1
|
d'Errico A, Vonk PJ, Wösten HAB, Lugones LG. Transposition of a non-autonomous element into the G β gene of Schizophyllum commune causes the streak mutation. Fungal Genet Biol 2025; 179:104007. [PMID: 40447071 DOI: 10.1016/j.fgb.2025.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/21/2025] [Accepted: 05/24/2025] [Indexed: 06/11/2025]
Abstract
Streak mutants of Schizophyllum commune are characterized by ropy, hyperbranching hyphae, suppressed aerial hyphae formation, and the production of pigments. Additionally, these mutants dikaryotize unilaterally, with the mutant fertilizing its compatible mating partner, but not accepting its nucleus. Here we show that a 512 bp non-autonomous transposable element had integrated in the Gβ protein of a streak mutant of S. commune. This element has the same 50 bp inverted repeat as an autonomous element, dubbed Bike transposon. Its transposase has homologues in various Agaricomycetes. Introducing the Gβ gene in the streak mutant restored the wild-type phenotype showing that the integration of the 512 bp element in the Gβ gene is responsible for the streak phenotype.
Collapse
Affiliation(s)
- Antonio d'Errico
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Xu Y, Tan J, Lu J, Zhang Y, Li X. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:262-277. [PMID: 37845842 PMCID: PMC10754012 DOI: 10.1111/pbi.14184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 10/18/2023]
Abstract
Sclerotinia sclerotiorum causes white mold (also called stem rot, Sclerotinia blight, etc.) in many economically important plants. It is a notorious soilborne fungal pathogen due to its wide host range and ability to survive in soil for long periods of time as sclerotia. Although host-induced gene silencing (HIGS) was recently demonstrated to be an effective method for controlling white mold, limited gene targets are available. Here, using a forward genetics approach, we identified a RAS-GTPase activating protein, SsGAP1, which plays essential roles in sclerotia formation, compound appressoria production and virulence. In parallel, as revealed by our knockout analysis, the SsGAP1 ortholog in Botrytis cinerea, BcGAP1, plays similar roles in fungal development and virulence. By knocking down SsRAS1 and SsRAS2, we also revealed that both SsRAS1 and SsRAS2 are required for vegetative growth, sclerotia development, compound appressoria production and virulence in S. sclerotiorum. Due to the major roles these RAS signalling components play in Sclerotiniaceae biology, they can be used as HIGS targets to control diseases caused by both S. sclerotiorum and B. cinerea. Indeed, when we introduced HIGS constructs targeting SsGAP1, SsRAS1 and SsRAS2 in Nicotiana benthamiana and Arabidopsis thaliana, we observed reduced virulence. Taken together, our forward genetics gene discovery pipeline in S. sclerotiorum is highly effective in identifying novel HIGS targets to control S. sclerotiorum and B. cinerea.
Collapse
Affiliation(s)
- Yan Xu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jinyi Tan
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Junxing Lu
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- College of Life ScienceChongqing Normal UniversityChongqingChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Xin Li
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
4
|
Murry R, Traxler L, Pötschner J, Krüger T, Kniemeyer O, Krause K, Kothe E. Inositol Signaling in the Basidiomycete Fungus Schizophyllum commune. J Fungi (Basel) 2021; 7:jof7060470. [PMID: 34200898 PMCID: PMC8230515 DOI: 10.3390/jof7060470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Intracellular signaling is conserved in eukaryotes to allow for response to extracellular signals and to regulate development and cellular functions. In fungi, inositol phosphate signaling has been shown to be involved in growth, sexual reproduction, and metabolic adaptation. However, reports on mushroom-forming fungi are lacking so far. In Schizophyllum commune, an inositol monophosphatase has been found up-regulated during sexual development. The enzyme is crucial for inositol cycling, where it catalyzes the last step of inositol phosphate metabolism, restoring the inositol pool from the monophosphorylated inositol monophosphate. We overexpressed the gene in this model basidiomycete and verified its involvement in cell wall integrity and intracellular trafficking. Strong phenotypes in mushroom formation and cell metabolism were evidenced by proteome analyses. In addition, altered inositol signaling was shown to be involved in tolerance towards cesium and zinc, and increased metal tolerance towards cadmium, associated with induced expression of kinases and repression of phosphatases within the inositol cycle. The presence of the heavy metals Sr, Cs, Cd, and Zn lowered intracellular calcium levels. We could develop a model integrating inositol signaling in the known signal transduction pathways governed by Ras, G-protein coupled receptors, and cAMP, and elucidate their different roles in development.
Collapse
Affiliation(s)
- Reyna Murry
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Neugasse 25, 07743 Jena, Germany; (R.M.); (L.T.); (J.P.); (K.K.)
| | - Lea Traxler
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Neugasse 25, 07743 Jena, Germany; (R.M.); (L.T.); (J.P.); (K.K.)
| | - Jessica Pötschner
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Neugasse 25, 07743 Jena, Germany; (R.M.); (L.T.); (J.P.); (K.K.)
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Molecular and Applied Microbiology, Adolf-Reichwein-Straße 23, 07745 Jena, Germany; (T.K.); (O.K.)
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Molecular and Applied Microbiology, Adolf-Reichwein-Straße 23, 07745 Jena, Germany; (T.K.); (O.K.)
| | - Katrin Krause
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Neugasse 25, 07743 Jena, Germany; (R.M.); (L.T.); (J.P.); (K.K.)
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Microbial Communication, Neugasse 25, 07743 Jena, Germany; (R.M.); (L.T.); (J.P.); (K.K.)
- Correspondence: ; Tel.: +49-(0)3641-949291
| |
Collapse
|
5
|
Wirth S, Freihorst D, Krause K, Kothe E. What Role Might Non-Mating Receptors Play in Schizophyllum commune? J Fungi (Basel) 2021; 7:jof7050399. [PMID: 34065484 PMCID: PMC8161036 DOI: 10.3390/jof7050399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/10/2023] Open
Abstract
The B mating-type locus of the tetrapolar basidiomycete Schizophyllum commune encodes pheromones and pheromone receptors in multiple allelic specificities. This work adds substantial new evidence into the organization of the B mating-type loci of distantly related S. commune strains showing a high level of synteny in gene order and neighboring genes. Four pheromone receptor-like genes were found in the genome of S. commune with brl1, brl2 and brl3 located at the B mating-type locus, whereas brl4 is located separately. Expression analysis of brl genes in different developmental stages indicates a function in filamentous growth and mating. Based on the extensive sequence analysis and functional characterization of brl-overexpression mutants, a function of Brl1 in mating is proposed, while Brl3, Brl4 and Brl2 (to a lower extent) have a role in vegetative growth, possible determination of growth direction. The brl3 and brl4 overexpression mutants had a dikaryon-like, irregular and feathery phenotype, and they avoided the formation of same-clone colonies on solid medium, which points towards enhanced detection of self-signals. These data are supported by localization of Brl fusion proteins in tips, at septa and in not-yet-fused clamps of a dikaryon, confirming their importance for growth and development in S. commune.
Collapse
|
6
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
7
|
Xie Y, Zhong Y, Chang J, Kwan HS. Chromosome-level de novo assembly of Coprinopsis cinerea A43mut B43mut pab1-1 #326 and genetic variant identification of mutants using Nanopore MinION sequencing. Fungal Genet Biol 2020; 146:103485. [PMID: 33253902 DOI: 10.1016/j.fgb.2020.103485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 11/26/2022]
Abstract
The homokaryotic Coprinopsis cinerea strain A43mut B43mut pab1-1 #326 is a widely used experimental model for developmental studies in mushroom-forming fungi. It can grow on defined artificial media and complete the whole lifecycle within two weeks. The mutations in mating type factors A and B result in the special feature of clamp formation and fruiting without mating. This feature allows investigations and manipulations with a homokaryotic genetic background. Current genome assembly of strain #326 was based on short-read sequencing data and was highly fragmented, leading to the bias in gene annotation and downstream analyses. Here, we report a chromosome-level genome assembly of strain #326. Oxford Nanopore Technology (ONT) MinION sequencing was used to get long reads. Illumina short reads was used to polish the sequences. A combined assembly yield 13 chromosomes and a mitochondrial genome as individual scaffolds. The assembly has 15,250 annotated genes with a high synteny with the C. cinerea strain Okayama-7 #130. This assembly has great improvement on contiguity and annotations. It is a suitable reference for further genomic studies, especially for the genetic, genomic and transcriptomic analyses in ONT long reads. Single nucleotide variants and structural variants in six mutagenized and cisplatin-screened mutants could be identified and validated. A 66 bp deletion in Ras GTPase-activating protein (RasGAP) was found in all mutants. To make a better use of ONT sequencing platform, we modified a high-molecular-weight genomic DNA isolation protocol based on magnetic beads for filamentous fungi. This study showed the use of MinION to construct a fungal reference genome and to perform downstream studies in an individual laboratory. An experimental workflow was proposed, from DNA isolation and whole genome sequencing, to genome assembly and variant calling. Our results provided solutions and parameters for fungal genomic analysis on MinION sequencing platform.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Yiyi Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Raudaskoski M. The central role of septa in the basidiomycete Schizophyllum commune hyphal morphogenesis. Fungal Biol 2019; 123:638-649. [DOI: 10.1016/j.funbio.2019.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/15/2022]
|
9
|
Jan Vonk P, Escobar N, Wösten HAB, Lugones LG, Ohm RA. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using pre-assembled Cas9 ribonucleoproteins. Sci Rep 2019; 9:7632. [PMID: 31113995 PMCID: PMC6529522 DOI: 10.1038/s41598-019-44133-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Efficient gene deletion methods are essential for the high-throughput study of gene function. Compared to most ascomycete model systems, gene deletion is more laborious in mushroom-forming basidiomycetes due to the relatively low incidence of homologous recombination (HR) and relatively high incidence of non-homologous end-joining (NHEJ). Here, we describe the use of pre-assembled Cas9-sgRNA ribonucleoproteins (RNPs) to efficiently delete the homeodomain transcription factor gene hom2 in the mushroom-forming basidiomycete Schizophyllum commune by replacing it with a selectable marker. All components (Cas9 protein, sgRNA, and repair template with selectable marker) were supplied to wild type protoplasts by PEG-mediated transformation, abolishing the need to optimize the expression of cas9 and sgRNAs. A Δku80 background further increased the efficiency of gene deletion. A repair template with homology arms of 250 bp was sufficient to efficiently induce homologous recombination. This is the first report of the use of pre-assembled Cas9 RNPs in a mushroom-forming basidiomycete and this approach may also improve the genetic accessibility of non-model species.
Collapse
Affiliation(s)
- Peter Jan Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Natalia Escobar
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Luis G Lugones
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Robin A Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Murry R, Kniemeyer O, Krause K, Saiardi A, Kothe E. Crosstalk between Ras and inositol phosphate signaling revealed by lithium action on inositol monophosphatase in Schizophyllum commune. Adv Biol Regul 2019; 72:78-88. [PMID: 30639095 PMCID: PMC6520614 DOI: 10.1016/j.jbior.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Mushroom forming basidiomycete Schizophyllum commune has been used as a tractable model organism to study fungal sexual development. Ras signaling activation via G-protein-coupled receptors (GPCRs) has been postulated to play a significant role in the mating and development of S. commune. In this study, a crosstalk between Ras signaling and inositol phosphate signaling by inositol monophosphatase (IMPase) is revealed. Constitutively active Ras1 leads to the repression of IMPase transcription and lithium action on IMPase activity is compensated by the induction of IMPase at transcriptome level. Astonishingly, in S. commune lithium induces a considerable shift to inositol phosphate metabolism leading to a massive increase in the level of higher phosphorylated inositol species up to the inositol pyrophosphates. The lithium induced metabolic changes are not observable in a constitutively active Ras1 mutant. In addition to that, proteome profile helps us to elucidate an overview of lithium action to the broad aspect of fungal metabolism and cellular signaling. Taken together, these findings imply a crosstalk between Ras and inositol phosphate signaling.
Collapse
Affiliation(s)
- Reyna Murry
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Katrin Krause
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany
| | - Adolfo Saiardi
- Medical Research Council (MRC) Laboratory for Molecular Cell Biology, Department of Biochemistry and Molecular Biology, University College London, London, UK.
| | - Erika Kothe
- Friedrich Schiller University Jena, Institute of Microbiology, Jena, Germany.
| |
Collapse
|
11
|
Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae. Genetics 2018; 211:151-167. [PMID: 30446520 PMCID: PMC6325701 DOI: 10.1534/genetics.118.301490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified > 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection-related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants. SMO1 is necessary for the organization of microtubules and for septin-dependent remodeling of the F-actin cytoskeleton at the appressorium pore. Smo1 physically interacts with components of the Ras2 signaling complex, and a range of other signaling and cytoskeletal components, including the four core septins. SMO1 is therefore necessary for the regulation of RAS activation required for conidial morphogenesis and septin-mediated plant infection.
Collapse
|
12
|
Wirth S, Kunert M, Ahrens LM, Krause K, Broska S, Paetz C, Kniemeyer O, Jung EM, Boland W, Kothe E. The regulator of G-protein signalling Thn1 links pheromone response to volatile production in Schizophyllum commune. Environ Microbiol 2018; 20:3684-3699. [PMID: 30062773 DOI: 10.1111/1462-2920.14369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 01/07/2023]
Abstract
The regulator of G-protein signalling, Thn1, is involved in sexual development through pheromone signalling in the mushroom forming basidiomycete Schizophyllum commune affecting hyphal morphology and mating interactions. Thn1 plays a key role in coordinating sesquiterpene production, pheromone response and sexual development. The gene thn1 is transcriptionally regulated in response to mating with a role in clamp cell development and hydrophobin gene transcription. Further, it negatively regulates cAMP signalling and secondary metabolism. Disruption of thn1 affects dikaryotization by reducing clamp fusion and development with predominant non-fused pseudoclamps. Enhanced protein kinase A (PKA) activities in Δthn1 strains indicate that Thn1 regulates pheromone signalling by de-activating G-protein α subunits, which control cAMP-dependent PKA. The repressed formation of aerial hyphae could be linked to a reduced metabolic activity and to a transcriptional down-regulation of hyd6 and sc3 hydrophobin genes. Thn1 was also shown to be necessary for the biosynthesis of sesquiterpenes and an altered spectrum of sesquiterpenes in Δthn1 is linked to transcriptional up-regulation of biosynthesis genes. Proteome analysis indicated changes in cytoskeletal structure affecting actin localization, linking the major regulator Thn1 to growth and development of S. commune. The results support a role for Thn1 in G-protein signalling connecting development and secondary metabolism.
Collapse
Affiliation(s)
- Sophia Wirth
- Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Neugasse 25, 07743, Jena, Germany
| | - Maritta Kunert
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Lisa-Marija Ahrens
- Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Neugasse 25, 07743, Jena, Germany
| | - Selina Broska
- Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Neugasse 25, 07743, Jena, Germany
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Olaf Kniemeyer
- Leibnitz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Molecular and Applied Microbiology, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Elke-Martina Jung
- Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Neugasse 25, 07743, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Erika Kothe
- Friedrich Schiller University Jena, Institute of Microbiology, Microbial Communication, Neugasse 25, 07743, Jena, Germany
| |
Collapse
|
13
|
Jung EM, Kothe E, Raudaskoski M. The making of a mushroom: Mitosis, nuclear migration and the actin network. Fungal Genet Biol 2018; 111:85-91. [DOI: 10.1016/j.fgb.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
|
14
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
15
|
Polaino S, Villalobos-Escobedo JM, Shakya VPS, Miralles-Durán A, Chaudhary S, Sanz C, Shahriari M, Luque EM, Eslava AP, Corrochano LM, Herrera-Estrella A, Idnurm A. A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Sci Rep 2017; 7:44790. [PMID: 28322269 PMCID: PMC5359613 DOI: 10.1038/srep44790] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 02/14/2017] [Indexed: 01/09/2023] Open
Abstract
Light is an environmental signal perceived by most eukaryotic organisms and that can have major impacts on their growth and development. The MadC protein in the fungus Phycomyces blakesleeanus (Mucoromycotina) has been postulated to form part of the photosensory input for phototropism of the fruiting body sporangiophores, but the madC gene has remained unidentified since the 1960s when madC mutants were first isolated. In this study the madC gene was identified by positional cloning. All madC mutant strains contain loss-of-function point mutations within a gene predicted to encode a GTPase activating protein (GAP) for Ras. The madC gene complements the Saccharomyces cerevisiae Ras-GAP ira1 mutant and the encoded MadC protein interacts with P. blakesleeanus Ras homologs in yeast two-hybrid assays, indicating that MadC is a regulator of Ras signaling. Deletion of the homolog in the filamentous ascomycete Neurospora crassa affects the circadian clock output, yielding a pattern of asexual conidiation similar to a ras-1 mutant that is used in circadian studies in N. crassa. Thus, MadC is unlikely to be a photosensor, yet is a fundamental link in the photoresponses from blue light perceived by the conserved White Collar complex with Ras signaling in two distantly-related filamentous fungal species.
Collapse
Affiliation(s)
- Silvia Polaino
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | - José M Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Irapuato, Guanajuato, Mexico
| | - Viplendra P S Shakya
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | | | - Suman Chaudhary
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA
| | - Catalina Sanz
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Mahdi Shahriari
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Eva M Luque
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Arturo P Eslava
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Irapuato, Guanajuato, Mexico
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, USA.,School of BioSciences, University of Melbourne, Australia
| |
Collapse
|
16
|
|
17
|
Fortwendel JR. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks. FUNGAL BIOL REV 2015; 29:54-62. [PMID: 26257821 DOI: 10.1016/j.fbr.2015.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
18
|
Kües U, Navarro-González M. How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Menezes RC, Kai M, Krause K, Matthäus C, Svatoš A, Popp J, Kothe E. Monitoring metabolites from Schizophyllum commune interacting with Hypholoma fasciculare combining LESA-HR mass spectrometry and Raman microscopy. Anal Bioanal Chem 2014; 407:2273-82. [PMID: 25542572 DOI: 10.1007/s00216-014-8383-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
Abstract
Microbial competition for territory and resources is inevitable in habitats with overlap between niches of different species or strains. In fungi, competition is brought about by antagonistic mycelial interactions which alter mycelial morphology, metabolic processes, secondary metabolite release, and extracellular enzyme patterns. Until now, we were not able study in vivo chemical interactions of different colonies growing on the same plate. In this report, we developed a fast and least invasive approach to identify, quantify, and visualize co culture-induced metabolites and their location of release within Schizophyllum commune. The pigments indigo, indirubin, and isatin were used as examples to show secondary metabolite production in the interaction zone with Hypholoma fasciculare. Using a combinatory approach of Raman spectroscopy imaging, liquid extraction surface analysis (LESA), and high-resolution mass spectrometry, we identified, quantified, and visualized the presence of indigo and indirubin in the interaction zone. This approach allows the investigation of metabolite patterns between wood degrading species in competition to gain insight in community interactions, but could also be applied to other microorganisms. This method advances analysis of living, still developing colonies and are in part not destructive as Raman spectroscopy imaging is implemented.
Collapse
Affiliation(s)
- Riya C Menezes
- Department of Microbial Communication, Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhou X, Zhao X, Xue C, Dai Y, Xu JR. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:996-1004. [PMID: 24835254 DOI: 10.1094/mpmi-02-14-0052-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnaporthe oryzae forms a highly specialized infection structure called an appressorium for plant penetration. In M. oryzae and many other plant-pathogenic fungi, surface attachment and surface recognition are two essential requirements for appressorium formation. Development of appressoria in the air has not been reported. In this study, we found that expression of a dominant active MoRAS2(G18V) allele in M. oryzae resulted in the formation of morphologically abnormal appressoria on nonconducive surfaces, in liquid suspensions, and on aerial hyphae without attachment to hard surfaces. Both the Pmk1 mitogen-activated protein kinase cascade and cAMP signaling pathways that regulate surface recognition and appressorium morphogenesis in M. oryzae were overactivated in the MoRAS2(G18V) transformant. In mutants deleted of PMK1 or CPKA, expression of MoRAS2(G18V) had no significant effects on appressorium morphogenesis. Furthermore, expression of dominant MoRAS2 in Colletotrichum graminicola and C. gloeosporioides also caused the formation of appressorium-like structures in aerial hyphae. Overall, our data indicate that MoRas2 functions upstream from both the cAMP-PKA and Pmk1 pathways and overactive Ras signaling leads to improper activation of these two pathways and appressorium formation without surface attachment in appressorium-forming pathogens.
Collapse
|
22
|
Knabe N, Jung EM, Freihorst D, Hennicke F, Horton JS, Kothe E. A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. EUKARYOTIC CELL 2013; 12:941-52. [PMID: 23606288 PMCID: PMC3675993 DOI: 10.1128/ec.00355-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
Fungi have been used as model systems to define general processes in eukaryotes, for example, the one gene-one enzyme hypothesis, as well as to study polar growth or pathogenesis. Here, we show a central role for the regulator protein Ras in a mushroom-forming, filamentous basidiomycete linking growth, pheromone signaling, sexual development, and meiosis to different signal transduction pathways. ras1 and Ras-specific gap1 mutants were generated and used to modify the intracellular activation state of the Ras module. Transformants containing constitutive ras1 alleles (ras1(G12V) and ras1(Q61L)), as well as their compatible mating interactions, did show strong phenotypes for growth (associated with Cdc42 signaling) and mating (associated with mitogen-activated protein kinase signaling). Normal fruiting bodies with abnormal spores exhibiting a reduced germination rate were produced by outcrossing of these mutant strains. Homozygous Δgap1 primordia, expected to experience increased Ras signaling, showed overlapping phenotypes with a block in basidium development and meiosis. Investigation of cyclic AMP (cAMP)-dependent protein kinase A indicated that constitutively active ras1, as well as Δgap1 mutant strains, exhibit a strong increase in Tpk activity. Ras1-dependent, cAMP-mediated signal transduction is, in addition to the known signaling pathways, involved in fruiting body formation in Schizophyllum commune. To integrate these analyses of Ras signaling, microarray studies were performed. Mutant strains containing constitutively active Ras1, deletion of RasGap1, or constitutively active Cdc42 were characterized and compared. At the transcriptome level, specific regulation highlighting the phenotypic differences of the mutants is clearly visible.
Collapse
Affiliation(s)
- Nicole Knabe
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Elke-Martina Jung
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Daniela Freihorst
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Florian Hennicke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Jena, Germany
| | - J. Stephen Horton
- Department of Biological Sciences, Science and Engineering Center, Union College, Schenectady, New York, USA
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
23
|
An MSH4 homolog, stpp1, from Pleurotus pulmonarius is a "silver bullet" for resolving problems caused by spores in cultivated mushrooms. Appl Environ Microbiol 2013; 79:4520-7. [PMID: 23666334 DOI: 10.1128/aem.00561-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enormous number of spores produced by fruiting bodies during cultivation of mushrooms can lead to allergic reactions of workers, reduction of commercial value, spread of mushroom disease, pollution of facilities, and depletion of genetic diversity in natural populations. A cultivar harboring a sporulation-deficient (sporeless) mutation would be very useful for preventing these problems, but sporeless commercial cultivars are very limited in usefulness because sporeless traits are often linked with traits that are unfavorable for commercial cultivation. Thus, identifying a causal gene of a sporeless phenotype not linked to the adverse traits in breeding and cultivation is crucial for the establishment of sporeless breeding using a strategy employing targeting induced local lesions in genomes (TILLING) in cultivated mushrooms. We used a Pleurotus pulmonarius (Fr.) Quél. sporeless strain to identify and characterize the single recessive gene controlling the mutation. The 3,853-bp stpp1 gene encodes a protein of 854 amino acids and belongs to the MutS homolog (MSH) family associated with mismatch repair in DNA synthesis or recombination in meiosis. Gene expression analysis of the fruiting body showed that this gene is strongly expressed in the gills. Phenotypic analysis of disruptants formed by gene targeting suggested a reproducible sporeless phenotype. Mutants deficient in a functional copy of this gene have no unfavorable traits for sporeless cultivar breeding, so this gene will be an extremely useful target for efficient and versatile sporeless breeding in P. pulmonarius and various other cultivated mushrooms.
Collapse
|
24
|
Raudaskoski M, Kothe E, Fowler TJ, Jung EM, Horton JS. Ras and Rho small G proteins: insights from the Schizophyllum commune genome sequence and comparisons to other fungi. Biotechnol Genet Eng Rev 2012; 28:61-100. [PMID: 22616482 DOI: 10.5661/bger-28-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Unlike in animal cells and yeasts, the Ras and Rho small G proteins and their regulators have not received extensive research attention in the case of the filamentous fungi. In an effort to begin to rectify this deficiency, the genome sequence of the basidiomycete mushroom Schizophyllum commune was searched for all known components of the Ras and Rho signalling pathways. The results of this study should provide an impetus for further detailed investigations into their role in polarized hyphal growth, sexual reproduction and fruiting body development. These processes have long been the targets for genetic and cell biological research in this fungus.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biology, University of Turku, Biocity A, Tykistökatu 6A, FI-20520 Turku, Finland
| | | | | | | | | |
Collapse
|
25
|
Transcriptome and functional analysis of mating in the basidiomycete Schizophyllum commune. EUKARYOTIC CELL 2011; 11:571-89. [PMID: 22210832 DOI: 10.1128/ec.05214-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we undertook a functional characterization and transcriptome analysis that enabled a comprehensive study of the mating type loci of the mushroom Schizophyllum commune. Induced expression of both the bar2 receptor and the bap2(2) pheromone gene within 6 to 12 h after mates' contact was demonstrated by quantitative real-time PCR. Similar temporal expression patterns were confirmed for the allelic bbr1 receptor and bbp1 pheromone-encoding genes by Northern hybridization. Interestingly, the fusion of clamp connections to the subterminal cell was delayed in mating interactions in which one of the compatible partners expressed the bar2 receptor with a truncated C terminus. This developmental delay allowed the visualization of a green fluorescent protein (Gfp)-labeled truncated receptor at the cell periphery, consistent with a localization in the plasma membrane of unfused pseudoclamps. This finding does not support hypotheses envisioning a receptor localization to the nuclear membrane facilitating recognition between the two different nuclei present in each dikaryotic cell. Rather, Gfp fluorescence observed in such pseudoclamps indicated a role of receptor-pheromone interaction in clamp fusion. Transcriptome changes associated with mating interactions were analyzed in order to identify a role for pheromone-receptor interactions. We detected a total of 89 genes that were transcriptionally regulated in a mating type locus A-dependent manner, employing a cutoff of 5-fold changes in transcript abundance. Upregulation in cell cycle-related genes and downregulation of genes involved in metabolism were seen with this set of experiments. In contrast, mating type locus B-dependent transcriptome changes were observed in 208 genes, with a specific impact on genes related to cell wall and membrane metabolism, stress response, and the redox status of the cell.
Collapse
|
26
|
van der Nest MA, Steenkamp ET, Slippers B, Mongae A, van Zyl K, Stenlid J, Wingfield MJ, Wingfield BD. Gene expression associated with vegetative incompatibility in Amylostereum areolatum. Fungal Genet Biol 2011; 48:1034-43. [PMID: 21889597 DOI: 10.1016/j.fgb.2011.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/23/2022]
Abstract
In filamentous fungi, vegetative compatibility among individuals of the same species is determined by the genes encoded at the heterokaryon incompatibility (het) loci. The hyphae of genetically similar individuals that share the same allelic specificities at their het loci are able to fuse and intermingle, while different allelic specificities at the het loci result in cell death of the interacting hyphae. In this study, suppression subtractive hybridization (SSH) followed by pyrosequencing and quantitative reverse transcription PCR were used to identify genes that are selectively expressed when vegetatively incompatible individuals of Amylostereum areolatum interact. The SSH library contained genes associated with various cellular processes, including cell-cell adhesion, stress and defence responses, as well as cell death. Some of the transcripts encoded proteins that were previously implicated in the stress and defence responses associated with vegetative incompatibility. Other transcripts encoded proteins known to be associated with programmed cell death, but have not previously been linked with vegetative incompatibility. Results of this study have considerably increased our knowledge of the processes underlying vegetative incompatibility in Basidiomycetes in general and A. areolatum in particular.
Collapse
Affiliation(s)
- M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ohm RA, de Jong JF, de Bekker C, Wösten HAB, Lugones LG. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol Microbiol 2011; 81:1433-45. [PMID: 21815946 DOI: 10.1111/j.1365-2958.2011.07776.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mushrooms represent the most conspicuous structures of fungi. Their development is being studied in the model basidiomycete Schizophyllum commune. The genome of S. commune contains 472 genes encoding predicted transcription factors. Of these, fst3 and fst4 were shown to inhibit and induce mushroom development respectively. Here, we inactivated five additional transcription factor genes. This resulted in absence of mushroom development (in the case of deletion of bri1 and hom2), in arrested development at the stage of aggregate formation (in the case of c2h2) and in the formation of more but smaller mushrooms (in the case of hom1 and gat1). Moreover, strains in which hom2 and bri1 were inactivated formed symmetrical colonies instead of irregular colonies like the wild type. A genome-wide expression analysis identified several gene classes that were differentially expressed in the strains in which either hom2 or fst4 was inactivated. Among the genes that were downregulated in these strains were c2h2 and hom1. Based on these results, a regulatory model of mushroom development in S. commune is proposed. This model most likely also applies to other mushroom-forming fungi and will serve as a basis to understand mushroom formation in nature and to enable and improve commercial mushroom production.
Collapse
Affiliation(s)
- Robin A Ohm
- Department of Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
28
|
De Jong JF, Ohm RA, De Bekker C, Wösten HA, Lugones LG. Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 2010; 310:91-5. [DOI: 10.1111/j.1574-6968.2010.02052.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Ohm RA, de Jong JF, Berends E, Wang F, Wösten HAB, Lugones LG. An efficient gene deletion procedure for the mushroom-forming basidiomycete Schizophyllum commune. World J Microbiol Biotechnol 2010; 26:1919-1923. [PMID: 20930926 PMCID: PMC2940052 DOI: 10.1007/s11274-010-0356-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 02/13/2010] [Indexed: 11/26/2022]
Abstract
Gene deletion in Schizophyllum commune is hampered by a low incidence of homologous integration. As a consequence, extensive screening is required to identify a transformant with the desired genotype. To alleviate this and to facilitate the assembly of deletion plasmids, vector pDelcas was constructed. This construct has a set of restriction sites, which allows for directional cloning of the flanking sequences at both sides of a nourseothricin resistance cassette. Moreover, it contains a phleomycin resistance cassette elsewhere in the plasmid, which is used to screen for transformants with an ectopic integration of the pDelcas derivative. The use of pDelcas derivatives in combination with an improved PCR screening protocol permitted the efficient identification of S. commune deletion strains. This procedure may also function in other basidiomycetes.
Collapse
Affiliation(s)
- Robin A. Ohm
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jan F. de Jong
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Elsa Berends
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fengfeng Wang
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Han A. B. Wösten
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Luis G. Lugones
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
30
|
Abstract
The genome sequences of the basidiomycete Agaricomycetes species Coprinopsis cinerea, Laccaria bicolor, Schizophyllum commune, Phanerochaete chrysosporium, and Postia placenta, as well as of Cryptococcus neoformans and Ustilago maydis, are now publicly available. Out of these fungi, C. cinerea, S. commune, and U. maydis, together with the budding yeast Saccharomyces cerevisiae, have been investigated for years genetically and molecularly for signaling in sexual reproduction. The comparison of the structure and organization of mating type genes in fungal genomes reveals an amazing conservation of genes regulating the sexual reproduction throughout the fungal kingdom. In agaricomycetes, two mating type loci, A, coding for homeodomain type transcription factors, and B, encoding a pheromone/receptor system, regulate the four typical mating interactions of tetrapolar species. Evidence for both A and B mating type genes can also be identified in basidiomycetes with bipolar systems, where only two mating interactions are seen. In some of these fungi, the B locus has lost its self/nonself discrimination ability and thus its specificity while retaining the other regulatory functions in development. In silico analyses now also permit the identification of putative components of the pheromone-dependent signaling pathways. Induction of these signaling cascades leads to development of dikaryotic mycelia, fruiting body formation, and meiotic spore production. In pheromone-dependent signaling, the role of heterotrimeric G proteins, components of a mitogen-activated protein kinase (MAPK) cascade, and cyclic AMP-dependent pathways can now be defined. Additionally, the pheromone-dependent signaling through monomeric, small GTPases potentially involved in creating the polarized cytoskeleton for reciprocal nuclear exchange and migration during mating is predicted.
Collapse
|
31
|
Walter A, Erdmann S, Bocklitz T, Jung EM, Vogler N, Akimov D, Dietzek B, Rösch P, Kothe E, Popp J. Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst 2010; 135:908-17. [DOI: 10.1039/b921101b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Kothe E. Sexual attraction: on the role of fungal pheromone/receptor systems (A review). Acta Microbiol Immunol Hung 2008; 55:125-43. [PMID: 18595318 DOI: 10.1556/amicr.55.2008.2.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pheromones have been detected in all fungal phylogenetic lineages. This came as a surprise, as the general role of pheromones in mate attraction was not envisioned for some fungi. Pheromones and pheromone receptor genes have been identified, however, in members of all true fungal lineages, and even for mycelia forming organisms of plant and amoeba lineages, like oomycetes and myxomycetes. The mating systems and genes governing the mating type are different in fungi, ranging from bipolar with two opposite mating types to tetrapolar mating systems (with four possible mating outcomes, only one of which leads to fertile sexual development) in homobasidioymcetes with more than 23,000 mating types occurring in nature. Pheromones and receptors specifically recognizing these pheromones have evolved with slightly different functions in these different systems. This review is dedicated to follow the evolution of pheromone/receptor systems from simple, biallelic bipolar systems to multiallelic, tetrapolar versions and to explain the slightly different functions the pheromone recognition and subsequent signal transduction cascades within the fungal kingdom. The biotechnological implications of a detailed understanding of mating systems for biological control and plant protection, in medicine, and in mushroom breeding are discussed.
Collapse
Affiliation(s)
- Erika Kothe
- Institute of Microbiology, Friedrich-Schiller-Universität, Neugasse 25, D-07743 Jena, Germany.
| |
Collapse
|
33
|
Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. EUKARYOTIC CELL 2007; 7:141-53. [PMID: 18039943 DOI: 10.1128/ec.00346-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aspergillus nidulans gapA1, a mutation leading to compact, fluffy colonies and delayed polarity establishment, maps to a gene encoding a Ras GTPase-activating protein. Domain organization and phylogenetic analyses strongly indicate that GapA regulates one or more "true" Ras proteins. A gapADelta strain is viable. gapA colonies are more compact than gapA1 colonies and show reduced conidiation. gapADelta strains have abnormal conidiophores, characterized by the absence of one of the two layers of sterigmata seen in the wild type. gapA transcript levels are very low in conidia but increase during germination and reach their maximum at a time coincident with germ tube emergence. Elevated levels persist in hyphae. In germinating conidiospores, gapADelta disrupts the normal coupling of isotropic growth, polarity establishment, and mitosis, resulting in a highly heterogeneous cell population, including malformed germlings and a class of giant cells with no germ tubes and a multitude of nuclei. Unlike wild-type conidia, gapADelta conidia germinate without a carbon source. Giant multinucleated spores and carbon source-independent germination have been reported in strains carrying a rasA dominant active allele, indicating that GapA downregulates RasA. gapADelta cells show a polarity maintenance defect characterized by apical swelling and subapical branching. The strongly polarized wild-type F-actin distribution is lost in gapADelta cells. As GapA-green fluorescent protein shows cortical localization with strong predominance at the hyphal tips, we propose that GapA-mediated downregulation of Ras signaling at the plasma membrane of these tips is involved in the polarization of the actin cytoskeleton that is required for hyphal growth and, possibly, for asexual morphogenesis.
Collapse
|
34
|
Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD. RAS2 regulates growth and pathogenesis in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:627-36. [PMID: 17555271 DOI: 10.1094/mpmi-20-6-0627] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fusarium graminearum is a ubiquitous pathogen of cereal crops, including wheat, barley, and maize. Diseases caused by F. graminearum are of particular concern because harvested grains frequently are contaminated with harmful mycotoxins such as deoxynivalenol (DON). In this study, we explored the role of Ras GTPases in pathogenesis. The genome of F. graminearum contains two putative Ras GTPase-encoding genes. The two genes (RAS1 and RAS2) showed different patterns of expression under different conditions of nutrient availability and in various mutant backgrounds. RAS2 was dispensable for survival but, when disrupted, caused a variety of morphological defects, including slower growth on solid media, delayed spore germination, and significant reductions in virulence on wheat heads and maize silks. Intracellular cAMP levels were not affected by deletion of RAS2 and exogenous treatment of the ras2 mutant with cAMP did not affect phenotypic abnormalities, thus indicating that RAS2 plays a minor or no role in cAMP signaling. However, phosphorylation of the mitogen-activated protein (MAP) kinase Gpmk1 and expression of a secreted lipase (FGL1) required for infection were reduced significantly in the ras2 mutant. Based on these observations, we hypothesize that RAS2 regulates growth and virulence in F. graminearum by regulating the Gpmk1 MAP kinase pathway.
Collapse
Affiliation(s)
- B H Bluhm
- Crop Production & Pest Control Research Unit, United States Department of Agriculture-Agricultural Research Service, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|