductive and Respiratory Syndrome Virus Constructed Based on Two Field Strains. Viruses 2016; 8:v8080240. [PMID: 27556483 PMCID: PMC4997602 DOI: 10.3390/v8080240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
One of the major hurdles to porcine reproductive and respiratory syndrome (PRRS) vaccinology is the limited or no cross-protection conferred by current vaccines. To overcome this challenge, a PRRS chimeric virus (CV) was constructed using an FL12-based cDNA infectious clone in which open reading frames (ORFs) 3-4 and ORFs 5-6 were replaced with the two Korean field isolates K08-1054 and K07-2273,respectively. This virus was evaluated as a vaccine candidate to provide simultaneous protection against two genetically distinct PRRS virus (PRRSV) strains. Thirty PRRS-negative three-week-old pigs were divided into five groups and vaccinated with CV, K08-1054, K07-2273, VR-2332, or a mock inoculum. At 25 days post-vaccination (dpv), the pigs in each group were divided further into two groups and challenged with either K08-1054 or K07-2273. All of the pigs were observed until 42 dpv and were euthanized for pathological evaluation. Overall, the CV-vaccinated group exhibited higher levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12) expression and of serum virus-neutralizing antibodies compared with the other groups after vaccination and also demonstrated better protection levels against both viruses compared with the challenge control group. Based on these results, it was concluded that CV might be an effective vaccine model that can confer a broader range of cross-protection to various PRRSV strains.
Collapse
|
17
|
The Attenuation Phenotype of a Ribavirin-Resistant Porcine Reproductive and Respiratory Syndrome Virus Is Maintained during Sequential Passages in Pigs. J Virol 2016; 90:4454-4468. [PMID: 26889041 DOI: 10.1128/jvi.02836-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED In a previous study, ribavirin-resistant porcine reproductive and respiratory syndrome virus (PRRSV) mutants (RVRp13 and RVRp22) were selected, and their resistance against random mutation was shown in cultured cells. In the present study, these ribavirin-resistant mutants were evaluated in terms of their genetic and phenotypic stability during three pig-to-pig passages in comparison with modified live virus (MLV) (Ingelvac PRRS MLV). Pigs challenged with RVRp22 had significantly lower (P< 0.05) viral loads in sera and tissues than pigs challenged with MLV or RVRp13 at the first passage, and the attenuated replication of RVRp22 was maintained until the third passage. Viral loads in sera and tissues dramatically increased in pigs challenged with MLV or RVRp13 during the second passage. Consistently, all five sequences associated with the attenuation of virulent PRRSV in RVRp13 and MLV quickly reverted to wild-type sequences during the passages, but two attenuation sequences were maintained in RVRp22 even after the third passage. In addition, RVRp22 showed a significantly lower (P< 0.001) mutation frequency in nsp2, which is one of the most variable regions in the PRRSV genome, than MLV. Nine unique mutations were found in open reading frames (ORFs) 1a, 2, and 6 in the RVRp22 genome based on full-length sequence comparisons with RVRp13, VR2332 (the parental virus of RVRp13 and RVRp22), and MLV. Based on these results, it was concluded that RVRp22 showed attenuated replication in pigs; further, because of the high genetic stability of RVRp22, its attenuated phenotype was stable even after three sequential passages in pigs. IMPORTANCE PRRSV is a rapidly evolving RNA virus. MLV vaccines are widely used to control PRRS; however, there have been serious concerns regarding the use of MLV as a vaccine virus due to the rapid reversion to virulence during replication in pigs. As previously reported, ribavirin is an effective antiviral drug against many RNA viruses. Ribavirin-resistant mutants reemerged by escaping lethal mutagenesis when the treatment concentration was sublethal, and those mutants were genetically more stable than parental viruses. In a previous study, two ribavirin-resistant PRRSV mutants (RVRp13 and RVRp22) were selected, and their higher genetic stability was shown in vitro Consequently, in the present study, both of the ribavirin-resistant mutants were evaluated in terms of their genetic and phenotypic stability in vivo RVRp22 was found to exhibit higher genetic and phenotypic stability than MLV, and nine unique mutations were identified in the RVRp22 genome based on a full-length sequence comparison with the RVRp13, VR2332, and MLV genomes.
Collapse
|
18
|
Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae. Vet J 2015; 212:1-6. [PMID: 27256017 DOI: 10.1016/j.tvjl.2015.10.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/27/2015] [Accepted: 10/10/2015] [Indexed: 11/21/2022]
Abstract
Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens.
Collapse
|
19
|
Vaccination with a Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus Vaccine Followed by Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects against PRRS but Enhances PCV2 Replication and Pathogenesis Compared to Results for Nonvaccinated Cochallenged Controls. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1244-54. [PMID: 26446422 DOI: 10.1128/cvi.00434-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 01/16/2023]
Abstract
Coinfections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation of host immunity. The purpose of this study was to evaluate PCV2 replication and pathogenesis in pigs vaccinated with a PRRS modified live virus (MLV) vaccine and subsequently challenged with a combination of PRRSV and PCV2. During the early postchallenge period, the number of pigs with PRRSV-associated clinical signs was decreased, and average daily gain (ADG) was increased, in the vaccinated group, demonstrating the protective effect of PRRS vaccination. However, during the later postchallenge period, more pigs in the vaccinated group showed increased PCV2 viremia, decreased ADG, increased PCVAD clinical signs, and increased mortality. In this disease model, the early benefits of PRRSV vaccination were outweighed by the later amplification of PCVAD.
Collapse
|
20
|
Savard C, Gagnon CA, Chorfi Y. Deoxynivalenol (DON) naturally contaminated feed impairs the immune response induced by porcine reproductive and respiratory syndrome virus (PRRSV) live attenuated vaccine. Vaccine 2015; 33:3881-6. [PMID: 26117152 PMCID: PMC7127064 DOI: 10.1016/j.vaccine.2015.06.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
Cereal commodities are frequently contaminated with mycotoxins produced by the secondary metabolism of fungal infection. Among these contaminants, deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs are very sensitive to the toxic effects of DON and are frequently exposed to naturally contaminated feed. Recently, DON naturally contaminated feed has been shown to decrease porcine reproductive and respiratory syndrome virus (PRRSV) specific antibody responses following experimental infection. The objective of this study was to determine the impact of DON naturally contaminated feed on the immune response generated following vaccination with PRRSV live attenuated vaccine. Eighteen pigs were randomly divided into three experimental groups of 6 animals based on DON content of the diets (0, 2.5 and 3.5mg DON/kg). They were fed these rations one week prior to the vaccination and for all the duration of the immune response evaluation. All pigs were vaccinated intra-muscularly with one dose of Ingelvac(®) PRRSV modified live vaccine (MLV). Blood samples were collected at day -1, 6, 13, 20, 27 and 35 post vaccination (pv) and tested for PRRSV RNA by RT-qPCR and for virus specific antibodies by ELISA. Results showed that ingestion of DON-contaminated diets significantly decreased PRRSV viremia. All pigs fed control diet were viremic while only 1 (17%) and 3 (50%) out of 6 pigs were viremic in the groups receiving 3.5 and 2.5mg of DON/kg, respectively. Subsequently, all pigs fed control diet developed PRRSV specific antibodies while only viremic pigs that were fed contaminated diets have developed PRRSV specific antibodies. These results suggest that feeding pigs with DON-contaminated diet could inhibit vaccination efficiency of PRRSV MLV by severely impairing viral replication.
Collapse
Affiliation(s)
- Christian Savard
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP); Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Carl A Gagnon
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP); Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
21
|
Savard C, Provost C, Alvarez F, Pinilla V, Music N, Jacques M, Gagnon CA, Chorfi Y. Effect of deoxynivalenol (DON) mycotoxin on in vivo and in vitro porcine circovirus type 2 infections. Vet Microbiol 2015; 176:257-67. [PMID: 25717015 DOI: 10.1016/j.vetmic.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/22/2014] [Accepted: 02/03/2015] [Indexed: 12/30/2022]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium spp and is a common contaminant of grains in North America. Among farm animals, swine are the most susceptible to DON because it markedly reduces feed intake and decreases weight gain. Porcine circovirus type 2 (PCV2) is the main causative agent of several syndromes in weaning piglets collectively known as porcine circovirus-associated disease (PCVAD). The objectives of this study were to investigate the impact of DON on PCV2 replication in NPTr permissive cell line, and to determine eventual potentiating effects of DON on PCV2 infection in pigs. Noninfected and infected cells with PCV2 were treated with increasing concentrations of DON (0, 70, 140, 280, 560, 1200 ng/mL) and cell survival and virus titer were evaluated 72 h postinfection. Thirty commercial piglets were randomly divided into 3 experimental groups of 10 animals based on DON content of served diets (0, 2.5 and 3.5 mg/kg DON). All groups were further divided into subgroups of 6 pigs and were inoculated with PCV2b virus. The remaining pigs (control) were sham-inoculated with PBS. In vitro results showed that low concentrations of DON could potentially increase PCV2 replication depending on virus genotype. In vivo results showed that even though viremia and lung viral load tend to be higher in animal ingesting DON contaminated diet at 2.5 mg/kg, DON had no significant effect on clinical manifestation of PCVAD in PCV2b infected animals. DON has neither in vitro nor in vivo clear potentiating effects in the development of porcine circovirus infection despite slight increases in viral replication.
Collapse
Affiliation(s)
- Christian Savard
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Chantale Provost
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Fernando Alvarez
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Vicente Pinilla
- Département de Biomédecine vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Nedzad Music
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Mario Jacques
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Carl A Gagnon
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Younes Chorfi
- Département de Biomédecine vétérinaire, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
22
|
Huang Y, Zhang X, Du Q, Wang F, Zhao X, Zhang W, Tong D. Preclinical detection of porcine circovirus type 2 infection using an ultrasensitive nanoparticle DNA probe-based PCR assay. PLoS One 2014; 9:e97869. [PMID: 24842840 PMCID: PMC4026479 DOI: 10.1371/journal.pone.0097869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/25/2014] [Indexed: 12/03/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) has emerged as one of the most important pathogens affecting swine production globally. Preclinical identification of PCV2 is very important for effective prophylaxis of PCV2-associated diseases. In this study, we developed an ultrasensitive nanoparticle DNA probe-based PCR assay (UNDP-PCR) for PCV2 detection. Magnetic microparticles coated with PCV2 specific DNA probes were used to enrich PCV2 DNA from samples, then gold nanoparticles coated with PCV2 specific oligonucleotides were added to form a sandwich nucleic acid-complex. After the complex was formed, the oligonucleotides were released and characterized by PCR. This assay exhibited about 500-fold more sensitive than conventional PCR, with a detection limit of 2 copies of purified PCV2 genomic DNA and 10 viral copies of PCV2 in serum. The assay has a wide detection range for all of PCV2 genotypes with reliable reproducibility. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1, porcine parvovirus, porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus and classical swine fever virus. The positive detection rate of PCV2 specific UNDP-PCR in 40 preclinical field samples was 27.5%, which appeared greater than that by conventional and real-time PCR and appeared application potency in evaluation of the viral loads levels of preclinical infection samples. The UNDP-PCR assay reported here can reliably rule out false negative results from antibody-based assays, provide a nucleic acid extraction free, specific, ultrasensitive, economic and rapid diagnosis method for preclinical PCV2 infection in field, which may help prevent large-scale outbreaks.
Collapse
Affiliation(s)
- Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Fengyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
23
|
Alarcon P, Rushton J, Wieland B. Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England - an economic disease model. Prev Vet Med 2013; 110:88-102. [PMID: 23490147 PMCID: PMC3652492 DOI: 10.1016/j.prevetmed.2013.02.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 01/18/2013] [Accepted: 02/03/2013] [Indexed: 01/16/2023]
Abstract
Post-weaning multi-systemic wasting syndrome (PMWS) is a multi-factorial disease with major economic implications for the pig industry worldwide. The present study aimed to assess the economic impact of PMWS and porcine circovirus type 2 (PCV2) subclinical infections (PCV2SI) for farrow-to-finish farms and to estimate the resulting cost to the English pig industry. A disease model was built to simulate the varying proportions of pigs in a batch that get infected with PCV2 and develop either PMWS, subclinical disease (reduce growth without evident clinical signs) or remain healthy (normal growth and no clinical signs), depending on the farm level PMWS severity. This PMWS severity measure accounted for the level of post-weaning mortality, PMWS morbidity and proportion of PCV2 infected pigs observed on farms. The model generated six outcomes: infected pigs with PMWS that die (PMWS-D); infected pigs with PMWS that recover (PMWS-R); subclinical pigs that die (Sub-D); subclinical pigs that reach slaughter age (Sub-S); healthy pigs sold (H-S); and pigs, infected or non-infected by PCV2, that die due to non-PCV2 related causes (nonPCV2-D). Enterprise and partial budget analyses were used to assess the deficit/profits and the extra costs/extra benefits of a change in disease status, respectively. Results from the economic analysis at pig level were combined with the disease model's estimates of the proportion of different pigs produced at different severity scores to assess the cost of PMWS and subclinical disease at farm level, and these were then extrapolated to estimate costs at national level. The net profit for a H-S pig was £19.2. The mean loss for a PMWS-D pig was £84.1 (90% CI: 79.6–89.1), £24.5 (90% CI: 15.1–35.4) for a PMWS-R pig, £82.3 (90% CI: 78.1–87.5) for a Sub-D pig, and £8.1 (90% CI: 2.18–15.1) for a Sub-S pig. At farm level, the greatest proportion of negative economic impact was attributed to PCV2 subclinical pigs. The economic impact for the English pig industry for the year 2008, prior to the introduction of PCV2 vaccines, was estimated at £52.6 million per year (90% CI: 34.7–72.0), and approximately £88 million per year during the epidemic period. This was the first study to use empirical data to model the cost of PMWS/PCV2SI at different farm severity levels. Results from this model will be used to assess the efficiency of different control measures and to provide a decision support tool to farmers and policy makers.
Collapse
Affiliation(s)
- Pablo Alarcon
- Royal Veterinary College, London AL9 7TA, United Kingdom.
| | | | | |
Collapse
|
24
|
Comparative effects of vaccination against porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) in a PCV2-PRRSV challenge model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:369-76. [PMID: 23302743 DOI: 10.1128/cvi.00497-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective of the present study was to determine the effects of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) vaccinations in an experimental PCV2-PRRSV challenge model, based on virological (viremia), immunological (neutralizing antibodies [NAs], gamma interferon-secreting cells [IFN-γ-SCs], and CD4(+) CD8(+) double-positive cells), and pathological (lesions and antigens in lymph nodes and lungs) evaluations. A total of 72 pigs were randomly divided into 9 groups (8 pigs per group): 5 vaccinated and challenged groups, 3 nonvaccinated and challenged groups, and a negative-control group. Vaccination against PCV2 induced immunological responses (NAs and PCV2-specific IFN-γ-SCs) and reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PCV2 did not affect the PRRSV immunological responses (NAs and PRRSV-specific IFN-γ-SCs), PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. Vaccination against PRRSV did not induce immunological responses (PRRSV-specific IFN-γ-SCs) or reduce PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. In addition, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. In summary, vaccination against PCV2 reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. Therefore, the PCV2 vaccine decreased the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs. In contrast, the PRRSV vaccine alone did not decrease the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs.
Collapse
|
25
|
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). The virus preferentially targets the lymphoid tissues, which leads to lymphoid depletion and immunosuppression in pigs. The disease is exacerbated by immunostimulation or concurrent infections with other pathogens. PCV2 resides in certain immune cells, such as macrophage and dendritic cells, and modulates their functions. Upregulation of IL-10 and proinflammatory cytokines in infected pigs may contribute to pathogenesis. Pig genetics influence host susceptibility to PCV2, but the viral genetic determinants for virulence remain unknown. PCV2 DNA and proteins interact with various cellular genes that control immune responses to regulate virus replication and pathogenesis. Both neutralizing antibodies and cell-mediated immunity are important immunological correlates of protection. Despite the availability of effective vaccines, variant strains of PCV2 continue to emerge. Although tremendous progress has been made toward understanding PCV2 pathogenesis and immune interactions, many important questions remain.
Collapse
Affiliation(s)
- Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061;
| |
Collapse
|
26
|
Segalés J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Res 2012; 164:10-9. [DOI: 10.1016/j.virusres.2011.10.007] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 12/18/2022]
|
27
|
Zhang Z, Wang Y, Fan H, Lu C. Natural infection with torque teno sus virus 1 (TTSuV1) suppresses the immune response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccination. Arch Virol 2012; 157:927-33. [PMID: 22327391 DOI: 10.1007/s00705-012-1249-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
To evaluate the effect of natural infection with TTSuV1 on the antibody response to vaccination with PRRS vaccine and clinical signs when co-infected with virulent PRRSV, 15 4-week-old TTSuV1-positive piglets and 20 TTSuV1-negative piglets were selected by PCR from two pig farms in Jiangsu province. TTSuV1-negative pigs were divided into four groups, and TTSuV1-positive pigs were divided into three groups. Experimental pigs were vaccinated with a PRRSV modified live virus (MLV) at 6 weeks of age and subsequently challenged with a virulent strain of PRRSV at 10 weeks of age. A TTSuV1-negative control group and an unvaccinated PRRS MLV control group were tested at the same time. The levels of antibody/cytokine and protective efficiency against PRRS MLV vaccine were evaluated. TTSuV1-infected/PRRSV-vaccinated pigs had lower levels of PRRSV antibody, as well as IFN-γ, IL-10 and T lymphocyte proliferation, than the TTSuV1-uninfected/PRRSV-vaccinated group (P < 0.05, except IL-10) after vaccination at only one time point. TTSuV1-infected/PRRS MLV-vaccinated/PRRSV-challenged pigs had more severe clinical signs (P > 0.05), more macroscopic lung lesions (P < 0.05) and lower levels of PRRSV antibody (P < 0.05 at 7 to 14 days post-PRRSV-challenge) than TTSuV1-uninfected/PRRSV-vaccinated/PRRSV-challenged pigs. These data indicate that TTSuV1 natural infection has an adverse effect on the development of host immune responses, suppresses immunization by the PRRS MLV vaccine, and exacerbates PRRS to a certain extent in pigs.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
28
|
Baekbo P, Kristensen CS, Larsen LE. Porcine Circovirus Diseases: A review of PMWS. Transbound Emerg Dis 2012; 59 Suppl 1:60-7. [DOI: 10.1111/j.1865-1682.2011.01288.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Huang YL, Pang VF, Lin CM, Tsai YC, Chia MY, Deng MC, Chang CY, Jeng CR. Porcine circovirus type 2 (PCV2) infection decreases the efficacy of an attenuated classical swine fever virus (CSFV) vaccine. Vet Res 2011; 42:115. [PMID: 22129109 PMCID: PMC3284476 DOI: 10.1186/1297-9716-42-115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 12/01/2011] [Indexed: 11/10/2022] Open
Abstract
The Lapinized Philippines Coronel (LPC) vaccine, an attenuated strain of classical swine fever virus (CSFV), is an important tool for the prevention and control of CSFV infection and is widely and routinely used in most CSF endemic areas, including Taiwan. The aim of this study was to investigate whether PCV2 infection affects the efficacy of the LPC vaccine. Eighteen 6-week-old, cesarean-derived and colostrum-deprived (CDCD), crossbred pigs were randomly assigned to four groups. A total of 105.3 TCID50 of PCV2 was experimentally inoculated into pigs through both intranasal and intramuscular routes at 0 days post-inoculation (dpi) followed by LPC vaccination 12 days later. All the animals were challenged with wild-type CSFV (ALD stain) at 27 dpi and euthanized at 45 dpi. Following CSFV challenge, the LPC-vaccinated pigs pre-inoculated with PCV2 showed transient fever, viremia, and viral shedding in the saliva and feces. The number of IgM+, CD4+CD8-CD25+, CD4+CD8+CD25+, and CD4-CD8+CD25+ lymphocyte subsets and the level of neutralizing antibodies against CSFV were significantly higher in the animals with LPC vaccination alone than in the pigs with PCV2 inoculation/LPC vaccination. In addition, PCV2-derived inhibition of the CSFV-specific cell proliferative response of peripheral blood mononuclear cells (PBMCs) was demonstrated in an ex vivo experiment. These findings indicate that PCV2 infection decreases the efficacy of the LPC vaccine. This PCV2-derived interference may not only allow the invasion of wild-type CSFV in pig farms but also increases the difficulty of CSF prevention and control in CSF endemic areas.
Collapse
Affiliation(s)
- Yu-Liang Huang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No, 1, Sec, 4, Roosevelt Rd,, Taipei 106, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|
31
|
Opriessnig T, Halbur PG. Concurrent infections are important for expression of porcine circovirus associated disease. Virus Res 2011; 164:20-32. [PMID: 21959087 PMCID: PMC7114432 DOI: 10.1016/j.virusres.2011.09.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/15/2023]
Abstract
Porcine circovirus type 2 (PCV2) is the essential component of porcine circovirus disease (PCVD) as the disease syndrome is referred to in Europe and porcine circovirus associated disease (PCVAD) as it is referred to in North America. Singular PCV2 infection rarely results in clinical disease; however, PCVAD is often accelerated in onset, enhanced in severity and prolonged in duration by concurrent viral or bacterial infections. Due to its effect on the immune system, PCV2 has also been shown to enhance protozoal, metazoal, and fungal infections. Several retrospective or cross-sectional studies have investigated the presence and prevalence of various infectious agents associated with PCVAD under field conditions. Experimental models confirm that PCV2 replication and associated lesions can be enhanced by concurrent infection with other viruses or bacteria. The exact mechanisms by which concurrent pathogens upregulate PCV2 are unknown. Co-infections may promote PCV2 infection by increasing immune host cell replication and accumulation in tissues thereby enhancing targets for PCV2 replication. It has also been proposed that co-infections interfere with PCV2 clearance by alteration of cytokine production and profiles. The outcome of differences in timing of co-infections in PCV2-infected pigs is also likely very important and is an area where more research is needed. Given the current knowledge base, it is important that veterinarians do a thorough diagnostic investigation on herds where PCVAD is a recurrent problem in order to implement the most appropriate and cost effective intervention strategies.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA.
| | | |
Collapse
|
32
|
Deng ZB, Wang ND, Xu DJ, Yuan AW, Ge M, Luo W, Xue LQ, Yu XL. Viral distribution and lesions in Kunming mice experimentally infected with porcine circovirus type 2b. Vet Res Commun 2011; 35:181-92. [PMID: 21287271 DOI: 10.1007/s11259-011-9461-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2011] [Indexed: 12/13/2022]
Abstract
The viral distribution and lesions in Kunming mice experimentally infected with porcine circovirus type 2b (PCV-2b) were investigated. Seventy special pathogen free mice were divided into 2 groups with 35 mice in each group. The test group (TG) was infected with PCV-2b, the control group (CG) was inoculated with sterile cell cultures. Five mice in each group were sacrificed at 3, 7, 14, 21, 28, 35 and 42 dpi (day post infection), respectively. Necropsies were performed on all mice and tissues were collected for testing by histopathology, immunohistochemistry, transmission electron microscope (TEM) and polymerase chain reaction (PCR). Apoptosis and necrosis in lymphoid organs were observed in virus-infected mice, and became severe from 14 to 28 dpi. The proportion of PCV-2b antigen-positive cells was moderate in lung, heart, thymus, liver or kidney, and low in brain from TG. In spleen and cervical lymph node, the proportions of PCV-2b antigen-positive cells were low to high from 7 to 28 dpi, and moderate from 35 to 42 dpi. PCV-2b DNA was detected in all tissues examined in TG from 7 to 42 dpi. Viral inclusion bodies presented in the cytoplasm of lymphocytes, macrophages, hepatocytes, podocytes, neurocytes, spermatids and uterine epithelial cells in TG. In CG, no viruses and viral lesions were detected. PCV-2b could replicate in mice, and PCV-2b associated lesions in mice were similar to those observed in pigs. The present results indicate that it is possible to use Kunming mouse as an animal model for PMWS research.
Collapse
Affiliation(s)
- Zhi-Bang Deng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Porcine reproductive and respiratory syndrome virus infection at the time of porcine circovirus type 2 vaccination has no impact on vaccine efficacy. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1940-5. [PMID: 20926694 DOI: 10.1128/cvi.00338-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several porcine circovirus type 2 (PCV2) vaccines are now commercially available and have been shown to be effective at decreasing the occurrence of porcine circovirus-associated disease (PCVAD). Many herds are coinfected with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). Some producers and veterinarians are concerned that if pigs are vaccinated for PCV2 at or near the time that they are typically infected with PRRSV, the efficacy of the PCV2 vaccine will be compromised. The impact of PRRSV on PCV2 vaccination is unclear and has not been investigated under controlled conditions. The objective of the present study was to determine whether the presence of PRRSV viremia has an effect on the efficacy of commercial PCV2 vaccinations. Three-week-old PCV2-negative conventional pigs with passively derived anti-PCV2 antibodies were either vaccinated with one of three commercial PCV2 vaccines or left nonvaccinated. A portion of the pigs were infected with PRRSV 1 week prior to PCV2 vaccination. To determine vaccine efficacy, a PCV2 challenge was conducted at 8 weeks of age. PCV2 vaccination, regardless of PRRSV infection status at the time of vaccination, was similarly effective in inducing an anti-PCV2 IgG response in the presence of maternally derived immunity and in protecting the pigs from PCV2 challenge, as determined by a reduction in the level of PCV2 viremia and a reduction in the prevalence and amount of PCV2 antigen in lymphoid tissues in vaccinated pigs compared to nonvaccinated pigs. The results indicate that acute PRRSV infection at the time of PCV2 vaccination has no adverse effect on PCV2 vaccine efficacy.
Collapse
|
34
|
Hansen MS, Pors SE, Jensen HE, Bille-Hansen V, Bisgaard M, Flachs EM, Nielsen OL. An investigation of the pathology and pathogens associated with porcine respiratory disease complex in Denmark. J Comp Pathol 2010; 143:120-31. [PMID: 20181357 PMCID: PMC7094415 DOI: 10.1016/j.jcpa.2010.01.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 12/03/2009] [Accepted: 01/08/2010] [Indexed: 12/04/2022]
Abstract
Respiratory infections are among the most important diseases of growing pigs. In order to elucidate the multifactorial aetiology of porcine respiratory disease complex (PRDC) in Denmark, lungs from 148 finishing pigs with cranioventral bronchopneumonia (case group) and 60 pigs without lung lesions (control group) were collected from abattoirs. The pathogens involved in PRDC and their interactions were identified and linked to the histopathological diagnosis. The lung samples were cultured for bacteria and tested by multiplex polymerase chain reaction for presence of swine influenza virus (type A), porcine reproductive and respiratory syndrome virus (both European and US type), porcine circovirus type 2 (PCV2), porcine respiratory coronavirus, porcine cytomegalovirus, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis. All cases had cranioventral lobular bronchopneumonia consistent with PRDC. There was a broad range of microscopical lesions and the cases were characterized as acute (n = 10), subacute (n = 24) or chronic (n = 114) bronchopneumonia. Five bacterial species, five viruses and two Mycoplasma spp. were detected in different combinations. PCV2, M. hyopneumoniae, M. hyorhinis and Pasteurella multocida were detected most frequently among the PRDC affected swine and the diversity and number of pathogens were higher in these animals compared with controls. No clear-cut associations were detected between pathogens and histological lesions or histopathological diagnoses. PRDC occurs more frequently than enzootic pneumonia among Danish finishing pigs and has complex and varied histopathology.
Collapse
Affiliation(s)
- M S Hansen
- Department of Veterinary Disease Biology, Faculty of Life Sciences (LIFE), University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
35
|
SASAKI K, TSUKAHARA T, TAIRA O, TSUCHIYA K, ITOH M, USHIDA K. Prevalence of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 in piglets after weaning on a commercial pig farm in Japan. Anim Sci J 2010; 81:135-41. [DOI: 10.1111/j.1740-0929.2009.00706.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Blinkova O, Rosario K, Li L, Kapoor A, Slikas B, Bernardin F, Breitbart M, Delwart E. Frequent detection of highly diverse variants of cardiovirus, cosavirus, bocavirus, and circovirus in sewage samples collected in the United States. J Clin Microbiol 2009; 47:3507-13. [PMID: 19794058 PMCID: PMC2772610 DOI: 10.1128/jcm.01062-09] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/09/2009] [Accepted: 09/18/2009] [Indexed: 12/25/2022] Open
Abstract
Untreated sewage samples from 12 cities in the United States were screened for the presence of recently characterized RNA and DNA viruses found at high prevalence in the stool specimens of South Asian children. Genetic variants of human cosaviruses and cardioviruses in the Picornaviridae family and of DNA circoviruses and human bocaviruses were detected, expanding the known genetic diversity and geographic range of these newly identified viruses. All four virus groups were detected in sewage samples of less than a milliliter from multiple U.S. cities. PCR screening of particle-protected viral nucleic acid in sewage samples could therefore rapidly establish the presence and determine the diversity of four newly described enteric viruses in large urban populations. More frequent and deeper sampling of viral nucleic acids in sewage samples could be used to monitor changes in the prevalence and genetic composition of these and other novel enteric viruses.
Collapse
Affiliation(s)
- O. Blinkova
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| | - K. Rosario
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| | - L. Li
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| | - A. Kapoor
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| | - B. Slikas
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| | - F. Bernardin
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| | - M. Breitbart
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| | - E. Delwart
- Blood Systems Research Institute, San Francisco, California, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida
| |
Collapse
|
37
|
Gillespie J, Opriessnig T, Meng XJ, Pelzer K, Buechner-Maxwell V. Porcine circovirus type 2 and porcine circovirus-associated disease. J Vet Intern Med 2009; 23:1151-63. [PMID: 19780932 PMCID: PMC7166794 DOI: 10.1111/j.1939-1676.2009.0389.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/02/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) belongs to the viral family Circoviridae and to the genus Circovirus. Circoviruses are small, single-stranded nonenveloped DNA viruses that have an unsegmented circular genome. PCV2 is the primary causative agent of several syndromes collectively known as porcine circovirus-associated disease (PCVAD). Many of the syndromes associated with PCVAD are a result of coinfection with PCV2 virus and other agents such as Mycoplasma and porcine reproductive and respiratory syndrome virus. PCV2 infection is present in every major swine-producing country in the world, and the number of identified cases of PCVAD is rapidly increasing. In the United States, the disease has cost producers an average of 3-4 dollars per pig with peak losses ranging up to 20 dollars per pig. The importance of this disease has stimulated investigations aimed at identifying risk factors associated with infection and minimizing these risks through modified management practices and development of vaccination strategies. This paper provides an overview of current knowledge relating to PCV2 and PCVAD with an emphasis on information relevant to the swine veterinarian.
Collapse
Affiliation(s)
- J Gillespie
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | |
Collapse
|
38
|
Shearer PL, Sharp M, Bonne N, Clark P, Raidal SR. A quantitative, real-time polymerase chain reaction assay for beak and feather disease virus. J Virol Methods 2009; 159:98-104. [DOI: 10.1016/j.jviromet.2009.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/02/2009] [Accepted: 03/09/2009] [Indexed: 12/20/2022]
|
39
|
Patel JR, Heldens JGM. Immunoprophylaxis against important virus disease of horses, farm animals and birds. Vaccine 2009; 27:1797-1810. [PMID: 19402200 PMCID: PMC7130586 DOI: 10.1016/j.vaccine.2008.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/24/2008] [Accepted: 12/18/2008] [Indexed: 01/31/2023]
Abstract
Since the refinement of tissue culture techniques for virus isolation and propagation from the mid 1960s onwards, veterinary virology has received much academic and industrial interest, and has now become a major global industry largely centred on vaccine development against economically important virus diseases of food animals. Bio-tech approaches have been widely used for improved vaccines development. While many viral diseases are controlled through vaccination, many still lack safe and efficacious vaccines. Additional challenges faced by academia, industry and governments are likely to come from viruses jumping species and also from the emergence of virulent variants of established viruses due to natural mutations. Also viral ecology is changing as the respective vectors adapt to new habitats as has been shown in the recent incursion by bluetongue virus into Europe. In this paper the current vaccines for livestock, horses and birds are described in a species by species order. The new promising bio-tech approaches using reverse genetics, non-replicating viral vectors, alpha virus vectors and genetic vaccines in conjunction with better adjuvants and better ways of vaccine delivery are discussed as well
Collapse
Affiliation(s)
- J R Patel
- JAS Biologicals Limited, The Centre for Veterinary Science, Madingley Road, Cambridge, CB3 0ES, UK.
| | | |
Collapse
|
40
|
Bonne N, Shearer P, Sharp M, Clark P, Raidal S. Assessment of recombinant beak and feather disease virus capsid protein as a vaccine for psittacine beak and feather disease. J Gen Virol 2009; 90:640-647. [DOI: 10.1099/vir.0.006932-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Beak and feather disease virus (BFDV) is a significant pathogen of wild Australasian and African psittacine birds. We assessed the immunogenicity of recombinant BFDV capsid (recBFDVcap) to protect against the development of psittacine beak and feather disease (PBFD). Long-billed corellas (Cacatua tenuirostris) (n=13) received (by injection) 1 ml vaccine containing 10 μg recBFDVcap on day 0 and 0.4 ml vaccine containing 66.8 μg recBFDVcap on day 11. All vaccinated corellas and five non-vaccinated control corellas were given 0.4 ml BFDV suspension [titre=log2 12 haemagglutination units (HAU) 50 μl−1] intramuscularly and 0.1 ml orally 16 days after booster vaccination. Blood was collected during the vaccination period and blood and feathers were collected after BFDV administration. Testing of blood samples included BFDV DNA detection by PCR and quantitative PCR (qPCR) as well as antibody detection by haemagglutination inhibition (HI) and on feather samples, BFDV DNA and antigen was detected by haemagglutination (HA) and qPCR. Four of 97 blood samples collected from vaccinated birds after virus challenge tested positive by PCR, whereas 17 of 35 samples taken from non-vaccinated control corellas tested positive. Vaccinated birds did not develop feather lesions, had only transient PCR-detectable viraemia and had no evidence of persistent infection 270 days post-challenge using PCR, histopathology and immunohistochemistry. Non-vaccinated control corellas developed transient feather lesions and had PCR, HI and HA test results consistent with PBFD. They were BFDV PCR-positive for up to 41 days post-challenge and qPCR demonstrated reduced virus replication in vaccinated birds compared with non-vaccinated control birds.
Collapse
Affiliation(s)
- Nicolai Bonne
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Patrick Shearer
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Margaret Sharp
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Phillip Clark
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Shane Raidal
- School of Agricultural and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
41
|
Comparison of efficacy of commercial one dose and two dose PCV2 vaccines using a mixed PRRSV–PCV2–SIV clinical infection model 2–3-months post vaccination. Vaccine 2009; 27:1002-7. [DOI: 10.1016/j.vaccine.2008.11.105] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/27/2008] [Accepted: 11/28/2008] [Indexed: 11/21/2022]
|
42
|
Wang Z, Shao Y, Guo Y, Yuan J. Enhancement of Peripheral Blood CD8+T Cells and Classical Swine Fever Antibodies by Dietaryβ-1,3/1,6-glucan Supplementation in Weaned Piglets. Transbound Emerg Dis 2008; 55:369-76. [DOI: 10.1111/j.1865-1682.2008.01049.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent for porcine circovirus-associated disease (PCVAD). PCVAD has been the cause of considerable economic losses to the pork industry worldwide. The disease is primarily characterized by wasting, enlarged lymph nodes, jaundice and weight loss in affected weanling pigs. Several other complex syndromes involving reproductive failure, enteritis, pneumonia and necrotizing dermatitis have also been associated with PCV2 infection. Lymphoid depletion, which is the hallmark lesion of PCVAD, predisposes the host to immunosuppression. Disease progression is further complicated by co-infections with other bacterial and viral pathogens. Despite the availability of effective vaccines for the last 2 years, newly emerging strains of the virus have been reported to cause more severe outbreaks in parts of the USA and Canada. While knowledge of the biology and pathogenesis of PCV2 has progressed considerably over the last 12 years since the disease was recognized, many questions still remain to be answered.
Collapse
|
44
|
Tomás A, Fernandes LT, Valero O, Segalés J. A meta-analysis on experimental infections with porcine circovirus type 2 (PCV2). Vet Microbiol 2008; 132:260-73. [PMID: 18614300 DOI: 10.1016/j.vetmic.2008.05.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/13/2008] [Accepted: 05/26/2008] [Indexed: 01/17/2023]
Abstract
A meta-analysis was performed with the aim to identify factors with a relevant influence on the expression of clinical postweaning multisystemic wasting syndrome (PMWS) under experimental conditions. Data from 44 studies were included in the analysis. Several variables were studied: number of pigs in the experiment, intake of colostrum, serological status against porcine circovirus type 2 (PCV2), strain of PCV2 used for inoculation, the route and dose of inoculation, and use of potential triggering factors (such as co-infections, vaccinations, or immunomodulator products). Multiple correspondence analysis and log-linear regression methods were used to establish the relationships between the studied variables and the number of PCV2 infected pigs that developed PMWS. Based on the results of the meta-analysis, the most successful animal experiment aimed to develop PMWS should include: (1) colostrum-deprived pigs, (2) age of inoculation below 3 weeks, (3) high doses of PCV2 inoculum, (4) PCV2 strain from genotype 1, and (5) co-infection with another swine pathogen as a triggering factor.
Collapse
Affiliation(s)
- Anna Tomás
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
45
|
Kixmöller M, Ritzmann M, Eddicks M, Saalmüller A, Elbers K, Fachinger V. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine 2008; 26:3443-51. [DOI: 10.1016/j.vaccine.2008.04.032] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/01/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
|
46
|
Opriessnig T, Madson DM, Prickett JR, Kuhar D, Lunney JK, Elsener J, Halbur PG. Effect of porcine circovirus type 2 (PCV2) vaccination on porcine reproductive and respiratory syndrome virus (PRRSV) and PCV2 coinfection. Vet Microbiol 2008; 131:103-14. [PMID: 18430525 DOI: 10.1016/j.vetmic.2008.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 01/21/2023]
Abstract
The objectives were to determine if PCV2 vaccination is effective in reducing disease and lesions associated with PRRSV and PCV2 coinfection and if there is a difference between intradermal (ID) and intramuscular (IM) route of PCV2 vaccination. Seventy-four, 21-day-old pigs were randomly allocated into one of six groups. On day 0, pigs were vaccinated with 2ml Suvaxyn PCV2 One Dose (Fort Dodge Animal Health, Inc.) by intramuscular (VAC-M-COINF) or intradermal (VAC-D-COINF) routes. On day 28, pigs were either singularly (PRRSV-only, PCV2-only) or coinfected (COINF) with PRRSV and PCV2. All pigs in all groups were necropsied on day 42. All vaccinated pigs seroconverted (IgM, IgG, and neutralizing antibodies) to PCV2 between 14 and 28 days post-vaccination. After challenge, all groups inoculated with PRRSV had reduced average daily gain compared to CONTROLS and PCV2-only (P<0.001). COINF pigs had significantly (P<0.05) reduced anti-PCV2-IgG antibody levels and neutralizing antibody levels compared to both vaccinated groups. COINF pigs had more severe lung lesions compared to VAC-M-COINF (P<0.05). COINF pigs had higher amounts of PCV2 DNA in serum samples and feces (P<0.05) and increased amounts of PCV2 in lymphoid tissues (P<0.05) compared to both vaccinated groups. In summary, PCV2 vaccination was effective at inducing a neutralizing antibody response and significantly reducing PCV2-associated lesions and PCV2 viremia in pigs coinfected with PCV2 and PRRSV. Differences between intradermal and intramuscular routes of vaccine administration were not observed.
Collapse
Affiliation(s)
- T Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Opriessnig T, Meng XJ, Halbur PG. Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest 2008; 19:591-615. [PMID: 17998548 DOI: 10.1177/104063870701900601] [Citation(s) in RCA: 466] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Porcine circovirus type 2 (PCV2)-associated disease (PCVAD) continues to be an important differential diagnosis on pig farms in the United States and worldwide. Case trend analyses indicate that the incidence of PCVAD is on the rise in the United States. Accurate diagnosis is important in order to implement appropriate intervention strategies. PCVAD can manifest as a systemic disease, as part of the respiratory disease complex, as an enteric disease, as porcine dermatitis and nephropathy syndrome, or as reproductive problems. PCVAD may be only a sporadic individual animal diagnosis; however, PCVAD may also manifest as a severe herd problem accelerated and enhanced by concurrent virus or bacterial infections. This article is intended to discuss the most common disease manifestations, pathogenesis, diagnostic approaches, and intervention strategies associated with PCVAD in North America.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
48
|
Pan Q, Huang K, He K, Lu F. Effect of different selenium sources and levels on porcine circovirus type 2 replication in vitro. J Trace Elem Med Biol 2008; 22:143-8. [PMID: 18565426 DOI: 10.1016/j.jtemb.2008.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 12/14/2022]
Abstract
Porcine circovirus type 2 (PCV2) has been linked to several disease syndromes during the last decade. A deficiency in selenium has also been associated with the increases of virulence of some viruses and severity of infectious disease. In order to evaluate the effect of different selenium sources and levels on PCV2 replication in PK-15 cells, three selenium sources, i.e. sodium selenite, kappa-selenocarrageenan and dl-selenomethionine at concentrations of 0, 2, 4, 8, and 16 micromol/L were used throughout this experiment. PCV2 loads in PK-15 cells were measured by a newly developed real-time quantitative PCR. A significantly inhibitive effect of dl-selenomethionine on PCV2 replication in vitro was demonstrated and the inhibition was concentration dependent within the range of 2-16 micromol/L. The inhibitive effect of dl-selenomethionine on PCV2 replication may be caused by enhanced activity of glutathione peroxidase. Our results may serve as a basis for further studies of the biological function of selenium and control of PCV2 infection.
Collapse
Affiliation(s)
- Qunxing Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | | | | | | |
Collapse
|
49
|
The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex. Vaccine 2007; 26:1488-99. [PMID: 18304705 DOI: 10.1016/j.vaccine.2007.11.053] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/16/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
A field study was conducted to investigate the effect of vaccination against porcine circovirus type 2 (PCV2) in pigs suffering from porcine respiratory disease complex (PRDC). A total of 1542 pigs were allocated randomly into two treatment groups at approximately 20 days of age. Groups received either a Baculovirus-expressed recombinant PCV2 Open Reading Frame (ORF) 2 vaccine or placebo by single intramuscular injection. Median onset of PCV2 viraemia and respiratory signs occurred when animals were 18 weeks old. Vaccination reduced the mean PCV2 viral load by 55-83% (p < 0.0001) and the mean duration of viraemia by 50% (p < 0.0001). During the period of study (from 3 to 25 weeks of age) vaccinated animals exhibited a reduced mortality rate (6.63% vs. 8.67%, difference -2.04%; p = 0.1507), an improved average daily weight gain (649 g/day vs. 667 g/day; difference +18 g/day; p < 0.0001) and a reduced time to market (164.8 days vs. 170.4 days; difference -5.6 days; p < 0.0001). The effects on performance were greatest in the 8-week period between the onset of PCV2 viraemia and the end of finishing. These data demonstrate that vaccination against PCV2 alone can significantly improve the overall growth performance of pigs in a multi-factorial, late occurring disease complex such as PRDC.
Collapse
|
50
|
Use of an experimental model to test the efficacy of planned exposure to live porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1572-7. [PMID: 17928430 DOI: 10.1128/cvi.00332-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objectives of this study were to test the efficacy and safety of planned exposure to porcine reproductive and respiratory syndrome virus (PRRSV) in protecting naïve and previously exposed pigs against PRRSV challenge and to gain information on the dose of PRRSV necessary to induce a protective immune response. Fifty 2-week-old pigs were randomly assigned to one of five groups: a group exposed to a low dose of autogenous PRRSV vaccine (the L-VAC group), a group exposed to a high dose of autogenous vaccine (the H-VAC group), a group exposed to a low dose of a heterologous PRRSV strain (strain SDSU73) prior to planned exposure (the SDSU73-L-VAC group), a group exposed to a high dose of a heterologous PRRSV strain (strain SDSU73) prior to planned exposure (the SDSU73-H-VAC group), and a control group. All groups were challenged with PRRSV VR2385 5 weeks after the planned exposure. Necropsy was done 2 weeks after the PRRSV challenge. The H-VAC, SDSU73-L-VAC, and SDSU73-H-VAC groups had significantly (P < 0.05) less severe clinical disease (sneezing, respiratory scores, and weight gain), significantly (P < 0.05) less severe macroscopic and microscopic lung lesions, and significantly (P < 0.05) lower numbers of PRRSV genomic copy numbers in their sera compared to the results for the control group. Planned exposure to live PRRSV can be used as an inexpensive and effective way to decrease the severity of PRRSV-induced disease following subsequent challenge.
Collapse
|