1
|
Sutthaphirom C, Chaiyen P. Use of xylose reductase as a cofactor enhancing system for in vivo biocatalysis. Methods Enzymol 2025; 714:379-391. [PMID: 40288847 DOI: 10.1016/bs.mie.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Cofactor imbalance is a common challenge in whole-cell bioconversion and thus limits the efficiency of biocatalysts. Various approaches have been employed to enhance cofactor availability, including specific engineering of pathways to increase intracellular levels of NAD(P)H, FMN, FAD, ATP and CoA. Recently, we have demonstrated that addition of xylose reductase (XR) in and supplying lactose to metabolically engineered cells can enhance levels of their sugar phosphates, leading to greater synthesis of NAD(P)H, FMN, FAD, ATP, and CoA in these cells, and thus a higher yield of bioconversion products. We propose that the XR/lactose system can be used as a generic tool to enhance precursor pools for cofactor synthesis for various in vivo biocatalysts. Here, we provide a protocol for the use of the XR/lactose system in fatty alcohol biosynthesis by Escherichia coli BL21(DE3). Step-by-step protocols and remarks should allow readers to adapt the use of XR/lactose for their engineered cells which should alleviate the problem of cofactor supply in whole-cell biocatalysis.
Collapse
Affiliation(s)
- Chalermroj Sutthaphirom
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
2
|
Ardila MS, Aliyu H, de Maayer P, Neumann A. Batch and semi-continuous fermentation with Parageobacillus thermoglucosidasius DSM 6285 for H 2 production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:3. [PMID: 39789593 PMCID: PMC11715973 DOI: 10.1186/s13068-024-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Parageobacillus thermoglucosidasius is a facultatively anaerobic thermophile that is able to produce hydrogen (H2) gas from the oxidation of carbon monoxide through the water-gas shift reaction when grown under anaerobic conditions. The water-gas shift (WGS) reaction is driven by a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Previous experiments exploring hydrogenogenesis with P. thermoglucosidasius have relied on batch fermentations comprising defined media compositions and gas atmospheres. This study evaluated the effects of a semi-continuous feeding strategy on hydrogenogenesis. RESULTS A batch and two semi-continuous fermentations, with feeding of the latter fresh media (with glucose) in either 24 h or 48 h intervals were undertaken and H2 production, carbon monoxide dehydrogenase (CODH) activity, and metabolite consumption/production were monitored throughout. Maximum H2 production rates (HPR) of 0.14 and 0.3 mmol min-1, were observed for the batch and the semi-continuous fermentations, respectively. Daily feeding attained stable H2 production for 7 days, while feeding every 48 h resulted in high variations in H2 production. CODH enzyme activity correlated with H2 production, with a maximum of 1651 U mL-1 on day 14 with the 48 h feeding strategy, while CODH activity remained relatively constant throughout the fermentation process with the 24 h feeding strategy. CONCLUSIONS The results emphasize the significance of a semi-continuous glucose-containing feed for attaining stable hydrogen production with P. thermoglucosidasius. The semi-continuous fermentations achieved a 46% higher HPR than the batch fermentation. The higher HPRs achieved with both semi-continuous fermentations imply that this approach could enhance the biohydrogen platform. However, optimizing the feeding interval is pivotal to ensuring stable hydrogen production.
Collapse
Affiliation(s)
- Magda S Ardila
- Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Habibu Aliyu
- Section V: Biotechnology and Microbial Genetics, Institute for Biological Interfaces, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Pieter de Maayer
- School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, 2000, South Africa
| | - Anke Neumann
- Section II: Electrobiotechnology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Smirnova G, Tyulenev A, Sutormina L, Kalashnikova T, Muzyka N, Ushakov V, Samoilova Z, Oktyabrsky O. Regulation of Cysteine Homeostasis and Its Effect on Escherichia coli Sensitivity to Ciprofloxacin in LB Medium. Int J Mol Sci 2024; 25:4424. [PMID: 38674008 PMCID: PMC11050555 DOI: 10.3390/ijms25084424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.
Collapse
Affiliation(s)
- Galina Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Goleva 13, 614081 Perm, Russia; (A.T.); (L.S.); (T.K.); (N.M.); (V.U.); (Z.S.); (O.O.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Urs K, Zimmern PE, Reitzer L. Abundant urinary amino acids activate glutamine synthetase-encoding glnA by two different mechanisms in Escherichia coli. J Bacteriol 2024; 206:e0037623. [PMID: 38358279 PMCID: PMC10955845 DOI: 10.1128/jb.00376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Growth of uropathogenic Escherichia coli in the bladder induces transcription of glnA which codes for the ammonia-assimilating glutamine synthetase (GS) despite the normally suppressive high ammonia concentration. We previously showed that the major urinary component, urea, induces transcription from the Crp-dependent glnAp1 promoter, but the urea-induced transcript is not translated. Our purpose here was to determine whether the most abundant urinary amino acids, which are known to inhibit GS activity in vitro, also affect glnA transcription in vivo. We found that the abundant amino acids impaired growth, which glutamine and glutamate reversed; this implies inhibition of GS activity. In strains with deletions of crp and glnG that force transcription from the glnAp2 and glnAp1 promoters, respectively, we examined growth and glnA transcription with a glnA-gfp transcriptional fusion and quantitative reverse transcription PCR with primers that can distinguish transcription from the two promoters. The abundant urinary amino acids stimulated transcription from the glnAp2 promoter in the absence of urea but from the glnAp1 promoter in the presence of urea. However, transcription from glnAp1 did not produce a translatable mRNA or GS as assessed by a glnA-gfp translational fusion, enzymatic assay of GS, and Western blot to detect GS antigen in urea-containing media. We discuss these results within the context of the extremely rapid growth of uropathogenic E. coli in urine, the different factors that control the two glnA promoters and possible mechanisms that either overcome or bypass the urea-imposed block of glutamine synthesis during bacterial growth in urine.IMPORTANCEKnowledge of the regulatory mechanisms for genes expressed at the site of infection provides insight into the virulence of pathogenic bacteria. During urinary tract infections-most often caused by Escherichia coli-growth in urine induces the glnA gene which codes for glutamine synthetase. The most abundant urinary amino acids amplified the effect of urea which resulted in hypertranscription from the glnAp1 promoter and, unexpectedly, an untranslated transcript. E. coli must overcome this block in glutamine synthesis during growth in urine, and the mechanism of glutamine acquisition or synthesis may suggest a possible therapy.
Collapse
Affiliation(s)
- Karthik Urs
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Larry Reitzer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
6
|
Nam SH, Ye DY, Hwang HG, Jung GY. Convergent Synthesis of Two Heterogeneous Fluxes from Glucose and Acetate for High-Yield Citramalate Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5797-5804. [PMID: 38465388 DOI: 10.1021/acs.jafc.3c09466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biological production of citramalate has garnered attention due to its wide application for food additives and pharmaceuticals, although improvement of yield is known to be challenging. When glucose is used as the sole carbon source, carbon loss through decarboxylation steps for providing acetyl-CoA from pyruvate is inevitable. To avoid this, we engineered a strain to co-utilize glucose and cost-effective acetate while preventing carbon loss for enhancing citramalate production. The production pathway diverged to independently supply the precursors required for the synthesis of citramalate from glucose and acetate, respectively. Moreover, the phosphotransferase system was inactivated and the acetate assimilation pathway and the substrate ratio were optimized to enable the simultaneous and efficient utilization of both carbon sources. This yielded results (5.0 g/L, 0.87 mol/mol) surpassing the yield and titer of the control strain utilizing glucose as the sole carbon source in flask cultures, demonstrating an economically efficient strain redesign strategy for synthesizing various products.
Collapse
Affiliation(s)
- Sung Hyun Nam
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
7
|
Doranga S, Conway T. Nitrogen assimilation by E. coli in the mammalian intestine. mBio 2024; 15:e0002524. [PMID: 38380942 PMCID: PMC10936423 DOI: 10.1128/mbio.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Nitrogen is an essential element for all living organisms, including Escherichia coli. Potential nitrogen sources are abundant in the intestine, but knowledge of those used specifically by E. coli to colonize remains limited. Here, we sought to determine the specific nitrogen sources used by E. coli to colonize the streptomycin-treated mouse intestine. We began by investigating whether nitrogen is limiting in the intestine. The NtrBC two-component system upregulates approximately 100 genes in response to nitrogen limitation. We showed that NtrBC is crucial for E. coli colonization, although most genes of the NtrBC regulon are not induced, which indicates that nitrogen is not limiting in the intestine. RNA-seq identified upregulated genes in colonized E. coli involved in transport and catabolism of seven amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine. Competitive colonization experiments revealed that L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides serve as nitrogen sources for E. coli in the intestine. Furthermore, the colonization defect of a L-serine deaminase mutant was rescued by excess nitrogen in the drinking water but not by an excess of carbon and energy, demonstrating that L-serine serves primarily as a nitrogen source. Similar rescue experiments showed that N-acetylneuraminic acid serves as both a carbon and nitrogen source. To a minor extent, aspartate and ammonia also serve as nitrogen sources. Overall, these findings demonstrate that E. coli utilizes multiple nitrogen sources for successful colonization of the mouse intestine, the most important of which is L-serine. IMPORTANCE While much is known about the carbon and energy sources that are used by E. coli to colonize the mammalian intestine, very little is known about the sources of nitrogen. Interrogation of colonized E. coli by RNA-seq revealed that nitrogen is not limiting, indicating an abundance of nitrogen sources in the intestine. Pathways for assimilation of nitrogen from several amino acids, dipeptides and tripeptides, purines, pyrimidines, urea, and ethanolamine were induced in mice. Competitive colonization assays confirmed that mutants lacking catabolic pathways for L-serine, N-acetylneuraminic acid, N-acetylglucosamine, and di- and tripeptides had colonization defects. Rescue experiments in mice showed that L-serine serves primarily as a nitrogen source, whereas N-acetylneuraminic acid provides both carbon and nitrogen. Of the many nitrogen assimilation mutants tested, the largest colonization defect was for an L-serine deaminase mutant, which demonstrates L-serine is the most important nitrogen source for colonized E. coli.
Collapse
Affiliation(s)
- Sudhir Doranga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Zhu M, Mu H, Dai X. Integrated control of bacterial growth and stress response by (p)ppGpp in Escherichia coli: A seesaw fashion. iScience 2024; 27:108818. [PMID: 38299113 PMCID: PMC10828813 DOI: 10.1016/j.isci.2024.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
To thrive in nature, bacteria have to reproduce efficiently under favorable conditions and persist during stress. The global strategy that integrates the growth control and stress response remains to be explored. Here, we find that a moderate induction of (p)ppGpp reduces growth rate but significantly enhances the stress tolerance of E. coli, resulting from a global resource re-allocation from ribosome synthesis to the synthesis of stress-responsive proteins. Strikingly, the activation of stress response by (p)ppGpp is still largely retained in the absence of RpoS. In addition, (p)ppGpp induction could activate the catabolism of alanine and arginine, facilitating the adaption of bacteria to nutrient downshift. Our work demonstrates that the activation of stress response by (p)ppGpp could occur in an RpoS-independent manner and (p)ppGpp enables bacteria to integrate the control of growth and stress response in a seesaw fashion, thus acting as an important global regulator of the bacterial fitness landscape.
Collapse
Affiliation(s)
- Manlu Zhu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| | - Haoyan Mu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| | - Xiongfeng Dai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences & National Key Laboratory of Green Pesticides, Central China Normal University, Wuhan, China
| |
Collapse
|
9
|
Miyakoshi M. Multilayered regulation of amino acid metabolism in Escherichia coli. Curr Opin Microbiol 2024; 77:102406. [PMID: 38061078 DOI: 10.1016/j.mib.2023.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
Amino acid metabolism in Escherichia coli has long been studied and has established the basis for regulatory mechanisms at the transcriptional, posttranscriptional, and posttranslational levels. In addition to the classical signal transduction cascade involving posttranslational modifications (PTMs), novel PTMs in the two primary nitrogen assimilation pathways have recently been uncovered. The regulon of the master transcriptional regulator NtrC is further expanded by a small RNA derived from the 3´UTR of glutamine synthetase mRNA, which coordinates central carbon and nitrogen metabolism. Furthermore, recent advances in sequencing technologies have revealed the global regulatory networks of transcriptional and posttranscriptional regulators, Lrp and GcvB. This review provides an update of the multilayered and interconnected regulatory networks governing amino acid metabolism in E. coli.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 305-8575 Ibaraki, Japan.
| |
Collapse
|
10
|
Zamakhaev M, Bespyatykh J, Goncharenko A, Shumkov M. The Benefits of Toxicity: M. smegmatis VapBC TA Module Is Induced by Tetracycline Exposure and Promotes Survival. Microorganisms 2023; 11:2863. [PMID: 38138007 PMCID: PMC10745673 DOI: 10.3390/microorganisms11122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. Mycolicibacterium smegmatis, a common model organism for studying Mycobacterium tuberculosis physiology, has eight TA loci, including mazEF and vapBC. This study aims to investigate the physiological significance of these TA systems. Proteomic profiling was conducted on a culture overexpressing the VapC toxin, and the involvement of VapC in M. smegmatis stress responses to heat shock and antibiotic treatment was examined. While deciphering the underlying mechanisms of the altered stress resistance, we assessed the antibiotic susceptibility of vapBC, mazEF, and double vapBC-mazEF deletion mutants. Additionally, the mRNA levels of vapC and mazF were measured following tetracycline supplementation. The results reveal changes in the abundance of metabolic enzymes and stress response proteins associated with VapC overexpression. This activation of the general stress response leads to reduced thermosensitivity in M. smegmatis, but does not affect susceptibility to ciprofloxacin and isoniazid. Under tetracycline treatment, both vapC and mazF expression levels are increased, and the fate of the cell depends on the interaction between the corresponding TA systems.
Collapse
Affiliation(s)
- Mikhail Zamakhaev
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| | - Julia Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia;
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Sq., 125047 Moscow, Russia
| | - Anna Goncharenko
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| | - Mikhail Shumkov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia; (A.G.); (M.S.)
| |
Collapse
|
11
|
Favate JS, Skalenko KS, Chiles E, Su X, Yadavalli SS, Shah P. Linking genotypic and phenotypic changes in the E. coli long-term evolution experiment using metabolomics. eLife 2023; 12:RP87039. [PMID: 37991493 PMCID: PMC10665018 DOI: 10.7554/elife.87039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.
Collapse
Affiliation(s)
- John S Favate
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New JerseyPiscatawayUnited States
| | - Kyle S Skalenko
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Eric Chiles
- Cancer Institute of New JerseyNew BrunswickUnited States
| | - Xiaoyang Su
- Cancer Institute of New JerseyNew BrunswickUnited States
| | - Srujana Samhita Yadavalli
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Premal Shah
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New JerseyPiscatawayUnited States
| |
Collapse
|
12
|
Ali M, Bathaei MJ, Istif E, Karimi SNH, Beker L. Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Adv Healthc Mater 2023; 12:e2300318. [PMID: 37235849 PMCID: PMC11469082 DOI: 10.1002/adhm.202300318] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Recent materials, microfabrication, and biotechnology improvements have introduced numerous exciting bioelectronic devices based on piezoelectric materials. There is an intriguing evolution from conventional unrecyclable materials to biodegradable, green, and biocompatible functional materials. As a fundamental electromechanical coupling material in numerous applications, novel piezoelectric materials with a feature of degradability and desired electrical and mechanical properties are being developed for future wearable and implantable bioelectronics. These bioelectronics can be easily integrated with biological systems for applications, including sensing physiological signals, diagnosing medical problems, opening the blood-brain barrier, and stimulating healing or tissue growth. Therefore, the generation of piezoelectricity from natural and synthetic bioresorbable polymers has drawn great attention in the research field. Herein, the significant and recent advancements in biodegradable piezoelectric materials, including natural and synthetic polymers, their principles, advanced applications, and challenges for medical uses, are reviewed thoroughly. The degradation methods of these piezoelectric materials through in vitro and in vivo studies are also investigated. These improvements in biodegradable piezoelectric materials and microsystems could enable new applications in the biomedical field. In the end, potential research opportunities regarding the practical applications are pointed out that might be significant for new materials research.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Emin Istif
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Faculty of Engineering and Natural SciencesKadir Has UniversityCibaliIstanbul34083Turkey
| | - Seyed Nasir Hosseini Karimi
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Levent Beker
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| |
Collapse
|
13
|
Favate JS, Skalenko KS, Chiles E, Su X, Yadavalli SS, Shah P. Linking genotypic and phenotypic changes in the E. coli Long-Term Evolution Experiment using metabolomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528756. [PMID: 36874203 PMCID: PMC9985142 DOI: 10.1101/2023.02.15.528756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Changes in an organism's environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism's metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the Long-Term Evolution Experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass-spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype-phenotype map for this experimental system.
Collapse
Affiliation(s)
- John S. Favate
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey, USA
| | - Kyle S. Skalenko
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Eric Chiles
- Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Srujana S. Yadavalli
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Waksman Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
14
|
English MA, Alcantar MA, Collins JJ. A self‐propagating, barcoded transposon system for the dynamic rewiring of genomic networks. Mol Syst Biol 2023:e11398. [DOI: 10.15252/msb.202211398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
|
15
|
Ting WW, Ng IS. Effective 5-aminolevulinic acid production via T7 RNA polymerase and RuBisCO equipped Escherichia coli W3110. Biotechnol Bioeng 2023; 120:583-592. [PMID: 36302745 DOI: 10.1002/bit.28273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/13/2023]
Abstract
Chromosome-based engineering is a superior approach for gene integration generating a stable and robust chassis. Therefore, an effective amplifier, T7 RNA polymerase (T7RNAP) from bacteriophage, has been incorporated into Escherichia coli W3110 by site-specific integration. Herein, we performed the 5-aminolevulinic acid (5-ALA) production in four T7RNAP-equipped W3110 strains using recombinant 5-aminolevulinic synthase and further explored the metabolic difference in best strain. The fastest glucose consumption resulted in the highest biomass and the 5-ALA production reached to 5.5 g/L; thus, the least by-product of acetate was shown in RH strain in which T7RNAP was inserted at HK022 phage attack site. Overexpression of phosphoenolpyruvate (PEP) carboxylase would pull PEP to oxaloacetic acid in tricarboxylic acid cycle, leading to energy conservation and even no acetate production, thus, 6.53 g/L of 5-ALA was achieved. Amino acid utilization in RH deciphered the major metabolic flux in α-ketoglutaric acid dominating 5-ALA production. Finally, the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulokinase were expressed for carbon dioxide recycling; a robust and efficient chassis toward low-carbon assimilation and high-level of 5-ALA production up to 11.2 g/L in fed-batch fermentation was established.
Collapse
Affiliation(s)
- Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
16
|
The Multidrug Efflux Regulator AcrR of Escherichia coli Responds to Exogenous and Endogenous Ligands To Regulate Efflux and Detoxification. mSphere 2022; 7:e0047422. [PMID: 36416552 PMCID: PMC9769551 DOI: 10.1128/msphere.00474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transcriptional repressor AcrR is the main regulator of the multidrug efflux pump AcrAB-TolC, which plays a major role in antibiotic resistance and cell physiology in Escherichia coli and other Enterobacteriaceae. However, it remains unknown which ligands control the function of AcrR. To address this gap in knowledge, this study tested whether exogenous and/or endogenous molecules identified as potential AcrR ligands regulate the activity of AcrR. Using electrophoretic mobility shift assays (EMSAs) with purified AcrR and the acrAB promoter and in vivo gene expression experiments, we found that AcrR responds to both exogenous molecules and cellular metabolites produced by E. coli. In total, we identified four functional ligands of AcrR, ethidium bromide (EtBr), an exogenous antimicrobial known to be effluxed by the AcrAB-TolC pump and previously shown to bind to AcrR, and three polyamines produced by E. coli, namely, putrescine, cadaverine, and spermidine. We found that EtBr and polyamines bind to AcrR both in vitro and in vivo, which prevents the binding of AcrR to the acrAB promoter and, ultimately, induces the expression of acrAB. Finally, we also found that AcrR contributes to mitigating the toxicity produced by excess polyamines by directly regulating the expression of AcrAB-TolC and two previously unknown AcrR targets, the MdtJI spermidine efflux pump and the putrescine degradation enzyme PuuA. Overall, these findings significantly expand our understanding of the function of AcrR by revealing that this regulator responds to different exogenous and endogenous ligands to regulate the expression of multiple genes involved in efflux and detoxification. IMPORTANCE Multidrug efflux pumps can remove antibiotics and other toxic molecules from cells and are major contributors to antibiotic resistance and bacterial physiology. Therefore, it is essential to better understand their function and regulation. AcrAB-TolC is the main multidrug efflux pump in the Enterobacteriaceae family, and AcrR is its major transcriptional regulator. However, little is known about which ligands control the function of AcrR or which other genes are controlled by this regulator. This study contributes to addressing these gaps in knowledge by showing that (i) the activity of AcrR is controlled by the antimicrobial ethidium bromide and by polyamines produced by E. coli, and (ii) AcrR directly regulates the expression of AcrAB-TolC and genes involved in detoxification and efflux of excess polyamines. These findings significantly advance our understanding of the biological role of AcrR by identifying four ligands that control its function and two novel targets of this regulator.
Collapse
|
17
|
Rowlinson B, Crublet E, Kerfah R, Plevin MJ. Specific isotopic labelling and reverse labelling for protein NMR spectroscopy: using metabolic precursors in sample preparation. Biochem Soc Trans 2022; 50:1555-1567. [PMID: 36382942 DOI: 10.1042/bst20210586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023]
Abstract
The study of protein structure, dynamics and function by NMR spectroscopy commonly requires samples that have been enriched ('labelled') with the stable isotopes 13C and/or 15N. The standard approach is to uniformly label a protein with one or both of these nuclei such that all C and/or N sites are in principle 'NMR-visible'. NMR spectra of uniformly labelled proteins can be highly complicated and suffer from signal overlap. Moreover, as molecular size increases the linewidths of NMR signals broaden, which decreases sensitivity and causes further spectral congestion. Both effects can limit the type and quality of information available from NMR data. Problems associated with signal overlap and signal broadening can often be alleviated though the use of alternative, non-uniform isotopic labelling patterns. Specific isotopic labelling 'turns on' signals at selected sites while the rest of the protein is NMR-invisible. Conversely, specific isotopic unlabelling (also called 'reverse' labelling) 'turns off' selected signals while the rest of the protein remains NMR-visible. Both approaches can simplify NMR spectra, improve sensitivity, facilitate resonance assignment and permit a range of different NMR strategies when combined with other labelling tools and NMR experiments. Here, we review methods for producing proteins with enrichment of stable NMR-visible isotopes, with particular focus on residue-specific labelling and reverse labelling using Escherichia coli expression systems. We also explore how these approaches can aid NMR studies of proteins.
Collapse
Affiliation(s)
- Benjamin Rowlinson
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, U.K
| | - Elodie Crublet
- NMR-Bio, World Trade Center- 5 Place Robert Schuman, 38025 Grenoble Cedex 1, France
| | - Rime Kerfah
- NMR-Bio, World Trade Center- 5 Place Robert Schuman, 38025 Grenoble Cedex 1, France
| | - Michael J Plevin
- York Structural Biology Laboratory, York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, U.K
| |
Collapse
|
18
|
Thermophilic Water Gas Shift Reaction at High Carbon Monoxide and Hydrogen Partial Pressures in Parageobacillus thermoglucosidasius KP1013. FERMENTATION 2022. [DOI: 10.3390/fermentation8110596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The facultatively anaerobic Parageobacillus thermoglucosidasius oxidizes carbon monoxide to produce hydrogen via the water gas shift (WGS) reaction. In the current work, we examined the influence of carbon monoxide (CO) and hydrogen (H2) on the WGS reaction in the thermophilic P. thermoglucosidasius by cultivating two hydrogenogenic strains under varying CO and H2 compositions. Microbial growth and dynamics of the WGS reaction were monitored by evaluating parameters such as pressure, headspace composition, metabolic intermediates, pH, and optical density. Our analyses revealed that compared to the previously studied P. thermoglucosidasius strains, the strain KP1013 demonstrated higher CO tolerance and improved WGS reaction kinetics. Under anaerobic conditions, the lag phase before the WGS reaction shortened to 8 h, with KP1013 showing no hydrogen-induced product inhibition at hydrogen partial pressures up to 1.25 bar. The observed lack of product inhibition and the reduced lag phase of the WGS reaction support the possibility of establishing an industrial process for biohydrogen production with P. thermoglucosidasius.
Collapse
|
19
|
Yang HD, Jeong H, Kim Y, Lee HS. The cysS gene (ncgl0127) of Corynebacterium glutamicum is required for sulfur assimilation and affects oxidative stress-responsive cysteine import. Res Microbiol 2022; 173:103983. [PMID: 35931248 DOI: 10.1016/j.resmic.2022.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
The OsnR protein functions as a transcriptional repressor of genes involved in redox-dependent stress responses. Here, we studied Corynebacterium glutamicum ORF ncgl0127 (referred to as cysS in this study), one of the target genes of OsnR, to reveal its role in osnR-mediated stress responses. The ΔcysS strain was found to be a cysteine auxotroph, and the transcription levels of the sulfur assimilatory genes and cysR, the master regulatory gene for sulfur assimilation, were low in this strain. Complementation of the strain with cysR transformed the strain into a cysteine prototroph. Cells challenged with oxidants or cysteine showed transcriptional stimulation of the cysS gene and decreased transcription of the ncgl2463 gene, which encodes a cysteine/cystine importer. The transcription of the ncgl2463 gene was increased in the ΔcysS strain and further stimulated by cysteine. Unlike the wild-type strain, ΔcysS cells grown with an excess amount of cysteine showed an oxidant- and alkylating agent-resistant phenotype, suggesting deregulated cysteine import. Collectively, our data suggest that the cysS gene plays a positive role in sulfur assimilation and a negative role in cysteine import, in particular in cells under oxidative stress.
Collapse
Affiliation(s)
- Han-Deul Yang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea.
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
20
|
Chen X, Sun C, Dong J, Li W, Tian Y, Hu J, Ye X. Comparative Analysis of the Gut Microbiota of Mandarin Fish ( Siniperca chuatsi) Feeding on Compound Diets and Live Baits. Front Genet 2022; 13:797420. [PMID: 35664316 PMCID: PMC9158118 DOI: 10.3389/fgene.2022.797420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Siniperca chuatsi feeds on live fry throughout their life. The sustainable development of its farming industry has urgently necessitated the development of artificial diets to substitute live baits. It has been demonstrated that gut microbiota assists in feed adaptation and improves the feed conversion rate in fish. Therefore, this study aimed to understand the potential role of intestinal microorganisms in the domestication of S. chuatsi with a compound diet. Accordingly, we performed 16S rRNA sequencing of the gut microbial communities in S. chuatsi groups that were fed a compound diet (including large and small individuals) and live baits. A total of 2,471 OTUs were identified, and the large individual group possessed the highest number of unique OTUs. The α-diversity index of the gut microbiota in groups that were fed a compound diet was significantly higher (p < 0.05) than that in the live bait group. There were no significant differences in the α-diversity between the large and small individual groups. However, relatively higher numbers of Lactococcus, Klebsiella, and Woeseia were observed in the intestines of the large individual group. Prediction of the metabolic function of the microbiota among these three fish groups by Tax4Fun revealed that most metabolic pathways, such as glycan metabolism and amino acid metabolism, were typically more enriched for the larger individuals. The results indicated that certain taxa mentioned above exist in large individuals and may be closely related to the digestion and absorption of compound diets. The present study provides a basis for understanding the utilization mechanism of artificial feed by S. chuatsi.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
21
|
In-Human Multiyear Evolution of Carbapenem-Resistant Klebsiella pneumoniae Causing Chronic Colonization and Intermittent Urinary Tract Infections: A Case Study. mSphere 2022; 7:e0019022. [PMID: 35531657 PMCID: PMC9241548 DOI: 10.1128/msphere.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a frequent pathogen of the urinary tract, but how CRKP adapts in vivo over time is unclear. We examined 10 CRKP strains from a patient who experienced chronic colonization and recurrent urinary tract infections over a period of 4.5 years. We performed whole-genome sequencing and phenotypic assays to compare isolates that had evolved relative to the first isolate collected and to correlate genetic and phenotypic changes over time with the meropenem-containing regimen received. Phylogenetic analysis indicated that all 10 strains originated from the same sequence type 258 (ST258) clone and that three sublineages (SL) evolved over time; strains from two dominant sublineages were selected for detailed analysis. Up to 60 new mutations were acquired progressively in genes related to antibiotic resistance, cell metabolism, and biofilm production over time. Doubling of meropenem MICs, increases in biofilm production and blaKPC expression, and altered carbon metabolism occurred in the latter strains from the last sublineage compared to the initial strain. Subinhibitory meropenem exposure in vitro significantly induced or maintained high levels of biofilm production in colonizing isolates, but isolates causing infection were unaffected. Despite acquiring different mutations that affect carbon metabolism, overall carbon utilization was maintained across different strains. Together, these data showed that isolated urinary CRKP evolved through multiple adaptations affecting carbon metabolism, carbapenem resistance, and biofilm production to support chronic colonization and intermittent urinary tract infections. Our findings highlight the pliability of CRKP in adapting to repeated antibiotic exposure and should be considered when developing novel therapeutic and stewardship strategies. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) can cause a variety of infections such as recurrent urinary tract infections (rUTI) with the ability to change with the host environment over time. However, it is unclear how CRKP adapts to the urinary tract during chronic infections and colonization. Here, we studied the evolution of CRKP strains from a patient who experienced chronic colonization and recurrent UTIs over a period of 4.5 years despite multiple treatment courses with meropenem-containing regimens. Our findings show the flexibility of CRKP strains in developing changes in carbapenem resistance, biofilm production, and carbon metabolism over time, which could facilitate their persistence in the human body for long periods of time in spite of repeated antibiotic therapy.
Collapse
|
22
|
Wang X, Zhang L, Chen H, Wang P, Yin Y, Jin J, Xu J, Wen J. Rational Proteomic Analysis of a New Domesticated Klebsiella pneumoniae x546 Producing 1,3-Propanediol. Front Microbiol 2021; 12:770109. [PMID: 34899654 PMCID: PMC8662357 DOI: 10.3389/fmicb.2021.770109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
In order to improve the capability of Klebsiella pneumoniae to produce an important chemical raw material, 1,3-propanediol (1,3-PDO), a new type of K. pneumoniae x546 was obtained by glycerol acclimation and subsequently was used to produce 1,3-PDO. Under the control of pH value using Na+ pH neutralizer, the 1,3-PDO yield of K. pneumoniae x546 in a 7.5-L fermenter was 69.35 g/L, which was 1.5-fold higher than the original strain (45.91 g/L). After the addition of betaine, the yield of 1,3-PDO reached up to 74.44 g/L at 24 h, which was 40% shorter than the original fermentation time of 40 h. To study the potential mechanism of the production improvement of 1,3-PDO, the Tandem Mass Tags (TMT) technology was applied to investigate the production of 1,3-PDO in K. pneumoniae. Compared with the control group, 170 up-regulated proteins and 291 down-regulated proteins were identified. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, it was found that some proteins [such as homoserine kinase (ThrB), phosphoribosylglycinamide formyltransferase (PurT), phosphoribosylaminoimidazolesuccinocarboxamide synthase (PurC), etc.] were involved in the fermentation process, whereas some other proteins (such as ProX, ProW, ProV, etc.) played a significant role after the addition of betaine. Moreover, combined with the metabolic network of K. pneumoniae during 1,3-PDO, the proteins in the biosynthesis of 1,3-PDO [such as DhaD, DhaK, lactate dehydrogenase (LDH), BudC, etc.] were analyzed. The process of 1,3-PDO production in K. pneumoniae was explained from the perspective of proteome for the first time, which provided a theoretical basis for genetic engineering modification to improve the yield of 1,3-PDO. Because of the use of Na+ pH neutralizer in the fermentation, the subsequent environmental pollution treatment cost was greatly reduced, showing high potential for industry application in the future.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Department of Chemistry, National University of Singapore, Singapore, Singapore.,Institute of Materials Research and Engineering, Singapore, Singapore
| | - Lin Zhang
- Dalian Petrochemical Research Institute of Sinopec, Dalian, China
| | - Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiaqi Jin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianwei Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Institute of Materials Research and Engineering, Singapore, Singapore
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
The Nutrient and Energy Pathway Requirements for Surface Motility of Nonpathogenic and Uropathogenic Escherichia coli. J Bacteriol 2021; 203:JB.00467-20. [PMID: 33782053 PMCID: PMC8117529 DOI: 10.1128/jb.00467-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uropathogenic E. coli (UPEC) is the causative pathogen for most uncomplicated urinary tract infections. Motility is likely to contribute to these infections, and E. coli possesses flagella-dependent swimming motility, flagella-dependent surface motility (often called swarming), and the recently observed pili-dependent surface motility. Surface motility has not been extensively studied, but for the strains that have been tested nonpathogenic E. coli (NPEC) lab strains use pili, NPEC hypermotile derivatives of these lab strains use flagella, and UPEC strains use flagella. Using a representative of these three types of strains, we showed differences in the nutritional and pathway requirements for surface motility with respect to the glucose concentration, the glycolytic pathway utilized, acetogenesis, and the TCA cycle. In addition, glucose controlled flagella synthesis for the NPEC strain, but not for the hypermotile NPEC variant or the UPEC strain. The requirements for surface motility are likely to reflect major metabolic differences between strains for the pathways and regulation of energy metabolism.IMPORTANCEUrinary tract infections (UTIs) are one of the most common bacterial infections and are an increasing burden on the healthcare system because of recurrence and antibiotic resistance (1, 2). The most common uropathogen is E. coli (3, 4), which is responsible for about 80-90% of community acquired UTIs and 40-50% of nosocomial acquired UTIs (2). Virulence requires both pili and flagella, and either appendage can contribute to surface motility, although surface motility of uropathogenic E. coli has not been examined. We found different appendage, nutrient and pathway requirements for surface motility of a nonpathogenic E. coli lab strain and a uropathogenic E. coli We propose that these differences are the result of differences in the pathways and regulation of energy metabolism.
Collapse
|
24
|
Mori M, Zhang Z, Banaei‐Esfahani A, Lalanne J, Okano H, Collins BC, Schmidt A, Schubert OT, Lee D, Li G, Aebersold R, Hwa T, Ludwig C. From coarse to fine: the absolute Escherichia coli proteome under diverse growth conditions. Mol Syst Biol 2021; 17:e9536. [PMID: 34032011 PMCID: PMC8144880 DOI: 10.15252/msb.20209536] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Accurate measurements of cellular protein concentrations are invaluable to quantitative studies of gene expression and physiology in living cells. Here, we developed a versatile mass spectrometric workflow based on data-independent acquisition proteomics (DIA/SWATH) together with a novel protein inference algorithm (xTop). We used this workflow to accurately quantify absolute protein abundances in Escherichia coli for > 2,000 proteins over > 60 growth conditions, including nutrient limitations, non-metabolic stresses, and non-planktonic states. The resulting high-quality dataset of protein mass fractions allowed us to characterize proteome responses from a coarse (groups of related proteins) to a fine (individual) protein level. Hereby, a plethora of novel biological findings could be elucidated, including the generic upregulation of low-abundant proteins under various metabolic limitations, the non-specificity of catabolic enzymes upregulated under carbon limitation, the lack of large-scale proteome reallocation under stress compared to nutrient limitations, as well as surprising strain-dependent effects important for biofilm formation. These results present valuable resources for the systems biology community and can be used for future multi-omics studies of gene regulation and metabolic control in E. coli.
Collapse
Affiliation(s)
- Matteo Mori
- Department of PhysicsUniversity of California at San DiegoLa JollaCAUSA
| | - Zhongge Zhang
- Section of Molecular BiologyDivision of Biological SciencesUniversity of California at San DiegoLa JollaCAUSA
| | - Amir Banaei‐Esfahani
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Jean‐Benoît Lalanne
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of PhysicsMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Hiroyuki Okano
- Department of PhysicsUniversity of California at San DiegoLa JollaCAUSA
| | - Ben C Collins
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- School of Biological SciencesQueen's University of BelfastBelfastUK
| | | | - Olga T Schubert
- Department of Human GeneticsUniversity of California, Los AngelesLos AngelesCAUSA
| | - Deok‐Sun Lee
- School of Computational SciencesKorea Institute for Advanced StudySeoulKorea
| | - Gene‐Wei Li
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZurichZurichSwitzerland
- Faculty of ScienceUniversity of ZurichZurichSwitzerland
| | - Terence Hwa
- Department of PhysicsUniversity of California at San DiegoLa JollaCAUSA
- Section of Molecular BiologyDivision of Biological SciencesUniversity of California at San DiegoLa JollaCAUSA
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of Munich (TUM)FreisingGermany
| |
Collapse
|
25
|
Göbbels L, Poehlein A, Dumnitch A, Egelkamp R, Kröger C, Haerdter J, Hackl T, Feld A, Weller H, Daniel R, Streit WR, Schoelmerich MC. Cysteine: an overlooked energy and carbon source. Sci Rep 2021; 11:2139. [PMID: 33495538 PMCID: PMC7835215 DOI: 10.1038/s41598-021-81103-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/09/2022] Open
Abstract
Biohybrids composed of microorganisms and nanoparticles have emerged as potential systems for bioenergy and high-value compound production from CO2 and light energy, yet the cellular and metabolic processes within the biological component of this system are still elusive. Here we dissect the biohybrid composed of the anaerobic acetogenic bacterium Moorella thermoacetica and cadmium sulphide nanoparticles (CdS) in terms of physiology, metabolism, enzymatics and transcriptomic profiling. Our analyses show that while the organism does not grow on l-cysteine, it is metabolized to acetate in the biohybrid system and this metabolism is independent of CdS or light. CdS cells have higher metabolic activity, despite an inhibitory effect of Cd2+ on key enzymes, because of an intracellular storage compound linked to arginine metabolism. We identify different routes how cysteine and its oxidized form can be innately metabolized by the model acetogen and what intracellular mechanisms are triggered by cysteine, cadmium or blue light.
Collapse
Affiliation(s)
- Luise Göbbels
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Albert Dumnitch
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Cathrin Kröger
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Johanna Haerdter
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Thomas Hackl
- Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Artur Feld
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Horst Weller
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Wolfgang R Streit
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| | - Marie Charlotte Schoelmerich
- Microbiology and Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, 22609, Hamburg, Germany.
| |
Collapse
|
26
|
Miryala SK, Anbarasu A, Ramaiah S. Role of SHV-11, a Class A β-Lactamase, Gene in Multidrug Resistance Among Klebsiella pneumoniae Strains and Understanding Its Mechanism by Gene Network Analysis. Microb Drug Resist 2020; 26:900-908. [DOI: 10.1089/mdr.2019.0430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, VIT, Vellore, India
| |
Collapse
|
27
|
Ramiro RS, Durão P, Bank C, Gordo I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol 2020; 18:e3000617. [PMID: 32155146 PMCID: PMC7064181 DOI: 10.1371/journal.pbio.3000617] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10−4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community. Weak-effect deleterious mutations and negative frequency–dependent selection, acting on beneficial mutations, shape the dynamics of molecular evolution within the mouse gut microbiota.
Collapse
Affiliation(s)
- Ricardo S. Ramiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| | - Paulo Durão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| |
Collapse
|
28
|
Specific Eco-evolutionary Contexts in the Mouse Gut Reveal Escherichia coli Metabolic Versatility. Curr Biol 2020; 30:1049-1062.e7. [PMID: 32142697 DOI: 10.1016/j.cub.2020.01.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/21/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
Abstract
Members of the gut microbiota are thought to experience strong competition for nutrients. However, how such competition shapes their evolutionary dynamics and depends on intra- and interspecies interactions is poorly understood. Here, we test the hypothesis that Escherichia coli evolution in the mouse gut is more predictable across hosts in the absence of interspecies competition than in the presence of other microbial species. In support, we observed that lrp, a gene encoding a global regulator of amino acid metabolism, was repeatedly selected in germ-free mice 2 weeks after mono-colonization by this bacterium. We established that this specific genetic adaptation increased E. coli's ability to compete for amino acids, and analysis of gut metabolites identified serine and threonine as the metabolites preferentially consumed by E. coli in the mono-colonized mouse gut. Preference for serine consumption was further supported by testing a set of mutants that showed loss of advantage of an lrp mutant impaired in serine metabolism in vitro and in vivo. Remarkably, the presence of a single additional member of the microbiota, Blautia coccoides, was sufficient to alter the gut metabolome and, consequently, the evolutionary path of E. coli. In this environment, the fitness advantage of the lrp mutant bacteria is lost, and mutations in genes involved in anaerobic respiration were selected instead, recapitulating the eco-evolutionary context from mice with a complex microbiota. Together, these results highlight the metabolic plasticity and evolutionary versatility of E. coli, tailored to the specific ecology it experiences in the gut.
Collapse
|
29
|
Li J, Long Y, Yang F, Wang X. Degradable Piezoelectric Biomaterials for Wearable and Implantable Bioelectronics. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100806. [PMID: 32313430 PMCID: PMC7170261 DOI: 10.1016/j.cossms.2020.100806] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Current bioelectronics are facing a paradigm shift from old-fashioned unrecyclable materials to green and degradable functional materials with desired biocompatibility. As an essential electromechanical coupling component in many bioelectronics, new piezoelectric materials are being developed with biodegradability, as well as desired mechanical and electromechanical properties for the next generation implantable and wearable bioelectronics. In this review, we provide an overview of the major advancements in biodegradable piezoelectric materials. Different natural (such as peptide, amino acids, proteins, cellulose, chitin, silk, collagen, and M13 phage) and synthetic piezoelectric materials (such as polylactic acid) are discussed to reveal the underlying electromechanical coupling mechanism at the molecular level, together with typical approaches to the alignment of orientation and polarization to boost their electromechanical performance. Meanwhile, in vivo and in vitro degradation manners of those piezoelectric materials are summarized and compared. Representative developments of typical electronic prototypes leveraging these materials are also discussed. At last, challenges toward practical applications are pointed out together with potential research opportunities that might be critical in this new materials research area.
Collapse
Affiliation(s)
- Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Fan Yang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
30
|
Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clin Microbiol Rev 2019; 33:33/1/e00101-19. [PMID: 31619395 DOI: 10.1128/cmr.00101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause a majority of urinary tract infections (UTIs). Since UPEC strains can become antibiotic resistant, adjunct or alternate therapies are urgently needed. UPEC strains grow extremely rapidly in patients with UTIs. Thus, this review focuses on the relation between urine composition and UPEC growth and metabolism. Compilation of urinary components from two major data sources suggests the presence of sufficient amino acids and carbohydrates as energy sources and abundant phosphorus, sulfur, and nitrogen sources. In a mouse UTI model, mutants lacking enzymes of the tricarboxylic acid cycle, gluconeogenesis, and the nonoxidative branch of the pentose cycle are less competitive than the corresponding parental strains, which is consistent with amino acids as major energy sources. Other evidence suggests that carbohydrates are required energy sources. UPEC strains in urine ex vivo and in vivo express transporters for peptides, amino acids, carbohydrates, and iron and genes associated with nitrogen limitation, amino acid synthesis, nucleotide synthesis, and nucleotide salvage. Mouse models confirm the requirement for many, but not all, of these genes. Laboratory evolution studies suggest that rapid nutrient uptake without metabolic rewiring is sufficient to account for rapid growth. Proteins and pathways required for rapid growth should be considered potential targets for alternate or adjunct therapies.
Collapse
|
31
|
Smirnova GV, Tyulenev AV, Bezmaternykh KV, Muzyka NG, Ushakov VY, Oktyabrsky ON. Cysteine homeostasis under inhibition of protein synthesis in Escherichia coli cells. Amino Acids 2019; 51:1577-1592. [PMID: 31617110 DOI: 10.1007/s00726-019-02795-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/02/2019] [Indexed: 01/23/2023]
Abstract
Increased intracellular cysteine poses a potential danger to cells due to the high ability of cysteine to reduce free iron and promote the Fenton reaction. Here, we studied ways to maintain cysteine homeostasis in E. coli cells while inhibiting protein synthesis with valine or chloramphenicol. When growing wild-type bacteria on minimal medium with sulfate, an excess of cysteine resulting from the inhibition of protein synthesis is mainly incorporated into glutathione (up to 90%), which, therefore, can be considered as cysteine buffer. The share of hydrogen sulfide, which is the product of cysteine degradation by cysteine synthase B (CysM), does not exceed 1-3%, the rest falls on free cysteine, exported from cells. As a result, intracellular free cysteine is maintained at a low level (about 0.1 mM). The lack of glutathione in the gshA mutant increases H2S production and excretion of cysteine and leads to a threefold increase in the level of intracellular cysteine in response to valine and chloramphenicol. The relA mutants, exposed to valine, produce more H2S, dramatically accelerate the export of glutathione and accumulate more cysteine in the cytoplasm than their parent, which indicates that the regulatory nucleotide (p)ppGpp is involved in maintaining cysteine homeostasis. Disruption of cysteine homeostasis in gshA and relA mutants increases their sensitivity to peroxide stress.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia
| | - Kseniya V Bezmaternykh
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia
| | - Vadim Y Ushakov
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia.,Perm State University, Bukireva Street 15, 614990, Perm, Russia
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, Golev Street 13, 614081, Perm, Russia.,Perm National Research Polytechnic University, Komsomolsky Pr. 29, 614990, Perm, Russia
| |
Collapse
|
32
|
Abstract
Many bacteria drastically change their cell size and morphology in response to changing environmental conditions. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus and related species transform into filamentous cells in response to conditions that commonly occur in their natural habitat as a result of algal blooms during the warm summer months. These filamentous cells may be better able to scavenge nutrients when they grow in biofilms and to escape from protist predation during planktonic growth. Our findings suggest that seasonal changes and variations in the microbial composition of the natural habitat can have profound impact on the cell biology of individual organisms. Furthermore, our work highlights that bacteria exist in morphological and physiological states in nature that can strongly differ from those commonly studied in the laboratory. All living cells are characterized by certain cell shapes and sizes. Many bacteria can change these properties depending on the growth conditions. The underlying mechanisms and the ecological relevance of changing cell shape and size remain unclear in most cases. One bacterium that undergoes extensive shape-shifting in response to changing growth conditions is the freshwater bacterium Caulobacter crescentus. When incubated for an extended time in stationary phase, a subpopulation of C. crescentus forms viable filamentous cells with a helical shape. Here, we demonstrated that this stationary-phase-induced filamentation results from downregulation of most critical cell cycle regulators and a consequent block of DNA replication and cell division while cell growth and metabolism continue. Our data indicate that this response is triggered by a combination of three stresses caused by prolonged growth in complex medium, namely, the depletion of phosphate, alkaline pH, and an excess of ammonium. We found that these conditions are experienced in the summer months during algal blooms near the surface in freshwater lakes, a natural habitat of C. crescentus, suggesting that filamentous growth is a common response of C. crescentus to its environment. Finally, we demonstrate that when grown in a biofilm, the filamentous cells can reach beyond the surface of the biofilm and potentially access nutrients or release progeny. Altogether, our work highlights the ability of bacteria to alter their morphology and suggests how this behavior might enable adaptation to changing environments.
Collapse
|
33
|
Torres Montaguth OE, Bervoets I, Peeters E, Charlier D. Competitive Repression of the artPIQM Operon for Arginine and Ornithine Transport by Arginine Repressor and Leucine-Responsive Regulatory Protein in Escherichia coli. Front Microbiol 2019; 10:1563. [PMID: 31354664 PMCID: PMC6640053 DOI: 10.3389/fmicb.2019.01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
Two out of the three major uptake systems for arginine in Escherichia coli are encoded by the artJ-artPIQM gene cluster. ArtJ is the high-affinity periplasmic arginine-specific binding protein (ArgBP-I), whereas artI encodes the arginine and ornithine periplasmic binding protein (AO). Both ArtJ and ArtI are supposed to combine with the inner membrane-associated ArtQMP2 transport complex of the ATP-binding cassette-type (ABC). Transcription of artJ is repressed by arginine repressor (ArgR) and the artPIQM operon is regulated by the transcriptional regulators ArgR and Leucine-responsive regulatory protein (Lrp). Whereas repression by ArgR requires arginine as corepressor, repression of PartP by Lrp is partially counteracted by leucine, its major effector molecule. We demonstrate that binding of dimeric Lrp to the artP control region generates four complexes with a distinct migration velocity, and that leucine has an effect on both global binding affinity and cooperativity in the binding. We identify the binding sites for Lrp in the artP control region, reveal interferences in the binding of ArgR and Lrp in vitro and demonstrate that the two transcription factors act as competitive repressors in vivo, each one being a more potent regulator in the absence of the other. This competitive behavior may be explained by the partial steric overlap of their respective binding sites. Furthermore, we demonstrate ArgR binding to an unusual position in the control region of the lrp gene, downstream of the transcription initiation site. From this unusual position for an ArgR-specific operator, ArgR has little direct effect on lrp expression, but interferes with the negative leucine-sensitive autoregulation exerted by Lrp. Direct arginine and ArgR-dependent repression of lrp could be observed with a 25-bp deletion mutant, in which the ArgR binding site was artificially moved to a position immediately downstream of the lrp transcription initiation site. This finding is reminiscent of a previous observation made for the carAB operon encoding carbamoylphosphate synthase, where ArgR bound in overlap with the downstream promoter P2 does not block transcription initiated 67 bp upstream at the P1 promoter, and further supports the hypothesis that ArgR does not act as an efficient roadblock.
Collapse
Affiliation(s)
- Oscar E Torres Montaguth
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Picciano AL, Crane BR. A nitric oxide synthase-like protein from Synechococcus produces NO/NO 3- from l-arginine and NADPH in a tetrahydrobiopterin- and Ca 2+-dependent manner. J Biol Chem 2019; 294:10708-10719. [PMID: 31113865 PMCID: PMC6615690 DOI: 10.1074/jbc.ra119.008399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide synthases (NOSs) are heme-based monooxygenases that convert l-Arg to l-citrulline and nitric oxide (NO), a key signaling molecule and cytotoxic agent in mammals. Bacteria also contain NOS proteins, but the role of NO production within these organisms, where understood, differs considerably from that of mammals. For example, a NOS protein in the marine cyanobacterium Synechococcus sp. PCC 7335 (syNOS) has recently been proposed to function in nitrogen assimilation from l-Arg. syNOS retains the oxygenase (NOSox) and reductase (NOSred) domains present in mammalian NOS enzymes (mNOSs), but also contains an N-terminal globin domain (NOSg) homologous to bacterial flavohemoglobin proteins. Herein, we show that syNOS functions as a dimer and produces NO from l-Arg and NADPH in a tetrahydrobiopterin (H4B)-dependent manner at levels similar to those produced by other NOSs but does not require Ca2+-calmodulin, which regulates NOSred-mediated NOSox reduction in mNOSs. Unlike other bacterial NOSs, syNOS cannot function with tetrahydrofolate and requires high Ca2+ levels (>200 μm) for its activation. NOSg converts NO to NO3- in the presence of O2 and NADPH; however, NOSg did not protect Escherichia coli strains against nitrosative stress, even in a mutant devoid of NO-protective flavohemoglobin. We also found that syNOS does not have NOS activity in E. coli (which lacks H4B) and that the recombinant protein does not confer growth advantages on l-Arg as a nitrogen source. Our findings indicate that syNOS has both NOS and NO oxygenase activities, requires H4B, and may play a role in Ca2+-mediated signaling.
Collapse
Affiliation(s)
- Angela L Picciano
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Brian R Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
35
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
36
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
37
|
Kim H, Kim S, Yoon SH. Metabolic network reconstruction and phenome analysis of the industrial microbe, Escherichia coli BL21(DE3). PLoS One 2018; 13:e0204375. [PMID: 30240424 PMCID: PMC6150544 DOI: 10.1371/journal.pone.0204375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/06/2018] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli BL21(DE3) is an industrial model microbe for the mass-production of bioproducts such as biofuels, biorefineries, and recombinant proteins. However, despite its important role in scientific research and biotechnological applications, a high-quality metabolic network model for metabolic engineering is yet to be developed. Here, we present the comprehensive metabolic network model of E. coli BL21(DE3), named iHK1487, based on the latest genome reannotation and phenome analysis. The metabolic model consists of 1,164 unique metabolites, 2,701 metabolic reactions, and 1,487 genes. The model was validated and improved by comparing the simulation results with phenome data from phenotype microarray tests. Previous transcriptome profile data was incorporated during model reconstruction, and flux prediction was simulated using the model. iHK1487 was simulated to explore the metabolic features of BL21(DE3) such as broad spectrum amino acid utilization and enhanced flux through the upper glycolytic pathway and TCA cycle. iHK1487 will contribute to systematic understanding of cellular physiology and metabolism of E. coli BL21(DE3) and highlight its biotechnological applications.
Collapse
Affiliation(s)
- Hanseol Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sinyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Lacabanne D, Meier BH, Böckmann A. Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 71:141-150. [PMID: 29197975 DOI: 10.1007/s10858-017-0156-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Selective isotope labeling is central in NMR experiments and often allows to push the limits on the systems investigated. It has the advantage to supply additional resolution by diminishing the number of signals in the spectra. This is particularly interesting when dealing with the large protein systems which are currently becoming accessible to solid-state NMR studies. Isotope labeled proteins for NMR experiments are most often expressed in E. coli systems, where bacteria are grown in minimal media supplemented with 15NH4Cl and 13C-glucose as sole source of nitrogen and carbon. For amino acids selective labeling or unlabeling, specific amino acids are supplemented in the minimal medium. The aim is that they will be incorporated in the protein by the bacteria. However, E. coli amino-acid anabolism and catabolism tend to interconnect different pathways, remnant of a subway system. These connections lead to inter conversion between amino acids, called scrambling. A thorough understanding of the involved pathways is thus important to obtain the desired labeling schemes, as not all combinations of amino acids are adapted. We present here a detailed overview of amino-acid metabolism in this context. Each amino-acid pathway is described in order to define accessible combinations for 13C or 15N specific labeling or unlabeling. Using as example the ABC transporter BmrA, a membrane protein of 600 residues, we demonstrate how these strategies can be applied. Indeed, even though there is no size limit in solid-state NMR, large (membrane) proteins are still a challenge due to heavy signal overlap. To initiate resonance assignment in these large systems, we describe how selectively labeled samples can be obtained with the addition of labeled or unlabeled amino acids in the medium. The reduced spectral overlap enabled us to identify typical spectral fingerprints and to initiate sequential assignment using the more sensitive 2D DARR experiments with long mixing time showing inter-residue correlations.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
39
|
Kawai Y, Matsumoto S, Ling Y, Okuda S, Tsuneda S. AldB controls persister formation in Escherichia coli depending on environmental stress. Microbiol Immunol 2018; 62:299-309. [PMID: 29577369 DOI: 10.1111/1348-0421.12587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
Persisters are multidrug-tolerant cells that are present within antibiotic-sensitive populations. Persister formation is not induced by genetic mutations, but rather by changes in the degree of expression of some genes. High redundancy has been observed among the pathways that have been hypothesized to respond to specific stresses. In this study, we conducted RNA sequencing of Escherichia coli persisters under various stress conditions to identify common mechanisms. We induced stresses such as glucose or amino acid exhaustion, acid stress and anaerobic conditions, all of which are encountered during bacterial pathogenesis. We found that most genes are differentially expressed depending on the specific stress condition; however, some genes were commonly expressed in persisters in most stress conditions. Commonly expressed genes are expected to be promising therapeutic targets for combating persistent infections. We found that knockdown of aldehyde dehydrogenase (aldB), which was expressed in every condition except for acid stress, decreased persisters in the non-stressed condition. However, the same strain unexpectedly showed an increased number of persisters in the amino acid-limited condition. Because the increase in persister number is glycolytic metabolite-dependent, metabolic flow may play a crucial role in aldB-mediated persister formation. These data suggest that environmental stresses alter persister mechanisms. Identification of environmental influences on persister formation during pathogenesis is therefore necessary to enabling persister eradication.
Collapse
Affiliation(s)
- Yuto Kawai
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinya Matsumoto
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yiwei Ling
- Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
40
|
Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli. J Bacteriol 2017; 199:JB.00117-17. [PMID: 28607157 DOI: 10.1128/jb.00117-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/02/2017] [Indexed: 01/12/2023] Open
Abstract
Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis.IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and biofilm formation. Cysteine inhibits several enzymes of amino acid synthesis; therefore, increasing cysteine concentrations could increase the levels of the inhibited enzymes. This inhibition implies that control of intracellular cysteine levels, which is the immediate product of sulfide assimilation, can affect several pathways and coordinate metabolism. For these and other reasons, cysteine and sulfide concentrations must be controlled, and this work shows that cysteine catabolism contributes to this control.
Collapse
|
41
|
Papenfort K, Silpe JE, Schramma KR, Cong JP, Seyedsayamdost MR, Bassler BL. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat Chem Biol 2017; 13:551-557. [PMID: 28319101 PMCID: PMC5391282 DOI: 10.1038/nchembio.2336] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/28/2016] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) is a cell–cell communication process that enables bacteria to track cell population density and orchestrate collective behaviors. QS relies on production, detection, and response to extracellular signal molecules called autoinducers. In Vibrio cholerae, multiple QS circuits control pathogenesis and biofilm formation. Here, we identify and characterize a new QS autoinducer-receptor pair. The autoinducer is 3,5-dimethylpyrazin-2-ol, which we call DPO. DPO is made from threonine and alanine, and its synthesis depends on threonine dehydrogenase (Tdh). DPO binds to and activates a transcription factor, VqmA. The VqmA-DPO complex activates expression of vqmR, which encodes a small regulatory RNA. VqmR represses genes required for biofilm formation and toxin production. We propose that DPO allows V. cholerae to regulate collective behaviors to, among other possible roles, diversify its QS output during colonization of the human host.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Department of Biology I, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Justin E Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Kelsey R Schramma
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Jian-Ping Cong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
42
|
Death by Cystine: an Adverse Emergent Property from a Beneficial Series of Reactions. J Bacteriol 2015; 197:3626-8. [PMID: 26369582 DOI: 10.1128/jb.00546-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this issue of the Journal of Bacteriology, Chonoles Imlay et al. (K. R. Chonoles Imlay, S. Korshunov, and J. A. Imlay, J Bacteriol 197:3629-3644, 2015, http://dx.doi.org/10.1128/JB.00277-15) show that oxidative stress kills sulfur-restricted Escherichia coli grown with sublethal H2O2 when challenged with cystine. Killing requires rapid and seemingly unregulated cystine transport and equally rapid cystine reduction to cysteine. Cysteine export completes an energy-depleting futile cycle. Each reaction of the cycle could be beneficial. Together, a cystine-mediated vulnerability emerges during the transition from a sulfur-restricted to a sulfur-replete environment, perhaps because of complexities of sulfur metabolism.
Collapse
|
43
|
Distinct Paths for Basic Amino Acid Export in Escherichia coli: YbjE (LysO) Mediates Export of L-Lysine. J Bacteriol 2015; 197:2036-47. [PMID: 25845847 DOI: 10.1128/jb.02505-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Escherichia coli, argO encodes an exporter for L-arginine (Arg) and its toxic analogue canavanine (CAN), and its transcriptional activation and repression, by Arg and L-lysine (Lys), respectively, are mediated by the regulator ArgP. Accordingly argO and argP mutants are CAN supersensitive (CAN(ss)). We report the identification of ybjE as a gene encoding a predicted inner membrane protein that mediates export of Lys, and our results confirm the previous identification with a different approach of YbjE as a Lys exporter, reported by Ueda and coworkers (T. Ueda, Y. Nakai, Y. Gunji, R. Takikawa, and Y. Joe, U.S. patents 7,629,142 B2 [December 2009] and 8,383,363 B1 [February 2013] and European patent 1,664,318 B1 [September 2009]). ybjE was isolated as a multicopy suppressor of the CAN(ss) phenotype of a strain lacking ArgO. The absence of YbjE did not confer a CAN(ss) phenotype but instead conferred hypersensitivity to the lysine antimetabolite thialysine and led to growth inhibition by the dipeptide lysylalanine, which is associated with elevated cellular Lys content. YbjE overproduction resulted in Lys excretion and syntrophic cross-feeding of a Lys auxotroph. Constitutive overexpression of argO promoted Lys cross-feeding that is indicative of a latent Lys export potential of ArgO. Arg modestly repressed ybjE transcription in an ArgR-dependent manner, and ArgR displayed Arg-sensitive binding to the ybjE promoter region in vitro. Our studies suggest that the reciprocal repression of argO and ybjE, respectively, by Lys and Arg confers the specificity for basic amino acid export by distinct paths and that such cross-repression contributes to maintenance of cytoplasmic Arg/Lys balance. We propose that YbjE be redesignated LysO. IMPORTANCE This work ascribes a lysine export function to the product of the ybjE gene of Escherichia coli, leading to a physiological scenario wherein two proteins, ArgO and YbjE, perform the task of separately exporting arginine and lysine, respectively, which is distinct from that seen for Corynebacterium glutamicum, where the ortholog of ArgO, LysE, mediates export of both arginine and lysine. Repression of argO transcription by lysine is thought to effect this separation. Accordingly, ArgO mediates lysine export when repression of its transcription by lysine is bypassed. Repression of ybjE transcription by arginine via the ArgR repressor, together with the lysine repression of argO effected by ArgP, is indicative of a mechanism of maintenance of arginine/lysine balance in E. coli.
Collapse
|