1
|
Nikzad-Chaleshtori M, Asgari M, Rezaeizadeh G, Aali F, Doosti A. The urease E subunit vaccine stimulate the immune response versus Helicobacter pylori in animal model. Immunol Res 2025; 73:74. [PMID: 40259189 DOI: 10.1007/s12026-025-09625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
There is a strong association between Helicobacter pylori (H. pylori) and the occurrence of gastritis and gastric mucosal lymphoma in the human population. Vaccination is a viable preventive measure in light of the escalating issue of antibiotic resistance. The use of DNA vaccines presents a potentially effective approach. This study used the utilization of antigenic H. pylori urease E subunit (UreE) for the development of a DNA vaccine. The UreE gene was chemically cloned into pIRES2-DsRed-Express (pDNA), and PCR and restriction enzyme digestion verified the cloning. The immunogenicity and immune-protective efficacy of the vaccination were assessed in BALB/c mice. In contrast, blood samples from BALB/c mice inoculated with pDNA-UreE showed higher levels of IgG, IFN-γ, IL- 4, and IL- 17. Furthermore, stomach damage and bacterial loads were reduced, and BALB/c mice inoculated with pDNA-UreE exhibited a significant protection rate (87.5%) against the H. pylori challenge. pDNA-UreE generated a combination of Th1-Th2-Th17 immune responses, perhaps contributing to adequate protection. Based on our findings, using this DNA immunization as a preventive measure against H. pylori infection is a viable approach.
Collapse
Affiliation(s)
| | - Mohsen Asgari
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Faranak Aali
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
2
|
Affiliation(s)
- Paul Munson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Putzke S, Feldhues E, Heep I, Ilg T, Lamprecht A. Cationic lipid/pDNA complex formation as potential generic method to generate specific IRF pathway stimulators. Eur J Pharm Biopharm 2020; 155:112-121. [PMID: 32798666 DOI: 10.1016/j.ejpb.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/21/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Cationic liposome - CpG DNA complexes (lipoplexes) are known as stimulators of innate immunity via Toll-like receptor 9 (TLR9)-triggered activation of the nuclear factor kappa B (NF-κB) pathway. More recent reports suggest that DNA lipoplexes also engage DNA sensors in the cytosol leading to the stimulation of the interferon response factor (IRF) pathway. In this study a range of lipoplexes were formulated by using an invariable helper lipid, three different cationic lipids (DOTAP, DOTMA and DDA) and three different CpG-containing plasmids of different sizes. These lipoplexes exhibited similar hydrodynamic diameters, zeta-potentials and plasmid loading rates, despite the different lipid blends and CpG-containing plasmids. Binding and uptake of liposomal lipids by J774.A1 macrophages and JAWSII dendritic cells increased significantly (up to 4-fold) upon lipoplex formation. Cellular plasmid DNA uptake via lipoplexes compared to naked DNA was increased up to 18-fold. Analysis of signal transduction pathway activation in J774-DUAL™ reporter cells by liposomes or naked CpG plasmid DNA compared to their derived lipoplexes showed only minor activation of the NF-κB pathway, while the IRF pathway displayed massive activation factors of up to 46-fold. DOTAP- and DOTMA lipoplexes also led to massive interferon-alpha and -beta secretion of J774A.1 macrophages and JAWSII dendritic cells, which is a hallmark of IRF pathway activation. Cellular distribution studies on DOTAP lipoplexes suggest delivery of plasmid DNA via vesicular compartments into the cytosol. Taken together, the CpG plasmid DNA lipoplexes generated in this study appear to selectively stimulate DNA receptors activating the IRF pathway, while bypassing TLR9 and NF-κB activation.
Collapse
Affiliation(s)
- Simone Putzke
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; Bayer Animal Health GmbH, 40789 Monheim am Rhein, Germany
| | | | - Iris Heep
- Bayer Animal Health GmbH, 40789 Monheim am Rhein, Germany
| | - Thomas Ilg
- Bayer Animal Health GmbH, 40789 Monheim am Rhein, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
4
|
The immunostimulator Victrio activates chicken toll-like receptor 21. Vet Immunol Immunopathol 2019; 220:109977. [PMID: 31760146 DOI: 10.1016/j.vetimm.2019.109977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 01/08/2023]
Abstract
The immunostimulator Victrio consists of bacterial plasmid DNA encased in cationic liposomes and protects embryonated chicken eggs and newly hatched chickens against Escherichia coli induced mortality. It is demonstrated that Victrio specifically and potently activates recombinant chicken toll-like receptor 21 (TLR21) in a nuclear factor kappa B reporter gene assay. This TLR21 stimulatory activity is dependent on the presence of nonmethylated CpG and requires liposomal formulation of the DNA, as naked plasmid DNA proves to be inactive. Nitric oxide production is induced by Victrio in HD11 chicken macrophages that express TLR21 naturally, supporting the proposal that chicken TLR21 is a component of the molecular mode of action of Victrio.
Collapse
|
5
|
Kardani K, Hashemi A, Bolhassani A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS One 2019; 14:e0223844. [PMID: 31671105 PMCID: PMC6822742 DOI: 10.1371/journal.pone.0223844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
To develop an effective therapeutic vaccine against HIV-1, prediction of the most conserved epitopes derived from major proteins using bioinformatics tools is an alternative achievement. The epitope-driven vaccines against variable pathogens represented successful results. Hence, to overcome this hyper-variable virus, we designed the highly conserved and immunodominant peptide epitopes. Two servers were used to predict peptide-MHC-I binding affinity including NetMHCpan4.0 and Syfpeithi servers. The NetMHCIIpan3.2 server was utilized for MHC-II binding affinity. Then, we determined immunogenicity scores and allergenicity by the IEDB immunogenicity predictor and Algpred, respectively. Next, for estimation of toxicity and population coverage, ToxinPred server and IEDB population coverage tool were applied. After that, the MHC-peptide binding was investigated by GalexyPepDock peptide-protein flexible docking server. Finally, two different DNA and peptide constructs containing Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 were prepared and complexed with four various cell penetrating peptides (CPPs) for delivery into mammalian cells (MPG and HR9 CPPs for DNA delivery, and CyLoP-1 and LDP-NLS CPPs for protein delivery). Our results indicated that the designed DNA and peptide constructs could form non-covalent stable nanoparticles at certain ratios as observed by scanning electron microscope (SEM) and Zetasizer. The flow cytometry results obtained from in vitro transfection of the nanoparticles into HEK-293T cell lines showed that the percentage of GFP expressing cells was about 38.38 ± 1.34%, 25.36% ± 0.30, 54.95% ± 0.84, and 25.11% ± 0.36 for MPG/pEGFP-nef-vif-gp160-p24, MPG/pEGFP-nef-vpu-gp160-p24, HR9/pEGFP-nef-vif-gp160-p24 and HR9/pEGFP-nef-vpu-gp160-p24, respectively. Thus, these data showed that the DNA construct harboring nef-vif-gp160-p24 multi-epitope gene had higher efficiency than the DNA construct harboring nef-vpu-gp160-p24 multi-epitope gene to penetrate into the cells. Moreover, delivery of the recombinant Nef-Vif-Gp160-P24 and Nef-Vpu-Gp160-P24 polyepitope peptides in HEK-293T cells was confirmed as a single band about 32 kDa using western blot analysis. Although, both DNA and peptide constructs could be successfully transported by a variety of CPPs into the cells, but the difference between them in transfection rate will influence the levels of immune responses for development of therapeutic vaccines.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Eickhoff CS, Terry FE, Peng L, Meza KA, Sakala IG, Van Aartsen D, Moise L, Martin WD, Schriewer J, Buller RM, De Groot AS, Hoft DF. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine 2019; 37:5371-5381. [PMID: 31331771 DOI: 10.1016/j.vaccine.2019.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
Influenza world-wide causes significant morbidity and mortality annually, and more severe pandemics when novel strains evolve to which humans are immunologically naïve. Because of the high viral mutation rate, new vaccines must be generated based on the prevalence of circulating strains every year. New approaches to induce more broadly protective immunity are urgently needed. Previous research has demonstrated that influenza-specific T cells can provide broadly heterotypic protective immunity in both mice and humans, supporting the rationale for developing a T cell-targeted universal influenza vaccine. We used state-of-the art immunoinformatic tools to identify putative pan-HLA-DR and HLA-A2 supertype-restricted T cell epitopes highly conserved among > 50 widely diverse influenza A strains (representing hemagglutinin types 1, 2, 3, 5, 7 and 9). We found influenza peptides that are highly conserved across influenza subtypes that were also predicted to be class I epitopes restricted by HLA-A2. These peptides were found to be immunoreactive in HLA-A2 positive but not HLA-A2 negative individuals. Class II-restricted T cell epitopes that were highly conserved across influenza subtypes were identified. Human CD4+ T cells were reactive with these conserved CD4 epitopes, and epitope expanded T cells were responsive to both H1N1 and H3N2 viruses. Dendritic cell vaccines pulsed with conserved epitopes and DNA vaccines encoding these epitopes were developed and tested in HLA transgenic mice. These vaccines were highly immunogenic, and more importantly, vaccine-induced immunity was protective against both H1N1 and H3N2 influenza challenges. These results demonstrate proof-of-principle that conserved T cell epitopes expressed by widely diverse influenza strains can induce broadly protective, heterotypic influenza immunity, providing strong support for further development of universally relevant multi-epitope T cell-targeting influenza vaccines.
Collapse
Affiliation(s)
- Christopher S Eickhoff
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Frances E Terry
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States
| | - Linda Peng
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Krystal A Meza
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Isaac G Sakala
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Daniel Van Aartsen
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Leonard Moise
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States
| | - William D Martin
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States
| | - Jill Schriewer
- Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - R Mark Buller
- Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Anne S De Groot
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States
| | - Daniel F Hoft
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States; Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
| |
Collapse
|
7
|
Bazmara S, Shadmani M, Ghasemnejad A, Aghazadeh H, Pooshang Bagheri K. In silico rational design of a novel tetra-epitope tetanus vaccine with complete population coverage using developed immunoinformatics and surface epitope mapping approaches. Med Hypotheses 2019; 130:109267. [PMID: 31383332 DOI: 10.1016/j.mehy.2019.109267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 01/01/2023]
Abstract
Presentation of many unwanted epitopes within tetanus toxoid vaccine to lymphocyte clones may lead to production of many unwanted antibodies. Moreover an ideal vaccine must cover all individuals in a population that is dependent to the kinds of human leukocyte antigen alleles. Concerning these issues, our study was aimed to in silico design of a multi-epitope tetanus vaccine (METV) in order to improve population coverage and protectivity of tetanus vaccine as well as reduction of complications. Concerning these issues, a novel rational filtration was implemented to design a novel METV using immunoinformatics and surface epitope mapping approaches. Prediction of epitopes for tetanus toxin was performed in the candidate country in which the frequency had been gathered from almost all geographical distributions. The most strong binder epitopes for major histocompatibility complex class II were selected and among them the surface epitopes of native toxin were selected. The population coverage of the selected epitopes was estimated. The final candidate epitopes had highly population coverage. Molecular docking was performed to prediction of binding affinity of our candidate epitopes to the HLA-DRB1 alleles. At first, 680 strong binder epitopes were predicted. Among them 11 epitopes were selected. Finally, 4 epitopes had the most population coverage and suggested as a tetra-epitope tetanus vaccine. 99.41% of inessential strong binders were deleted using our tree steps filtration. HLA-DP had the most roles in epitope presentation. Molecular docking analysis proved the strong binding affinity of candidate epitopes to the HLA-DRB1 alleles. In conclusion, we theoretically reduced 99.41% of unwanted antibodies using our novel filtration strategies. Our tetra-epitope tetanus vaccine showed 100% population coverage in the candidate country. Furthermore, it was demonstrated that HLA-DP and HLA-DQ had more potential in epitope presentation in comparison to HLA-DRB1.
Collapse
Affiliation(s)
- Samira Bazmara
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahsa Shadmani
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Ghasemnejad
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Aghazadeh
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Abstract
Non-viral gene delivery to skeletal muscle was one of the first applications of gene therapy that went into the clinic, mainly because skeletal muscle is an easily accessible tissue for local gene transfer and non-viral vectors have a relatively safe and low immunogenic track record. However, plasmid DNA, naked or complexed to the various chemistries, turn out to be moderately efficient in humans when injected locally and very inefficient (and very toxic in some cases) when injected systemically. A number of clinical applications have been initiated however, based on transgenes that were adapted to good local impact and/or to a wide physiological outcome (i.e., strong humoral and cellular immune responses following the introduction of DNA vaccines). Neuromuscular diseases seem more challenging for non-viral vectors. Nevertheless, the local production of therapeutic proteins that may act distantly from the injected site and/or the hydrodynamic perfusion of safe plasmids remains a viable basis for the non-viral gene therapy of muscle disorders, cachexia, as well as peripheral neuropathies.
Collapse
|
9
|
Ilg T. Investigations on the molecular mode of action of the novel immunostimulator ZelNate: Activation of the cGAS-STING pathway in mammalian cells. Mol Immunol 2017; 90:182-189. [PMID: 28802127 DOI: 10.1016/j.molimm.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
Bovine respiratory disease (BRD) is usually prevented or treated with vaccines and/or antibiotics. The use of antibiotics is, however, of concern due to the potential promotion of microbial resistance and the occurrence of residues. Recently an alternative aid in the treatment of BRD, the cationic lipid/bacterial plasmid DNA liposome-based immunomodulator ZelNate, has entered the veterinary market. In the present study, we provide data on the molecular mode of action of ZelNate. Despite the presence of numerous non-methylated CpG motifs in its plasmid DNA, ZelNate proved to be inactive on human and mouse toll-like receptor 9 (TLR9) in cell culture, in both recombinant and natural cellular receptor settings. However, in the human monocyte cell line THP1 and in the mouse melanoma cell line B16, ZelNate activates strongly the stimulator of interferon genes (STING) pathway, which is known to lead predominantly to interferon response factor 3 (IRF3) activation. Further analysis in THP1 cells suggests that the ZelNate plasmid DNA activates STING via interaction with cyclic guanylate adenylate synthase (cGAS), but not via interferon induced gene 16 (IFI16). Our in vitro observations suggest that ZelNate may act predominantly via the cGAS/STING/IRF3 pathway.
Collapse
Affiliation(s)
- Thomas Ilg
- Bayer Animal Health GmbH, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany.
| |
Collapse
|
10
|
Cerny N, Sánchez Alberti A, Bivona AE, De Marzi MC, Frank FM, Cazorla SI, Malchiodi EL. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection. Hum Vaccin Immunother 2016; 12:438-50. [PMID: 26312947 PMCID: PMC5049742 DOI: 10.1080/21645515.2015.1078044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/03/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy.
Collapse
Affiliation(s)
- Natacha Cerny
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
- Laboratorio de Inmunología; Departamento Ciencias Básicas- INEDES; Universidad Nacional de Luján; Luján, Argentina
| | - Andrés Sánchez Alberti
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Augusto E Bivona
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Laboratorio de Inmunología; Departamento Ciencias Básicas- INEDES; Universidad Nacional de Luján; Luján, Argentina
| | - Fernanda M Frank
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Silvia I Cazorla
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Cátedra de Inmunología e Instituto de Estudios de la Inmunidad Humoral (IDEHU); CONICET-UBA; Facultad de Farmacia y Bioquímica; Universidad de Buenos Aires; Buenos Aires, Argentina
- Instituto de Microbiología y Parasitología Médica; IMPaM (UBA-CONICET) y Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; UBA; Buenos Aires, Argentina
| |
Collapse
|
11
|
Yang Y, Sun W, Guo J, Zhao G, Sun S, Yu H, Guo Y, Li J, Jin X, Du L, Jiang S, Kou Z, Zhou Y. In silico design of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations. Hum Vaccin Immunother 2015; 11:795-805. [PMID: 25839222 DOI: 10.1080/21645515.2015.1012017] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The development of an HIV-1 vaccine that is capable of inducing effective and broadly cross-reactive humoral and cellular immune responses remains a challenging task because of the extensive diversity of HIV-1, the difference of virus subtypes (clades) in different geographical regions, and the polymorphism of human leukocyte antigens (HLA). We performed an in silico design of 3 DNA vaccines, designated pJW4303-MEG1, pJW4303-MEG2 and pJW4303-MEG3, encoding multi-epitopes that are highly conserved within the HIV-1 subtypes most prevalent in China and can be recognized through HLA alleles dominant in China. The pJW4303-MEG1-encoded protein consisted of one Th epitope in Env, and one, 2, and 6 epitopes in Pol, Env, and Gag proteins, respectively, with a GGGS linker sequence between epitopes. The pJW4303-MEG2-encoded protein contained similar epitopes in a different order, but with the same linker as pJW4303-MEG1. The pJW4303-MEG3-encoded protein contained the same epitopes in the same order as that of pJW4303-MEG2, but with a different linker sequence (AAY). To evaluate immunogenicity, mice were immunized intramuscularly with these DNA vaccines. Both pJW4303-MEG1 and pJW4303-MEG2 vaccines induced equally potent humoral and cellular immune responses in the vaccinated mice, while pJW4303-MEG3 did not induce immune responses. These results indicate that both epitope and linker sequences are important in designing effective epitope-based vaccines against HIV-1 and other viruses.
Collapse
Affiliation(s)
- Yi Yang
- a State Key Laboratory of Pathogen and Biosecurity ; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013; 12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.
Collapse
Affiliation(s)
- Daniel O Villarreal
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Considerable HIV-1 vaccine development efforts have been deployed over the past decade. Put into perspective, the results from efficacy trials and the identification of correlates of risk have opened large and unforeseen avenues for vaccine development. RECENT FINDINGS The Thai efficacy trial, RV144, provided the first evidence that HIV-1 vaccine protection against HIV-1 acquisition could be achieved. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop inversely correlated with a decreased risk of infection, whereas Env-specific IgA directly correlated with risk. Further clinical trials will focus on testing new envelope subunit proteins formulated with adjuvants capable of inducing higher and more durable functional antibody responses (both binding and broadly neutralizing antibodies). Moreover, vector-based vaccine regimens that can induce cell-mediated immune responses in addition to humoral responses remain a priority. SUMMARY Future efficacy trials will focus on prevention of HIV-1 transmission in heterosexual population in Africa and MSM in Asia. The recent successes leading to novel directions in HIV-1 vaccine development are a result of collaboration and commitment among vaccine manufacturers, funders, scientists and civil society stakeholders. Sustained and broad collaborative efforts are required to advance new vaccine strategies for higher levels of efficacy.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program (MHRP), Bethesda, Maryland 20817, USA.
| | | | | |
Collapse
|
15
|
Optimization of HIV-1 Envelope DNA Vaccine Candidates within Three Different Animal Models, Guinea Pigs, Rabbits and Cynomolgus Macaques. Vaccines (Basel) 2013; 1:305-27. [PMID: 26344115 PMCID: PMC4494233 DOI: 10.3390/vaccines1030305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022] Open
Abstract
HIV-1 DNA vaccines have many advantageous features. Evaluation of HIV-1 vaccine candidates often starts in small animal models before macaque and human trials. Here, we selected and optimized DNA vaccine candidates through systematic testing in rabbits for the induction of broadly neutralizing antibodies (bNAb). We compared three different animal models: guinea pigs, rabbits and cynomolgus macaques. Envelope genes from the prototype isolate HIV-1 Bx08 and two elite neutralizers were included. Codon-optimized genes, encoded secreted gp140 or membrane bound gp150, were modified for expression of stabilized soluble trimer gene products, and delivered individually or mixed. Specific IgG after repeated i.d. inoculations with electroporation confirmed in vivo expression and immunogenicity. Evaluations of rabbits and guinea pigs displayed similar results. The superior DNA construct in rabbits was a trivalent mix of non-modified codon-optimized gp140 envelope genes. Despite NAb responses with some potency and breadth in guinea pigs and rabbits, the DNA vaccinated macaques displayed less bNAb activity. It was concluded that a trivalent mix of non-modified gp140 genes from rationally selected clinical isolates was, in this study, the best option to induce high and broad NAb in the rabbit model, but this optimization does not directly translate into similar responses in cynomolgus macaques.
Collapse
|
16
|
Abstract
Dendritic cells (DCs) are a diverse subset of innate immune cells that are key regulators of the host response to human immunodeficiency virus-1 (HIV-1) infection. HIV-1 directly and indirectly modulates DC function to hinder the formation of effective antiviral immunity and fuel immune activation. This review focuses upon the differential dysregulation of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) at various stages of HIV-1 infection providing insights into pathogenesis. HIV-1 evades innate immune sensing by mDCs resulting in suboptimal maturation, lending to poor generation of antiviral adaptive responses and contributing to T-regulatory cell (Treg) development. Dependent upon the stage of HIV-1 infection, mDC function is altered in response to Toll-like receptor ligands, which further hinders adaptive immunity and limits feasibility of therapeutic vaccine strategies. pDC interactions with HIV-1 are pleotropic, modulating immune responses on an axis between immunostimulatory and immunosuppressive. pDCs promote immune activation through an altered phenotype of persistent type I interferon secretion and weak antigen presentation capacity. Conversely, HIV-1 stimulates secretion of indolemine 2,3 dioxygenase (IDO) by pDCs resulting in Treg induction. An improved understanding of the roles and underlying mechanisms of DC dysfunction will be valuable to the development of therapeutics to enhance HIV-specific adaptive responses and to dampen immune activation.
Collapse
Affiliation(s)
- Elizabeth Miller
- Division of Infectious Diseases, New York University School of Medicine, New York, NY, USA
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, NY, USA
- Division of Hematology and Oncology, Mount Sinai Medical Center, New York, NY, USA
| |
Collapse
|
17
|
Vanham G, Van Gulck E. Can immunotherapy be useful as a "functional cure" for infection with Human Immunodeficiency Virus-1? Retrovirology 2012; 9:72. [PMID: 22958464 PMCID: PMC3472319 DOI: 10.1186/1742-4690-9-72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy aims to assist the natural immune system in achieving control over viral infection. Various immunotherapy formats have been evaluated in either therapy-naive or therapy-experienced HIV-infected patients over the last 20 years. These formats included non-antigen specific strategies such as cytokines that stimulate immunity or suppress the viral replication, as well as antibodies that block negative regulatory pathways. A number of HIV-specific therapeutic vaccinations have also been proposed, using in vivo injection of inactivated virus, plasmid DNA encoding HIV antigens, or recombinant viral vectors containing HIV genes. A specific format of therapeutic vaccines consists of ex vivo loading of autologous dendritic cells with one of the above mentioned antigenic formats or mRNA encoding HIV antigens.This review provides an extensive overview of the background and rationale of these different therapeutic attempts and discusses the results of trials in the SIV macaque model and in patients. To date success has been limited, which could be explained by insufficient quality or strength of the induced immune responses, incomplete coverage of HIV variability and/or inappropriate immune activation, with ensuing increased susceptibility of target cells.Future attempts at therapeutic vaccination should ideally be performed under the protection of highly active antiretroviral drugs in patients with a recovered immune system. Risks for immune escape should be limited by a better coverage of the HIV variability, using either conserved or mosaic sequences. Appropriate molecular adjuvants should be included to enhance the quality and strength of the responses, without inducing inappropriate immune activation. Finally, to achieve a long-lasting effect on viral control (i.e. a "functional cure") it is likely that these immune interventions should be combined with anti-latency drugs and/or gene therapy.
Collapse
Affiliation(s)
- Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerpen, Antwerpen, Belgium
| | - Ellen Van Gulck
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Nationalestraat 155, B-2000, Antwerpen, Belgium
- Present address: Community of Research Excellence and Advanced Technology (C.R.E.A.Te), Division of Janssen, Beerse, Belgium
| |
Collapse
|
18
|
Induction of strong HIV-1-specific CD4+ T-cell responses using an HIV-1 gp120/NefTat vaccine adjuvanted with AS02A in antiretroviral-treated HIV-1-infected individuals. J Acquir Immune Defic Syndr 2012; 59:1-9. [PMID: 21963936 DOI: 10.1097/qai.0b013e3182373b77] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Induction of HIV-1-specific CD4(+) T-cell responses by therapeutic vaccination represents an attractive intervention to potentially increase immune control of HIV-1. METHODS We performed a double-blinded, randomized, placebo-controlled clinical trial to determine the safety and immunogenicity of GlaxoSmithKline Biologicals' HIV-1 gp120/NefTat subunit protein vaccine formulated with the AS02(A) Adjuvant System in subjects with well-controlled chronic HIV-1 infection on highly active antiretroviral therapy. Ten individuals received the vaccine; whereas adjuvant alone or placebo was given to 5 subjects each. Immunogenicity was monitored by intracellular cytokine flow cytometry and carboxyfluorescein succinimidyl ester-based proliferation assays. RESULTS The vaccine was well tolerated with no related serious adverse events. Vaccine recipients had significantly stronger gp120-specific CD4(+) T-cell responses which persisted until week 48 and greater gp120-specific CD4(+) T-cell proliferation activity as compared with controls. In the vaccine group, the number of participants who demonstrated positive responses for both gp120-specific CD4(+) T-cell interleukin-2 production and gp120-specific CD8(+) T-cell proliferation were significantly higher at week 6. CONCLUSIONS The gp120/NefTat/AS02(A) vaccine induced strong gp120-specific CD4(+) T-cell responses and a higher number of vaccinees developed both HIV-1-specific CD4(+) T-cell responses and CD8(+) T-cell proliferation. The induction of these responses may be important in enhancing immune-mediated viral control.
Collapse
|
19
|
|
20
|
Abstract
OBJECTIVES Therapeutic HIV vaccination during the time of virologic suppression may delay or blunt viral load rebound after interruption of antiretroviral therapy (ART). The use of ALVAC, to enhance cytotoxic T-lymphocyte responses, with Remune, which provides CD4 T-cell help, may induce anti-HIV responses capable of controlling viral replication. METHODS CTN173 was a randomized, placebo-controlled double-blind study in which effectively treated HIV-infected individuals (viral load <50 copies/ml for more than 2 years) with CD4 nadir more than 250 cells/μl and current CD4 cell counts more than 500 cells/μl were randomized to receive: ALVAC with Remune, ALVAC alone or matching placebos over 20 weeks. At week 24, participants interrupted ART with intensive clinical, virologic and immunologic monitoring to week 48. RESULTS Baseline characteristics of the 52 randomized participants were balanced between arms. Forty-eight participants who received all vaccinations interrupted ART at week 24. Median time to viral load more than 50 copies/ml tended to be greater in the two vaccine arms (24.5, 23.0 vs. 13.5 days in the placebo arm, P = 0.097 for combined vaccine groups vs. placebo), but subsequent viral load set-point was not different between groups. Significantly fewer participants in the two vaccine arms restarted ART or met CD4 criteria to do so (P = 0.024). CONCLUSION Although ALVAC with or without Remune did not lower the viral load set-point, it tended to delay viral load rebound and was associated with a greater time to meet preset criteria to restart ART. Further investigations of those individuals who derived benefit from vaccination could provide important insights into HIV therapeutic vaccine development.
Collapse
|
21
|
Schooley RT, Spritzler J, Wang H, Lederman MM, Havlir D, Kuritzkes DR, Pollard R, Battaglia C, Robertson M, Mehrotra D, Casimiro D, Cox K, Schock B, AIDS Clinical Trials Group 5197 Study Team. AIDS clinical trials group 5197: a placebo-controlled trial of immunization of HIV-1-infected persons with a replication-deficient adenovirus type 5 vaccine expressing the HIV-1 core protein. J Infect Dis 2010; 202:705-16. [PMID: 20662716 PMCID: PMC2916952 DOI: 10.1086/655468] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1)-specific cellular immunity contributes to the control of HIV-1 replication. HIV-1-infected volunteers who were receiving antiretroviral therapy were given a replication-defective adenovirus type 5 HIV-1 gag vaccine in a randomized, blinded therapeutic vaccination study. METHODS HIV-1-infected vaccine or placebo recipients underwent analytical treatment interruption (ATI) for 16 weeks. The log(10) HIV-1 RNA load at the ATI set point and the time-averaged area under the curve served as co-primary end points. Immune responses were measured by intracellular cytokine staining and carboxyfluorescein succinimidyl ester dye dilution. RESULTS Vaccine benefit trends were seen for both primary end points, but they did not reach a prespecified significance level of P < or = 25. The estimated shifts in the time-averaged area under the curve and the ATI set point were 0.24 (P=.04, unadjusted) and 0.26 (P=.07, unadjusted) log(10) copies lower, respectively, in the vaccine arm than in the placebo arm. HIV-1 gag-specific CD4(+) cells producing interferon-gamma were an immunologic correlate of viral control. CONCLUSION The vaccine was generally safe and well tolerated. Despite a trend favoring viral suppression among vaccine recipients, differences in HIV-1 RNA levels did not meet the prespecified level of significance. Induction of HIV-1 gag-specific CD4 cells correlated with control of viral replication in vivo. Future immunogenicity studies should require a substantially higher immunogenicity threshold before an ATI is contemplated.
Collapse
Affiliation(s)
- Robert T Schooley
- Div. of Infectious Diseases,University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
Linda Meixner, Susan Cahill, Trisha Walton, Barbara Gripshover, Sue Richard, Kelley Carpenter, David M Asmuth, Jorge L Santana Bagur, Olga Mendez, Robert Kalayjian, Kim Whitely, Clyde Crumpacker, Neah Kim, Deborah McMahon, Nancy Mantz, Todd Stroberg, Glenn Sturge, Mitchell Goldman, Deborah O'Connor, Karen Cavanagh, Judith A Aberg, Beverly E Sha, Kristine L Richards, Karen Tashima, Pamela Poethke, Susan L Koletar, Laura Laughlin, Mark Rodriguez, Ge-Youl Kim, Charles E Davis, Barbara Glick, Charles Bradley Hare, Deborah Zeitschel, Henry H Balfour, Kathy Fox, Donna Mildvan, Manuel Revuelt, Nesli Basgoz, Amy Sbrolla, Sandra Valle, Debbie Slamowitz, Ronald Mitsuyasu, Suzette Chafey, Margaret A Fischl, Hector H Bolivar, Jane Reid, Christine Hurley, Ann C Collier, Beck A Royer, Elizabeth Race, Tianna Petersen,
Collapse
|
22
|
Patel V, Valentin A, Kulkarni V, Rosati M, Bergamaschi C, Jalah R, Alicea C, Minang JT, Trivett MT, Ohlen C, Zhao J, Robert-Guroff M, Khan AS, Draghia-Akli R, Felber BK, Pavlakis GN. Long-lasting humoral and cellular immune responses and mucosal dissemination after intramuscular DNA immunization. Vaccine 2010; 28:4827-36. [PMID: 20451642 PMCID: PMC2932451 DOI: 10.1016/j.vaccine.2010.04.064] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/26/2010] [Accepted: 04/21/2010] [Indexed: 01/22/2023]
Abstract
Naïve Indian rhesus macaques were immunized with a mixture of optimized plasmid DNAs expressing several SIV antigens using in vivo electroporation via the intramuscular route. The animals were monitored for the development of SIV-specific systemic (blood) and mucosal (bronchoalveolar lavage) cellular and humoral immune responses. The immune responses were of great magnitude, broad (Gag, Pol, Nef, Tat and Vif), long-lasting (up to 90 weeks post third vaccination) and were boosted with each subsequent immunization, even after an extended 90-week rest period. The SIV-specific cellular immune responses were consistently more abundant in bronchoalveolar lavage (BAL) than in blood, and were characterized as predominantly effector memory CD4(+) and CD8(+) T cells in BAL and as both central and effector memory T cells in blood. SIV-specific T cells containing Granzyme B were readily detected in both blood and BAL, suggesting the presence of effector cells with cytolytic potential. DNA vaccination also elicited long-lasting systemic and mucosal humoral immune responses, including the induction of Gag-specific IgA. The combination of optimized DNA vectors and improved intramuscular delivery by in vivo electroporation has the potential to elicit both cellular and humoral responses and dissemination to the periphery, and thus to improve DNA immunization efficacy.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Antibody Specificity
- Bronchoalveolar Lavage Fluid/immunology
- Cytokines/blood
- Drug Delivery Systems
- Electroporation
- Flow Cytometry
- Gene Products, gag/immunology
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Immunity, Mucosal/immunology
- Immunoglobulin A/immunology
- Immunotherapy, Adoptive
- Injections, Intramuscular
- Macaca mulatta
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- T-Lymphocytes/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Vainav Patel
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - Jacob T. Minang
- AIDS and Cancer Virus Program, SAIC-/NCI, NCI-Frederick, Frederick, MD, 21702-1201, United States
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, SAIC-/NCI, NCI-Frederick, Frederick, MD, 21702-1201, United States
| | - Claes Ohlen
- AIDS and Cancer Virus Program, SAIC-/NCI, NCI-Frederick, Frederick, MD, 21702-1201, United States
| | - Jun Zhao
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Amir S. Khan
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Ruxandra Draghia-Akli
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Building 535, Room 206, Frederick, MD 21702-1201, United States
| |
Collapse
|
23
|
Genoni A, Morra G, Merz KM, Colombo G. Computational study of the resistance shown by the subtype B/HIV-1 protease to currently known inhibitors. Biochemistry 2010; 49:4283-95. [PMID: 20415450 PMCID: PMC2868114 DOI: 10.1021/bi100569u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus type 1 protease (HIV-1 PR) is an essential enzyme in the HIV-1 life cycle. As such, this protein represents a major drug target in AIDS therapy, but emerging resistance to antiretroviral inhibitor cocktails, caused by high viral mutation rates, represents a significant challenge in AIDS treatment. Many mutations are not located within the active site or binding pocket, nor they do significantly modify the three-dimensional structural organization of the enzyme; hence, the mechanism(s) by which they alter inhibitor affinity for the protease remains uncertain. In this article, we present an all-atom computational analysis of the dynamic residue-residue coordination between the active site residues and the rest of the protein and of the energetic properties of different HIV-1 PR complexes. We analyze both the wild-type form and mutated forms that induce drug resistance. In particular, the results show differences between the wild type and the mutants in their mechanism of dynamic coordination, in the signal propagation between the active site residues and the rest of the protein, and in the energy networks responsible for the stabilization of the bound inhibitor conformation. Finally, we propose a dynamic and energetic explanation for HIV-1 protease drug resistance, and, through this model, we identify a possible new site that could be helpful in the design of a new family of HIV-1 PR allosteric inhibitors.
Collapse
Affiliation(s)
- Alessandro Genoni
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy
- Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, Florida, 32611, USA
| | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy
| | - Kenneth M. Merz
- Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, Florida, 32611, USA
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131, Milano, Italy
| |
Collapse
|
24
|
Valentin A, von Gegerfelt A, Rosati M, Miteloudis G, Alicea C, Bergamaschi C, Jalah R, Patel V, Khan AS, Draghia-Akli R, Pavlakis GN, Felber BK. Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 2010; 28:1962-74. [PMID: 20188252 PMCID: PMC2830913 DOI: 10.1016/j.vaccine.2009.10.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that therapeutic immunization by intramuscular injection of optimized plasmid DNAs encoding SIV antigens effectively induces immune responses able to reduce viremia in antiretroviral therapy (ART)-treated SIVmac251-infected Indian rhesus macaques. We subjected such therapeutically immunized macaques to a second round of therapeutic vaccination using a combination of plasmids expressing SIV genes and the IL-15/IL-15 receptor alpha as molecular adjuvant, which were delivered by the more efficacious in vivo constant-current electroporation. A very strong induction of antigen-specific responses to Gag, Env, Nef, and Pol, during ART (1.2-1.6% of SIV-specific T cells in the circulating T lymphocytes) was obtained with the improved vaccination method. Immunological responses were characterized by the production of IFN-gamma, IL-2, and TNF-alpha either alone, or in combination as double or triple cytokine positive multifunctional T cells. A significant induction of CD4(+) T cell responses, mainly targeting Gag, Nef, and Pol, as well as of CD8(+) T cells, mainly targeting Env, was found in both T cells with central memory and effector memory markers. After release from ART, the animals showed a virological benefit with a further approximately 1 log reduction in viremia. Vaccination with plasmid DNAs has several advantages over other vaccine modalities, including the possibility for repeated administration, and was shown to induce potent, efficacious, and long-lasting recall immune responses. Therefore, these data support the concept of adding DNA vaccination to the HAART regimen to boost the HIV-specific immune responses.
Collapse
Affiliation(s)
- Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Agneta von Gegerfelt
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Georgios Miteloudis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Vainav Patel
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Amir S. Khan
- VGX Pharmaceuticals, Inc., The Woodlands, Texas 77381
| | | | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201
| |
Collapse
|
25
|
Livingston BD, Little SF, Luxembourg A, Ellefsen B, Hannaman D. Comparative performance of a licensed anthrax vaccine versus electroporation based delivery of a PA encoding DNA vaccine in rhesus macaques. Vaccine 2010; 28:1056-61. [DOI: 10.1016/j.vaccine.2009.10.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 11/27/2022]
|
26
|
Walker LE, Vang L, Shen X, Livingston BD, Post P, Sette A, Godin CS, Newman MJ. Design and preclinical development of a recombinant protein and DNA plasmid mixed format vaccine to deliver HIV-derived T-lymphocyte epitopes. Vaccine 2009; 27:7087-95. [PMID: 19786132 PMCID: PMC2783266 DOI: 10.1016/j.vaccine.2009.09.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/02/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023]
Abstract
Coordinated interactions between helper and cytotoxic T-lymphocytes (HTL and CTL) are needed for optimal effector cell functions and the establishment of immunological memory. We, therefore, designed a mixed format vaccine based on the use of highly conserved HIV-derived T-lymphocyte epitopes wherein the HTL epitopes were delivered as a recombinant protein and the CTL epitopes which were encoded in a DNA vaccine plasmid. Immunogenicity testing in HLA transgenic mice and GLP preclinical safety testing in rabbits and guinea pigs were used to document the utility of this approach and to support Phase 1 trial clinical testing. Both vaccine components were immunogenic and safely co-administered.
Collapse
Affiliation(s)
| | - Lo Vang
- Pharmexa Inc., San Diego,, CA, USA
| | | | | | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
27
|
Shedlock DJ, Silvestri G, Weiner DB. Monkeying around with HIV vaccines: using rhesus macaques to define 'gatekeepers' for clinical trials. Nat Rev Immunol 2009; 9:717-28. [PMID: 19859066 DOI: 10.1038/nri2636] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rhesus macaques are an important animal model for the study of human disease and the development of vaccines against HIV and AIDS. HIV vaccines have been benchmarked in rhesus macaque preclinical challenge studies using chimeric viruses made up of parts of HIV and simian immunodeficiency viruses. However, the lack of efficacy in a recent clinical trial calls for a re-evaluation of the scientific assumptions regarding the predictive value of using data generated from rhesus macaques as a 'gatekeeper' for the advancement of candidate vaccines into the clinic. In this context, there is significant consensus among HIV vaccinologists that next-generation HIV vaccines must generate 'better' immunity in rhesus macaques than clinically unsuccessful vaccines generated using validated assays. Defining better immunity is the core challenge of HIV vaccine development in this system and is the focus of this Review.
Collapse
Affiliation(s)
- Devon J Shedlock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
28
|
Bodles-Brakhop AM, Heller R, Draghia-Akli R. Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol Ther 2009; 17:585-92. [PMID: 19223870 PMCID: PMC2835112 DOI: 10.1038/mt.2009.5] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/27/2008] [Indexed: 11/09/2022] Open
Abstract
Electroporation (EP) has been used in basic research for the past 25 years to aid in the transfer of DNA into cells in vitro. EP in vivo enhances transfer of DNA vaccines and therapeutic plasmids to the skin, muscle, tumors, and other tissues resulting in high levels of expression, often with serological and clinical benefits. The recent interest in nonviral gene transfer as treatment options for a vast array of conditions has resulted in the refinement and optimization of EP technology. Current research has revealed that EP can be successfully used in many species, including humans. Clinical trials are currently under way. Herein, the transition of EP from basic science to clinical trials will be discussed.
Collapse
Affiliation(s)
- Angela M Bodles-Brakhop
- VGX Pharmaceuticals, Inc., 2700 Research Forest Drive, Suite 180, The Woodlands, Texas 77381, USA.
| | | | | |
Collapse
|
29
|
Li HX, Mao XH, Shi Y, Ma Y, Wu YN, Zhang WJ, Luo P, Yu S, Zhou WY, Guo Y, Wu C, Guo G, Zou QM. Screening and identification of a novel B-cell neutralizing epitope from Helicobacter pylori UreB. Vaccine 2008; 27:5013-9. [PMID: 18948159 DOI: 10.1016/j.vaccine.2009.05.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/24/2009] [Accepted: 05/04/2009] [Indexed: 02/08/2023]
Abstract
Urease plays a crucial role in the survival and pathogenesis of Helicobacter pylori (H. pylori), and antibody neutralizing the urease activity may be implicated for the protection against H. pylori infection. Previously, a neutralizing monoclonal antibody (MAb) 6E6 against UreB of H. pylori was developed. In this work, we try to identify the B-cell epitope recognized by neutralizing MAb 6E6. Following screening a series of truncated proteins of UreB, an epitope was primarily localized in the aa 200-230 of UreB. Subsequently, we screened the overlapping synthetic peptides covering the aa 200-230 and identified a novel B-cell epitope (U(211-225), IEAGAIGFKIHEDWG) that was recognized by specific MAb 6E6. The newly identified epitope may help understanding of the protective immunity against H. pylori and be implicated for vaccine development.
Collapse
Affiliation(s)
- Hai-Xia Li
- Department of Clinical Microbiology and Clinical Immunology, The Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|