1
|
Rachuri S, Nepal B, Shukla A, Ramanathan A, Morrisey JM, Daly T, Mather MW, Bergman LW, Kortagere S, Vaidya AB. Mutational analysis of an antimalarial drug target, PfATP4. Proc Natl Acad Sci U S A 2025; 122:e2403689122. [PMID: 39773028 PMCID: PMC11745376 DOI: 10.1073/pnas.2403689122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target Plasmodium falciparum P-type ATPase (PfATP4). This essential protein is a Na+ pump responsible for the maintenance of Na+ homeostasis. PfATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined. To gain better insight into the structure/function relationship of this validated drug target, we generated a homology model of PfATP4 based on sarco/endoplasmic reticulum Ca2+ ATPase, a P2A-type ATPase, and refined the model using molecular dynamics in its explicit membrane environment. This model predicted several residues in PfATP4 critical for its function, as well as those that impart resistance to various PfATP4 inhibitors. To validate our model, we developed a genetic system involving merodiploid states of PfATP4 in which the endogenous gene was conditionally expressed, and the second allele was mutated to assess its effect on the parasite. Our model predicted residues involved in Na+ coordination as well as the phosphorylation cycle of PfATP4. Phenotypic characterization of these mutants involved assessment of parasite growth, localization of mutated PfATP4, response to treatment with known PfATP4 inhibitors, and evaluation of the downstream consequences of Na+ influx. Our results were consistent with modeled predictions of the essentiality of the critical residues. Additionally, our approach confirmed the phenotypic consequences of resistance-associated mutations as well as a potential structural basis for the fitness cost associated with some mutations. Taken together, our approach provides a means to explore the structure/function relationship of essential genes in haploid organisms.
Collapse
Affiliation(s)
- Swaksha Rachuri
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Binod Nepal
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Anurag Shukla
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Aarti Ramanathan
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Thomas Daly
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Michael W. Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lawrence W. Bergman
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
2
|
Rose BD, Dellinger MA, Larmour CP, Polishook MI, Higuita-Aguirre MI, Dutta S, Cook RL, Zimmermann SD, Garcia K. The ectomycorrhizal fungus Paxillus ammoniavirescens influences the effects of salinity on loblolly pine in response to potassium availability. Environ Microbiol 2024; 26:e16597. [PMID: 38450872 DOI: 10.1111/1462-2920.16597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Salinity is an increasing problem in coastal areas affected by saltwater intrusion, with deleterious effects on tree health and forest growth. Ectomycorrhizal (ECM) fungi may improve the salinity tolerance of host trees, but the impact of external potassium (K+ ) availability on these effects is still unclear. Here, we performed several experiments with the ECM fungus Paxillus ammoniavirescens and loblolly pine (Pinus taeda L.) in axenic and symbiotic conditions at limited or sufficient K+ and increasing sodium (Na+ ) concentrations. Growth rate, biomass, nutrient content, and K+ transporter expression levels were recorded for the fungus, and the colonization rate, root development parameters, biomass, and shoot nutrient accumulation were determined for mycorrhizal and non-mycorrhizal plants. P. ammoniavirescens was tolerant to high salinity, although growth and nutrient concentrations varied with K+ availability and increasing Na+ exposure. While loblolly pine root growth and development decreased with increasing salinity, ECM colonization was unaffected by pine response to salinity. The mycorrhizal influence on loblolly pine salinity response was strongly dependent on external K+ availability. This study reveals that P. ammoniavirescens can reduce Na+ accumulation of salt-exposed loblolly pine, but this effect depends on external K+ availability.
Collapse
Affiliation(s)
- Benjamin D Rose
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Marissa A Dellinger
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Clancy P Larmour
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mira I Polishook
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Maria I Higuita-Aguirre
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Summi Dutta
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rachel L Cook
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Sabine D Zimmermann
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Palmgren M. Evolution of the sodium pump. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119511. [PMID: 37301269 DOI: 10.1016/j.bbamcr.2023.119511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Eukaryotic plasma membranes (PMs) are energized by electrogenic P-type ATPases that generate either Na+ or H+ motive forces to drive Na+ and H+ dependent transport processes, respectively. For this purpose, animal rely on Na+/K+-ATPases whereas fungi and plants employ PM H+-ATPases. Prokaryotes, on the other hand, depend on H+ or Na+-motive electron transport complexes to energize their cell membranes. This raises the question as to why and when electrogenic Na+ and H+ pumps evolved? Here it is shown that prokaryotic Na+/K+-ATPases have near perfect conservation of binding sites involved in coordination of three Na+ and two K+ ions. Such pumps are rare in Eubacteria but are common in methanogenic Archaea where they often are found together with P-type putative PM H+-ATPases. With some exceptions, Na+/K+-ATPases and PM H+-ATPases are found everywhere in the eukaryotic tree of life, but never together in animals, fungi and land plants. It is hypothesized that Na+/K+-ATPases and PM H+-ATPases evolved in methanogenic Archaea to support the bioenergetics of these ancestral organisms, which can utilize both H+ and Na+ as energy currencies. Both pumps must have been simultaneously present in the first eukaryotic cell, but during diversification of the major eukaryotic kingdoms, and at the time animals diverged from fungi, animals kept Na+/K+-ATPases but lost PM H+-ATPases. At the same evolutionary branch point, fungi did loose Na+/K+-ATPases, and their role was taken over by PM H+-ATPases. An independent but similar scenery emerged during terrestrialization of plants: they lost Na+/K+-ATPases but kept PM H+-ATPases.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
4
|
A Mineral-Doped Micromodel Platform Demonstrates Fungal Bridging of Carbon Hot Spots and Hyphal Transport of Mineral-Derived Nutrients. mSystems 2022; 7:e0091322. [PMID: 36394319 PMCID: PMC9765027 DOI: 10.1128/msystems.00913-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Soil fungi facilitate the translocation of inorganic nutrients from soil minerals to other microorganisms and plants. This ability is particularly advantageous in impoverished soils because fungal mycelial networks can bridge otherwise spatially disconnected and inaccessible nutrient hot spots. However, the molecular mechanisms underlying fungal mineral weathering and transport through soil remains poorly understood primarily due to the lack of a platform for spatially resolved analysis of biotic-driven mineral weathering. Here, we addressed this knowledge gap by demonstrating a mineral-doped soil micromodel platform where mineral weathering mechanisms can be studied. We directly visualize acquisition and transport of inorganic nutrients from minerals through fungal hyphae in the micromodel using a multimodal imaging approach. We found that Fusarium sp. strain DS 682, a representative of common saprotrophic soil fungus, exhibited a mechanosensory response (thigmotropism) around obstacles and through pore spaces (~12 μm) in the presence of minerals. The fungus incorporated and translocated potassium (K) from K-rich mineral interfaces, as evidenced by visualization of mineral-derived nutrient transport and unique K chemical moieties following fungus-induced mineral weathering. Specific membrane transport proteins were expressed in the fungus in the presence of minerals, including those involved in oxidative phosphorylation pathways and the transmembrane transport of small-molecular-weight organic acids. This study establishes the significance of a spatial visualization platform for investigating microbial induced mineral weathering at microbially relevant scales. Moreover, we demonstrate the importance of fungal biology and nutrient translocation in maintaining fungal growth under water and carbon limitations in a reduced-complexity soil-like microenvironment. IMPORTANCE Fungal species are foundational members of soil microbiomes, where their contributions in accessing and transporting vital nutrients is key for community resilience. To date, the molecular mechanisms underlying fungal mineral weathering and nutrient translocation in low-nutrient environments remain poorly resolved due to the lack of a platform for spatial analysis of biotic weathering processes. Here, we addressed this knowledge gap by developing a mineral-doped soil micromodel platform. We demonstrate the function of this platform by directly probing fungal growth using spatially resolved optical and chemical imaging methodologies. We found the presence of minerals was required for fungal thigmotropism around obstacles and through soil-like pore spaces, and this was related to fungal transport of potassium (K) and corresponding K speciation from K-rich minerals. These findings provide new evidence and visualization into hyphal transport of mineral-derived nutrients under nutrient and water stresses.
Collapse
|
5
|
Shahnazari M, Zakipour Z, Razi H, Moghadam A, Alemzadeh A. Bioinformatics approaches for classification and investigation of the evolution of the Na/K-ATPase alpha-subunit. BMC Ecol Evol 2022; 22:122. [PMID: 36289471 PMCID: PMC9609216 DOI: 10.1186/s12862-022-02071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Na,K-ATPase is a key protein in maintaining membrane potential that has numerous additional cellular functions. Its catalytic subunit (α), found in a wide range of organisms from prokaryotes to complex eukaryote. Several studies have been done to identify the functions as well as determining the evolutionary relationships of the α-subunit. However, a survey of a larger collection of protein sequences according to sequences similarity and their attributes is very important in revealing deeper evolutionary relationships and identifying specific amino acid differences among evolutionary groups that may have a functional role. RESULTS In this study, 753 protein sequences using phylogenetic tree classification resulted in four groups: prokaryotes (I), fungi and various kinds of Protista and some invertebrates (II), the main group of invertebrates (III), and vertebrates (IV) that was consisted with species tree. The percent of sequences that acquired a specific motif for the α/β subunit assembly increased from group I to group IV. The vertebrate sequences were divided into four groups according to isoforms with each group conforming to the evolutionary path of vertebrates from fish to tetrapods. Data mining was used to identify the most effective attributes in classification of sequences. Using 1252 attributes extracted from the sequences, the decision tree classified them in five groups: Protista, prokaryotes, fungi, invertebrates and vertebrates. Also, vertebrates were divided into four subgroups (isoforms). Generally, the count of different dipeptides and amino acid ratios were the most significant attributes for grouping. Using alignment of sequences identified the effective position of the respective dipeptides in the separation of the groups. So that 208GC is apparently involved in the separation of vertebrates from the four other organism groups, and 41DH, 431FK, and 451KC were involved in separation vertebrate isoform types. CONCLUSION The application of phylogenetic and decision tree analysis for Na,K-ATPase, provides a better understanding of the evolutionary changes according to the amino acid sequence and its related properties that could lead to the identification of effective attributes in the separation of sequences in different groups of phylogenetic tree. In this study, key evolution-related dipeptides are identified which can guide future experimental studies.
Collapse
Affiliation(s)
- Marzieh Shahnazari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Zakipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
7
|
Pan YT, Li L, Yang JY, Li B, Zhang YZ, Wang P, Huang L. Involvement of Protein Kinase CgSat4 in Potassium Uptake, Cation Tolerance, and Full Virulence in Colletotrichum gloeosporioides. FRONTIERS IN PLANT SCIENCE 2022; 13:773898. [PMID: 35463420 PMCID: PMC9021643 DOI: 10.3389/fpls.2022.773898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/17/2022] [Indexed: 05/31/2023]
Abstract
The ascomycete Colletotrichum gloeosporioides is a causal agent of anthracnose on crops and trees and causes enormous economic losses in the world. Protein kinases have been implicated in the regulation of growth and development, and responses to extracellular stimuli. However, the mechanism of the protein kinases regulating phytopathogenic fungal-specific processes is largely unclear. In the study, a serine/threonine CgSat4 was identified in C. gloeosporioides. The CgSat4 was localized in the cytoplasm. Targeted gene deletion showed that CgSat4 was essential for vegetative growth, sporulation, and full virulence. CgSat4 is involved in K+ uptake by regulating the localization and expression of the potassium transporter CgTrk1. CgSat4 is required for the cation stress resistance by altering the phosphorylation of CgHog1. Our study provides insights into potassium acquisition and the pathogenesis of C. gloeosporioides.
Collapse
Affiliation(s)
- Yu-Ting Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ji-Yun Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yun-Zhao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Penicillium roqueforti conidia induced by L-amino acids can germinate without detectable swelling. Antonie Van Leeuwenhoek 2021; 115:103-110. [PMID: 34800185 DOI: 10.1007/s10482-021-01686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Penicillium roqueforti is used for the production of blue-veined cheeses but is a spoilage fungus as well. It reproduces asexually by forming conidia. Germination of these spores can start the spoilage process of food. Germination is typically characterized by the processes of activation, swelling and germ tube formation. Here, we studied nutrient requirements for germination of P. roqueforti conidia. To this end, > 300 conidia per condition were monitored in time using an oCelloScope imager and an asymmetric model was used to describe the germination process. Spores were incubated for 72 h in NaNO3, Na2HPO4/NaH2PO4, MgSO4 and KCl with 10 mM glucose or 10 mM of 1 out of the 20 proteogenic amino acids. In the case of glucose, the maximum number of spores (Pmax) that had formed germ tubes was 12.7%, while time needed to reach 0.5 Pmax (τ) was about 14 h. Arginine and alanine were the most inducing amino acids with a Pmax of germ tube formation of 21% and 13%, respectively, and a τ of up to 33.5 h. Contrary to the typical stages of germination of fungal conidia, data show that P. roqueforti conidia can start forming germ tubes without a detectable swelling stage.
Collapse
|
9
|
Peng L, Shan X, Yang Y, Wang Y, Druzhinina IS, Pan X, Jin W, He X, Wang X, Zhang X, Martin FM, Yuan Z. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. PLANT, CELL & ENVIRONMENT 2021; 44:2793-2809. [PMID: 33764571 DOI: 10.1111/pce.14053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Several species of soil free-living saprotrophs can sometimes establish biotrophic symbiosis with plants, but the basic biology of this association remains largely unknown. Here, we investigate the symbiotic interaction between a common soil saprotroph, Clitopilus hobsonii (Agaricomycetes), and the American sweetgum (Liquidambar styraciflua). The colonized root cortical cells were found to contain numerous microsclerotia-like structures. Fungal colonization led to increased plant growth and facilitated potassium uptake, particularly under potassium limitation (0.05 mM K+ ). The expression of plant genes related to potassium uptake was not altered by the symbiosis, but colonized roots contained the transcripts of three fungal genes with homology to K+ transporters (ACU and HAK) and channel (SKC). Heterologously expressed ChACU and ChSKC restored the growth of a yeast K+ -uptake-defective mutant. Upregulation of ChACU transcript under low K+ conditions (0 and 0.05 mM K+ ) compared to control (5 mM K+ ) was demonstrated in planta and in vitro. Colonized plants displayed a larger accumulation of soluble sugars under 0.05 mM K+ than non-colonized plants. The present study suggests reciprocal benefits of this novel tree-fungus symbiosis under potassium limitation mainly through an exchange of additional carbon and potassium between both partners.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoliang Shan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuzhan Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S Druzhinina
- Fungal Genomics Group, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xueyu Pan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wei Jin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinghua He
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xinyu Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, Champenoux, France
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Institute of Microbiology, Beijing Forestry University, Beijing, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
10
|
Caspofungin resistance in clinical Aspergillus Flavus isolates. J Mycol Med 2021; 31:101166. [PMID: 34293598 DOI: 10.1016/j.mycmed.2021.101166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION AND AIMS The present study was conducted to determine the candidate genes involved in caspofungin (CAS) resistance in clinical isolates of Aspergillus flavus (A. flavus). MATERIALS AND METHODS The antifungal susceptibility assay of the CAS was performed on 14 clinical isolates of A. flavus using the CLSI-M-38-A2 broth micro-dilution protocol. Since CAS had various potencies, the minimum effective concentration (MEC) of anidulafungin (AND) was also evaluated in the present study. The FKS1 gene sequencing was conducted to assess whether mutations occurred in the whole FKS1 gene as well as hot spot regions of the FKS1 gene of the two resistant isolates. A complementary DNA-amplified fragment length polymorphism (CDNA-AFLP) method was performed to investigate differential gene expression between the two resistant and two sensitive clinical isolates in the presence of CAS. Furthermore, quantitative real-time PCR (QRT-PCR) was utilized to determine the relative expression levels of the identified genes. RESULTS No mutations were observed in the whole FKS1 gene hot spot regions of the FKS1 genes in the resistant isolates. A subset of two genes with known biological functions and four genes with unknown biological functions were identified in the CAS-resistant isolates using the CDNA-AFLP. The QRT-PCR revealed the down-regulation of the P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 in the CAS-resistant isolates, compared to the susceptible isolates. CONCLUSION The findings showed that P-type ATPase and ubiquinone biosynthesis methyltransferase COQ5 might be involved in the CAS-resistance A. flavus clinical isolates. Moreover, a subset of genes was differentially expressed to enhance fungi survival in CAS exposure. Further studies are recommended to highlight the gene overexpression and knock-out experiments in A. flavus or surrogate organisms to confirm that these mentioned genes confer the CAS resistant A. flavus.
Collapse
|
11
|
Pankavec S, Falandysz J, Hanć A, Komorowicz I, Fernandes AR, Barałkiewicz D. Lithiation of Agaricus bisporus mushrooms using compost fortified with LiOH: Effect of fortification levels on Li uptake and co-accumulation of other trace elements. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:761-770. [PMID: 34190029 DOI: 10.1080/03601234.2021.1944837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study investigated the lithiation of white Agaricus bisporus (common button) mushrooms using compost fortified with LiOH solutions at concentrations from 1 to 500 mg kg-1 compost dw. Apart from the highest level of fortification, the median Li concentrations in the cultivated mushrooms were elevated from 0.74 to 21 mg kg-1 dw (corresponding to compost fortification from 1.0 to 100 mg LiOH, kg-1 dw), relative to control mushrooms at 0.031 mg kg-1 dw. The bio-concentration potential for Li uptake in fruiting bodies was found to decrease at higher levels of fortification e.g. 50 - 100 mg kg-1 dw, and at the highest level - 500 mg kg-1, the mycelium failed to produce mushrooms. The fortification of the compost with LiOH appears to have had little, if any, effect on the co-accumulation of other elements such as Ag, Al, As, Ba, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Pb, Rb, Sr, Tl, U, V and Zn in the fruiting bodies, which generally occurred at the lower range of the results reported in the literature for cultivated A. bisporus. Thus compost fortification with LiOH provides an effective means of lithiating A. bisporus for potential pro-therapeutic use.
Collapse
Affiliation(s)
- Sviatlana Pankavec
- Laboratory of Environmental Chemistry and Ecotoxicology, University of Gdańsk, Gdański, Poland
| | - Jerzy Falandysz
- Laboratory of Environmental Chemistry and Ecotoxicology, University of Gdańsk, Gdański, Poland
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Anetta Hanć
- Department of Trace Elements Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Izabela Komorowicz
- Department of Trace Elements Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Danuta Barałkiewicz
- Department of Trace Elements Analysis by Spectroscopy Methods, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
12
|
The Potassium Transporter Hak1 in Candida Albicans, Regulation and Physiological Effects at Limiting Potassium and under Acidic Conditions. J Fungi (Basel) 2021; 7:jof7050362. [PMID: 34066565 PMCID: PMC8148600 DOI: 10.3390/jof7050362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
The three families of yeast plasma membrane potassium influx transporters are represented in Candida albicans: Trk, Acu, and Hak proteins. Hak transporters work as K+-H+ symporters, and the genes coding for Hak proteins are transcriptionally activated under potassium limitation. This work shows that C. albicans mutant cells lacking CaHAK1 display a severe growth impairment at limiting potassium concentrations under acidic conditions. This is the consequence of a defective capacity to transport K+, as indicated by potassium absorption experiments and by the kinetics parameters of Rb+ (K+) transport. Moreover, hak1- cells are more sensitive to the toxic cation lithium. All these phenotypes became much less robust or even disappeared at alkaline growth conditions. Finally, transcriptional studies demonstrate that the hak1- mutant, in comparison with HAK1+ cells, activates the expression of the K+/Na+ ATPase coded by CaACU1 in the presence of Na+ or in the absence of K+.
Collapse
|
13
|
Sun Y, Wang M, Mur LAJ, Shen Q, Guo S. The cross-kingdom roles of mineral nutrient transporters in plant-microbe relations. PHYSIOLOGIA PLANTARUM 2021; 171:771-784. [PMID: 33341944 DOI: 10.1111/ppl.13318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/27/2020] [Indexed: 05/23/2023]
Abstract
The regulation of plant physiology by plant mineral nutrient transporter (MNT) is well understood. Recently, the extensive characterization of beneficial and pathogenic plant-microbe interactions has defined the roles for MNTs in such relationships. In this review, we summarize the roles of diverse nutrient transporters in the symbiotic or pathogenic relationships between plants and microorganisms. In doing so, we highlight how MNTs of plants and microbes can act in a coordinated manner. In symbiotic relationships, MNTs play key roles in the establishment of the interaction between the host plant and rhizobium or mycorrhizae as well in the subsequent coordinated transport of nutrients. Additionally, MNTs may also regulate the colonization or degeneration of symbiotic microorganisms by reflecting the nutrient status of the plant and soil. This allows the host plant obtain nutrients from the soil in the most optimal manner. With pathogenic-interactions, MNTs influence pathogen proliferation, the efficacy of the host's biochemical defense and related signal transduction mechanisms. We classify the MNT effects in plant-pathogen interactions as either indirect by influencing the nutrient status and fitness of the pathogen, or direct by initiating host defense mechanisms. While such observations indicate the fundamental importance of MNTs in governing the interactions with a range of microorganisms, further work is needed to develop an integrative understanding of their functions.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Mou YN, Gao BJ, Ren K, Tong SM, Ying SH, Feng MG. P-type Na +/K + ATPases essential and nonessential for cellular homeostasis and insect pathogenicity of Beauveria bassiana. Virulence 2020; 11:1415-1431. [PMID: 33103596 PMCID: PMC7588218 DOI: 10.1080/21505594.2020.1836903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
ENA1 and ENA2 are P-type IID/ENA Na+/K+-ATPases required for cellular homeostasis in yeasts but remain poorly understood in filamentous fungal insect pathogens. Here, we characterized seven genes encoding five ENA1/2 homologues (ENA1a-c and ENA2a/b) and two P-type IIC/NK Na+/K+-ATPases (NK1/2) in Beauveria bassiana, an insect-pathogenic fungus serving as a main source of fungal insecticides worldwide. Most of these genes were highly responsive to alkaline pH and Na+/K+ cues at transcription level. Cellular Na+, K+ and H+ homeostasis was disturbed only in the absence of ena1a or ena2b. The disturbed homeostasis featured acceleration of vacuolar acidification, elevation of cytosolic Na+/K+ level at pH 5.0 to 9.0, and stabilization of extracellular H+ level to initial pH 7.5 during a 5-day period of submerged incubation. Despite little defect in hyphal growth and asexual development, the Δena1a and Δena2b mutants were less tolerant to metal cations (Na+, K+, Li+, Zn2+, Mn2+ and Fe3+), cell wall perturbation, oxidation, non-cation hyperosmolarity and UVB irradiation, severely compromised in insect pathogenicity via normal cuticle infection, and attenuated in virulence via hemocoel injection. The deletion mutants of five other ENA and NK genes showed little change in vacuolar pH and all examined phenotypes. Therefore, only ENA1a and ENA2b evidently involved in both transmembrane and vacuolar activities are essential for cellular cation homeostasis, insect pathogenicity and multiple stress tolerance in B. bassiana. These findings provide a novel insight into ENA1a- and ENA2b-dependent vacuolar pH stability, cation-homeostatic process and fungal fitness to host insect and environment.
Collapse
Affiliation(s)
- Ya-Ni Mou
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ben-Jie Gao
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kang Ren
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin’an, Zhejiang, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Shamayeva K, Spurna K, Kulik N, Kale D, Munko O, Spurny P, Zayats V, Ludwig J. MPM motifs of the yeast SKT protein Trk1 can assemble to form a functional K +-translocation system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183513. [PMID: 33245894 DOI: 10.1016/j.bbamem.2020.183513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
The yeast Trk1 polypeptide, like other members of the Superfamily of K Transporters (SKT proteins) consists of four Membrane-Pore-Membrane motifs (MPMs A-D) each of which is homologous to a single K-channel subunit. SKT proteins are thought to have evolved from ancestral K-channels via two gene duplications and thus single MPMs might be able to assemble when located on different polypeptides. To test this hypothesis experimentally we generated a set of partial gene deletions to create alleles encoding one, two, or three MPMs, and analysed the cellular localisation and interactions of these Trk1 fragments using GFP tags and Bimolecular Fluorescence Complementation (BiFC). The function of these partial Trk1 proteins either alone or in combinations was assessed by expressing the encoding genes in a K+-uptake deficient strain lacking also the K-channel Tok1 (trk1,trk2,tok1Δ) and (i) analysing their ability to promote growth in low [K+] media and (ii) by ion flux measurements using "microelectrode based ion flux estimation" (MIFE). We found that proteins containing only one or two MPM motifs can interact with each other and assemble with a polypeptide consisting of the rest of the Trk system to form a functional K+-translocation system.
Collapse
Affiliation(s)
- Katsiaryna Shamayeva
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Karin Spurna
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Natalia Kulik
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Deepika Kale
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Oksana Munko
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic; University of South Bohemia in Ceske Budejovice, Faculty of Science, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Pavel Spurny
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| | - Vasilina Zayats
- Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland.
| | - Jost Ludwig
- Center for Nanobiology and Structural Biology, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 373 33 Nove Hrady, Czech Republic.
| |
Collapse
|
16
|
Garcia K, Guerrero-Galán C, Frank HER, Haider MZ, Delteil A, Conéjéro G, Lambilliotte R, Fizames C, Sentenac H, Zimmermann SD. Fungal Shaker-like channels beyond cellular K+ homeostasis: A role in ectomycorrhizal symbiosis between Hebeloma cylindrosporum and Pinus pinaster. PLoS One 2020; 15:e0242739. [PMID: 33216794 PMCID: PMC7678990 DOI: 10.1371/journal.pone.0242739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/07/2020] [Indexed: 01/04/2023] Open
Abstract
Potassium (K+) acquisition, translocation and cellular homeostasis are mediated by various membrane transport systems in all organisms. We identified and described an ion channel in the ectomycorrhizal fungus Hebeloma cylindrosporum (HcSKC) that harbors features of animal voltage-dependent Shaker-like K+ channels, and investigated its role in both free-living hyphae and symbiotic conditions. RNAi lines affected in the expression of HcSKC were produced and used for in vitro mycorrhizal assays with the maritime pine as host plant, under standard or low K+ conditions. The adaptation of H. cylindrosporum to the downregulation of HcSKC was analyzed by qRT-PCR analyses for other K+-related transport proteins: the transporters HcTrk1, HcTrk2, and HcHAK, and the ion channels HcTOK1, HcTOK2.1, and HcTOK2.2. Downregulated HcSKC transformants displayed greater K+ contents at standard K+ only. In such conditions, plants inoculated with these transgenic lines were impaired in K+ nutrition. Taken together, these results support the hypothesis that the reduced expression of HcSKC modifies the pool of fungal K+ available for the plant and/or affects its symbiotic transfer to the roots. Our study reveals that the maintenance of K+ transport in H. cylindrosporum, through the regulation of HcSKC expression, is required for the K+ nutrition of the host plant.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, California, United States of America
| | | | - Hannah E. R. Frank
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, California, United States of America
| | | | - Amandine Delteil
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conéjéro
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- Plateforme Histocytologie et Imagerie Cellulaire Végétale, INRA-CIRAD Montpellier, France
| | - Raphaël Lambilliotte
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Cécile Fizames
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Hervé Sentenac
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Sabine D. Zimmermann
- BPMP, Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
17
|
Meade JC. P-type transport ATPases in Leishmania and Trypanosoma. ACTA ACUST UNITED AC 2019; 26:69. [PMID: 31782726 PMCID: PMC6884021 DOI: 10.1051/parasite/2019069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
P-type ATPases are critical to the maintenance and regulation of cellular ion homeostasis and membrane lipid asymmetry due to their ability to move ions and phospholipids against a concentration gradient by utilizing the energy of ATP hydrolysis. P-type ATPases are particularly relevant in human pathogenic trypanosomatids which are exposed to abrupt and dramatic changes in their external environment during their life cycles. This review describes the complete inventory of ion-motive, P-type ATPase genes in the human pathogenic Trypanosomatidae; eight Leishmania species (L. aethiopica, L. braziliensis, L. donovani, L. infantum, L. major, L. mexicana, L. panamensis, L. tropica), Trypanosoma cruzi and three Trypanosoma brucei subspecies (Trypanosoma brucei brucei TREU927, Trypanosoma brucei Lister strain 427, Trypanosoma brucei gambiense DAL972). The P-type ATPase complement in these trypanosomatids includes the P1B (metal pumps), P2A (SERCA, sarcoplasmic-endoplasmic reticulum calcium ATPases), P2B (PMCA, plasma membrane calcium ATPases), P2D (Na+ pumps), P3A (H+ pumps), P4 (aminophospholipid translocators), and P5B (no assigned specificity) subfamilies. These subfamilies represent the P-type ATPase transport functions necessary for survival in the Trypanosomatidae as P-type ATPases for each of these seven subfamilies are found in all Leishmania and Trypanosoma species included in this analysis. These P-type ATPase subfamilies are correlated with current molecular and biochemical knowledge of their function in trypanosomatid growth, adaptation, infectivity, and survival.
Collapse
Affiliation(s)
- John C Meade
- Department of Microbiology and Immunology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
18
|
Trk1, the sole potassium-specific transporter in Candida glabrata, contributes to the proper functioning of various cell processes. World J Microbiol Biotechnol 2019; 35:124. [DOI: 10.1007/s11274-019-2698-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
|
19
|
Haro R, Benito B. The Role of Soil Fungi in K + Plant Nutrition. Int J Mol Sci 2019; 20:ijms20133169. [PMID: 31261721 PMCID: PMC6651076 DOI: 10.3390/ijms20133169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
K+ is an essential cation and the most abundant in plant cells. After N, its corresponding element, K, is the nutrient required in the largest amounts by plants. Despite the numerous roles of K in crop production, improvements in the uptake and efficiency of use of K have not been major focuses in conventional or transgenic breeding studies in the past. In research on the mineral nutrition of plants in general, and K in particular, this nutrient has been shown to be essential to soil-dwelling-microorganisms (fungi, bacteria, protozoa, nematodes, etc.) that form mutualistic associations and that can influence the availability of mineral nutrients for plants. Therefore, this article aims to provide an overview of the role of soil microorganisms in supplying K+ to plants, considering both the potassium-solubilizing microorganisms and the potassium-facilitating microorganisms that are in close contact with the roots of plants. These microorganisms can influence the active transporter-mediated transfer of K+. Regarding the latter group of microorganisms, special focus is placed on the role of endophytic fungus. This review also includes a discussion on productivity through sustainable agriculture.
Collapse
Affiliation(s)
- Rosario Haro
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus Montegancedo UPM. Pozuelo de Alarcón, 28223-Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus Montegancedo UPM. Pozuelo de Alarcón, 28223-Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040-Madrid, Spain.
| |
Collapse
|
20
|
China S, Burrows SM, Wang B, Harder TH, Weis J, Tanarhte M, Rizzo LV, Brito J, Cirino GG, Ma PL, Cliff J, Artaxo P, Gilles MK, Laskin A. Fungal spores as a source of sodium salt particles in the Amazon basin. Nat Commun 2018; 9:4793. [PMID: 30451836 PMCID: PMC6242827 DOI: 10.1038/s41467-018-07066-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 10/09/2018] [Indexed: 11/12/2022] Open
Abstract
In the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors. Modeling results suggest that fungal spores account for ~69% (31-95%) of the total sodium mass during the wet season and that their fractional contribution increases during nighttime. Contrary to common assumptions that sodium-containing aerosols originate primarily from marine sources, our results suggest that locally-emitted fungal spores contribute substantially to the number and mass of coarse particles containing sodium. Hence, their role in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the Amazon basin warrant further consideration.
Collapse
Affiliation(s)
- Swarup China
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Susannah M Burrows
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Bingbing Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tristan H Harder
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Physikalisches Institut, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Weis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Physikalisches Institut, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | - Luciana V Rizzo
- Department of Environmental Sciences, Universidade Federal de Sao Paulo, Diadema, 09961, SP, Brazil
| | - Joel Brito
- Institute of Physics, University of São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, Brazil
- IMT Lille Douai, SAGE, Univ. Lille, 59000, Lille, France
| | - Glauber G Cirino
- Geosciences Institute, Federal University of Para, Belem, 66075-110, Brazil
| | - Po-Lun Ma
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - John Cliff
- William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paulo Artaxo
- Institute of Physics, University of São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP, Brazil
| | - Mary K Gilles
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Liu J, Sun HH, Ying SH, Feng MG. Characterization of three mitogen-activated protein kinase kinase-like proteins in Beauveria bassiana. Fungal Genet Biol 2018; 113:24-31. [DOI: 10.1016/j.fgb.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
|
22
|
Camenzind T, Lehmberg J, Weimershaus P, Álvarez-Garrido L, Andrade Linares DR, Súarez JP, Rillig MC. Do fungi need salt licks? No evidence for fungal contribution to the Sodium Ecosystem Respiration Hypothesis based on lab and field experiments in Southern Ecuador. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Abstract
Fungi that tolerate very high environmental NaCl concentrations are good model systems to study mechanisms that enable them to endure osmotic and salinity stress. The whole genome sequences of six such fungal species have been analysed: Hortaea werneckii, Wallemia ichthyophaga and four Aureobasidium spp.: A. pullulans, A. subglaciale, A. melanogenum and A. namibiae. These fungi show different levels of halotolerance, with the presence of numerous membrane transport systems uncovered here that are believed to maintain physiological intracellular concentrations of alkali metal cations. Despite some differences, the intracellular cation contents of H. werneckii, A. pullulans and W. ichthyophaga remain low even under extreme extracellular salinities, which suggests that these species have efficient cation transport systems. We speculate that cation transporters prevent intracellular accumulation of Na(+), and thus avoid the toxic effects that such Na(+) accumulation would have, while also maintaining the high K(+)/Na(+) ratio that is required for the full functioning of the cell - another crucial task in high-Na(+) environments. This chapter primarily summarises the cation transport systems of these selected fungi, and it also describes other membrane transporters that might be involved in their mechanisms of halotolerance.
Collapse
|
24
|
Hušeková B, Elicharová H, Sychrová H. Pathogenic Candida species differ in the ability to grow at limiting potassium concentrations. Can J Microbiol 2016; 62:394-401. [DOI: 10.1139/cjm-2015-0766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A high intracellular concentration of potassium (200–300 mmol/L) is essential for many yeast cell functions, such as the regulation of cell volume and pH, maintenance of membrane potential, and enzyme activation. Thus, cells use high-affinity specific transporters and expend a lot of energy to acquire the necessary amount of potassium from their environment. In Candida genomes, genes encoding 3 types of putative potassium uptake systems were identified: Trk uniporters, Hak symporters, and Acu ATPases. Tests of the tolerance and sensitivity of C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis to various concentrations of potassium showed significant differences among the species, and these differences were partly dependent on external pH. The species most tolerant to potassium-limiting conditions were C. albicans and C. krusei, while C. parapsilosis tolerated the highest KCl concentrations. Also, the morphology of cells changed with the amount of potassium available, with C. krusei and C. tropicalis being the most influenced. Taken together, our results confirm potassium uptake and accumulation as important factors for Candida cell growth and suggest that the sole (and thus probably indispensable) Trk1 potassium uptake system in C. krusei and C. glabrata may serve as a target for the development of new antifungal drugs.
Collapse
Affiliation(s)
- B. Hušeková
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - H. Elicharová
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - H. Sychrová
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Membrane Transport, Institute of Physiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
25
|
Elicharová H, Hušeková B, Sychrová H. ThreeCandida albicanspotassium uptake systems differ in their ability to provideSaccharomyces cerevisiae trk1trk2mutants with necessary potassium. FEMS Yeast Res 2016; 16:fow039. [DOI: 10.1093/femsyr/fow039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 12/31/2022] Open
|
26
|
Potassium Uptake Mediated by Trk1 Is Crucial for Candida glabrata Growth and Fitness. PLoS One 2016; 11:e0153374. [PMID: 27058598 PMCID: PMC4825953 DOI: 10.1371/journal.pone.0153374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
The maintenance of potassium homeostasis is crucial for all types of cells, including Candida glabrata. Three types of plasma-membrane systems mediating potassium influx with different transport mechanisms have been described in yeasts: the Trk1 uniporter, the Hak cation-proton symporter and the Acu ATPase. The C. glabrata genome contains only one gene encoding putative system for potassium uptake, the Trk1 uniporter. Therefore, its importance in maintaining adequate levels of intracellular potassium appears to be critical for C. glabrata cells. In this study, we first confirmed the potassium-uptake activity of the identified gene’s product by heterologous expression in a suitable S. cerevisiae mutant, further we generated a corresponding deletion mutant in C. glabrata and analysed its phenotype in detail. The obtained results show a pleiotropic effect on the cell physiology when CgTRK1 is deleted, affecting not only the ability of trk1Δ to grow at low potassium concentrations, but also the tolerance to toxic alkali-metal cations and cationic drugs, as well as the membrane potential and intracellular pH. Taken together, our results find the sole potassium uptake system in C. glabrata cells to be a promising target in the search for its specific inhibitors and in developing new antifungal drugs.
Collapse
|
27
|
Álvarez-Aragón R, Haro R, Benito B, Rodríguez-Navarro A. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation. PLANTA 2016; 243:97-114. [PMID: 26345991 DOI: 10.1007/s00425-015-2400-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/28/2015] [Indexed: 05/21/2023]
Abstract
Arabidopsis plants in NaCl suffering half growth inhibition do not suffer osmotic stress and seldom shoot Na (+) toxicity; overaccumulation of Na (+) plus K (+) might trigger the inhibition. It is widely assumed that salinity inhibits plant growth by osmotic stress and shoot Na(+) toxicity. This study aims to examine the growth inhibition of Arabidopsis thaliana by NaCl concentrations that allow the completion of the life cycle. Unaffected Col-0 wild-type plants were used to define nontoxic Na(+) contents; Na(+) toxicities in shoots and roots were analyzed in hkt1 and sos1 mutants, respectively. The growth inhibition of Col-0 plants at 40 mM Na(+) was mild and equivalent to that produced by 8 and 4 mM Na(+) in hkt1 and sos1 plants, respectively. Therefore, these mutants allowed to study the toxicity of Na(+) in the absence of an osmotic challenge. Col-0 and Ts-1 accessions showed very different Na(+) contents but similar growth inhibitions; Ts-1 plants showed very high leaf Na(+) contents but no symptoms of Na(+) toxicity. Ak-1, C24, and Fei-0 plants were highly affected by NaCl showing evident symptoms of shoot Na(+) toxicity. Increasing K(+) in isotonic NaCl/KCl combinations dramatically decreased the Na(+) content in all Arabidopsis accessions and eliminated the signs of Na(+) toxicity in most of them but did not relieve growth inhibition. This suggested that the dominant inhibition in these conditions was either osmotic or of an ionic nature unspecific for Na(+) or K(+). Col-0 and Ts-1 plants growing in sorbitol showed a clear osmotic stress characterized by a notable decrease of their water content, but this response did not occur in NaCl. Overaccumulation of Na(+) plus K(+) might trigger growth reduction in NaCl-treated plants.
Collapse
Affiliation(s)
- Rocío Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain
| | - Alonso Rodríguez-Navarro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223-Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
28
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int J Food Microbiol 2014; 185:140-57. [DOI: 10.1016/j.ijfoodmicro.2014.05.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/18/2014] [Accepted: 05/04/2014] [Indexed: 11/21/2022]
|
30
|
Lanver D, Berndt P, Tollot M, Naik V, Vranes M, Warmann T, Münch K, Rössel N, Kahmann R. Plant surface cues prime Ustilago maydis for biotrophic development. PLoS Pathog 2014; 10:e1004272. [PMID: 25033195 PMCID: PMC4102580 DOI: 10.1371/journal.ppat.1004272] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development. A basic requirement for pathogens to infect their hosts and to cause disease is to detect that they are in contact with the host surface. Plant pathogenic fungi typically respond to leaf surface contact with the development of specialized infection structures enabling the fungus to penetrate the leaf cuticle and to enter the plant tissue. In this study we analyzed the response of the corn smut fungus Ustilago maydis to two plant surface cues, such as hydrophobic surface and cutin monomers. Based on genome-wide gene expression analysis we found that these cues trigger the production of secreted plant cell wall degrading enzymes helping the fungus to penetrate the plant surface. In addition, genes were activated that code for a group of secreted proteins, so-called effectors, that affect virulence after penetration. These results demonstrate that plant surface cues trigger fungal penetration of the plant surface and also prime the fungus for later development inside plant tissue. These specific responses required two cell surface proteins that likely function as plant surface sensors.
Collapse
Affiliation(s)
- Daniel Lanver
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Patrick Berndt
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Marie Tollot
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Vikram Naik
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Genetics, Karlsruhe, Germany
| | - Tobias Warmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Karin Münch
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J, Gostinčar C, Gunde-Cimerman N. Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 2014; 5:199. [PMID: 24860557 PMCID: PMC4017127 DOI: 10.3389/fmicb.2014.00199] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/14/2014] [Indexed: 01/20/2023] Open
Abstract
Molecular studies of salt tolerance of eukaryotic microorganisms have until recently been limited to the baker's yeast Saccharomyces cerevisiae and a few other moderately halotolerant yeast. Discovery of the extremely halotolerant and adaptable fungus Hortaea werneckii and the obligate halophile Wallemia ichthyophaga introduced two new model organisms into studies on the mechanisms of salt tolerance in eukaryotes. H. werneckii is unique in its adaptability to fluctuations in salt concentrations, as it can grow without NaCl as well as in the presence of up to 5 M NaCl. On the other hand, W. ichthyophaga requires at least 1.5 M NaCl for growth, but also grows in up to 5 M NaCl. Our studies have revealed the novel and intricate molecular mechanisms used by these fungi to combat high salt concentrations, which differ in many aspects between the extremely halotolerant H. werneckii and the halophilic W. ichthyophaga. Specifically, the high osmolarity glycerol signaling pathway that is important for sensing and responding to increased salt concentrations is here compared between H. werneckii and W. ichthyophaga. In both of these fungi, the key signaling components are conserved, but there are structural and regulation differences between these pathways in H. werneckii and W. ichthyophaga. We also address differences that have been revealed from analysis of their newly sequenced genomes. The most striking characteristics associated with H. werneckii are the large genetic redundancy, the expansion of genes encoding metal cation transporters, and a relatively recent whole genome duplication. In contrast, the genome of W. ichthyophaga is very compact, as only 4884 protein-coding genes are predicted, which cover almost three quarters of the sequence. Importantly, there has been a significant increase in their hydrophobins, cell-wall proteins that have multiple cellular functions.
Collapse
Affiliation(s)
- Ana Plemenitaš
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| | - Metka Lenassi
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| | - Tilen Konte
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| | - Anja Kejžar
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| | - Janja Zajc
- Biology Department, Biotechnical Faculty, University of Ljubljana Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biotechnology and Systems Biology, National Institute of Biology Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Biology Department, Biotechnical Faculty, University of Ljubljana Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP) Ljubljana, Slovenia
| |
Collapse
|
32
|
Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 2013; 14:617. [PMID: 24034603 PMCID: PMC3849046 DOI: 10.1186/1471-2164-14-617] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/04/2013] [Indexed: 01/03/2023] Open
Abstract
Background The basidomycete Wallemia ichthyophaga from the phylogenetically distinct class Wallemiomycetes is the most halophilic fungus known to date. It requires at least 10% NaCl and thrives in saturated salt solution. To investigate the genomic basis of this exceptional phenotype, we obtained a de-novo genome sequence of the species type-strain and analysed its transcriptomic response to conditions close to the limits of its lower and upper salinity range. Results The unusually compact genome is 9.6 Mb large and contains 1.67% repetitive sequences. Only 4884 predicted protein coding genes cover almost three quarters of the sequence. Of 639 differentially expressed genes, two thirds are more expressed at lower salinity. Phylogenomic analysis based on the largest dataset used to date (whole proteomes) positions Wallemiomycetes as a 250-million-year-old sister group of Agaricomycotina. Contrary to the closely related species Wallemia sebi, W. ichthyophaga appears to have lost the ability for sexual reproduction. Several protein families are significantly expanded or contracted in the genome. Among these, there are the P-type ATPase cation transporters, but not the sodium/ hydrogen exchanger family. Transcription of all but three cation transporters is not salt dependent. The analysis also reveals a significant enrichment in hydrophobins, which are cell-wall proteins with multiple cellular functions. Half of these are differentially expressed, and most contain an unusually large number of acidic amino acids. This discovery is of particular interest due to the numerous applications of hydrophobines from other fungi in industry, pharmaceutics and medicine. Conclusions W. ichthyophaga is an extremophilic specialist that shows only low levels of adaptability and genetic recombination. This is reflected in the characteristics of its genome and its transcriptomic response to salt. No unusual traits were observed in common salt-tolerance mechanisms, such as transport of inorganic ions or synthesis of compatible solutes. Instead, various data indicate a role of the cell wall of W. ichthyophaga in its response to salt. Availability of the genomic sequence is expected to facilitate further research into this unique species, and shed more light on adaptations that allow it to thrive in conditions lethal to most other eukaryotes.
Collapse
|
33
|
Coordination of K+ transporters in neurospora: TRK1 is scarce and constitutive, while HAK1 is abundant and highly regulated. EUKARYOTIC CELL 2013; 12:684-96. [PMID: 23475706 DOI: 10.1128/ec.00017-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi, plants, and bacteria accumulate potassium via two distinct molecular machines not directly coupled to ATP hydrolysis. The first, designated TRK, HKT, or KTR, has eight transmembrane helices and is folded like known potassium channels, while the second, designated HAK, KT, or KUP, has 12 transmembrane helices and resembles MFS class proteins. One of each type functions in the model organism Neurospora crassa, where both are readily accessible for biochemical, genetic, and electrophysiological characterization. We have now determined the operating balance between Trk1p and Hak1p under several important conditions, including potassium limitation and carbon starvation. Growth measurements, epitope tagging, and quantitative Western blotting have shown the gene HAK1 to be much more highly regulated than is TRK1. This conclusion follows from three experimental results: (i) Trk1p is expressed constitutively but at low levels, and it is barely sensitive to extracellular [K(+)] and/or the coexpression of HAK1; (ii) Hak1p is abundant but is markedly depressed by elevated extracellular concentrations of K(+) and by coexpression of TRK1; and (iii) Carbon starvation slowly enhances Hak1p expression and depresses Trk1p expression, yielding steady-state Hak1p:Trk1p ratios of ∼500:1, viz., 10- to 50-fold larger than that in K(+)- and carbon-replete cells. Additionally, it appears that both potassium transporters can adjust kinetically to sustained low-K(+) stress by means of progressively increasing transporter affinity for extracellular K(+). The underlying observations are (iv) that K(+) influx via Trk1p remains nearly constant at ∼9 mM/h when extracellular K(+) is progressively depleted below 0.05 mM and (v) that K(+) influx via Hak1p remains at ∼3 mM/h when extracellular K(+) is depleted below 0.1 mM.
Collapse
|
34
|
Altshuler I, Vaillant JJ, Xu S, Cristescu ME. The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA). PLoS One 2012; 7:e52617. [PMID: 23285113 PMCID: PMC3527596 DOI: 10.1371/journal.pone.0052617] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/20/2012] [Indexed: 12/18/2022] Open
Abstract
Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na+/K+ transporters, H+/K+ transporters, and plasma membrane Ca2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca2+ into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.
Collapse
Affiliation(s)
- Ianina Altshuler
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.
| | | | | | | |
Collapse
|
35
|
Stříbný J, Kinclová-Zimmermannová O, Sychrová H. Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae. Curr Genet 2012; 58:255-64. [DOI: 10.1007/s00294-012-0381-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/26/2012] [Accepted: 08/13/2012] [Indexed: 12/01/2022]
|
36
|
Cabrera E, Álvarez MC, Martín Y, Siverio JM, Ramos J. K+ uptake systems in the yeast Hansenula polymorpha. Transcriptional and post-translational mechanisms involved in high-affinity K+ transporter regulation. Fungal Genet Biol 2012; 49:755-63. [DOI: 10.1016/j.fgb.2012.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 11/28/2022]
|
37
|
Benito B, Garciadeblas B, Rodriguez-Navarro A. HAK transporters from Physcomitrella patens and Yarrowia lipolytica mediate sodium uptake. PLANT & CELL PHYSIOLOGY 2012; 53:1117-1123. [PMID: 22514087 DOI: 10.1093/pcp/pcs056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread presence of Na(+)-specific uptake systems across plants and fungi is a controversial topic. In this study, we identify two HAK genes, one in the moss Physcomitrella patens and the other in the yeast Yarrowia lipolytica, that encode Na(+)-specific transporters. Because HAK genes are numerous in plants and are duplicated in many fungi, our findings suggest that some HAK genes encode Na(+) transporters and that Na(+) might play physiological roles in plants and fungi more extensively than is currently thought.
Collapse
Affiliation(s)
- Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, 28223-Pozuelo de Alarcón (Madrid), Spain.
| | | | | |
Collapse
|
38
|
Louis VL, Despons L, Friedrich A, Martin T, Durrens P, Casarégola S, Neuvéglise C, Fairhead C, Marck C, Cruz JA, Straub ML, Kugler V, Sacerdot C, Uzunov Z, Thierry A, Weiss S, Bleykasten C, De Montigny J, Jacques N, Jung P, Lemaire M, Mallet S, Morel G, Richard GF, Sarkar A, Savel G, Schacherer J, Seret ML, Talla E, Samson G, Jubin C, Poulain J, Vacherie B, Barbe V, Pelletier E, Sherman DJ, Westhof E, Weissenbach J, Baret PV, Wincker P, Gaillardin C, Dujon B, Souciet JL. Pichia sorbitophila, an Interspecies Yeast Hybrid, Reveals Early Steps of Genome Resolution After Polyploidization. G3 (BETHESDA, MD.) 2012; 2:299-311. [PMID: 22384408 PMCID: PMC3284337 DOI: 10.1534/g3.111.000745] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/16/2011] [Indexed: 12/19/2022]
Abstract
Polyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages. In this article, we show that an osmotolerant yeast species, Pichia sorbitophila, recently isolated in a concentrated sorbitol solution in industry, illustrates this last situation. Its genome is a mosaic of homologous and homeologous chromosomes, or parts thereof, that corresponds to a recently formed hybrid in the process of evolution. The respective parental contributions to this genome were characterized using existing variations in GC content. The genomic changes that occurred during the short period since hybrid formation were identified (e.g., loss of heterozygosity, unilateral loss of rDNA, reciprocal exchange) and distinguished from those undergone by the two parental genomes after separation from their common ancestor (i.e., NUMT (NUclear sequences of MiTochondrial origin) insertions, gene acquisitions, gene location movements, reciprocal translocation). We found that the physiological characteristics of this new yeast species are determined by specific but unequal contributions of its two parents, one of which could be identified as very closely related to an extant Pichia farinosa strain.
Collapse
Affiliation(s)
| | - Laurence Despons
- Université de Strasbourg, CNRS UMR7156, F-67000 Strasbourg, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS UMR7156, F-67000 Strasbourg, France
| | - Tiphaine Martin
- Université de Bordeaux 1, LaBRI INRIA Bordeaux Sud-Ouest (MAGNOME), F-33405 Talence, France
| | - Pascal Durrens
- Université de Bordeaux 1, LaBRI INRIA Bordeaux Sud-Ouest (MAGNOME), F-33405 Talence, France
| | - Serge Casarégola
- INRA UMR 1319 Micalis, AgroParisTech, Bat. CBAI, F-78850 Thiverval-Grignon, France
| | - Cécile Neuvéglise
- INRA UMR 1319 Micalis, AgroParisTech, Bat. CBAI, F-78850 Thiverval-Grignon, France
| | - Cécile Fairhead
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR CNRS 8621, F-91405 Orsay CEDEX, France
| | - Christian Marck
- Institut de Biologie et de Technologies de Saclay (iBiTec-S), CEA, F-91191 Gif-sur-Yvette CEDEX, France
| | - José A. Cruz
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, F-67084 Strasbourg, France
| | | | - Valérie Kugler
- Université de Strasbourg, CNRS UMR7156, F-67000 Strasbourg, France
| | - Christine Sacerdot
- Institut Pasteur, CNRS URA2171, Université Pierre et Maris Curie, Paris 6 UFR927, F-75724, Paris-CEDEX 15, France
| | - Zlatyo Uzunov
- Sofia University St. Kliment Ohridski, Faculty of Biology, Department of General and Applied Microbiology, 1164, Sofia, Bulgaria
| | - Agnes Thierry
- Institut Pasteur, CNRS URA2171, Université Pierre et Maris Curie, Paris 6 UFR927, F-75724, Paris-CEDEX 15, France
| | - Stéphanie Weiss
- INRA UMR 1319 Micalis, AgroParisTech, Bat. CBAI, F-78850 Thiverval-Grignon, France
| | | | | | - Noemie Jacques
- INRA UMR 1319 Micalis, AgroParisTech, Bat. CBAI, F-78850 Thiverval-Grignon, France
| | - Paul Jung
- Université de Strasbourg, CNRS UMR7156, F-67000 Strasbourg, France
| | - Marc Lemaire
- Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR5240 Microbiologie, Adaptation et Pathogénie; INSA de Lyon, F-69621, Villeurbanne, France
| | - Sandrine Mallet
- INRA UMR 1319 Micalis, AgroParisTech, Bat. CBAI, F-78850 Thiverval-Grignon, France
| | - Guillaume Morel
- INRA UMR 1319 Micalis, AgroParisTech, Bat. CBAI, F-78850 Thiverval-Grignon, France
| | - Guy-Franck Richard
- Institut Pasteur, CNRS URA2171, Université Pierre et Maris Curie, Paris 6 UFR927, F-75724, Paris-CEDEX 15, France
| | - Anasua Sarkar
- Université de Bordeaux 1, CNRS UMR5800, F-33405 Talence, France
| | - Guilhem Savel
- Université de Bordeaux 1, CNRS UMR5800, F-33405 Talence, France
| | | | - Marie-Line Seret
- Earth and Life Institute, Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Emmanuel Talla
- Université de la Méditerranée, Laboratoire de Chimie Bactérienne, CNRS-UPR9043, 31 chemin Joseph Aiguier, F-13402 Marseille CEDEX 20, France
| | - Gaelle Samson
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - Claire Jubin
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - Julie Poulain
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - Benoît Vacherie
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - Valérie Barbe
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - Eric Pelletier
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - David J. Sherman
- Université de Bordeaux 1, LaBRI INRIA Bordeaux Sud-Ouest (MAGNOME), F-33405 Talence, France
| | - Eric Westhof
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, F-67084 Strasbourg, France
| | - Jean Weissenbach
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - Philippe V. Baret
- Earth and Life Institute, Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
| | - Patrick Wincker
- CEA, DSV, IG, Génoscope; CNRS UMR 8030; Université d’Evry Val d’ Essonne, 2 rue Gaston Crémieux, F-91057 Evry, France
| | - Claude Gaillardin
- INRA UMR 1319 Micalis, AgroParisTech, Bat. CBAI, F-78850 Thiverval-Grignon, France
| | - Bernard Dujon
- Institut Pasteur, CNRS URA2171, Université Pierre et Maris Curie, Paris 6 UFR927, F-75724, Paris-CEDEX 15, France
| | - Jean-Luc Souciet
- Université de Strasbourg, CNRS UMR7156, F-67000 Strasbourg, France
| |
Collapse
|
39
|
You MP, Colmer TD, Barbetti MJ. Salinity drives host reaction in Phaseolus vulgaris (common bean) to Macrophomina phaseolina. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:984-992. [PMID: 32480956 DOI: 10.1071/fp11137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/20/2011] [Indexed: 06/11/2023]
Abstract
Productivity of Phaseolus vulgaris L. (common bean) is often limited by diseases such as seedling blight and root and stem rot caused by the fungus Macrophomina phaseolina and by abiotic stresses such as salinity. This paper reports controlled environment studies examining the interaction of biotic (M. phaseolina) and abiotic (NaCl) stresses. Studies were conducted at 32°C. On potato dextrose agar, the growth of two isolates of M. phaseolina (M1, M2) was differentially stimulated by 40mM NaCl with 1mM CaSO4. M. phaseolina was applied as either soil-borne inoculum or directly injected into P. vulgaris hypocotyls. For direct hypocotyl inoculation experiments, there was no difference in disease severity resulting from the two isolates. However, when soil inoculation was undertaken, isolate M2 caused more disease than M1. Addition of 40mM NaCl to the soil increased disease development and severity (evident 4 days after inoculation), particularly as demonstrated in the hypocotyl inoculation tests, suggesting that salinity stress predisposes plants to infection by this pathogen. Plants infested by M. phaseolina showed increased tissue concentrations of Na+ and Cl- but decreased K+ concentration. Hypocotyls generally contained higher Na+ concentrations than shoots. Inoculated plants had higher Na+ and lower K+ concentrations than uninoculated plants. Our studies indicate that M. phaseolina will be a more severe disease threat where P. vulgaris is cultivated in areas affected by soil salinity.
Collapse
Affiliation(s)
- Ming Pei You
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Timothy D Colmer
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Martin J Barbetti
- School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
40
|
Benito B, Garciadeblás B, Fraile-Escanciano A, Rodríguez-Navarro A. Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Fungal Genet Biol 2011; 48:812-22. [DOI: 10.1016/j.fgb.2011.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
41
|
Martínez JL, Sychrova H, Ramos J. Monovalent cations regulate expression and activity of the Hak1 potassium transporter in Debaryomyces hansenii. Fungal Genet Biol 2011; 48:177-84. [DOI: 10.1016/j.fgb.2010.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
|
42
|
Ramos J, Ariño J, Sychrová H. Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett 2011; 317:1-8. [DOI: 10.1111/j.1574-6968.2011.02214.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
43
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
44
|
Haro R, Bañuelos MA, Rodríguez-Navarro A. High-affinity sodium uptake in land plants. PLANT & CELL PHYSIOLOGY 2010; 51:68-79. [PMID: 19939835 DOI: 10.1093/pcp/pcp168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-affinity Na(+) uptake in plants and its mediation by HKT transporters have been studied in very few species. This study expands the knowledge of high-affinity Na(+) uptake in land plants for both uptake characteristics and involvement of HKT transporters. In non-flowering plants, we analyzed the Na(+) content of wild mosses, carried out experiments on K(+) and Na(+) uptake in the micromolar range of concentrations with the moss Physcomitrella patens and the liverwort Riccia fluitans, studied a Deltahkt1 mutant of P. patens and identified the HKT genes of the lycopodiophyta (clubmoss) Selaginella moellendorffii. In flowering plants we studied Na(+) uptake in the micromolar range of concentrations in 16 crop plant species, identified the HKT transporters that could mediate high-affinity Na(+) uptake in several species of the Triticeae tribe, and described some characteristics of high-affinity Na(+) uptake in other species. Our results suggest that high-affinity Na(+) uptake occurs in most land plants. In very few of them, rice and species in the Triticeae and Aveneae tribes of the Poaceae family, it is probably mediated by HKT transporters. In other plants, high-affinity Na(+) uptake is mediated by one or several transporters whose responses to the presence of K(+) or Ba(2+) are fundamentally different from those of HKT transporters.
Collapse
Affiliation(s)
- Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
45
|
Concerted action of two cation filters in the aquaporin water channel. EMBO J 2009; 28:2188-94. [PMID: 19574955 DOI: 10.1038/emboj.2009.182] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/08/2009] [Indexed: 11/08/2022] Open
Abstract
Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion at the central asn-pro-ala (NPA) region does not suffice to exclude protons. Full proton exclusion is reached only in conjunction with the aromatic/arginine (ar/R) constriction at the pore mouth. In contrast, alkali cations are blocked by the NPA region but leak through the ar/R constriction. Expression of alkali-leaking AQPs depolarized membrane potentials and compromised cell survival. Our results hint at the alkali-tight but solute-unselective NPA region as a feature of primordial channels and the proton-tight and solute-selective ar/R constriction variants as later adaptations within the AQP superfamily.
Collapse
|
46
|
Benito B, Garciadeblás B, Pérez-Martín J, Rodríguez-Navarro A. Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis. EUKARYOTIC CELL 2009; 8:821-9. [PMID: 19363061 PMCID: PMC2698300 DOI: 10.1128/ec.00252-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 04/02/2009] [Indexed: 11/20/2022]
Abstract
Potassium and Na(+) effluxes across the plasma membrane are crucial processes for the ionic homeostasis of cells. In fungal cells, these effluxes are mediated by cation/H(+) antiporters and ENA ATPases. We have cloned and studied the functions of the two ENA ATPases of Ustilago maydis, U. maydis Ena1 (UmEna1) and UmEna2. UmEna1 is a typical K(+) or Na(+) efflux ATPase whose function is indispensable for growth at pH 9.0 and for even modest Na(+) or K(+) tolerances above pH 8.0. UmEna1 locates to the plasma membrane and has the characteristics of the low-Na(+)/K(+)-discrimination ENA ATPases. However, it still protects U. maydis cells in high-Na(+) media because Na(+) showed a low cytoplasmic toxicity. The UmEna2 ATPase is phylogenetically distant from UmEna1 and is located mainly at the endoplasmic reticulum. The function of UmEna2 is not clear, but we found that it shares several similarities with Neurospora crassa ENA2, which suggests that endomembrane ENA ATPases may exist in many fungi. The expression of ena1 and ena2 transcripts in U. maydis was enhanced at high pH and at high K(+) and Na(+) concentrations. We discuss that there are two modes of Na(+) tolerance in fungi: the high-Na(+)-content mode, involving ENA ATPases with low Na(+)/K(+) discrimination, as described here for U. maydis, and the low-Na(+)-content mode, involving Na(+)-specific ENA ATPases, as in Neurospora crassa.
Collapse
Affiliation(s)
- Begoña Benito
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
47
|
Sáez AG, Lozano E, Zaldívar-Riverón A. Evolutionary history of Na,K-ATPases and their osmoregulatory role. Genetica 2009; 136:479-90. [PMID: 19214758 DOI: 10.1007/s10709-009-9356-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 01/26/2009] [Indexed: 01/07/2023]
Abstract
The Na/K pump, or Na,K-ATPase, is a key enzyme to the homeostasis of osmotic pressure, cell volume, and the maintenance of electrochemical gradients. Its alpha subunit, which holds most of its functions, belongs to a large family of ATPases known as P-type, and to the subfamily IIC, which also includes H,K-ATPases. In this study, we attempt to describe the evolutionary history of IIC ATPases by doing phylogenetic analysis with most of the currently available protein sequences (over 200), and pay special attention to the relationship between their diversity and their osmoregulatory role. We include proteins derived from many completed or ongoing genome projects, many of whose IIC ATPases have not been phylogenetically analyzed previously. We show that the most likely origin of IIC proteins is prokaryotic, and that many of them are present in non-metazoans, such as algae, protozoans or fungi. We also suggest that the pre-metazoan ancestor, represented by the choanoflagellate Monosiga brevicollis, whose genome has been sequenced, presented at least two IIC-type proteins. One of these proteins would have given rise to most current animal IIC ATPases, whereas the other apparently evolved into a lineage that, so far, has only been found in nematodes. We also propose that early deuterostomes presented a single IIC gene, from which all the extant diversity of vertebrate IIC proteins originated by gene and genome duplications.
Collapse
Affiliation(s)
- Alberto G Sáez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| | | | | |
Collapse
|
48
|
Fulgenzi FR, Peralta ML, Mangano S, Danna CH, Vallejo AJ, Puigdomenech P, Santa-María GE. The ionic environment controls the contribution of the barley HvHAK1 transporter to potassium acquisition. PLANT PHYSIOLOGY 2008; 147:252-62. [PMID: 18359846 PMCID: PMC2330294 DOI: 10.1104/pp.107.114546] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 03/17/2008] [Indexed: 05/18/2023]
Abstract
The control of potassium (K+) acquisition is a critical requirement for plant growth. Although HAK1 (high affinity K+ 1) transporters provide a pathway for K+ acquisition, the effect exerted by the ionic environment on their contribution to K+ capture remains essentially unknown. Here, the influence of the ionic environment on the accumulation of transcripts coding for the barley (Hordeum vulgare) HvHAK1 transporter as well as on HvHAK1-mediated K+ capture has been examined. In situ mRNA hybridization studies show that HvHAK1 expression occurs in most root cells, being augmented at the outermost cell layers. Accumulation of HvHAK1 transcripts is enhanced by K+ deprivation and transiently by exposure to high salt concentrations. In addition, studies on the accumulation of transcripts coding for HvHAK1 and its close homolog HvHAK1b revealed the presence of two K+-responsive pathways, one repressed and the other insensitive to ammonium. Experiments with Arabidopsis (Arabidopsis thaliana) HvHAK1-expressing transgenic plants showed that K+ deprivation enhances the capture of K+ mediated by HvHAK1. A detailed study with HvHAK1-expressing Saccharomyces cerevisiae cells also revealed an increase of K+ uptake after K+ starvation. This increase did not occur in cells grown at high Na+ concentrations but took place for cells grown in the presence of NH4+. 3,3'-Dihexyloxacarbocyanine iodide accumulation measurements indicate that the increased capture of K+ in HvHAK1-expressing yeast cells cannot be explained only by changes in the membrane potential. It is shown that the yeast protein phosphatase PPZ1 as well as the halotolerance HAL4/HAL5 kinases negatively regulate the HvHAK1-mediated K+ transport.
Collapse
Affiliation(s)
- Fabiana R Fulgenzi
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Tecnología Industrial, San Martín 1650, Provincia de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
49
|
Garciadeblas B, Barrero-Gil J, Benito B, Rodríguez-Navarro A. Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1080-1093. [PMID: 17916113 DOI: 10.1111/j.1365-313x.2007.03297.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potassium uptake is one of the most basic processes of plant physiology. However, a comprehensive description is lacking. At a cellular level fungi have provided a helpful but imperfect plant model, which we aim to improve using Physcomitrella patens. Blast searches in expressed sequence tag databases demonstrated that Physcomitrella expresses the same families of K(+) and Na(+) transport systems as flowering plants. We cloned two inward rectifier channels, PpAKT1-2, and four HAK-type transporters (PpHAK1-4). In both types of transport system, phylogenetic analyses revealed that despite their high sequence conservation they could not be included in Arabidopsis or rice (Oryza sativa) clusters. Both inward rectifier channels and one HAK transporter (PpHAK1) were expressed in yeast. PpAKT1 and activated mutants of PpAKT2 and PpHAK1 showed clear functions that were similar to those of homologous systems of flowering plants. A pphak1 null mutant line of Physcomitrella failed to deplete K(+) below 10 mum. Moreover, in a non-K(+)-limiting medium in which wild-type plants grew only as protonema, pphak1-1 plants produced leafy gametophores and contained 60% more K(+). We found that Physcomitrella takes up K(+) through several systems. PpHAK1 is the dominant system in plants that underwent K(+) starvation for long periods but an as-yet unidentified system, which is non-selective for K(+), Rb(+), and Cs(+), dominates in many other conditions. Finally, we discuss that, similar to PpHAK1, one of the functions of AtHAK5 may be to control cellular K(+) content and that a non-selective as-yet unidentified system also exists in Arabidopsis.
Collapse
Affiliation(s)
- Blanca Garciadeblas
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
50
|
Kinclova-Zimmermannova O, Sychrová H. Plasma-membrane Cnh1 Na+/H+ antiporter regulates potassium homeostasis in Candida albicans. MICROBIOLOGY-SGM 2007; 153:2603-2612. [PMID: 17660424 DOI: 10.1099/mic.0.2007/008011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The physiological role of Candida albicans Cnh1, a member of the Na+/H+ antiporter family, was characterized. Though CaCnh1p had broad substrate specificity and mediated efflux of at least four alkali metal cations upon heterologous expression in Saccharomyces cerevisiae, its presence in C. albicans cells was important especially for potassium homeostasis. In C. albicans, CaCnh1p tagged with GFP was localized in the plasma membrane of cells growing as both yeasts and hyphae. Deletion of CNH1 alleles did not affect tolerance to NaCl, LiCl or CsCl, but resulted in increased sensitivity to high external concentrations of KCl and RbCl. The potassium and rubidium tolerance of a cnh1 homozygous mutant was fully restored by reintegration of CNH1 into the genome. The higher sensitivity of the cnh1/cnh1 mutant to external KCl was caused by a lower K+ efflux from these cells. Together, the functional characterization of the CaCnh1 antiporter in C. albicans revealed that this antiporter plays a significant role in C. albicans physiology. It ensures potassium and rubidium tolerance and participates in the regulation of intracellular potassium content of C. albicans cells.
Collapse
Affiliation(s)
- Olga Kinclova-Zimmermannova
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i., Videnska 1083, 142 20 Prague 4-Krc, Czech Republic
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology AS CR, v.v.i., Videnska 1083, 142 20 Prague 4-Krc, Czech Republic
| |
Collapse
|