1
|
Girón-Pérez DA, Espinoza-Gonzalez HD, Murillo Cisneros JA, Covantes-Rosales CE, Toledo-Ibarra GA, Díaz-Resendiz KJG, Barcelos-García RG, Benitez-Trinidad AB, Girón-Pérez MI. Diazoxon exposure increases susceptibility to infection by Salmonella Typhimurium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 38842028 DOI: 10.1080/09603123.2024.2363475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Various exogenous factors, such as microbiological and chemical contamination condition food security. Salmonella Typhimurium (S. Typhimurium) is the cause of salmonellosis. This bacterium utilizes phagocytosis to create bacterial reservoirs. On the other hand, exposure to chemical contaminants, such as pesticides, increases susceptibility to numerous infections. Therefore, this research aims to evaluate the effect of co-exposure to diazoxon and S. Typhimurium on the in vitro infection dynamics. For this purpose, human mononuclear cells were pre-exposed in vitro to diazoxon and then challenged with S. Typhimurium at 1, 8, and 24 h. Bacterial internalization, actin polymerization, and reactive oxygen species (ROS) were analyzed. Obtained data show that mononuclear cells previously exposed to diazoxon exhibit greater internalization of S. Typhimurium. Likewise, greater ROS production and an increase in actin polymerization were observed. Therefore, in the proposed scenario, obtained data suggest that co-exposure to diazoxon and S. Typhimurium increases susceptibility to acquiring an illness.
Collapse
Affiliation(s)
- Daniel Alberto Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | | | | | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Karina Janice Guadalupe Díaz-Resendiz
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Rocío Guadalupe Barcelos-García
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Alma Betsaida Benitez-Trinidad
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| |
Collapse
|
2
|
Achi SC, McGrosso D, Tocci S, Ibeawuchi SR, Sayed IM, Gonzalez DJ, Das S. Proteome profiling identifies a link between the mitochondrial pathways and host-microbial sensor ELMO1 following Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592405. [PMID: 38746404 PMCID: PMC11092768 DOI: 10.1101/2024.05.03.592405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The host EnguLfment and cell MOtility protein 1 (ELMO1) is a cytosolic microbial sensor that facilitates bacterial sensing, internalization, clearance, and inflammatory responses. We have shown previously that ELMO1 binds bacterial effector proteins, including pathogenic effectors from Salmonella and controls host innate immune signaling. To understand the ELMO1-regulated host pathways, we have performed liquid chromatography Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the global quantification of proteins regulated by ELMO1 in macrophages during Salmonella infection. Comparative proteome analysis of control and ELMO1-depleted murine J774 macrophages after Salmonella infection quantified more than 7000 proteins with a notable enrichment in mitochondrial-related proteins. Gene ontology enrichment analysis revealed 19 upregulated and 11 downregulated proteins exclusive to ELMO1-depleted cells during infection, belonging to mitochondrial functions, metabolism, vesicle transport, and the immune system. By assessing the cellular energetics via Seahorse analysis, we found that Salmonella infection alters mitochondrial metabolism, shifting it from oxidative phosphorylation to glycolysis. Importantly, these metabolic changes are significantly influenced by the depletion of ELMO1. Furthermore, ELMO1 depletion resulted in a decreased ATP rate index following Salmonella infection, indicating its importance in counteracting the effects of Salmonella on immunometabolism. Among the proteins involved in mitochondrial pathways, mitochondrial fission protein DRP1 was significantly upregulated in ELMO1-depleted cells and in ELMO1-KO mice intestine following Salmonella infection. Pharmacological Inhibition of DRP1 revealed the link of the ELMO1-DRP1 pathway in regulating the pro-inflammatory cytokine TNF-α following infection. The role of ELMO1 has been further characterized by a proteome profile of ELMO1-depleted macrophage infected with SifA mutant and showed the involvement of ELMO1-SifA on mitochondrial function, metabolism and host immune/defense responses. Collectively, these findings unveil a novel role for ELMO1 in modulating mitochondrial functions, potentially pivotal in modulating inflammatory responses. Significance Statement Host microbial sensing is critical in infection and inflammation. Among these sensors, ELMO1 has emerged as a key regulator, finely tuning innate immune signaling and discriminating between pathogenic and non-pathogenic bacteria through interactions with microbial effectors like SifA of Salmonella . In this study, we employed Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the proteome alterations mediated by ELMO1 in macrophages following WT and SifA mutant Salmonella infection. Our findings highlight a substantial enrichment of host proteins associated with metabolic pathways and mitochondrial functions. Notably, we validated the mitochondrial fission protein DRP1 that is upregulated in ELMO1-depleted macrophages and in ELMO1 knockout mice intestine after infection. Furthermore, we demonstrated that Salmonella -induced changes in cellular energetics are influenced by the presence of ELMO1. This work shed light on a possible novel link between mitochondrial dynamics and microbial sensing in modulating immune responses.
Collapse
|
3
|
Das O, Masid A, Chakraborty M, Gope A, Dutta S, Bhaumik M. Butyrate driven raft disruption trots off enteric pathogen invasion: possible mechanism of colonization resistance. Gut Pathog 2023; 15:19. [PMID: 37085870 PMCID: PMC10122309 DOI: 10.1186/s13099-023-00545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
The gut microbiome derived short chain fatty acids perform multitude of functions to maintain gut homeostasis. Here we studied how butyrate stymie enteric bacterial invasion in cell using a simplistic binary model. The surface of the mammalian cells is enriched with microdomains rich in cholesterol that are known as rafts and act as entry points for pathogens. We showed that sodium butyrate treated RAW264.7 cells displayed reduced membrane cholesterol and less cholera-toxin B binding coupled with increased membrane fluidity compared to untreated cells indicating that reduced membrane cholesterol caused disruption of lipid rafts. The implication of such cellular biophysical changes on the invasion of enteric pathogenic bacteria was assessed. Our study showed, in comparison to untreated cells, butyrate-treated cells significantly reduced the invasion of Shigella and Salmonella, and these effects were found to be reversed by liposomal cholesterol treatment, increasing the likelihood that the rafts' function against bacterial invasion. The credence of ex vivo studies found to be in concordance in butyrate fed mouse model as evident from the significant drift towards a protective phenotype against virulent enteric pathogen invasion as compared to untreated mice. To produce a cytokine balance towards anti-inflammation, butyrate-treated mice produced more of the gut tissue anti-inflammatory cytokine IL-10 and less of the pro-inflammatory cytokines TNF-α, IL-6, and IFN-γ. In histological studies of Shigella infected gut revealed a startling observation where number of neutrophils infiltration was noted which was correlated with the pathology and was essentially reversed by butyrate treatment. Our results ratchet up a new dimension of our understanding how butyrate imparts resistance to pathogen invasion in the gut.
Collapse
Affiliation(s)
- Oishika Das
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Aaheli Masid
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Mainak Chakraborty
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Moumita Bhaumik
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
4
|
Kavela S, Vyas P, CP J, Kushwaha SK, Majumdar SS, Faisal SM. Use of an Integrated Multi-Omics Approach To Identify Molecular Mechanisms and Critical Factors Involved in the Pathogenesis of Leptospira. Microbiol Spectr 2023; 11:e0313522. [PMID: 36853003 PMCID: PMC10100824 DOI: 10.1128/spectrum.03135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Leptospirosis, a bacterial zoonosis caused by pathogenic Leptospira spp., is prevalent worldwide and has become a serious threat in recent years. Limited understanding of Leptospira pathogenesis and host response has hampered the development of effective vaccine and diagnostics. Although Leptospira is phagocytosed by innate immune cells, it resists its destruction, and the evading mechanism involved is unclear. In the present study, we used an integrative multi-omics approach to identify the critical molecular factors of Leptospira involved in pathogenesis during interaction with human macrophages. Transcriptomic and proteomic analyses were performed at 24 h postinfection of human macrophages (phorbol-12-myristate-13-acetate differentiated THP-1 cells) with the pathogenic Leptospira interrogans serovar Icterohaemorrhagiae strain RGA (LEPIRGA). Our results identified a total of 1,528 transcripts and 871 proteins that were significantly expressed with an adjusted P value of <0.05. The correlations between the transcriptomic and proteomic data were above average (r = 0.844), suggesting the role of the posttranscriptional processes during host interaction. The conjoint analysis revealed the expression of several virulence-associated proteins such as adhesins, invasins, and secretory and chemotaxis proteins that might be involved in various processes of attachment and invasion and as effectors during pathogenesis in the host. Further, the interaction of bacteria with the host cell (macrophages) was a major factor in the differential expression of these proteins. Finally, eight common differentially expressed RNA-protein pairs, predicted as virulent, outer membrane/extracellular proteins were validated by quantitative PCR. This is the first report using integrated multi-omics approach to identify critical factors involved in Leptospira pathogenesis. Validation of these critical factors may lead to the identification of target antigens for the development of improved diagnostics and vaccines against leptospirosis. IMPORTANCE Leptospirosis is a zoonotic disease of global importance. It is caused by a Gram-negative bacterial spirochete of the genus Leptospira. The current challenge is to detect the infection at early stage for treatment or to develop potent vaccines that can induce cross-protection against various pathogenic serovars. Understanding host-pathogen interactions is important to identify the critical factors involved in pathogenesis and host defense for developing improved vaccines and diagnostics. Utilizing an integrated multi-omics approach, our study provides important insight into the interaction of Leptospira with human macrophages and identifies a few critical factors (such as virulence-associated proteins) involved in pathogenesis. These factors can be exploited for the development of novel tools for the detection, treatment, or prevention of leptospirosis.
Collapse
Affiliation(s)
- Sridhar Kavela
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Jusail CP
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sandeep K. Kushwaha
- Bioinformatics Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Subeer S. Majumdar
- Gene and Protein Engineering Lab, National Institute of Animal Biotechnology, Hyderabad, India
| | - Syed M. Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| |
Collapse
|
5
|
Shahinuzzaman ADA, Kamal AHM, Chakrabarty JK, Rahman A, Chowdhury SM. Identification of Inflammatory Proteomics Networks of Toll-like Receptor 4 through Immunoprecipitation-Based Chemical Cross-Linking Proteomics. Proteomes 2022; 10:proteomes10030031. [PMID: 36136309 PMCID: PMC9506174 DOI: 10.3390/proteomes10030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a receptor on an immune cell that can recognize the invasion of bacteria through their attachment with bacterial lipopolysaccharides (LPS). Hence, LPS is a pro-immune response stimulus. On the other hand, statins are lipid-lowering drugs and can also lower immune cell responses. We used human embryonic kidney (HEK 293) cells engineered to express HA-tagged TLR-4 upon treatment with LPS, statin, and both statin and LPS to understand the effect of pro- and anti-inflammatory responses. We performed a monoclonal antibody (mAb) directed co-immunoprecipitation (CO-IP) of HA-tagged TLR4 and its interacting proteins in the HEK 293 extracted proteins. We utilized an ETD cleavable chemical cross-linker to capture weak and transient interactions with TLR4 protein. We tryptic digested immunoprecipitated and cross-linked proteins on beads, followed by liquid chromatography–mass spectrometry (LC-MS/MS) analysis of the peptides. Thus, we utilized the label-free quantitation technique to measure the relative expression of proteins between treated and untreated samples. We identified 712 proteins across treated and untreated samples and performed protein network analysis using Ingenuity Pathway Analysis (IPA) software to reveal their protein networks. After filtering and evaluating protein expression, we identified macrophage myristoylated alanine-rich C kinase substrate (MARCKSL1) and creatine kinase proteins as a potential part of the inflammatory networks of TLR4. The results assumed that MARCKSL1 and creatine kinase proteins might be associated with a statin-induced anti-inflammatory response due to possible interaction with the TLR4.
Collapse
Affiliation(s)
- A. D. A. Shahinuzzaman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jayanta K. Chakrabarty
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Aurchie Rahman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: ; Tel.: +1-817-272-5439
| |
Collapse
|
6
|
Torres-Sangiao E, Giddey AD, Leal Rodriguez C, Tang Z, Liu X, Soares NC. Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens. Front Med (Lausanne) 2022; 9:850374. [PMID: 35586072 PMCID: PMC9108449 DOI: 10.3389/fmed.2022.850374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
The profound effects of and distress caused by the global COVID-19 pandemic highlighted what has been known in the health sciences a long time ago: that bacteria, fungi, viruses, and parasites continue to present a major threat to human health. Infectious diseases remain the leading cause of death worldwide, with antibiotic resistance increasing exponentially due to a lack of new treatments. In addition to this, many pathogens share the common trait of having the ability to modulate, and escape from, the host immune response. The challenge in medical microbiology is to develop and apply new experimental approaches that allow for the identification of both the microbe and its drug susceptibility profile in a time-sensitive manner, as well as to elucidate their molecular mechanisms of survival and immunomodulation. Over the last three decades, proteomics has contributed to a better understanding of the underlying molecular mechanisms responsible for microbial drug resistance and pathogenicity. Proteomics has gained new momentum as a result of recent advances in mass spectrometry. Indeed, mass spectrometry-based biomedical research has been made possible thanks to technological advances in instrumentation capability and the continuous improvement of sample processing and workflows. For example, high-throughput applications such as SWATH or Trapped ion mobility enable the identification of thousands of proteins in a matter of minutes. This type of rapid, in-depth analysis, combined with other advanced, supportive applications such as data processing and artificial intelligence, presents a unique opportunity to translate knowledge-based findings into measurable impacts like new antimicrobial biomarkers and drug targets. In relation to the Research Topic “Proteomic Approaches to Unravel Mechanisms of Resistance and Immune Evasion of Bacterial Pathogens,” this review specifically seeks to highlight the synergies between the powerful fields of modern proteomics and microbiology, as well as bridging translational opportunities from biomedical research to clinical practice.
Collapse
Affiliation(s)
- Eva Torres-Sangiao
- Clinical Microbiology Lab, University Hospital Marqués de Valdecilla, Santander, Spain
- Instituto de Investigación Sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- *Correspondence: Eva Torres-Sangiao,
| | - Alexander Dyason Giddey
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Cristina Leal Rodriguez
- Copenhagen Prospectives Studies on Asthma in Childhood, COPSAC, Copenhagen University Hospital, Herlev-Gentofte, Denmark
| | - Zhiheng Tang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nelson C. Soares
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Nelson C. Soares,
| |
Collapse
|
7
|
Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics 2022; 14:6530650. [PMID: 35179212 DOI: 10.1093/mtomcs/mfac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
The bioavailability of trace elements in the course of evolution had an essential influence on the emergence of life itself. This is reflected in the co-evolution between eukaryotes and prokaryotes. In this study, the influence and cellular distribution of bioelements during phagocytosis at the host-pathogen interface was investigated using high-resolution nanoscale secondary ion mass spectrometry (NanoSIMS) and quantitative inductively coupled plasma mass spectrometry (ICP-MS). In the eukaryotic murine macrophages (RAW 264.7 cell line), the cellular Fe / Zn ratio was found to be balanced, whereas the dominance of iron in the prokaryotic cells of the pathogen Salmonella enterica Serovar Enteritidis was about 90% compared to zinc. This confirms the evolutionary increased zinc requirement of the eukaryotic animal cell. Using NanoSIMS, the Cs+ primary ion source allowed high spatial resolution mapping of cell morphology down to subcellular level. At a comparable resolution, several low abundant trace elements could be mapped during phagocytosis with a RF plasma O- primary ion source. An enrichment of copper and nickel could be detected in the prokaryotic cells. Surprisingly, an accumulation of cobalt in the area of nuclear envelope was observed indicating an interesting but still unknown distribution of this trace element in murine macrophages.
Collapse
Affiliation(s)
- Maria Angels Subirana
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France
| | - Sina Riemschneider
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany
| | - Gerd Hause
- Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Dirk Dobritzsch
- Martin-Luther-University Halle-Wittenberg, Core Facility - Proteomic Mass Spectrometry, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000 Pau, France.,Peoples' Friendship University of Russia (RUDN University), Mklukho-Maklaya str. 6, 117198 Moscow, Russia
| | - Martin Herzberg
- Martin-Luther-University Halle-Wittenberg, Institute for Biology/Microbiology, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|
8
|
Yan X, Hu S, Yang Y, Xu D, Liu W, Li G, Cai W, Bu Z. Proteomics Investigation of the Time Course Responses of RAW264.7 Macrophages to Infections With the Wild-Type and Twin-Arginine Translocation Mutant Strains of Brucella melitensis. Front Cell Infect Microbiol 2021; 11:679571. [PMID: 34195100 PMCID: PMC8238042 DOI: 10.3389/fcimb.2021.679571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brucella, a notorious intracellular pathogen, causes chronic infections in many mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane; protein substrates translocated by Brucella include ABC transporters, oxidoreductases, and cell envelope biosynthesis proteins. Previously, we showed that a Tat mutant of Brucella melitensis M28 exhibits reduced survival within murine macrophages. In this study, we compared the host responses elicited by wild-type M28 and its Tat-mutant strains ex vivo. We utilized label-free quantitative proteomics to assess proteomic changes in RAW264.7 macrophages after infection with M28 and its Tat mutants. A total of 6085 macrophage proteins were identified with high confidence, and 79, 50, and 99 proteins were differentially produced upon infection with the Tat mutant at 4, 24, and 48 hpi, respectively, relative to the wild-type infection. Gene ontology and KEGG enrichment analysis indicated that immune response-related proteins were enriched among the upregulated proteins. Compared to the wild-type M28 infection, the most upregulated proteins upon Tat-mutant infection included the cytosolic nucleic acid signaling pathway-related proteins IFIH1, DHX58, IFI202, IFI204, and ISG15 and the NF-κB signaling pathway-related proteins PTGS2, CD40, and TRAF1, suggesting that the host increases the production of these proteins in response to Tat mutant infection. Upregulation of some proteins was further verified by a parallel reaction monitoring (PRM) assay. ELISA and qRT-PCR assays indicated that Tat mutant infection significantly induced proinflammatory cytokine (TNF-α and IL-6) and nitric oxide (NO) production. Finally, we showed that the Tat mutant displays higher sensitivity to nitrosative stress than the wild type and that treatment with the NO synthase inhibitor L-NMMA significantly increases the intracellular survival of the Tat mutant, indicating that NO production contributes to restricting Tat mutant survival within macrophages. Collectively, this work improves our understanding of host immune responses to Tat mutants and provides insights into the mechanisms underlying the attenuated virulence of Tat mutants.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sen Hu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Yang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Xu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenxing Liu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ganwu Li
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Wentong Cai
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, China
| |
Collapse
|
9
|
Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. Pathogens 2020; 9:pathogens9070581. [PMID: 32708900 PMCID: PMC7400052 DOI: 10.3390/pathogens9070581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.
Collapse
|
10
|
Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. Nat Microbiol 2020; 5:1119-1133. [PMID: 32514074 PMCID: PMC7610801 DOI: 10.1038/s41564-020-0736-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
The interplay between host and pathogen relies heavily on rapid protein synthesis and accurate protein targeting to ensure pathogen destruction. To gain insight into this dynamic interface, we combined click-chemistry with pulsed stable isotope labeling of amino acids in cell culture (pSILAC-AHA) to quantify the host proteome response during macrophage infection with the intracellular bacterial pathogen, Salmonella enterica Typhimurium (STm). We monitored newly synthesised proteins across different host cell compartments and infection stages. Within this rich resource, we detected aberrant trafficking of lysosomal proteases to the extracellular space and the nucleus. We verified active cathepsins re-traffic to the nucleus and are linked to cell death. Pharmacological cathepsin inhibition and nuclear-targeting of a cellular cathepsin inhibitor (Stefin B) suppressed STm-induced cell death. We demonstrate that cathepsin activity is required for pyroptotic cell death via the non-canonical inflammasome, and that LPS transfection into the host cytoplasm is sufficient to trigger active cathepsin accumulation in the host nucleus and cathepsin-dependent cell death. Finally, cathepsin inhibition reduced Gasdermin D expression, thus revealing an unexpected role for cathepsin activity in non-canonical inflammasome regulation. Overall, our study illustrates how resolving host proteome dynamics during infection can drive the discovery of biological mechanisms at the host-microbe interface.
Collapse
|
11
|
Hörhold F, Eisel D, Oswald M, Kolte A, Röll D, Osen W, Eichmüller SB, König R. Reprogramming of macrophages employing gene regulatory and metabolic network models. PLoS Comput Biol 2020; 16:e1007657. [PMID: 32097424 PMCID: PMC7059956 DOI: 10.1371/journal.pcbi.1007657] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/06/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
Upon exposure to different stimuli, resting macrophages undergo classical or alternative polarization into distinct phenotypes that can cause fatal dysfunction in a large range of diseases, such as systemic infection leading to sepsis or the generation of an immunosuppressive tumor microenvironment. Investigating gene regulatory and metabolic networks, we observed two metabolic switches during polarization. Most prominently, anaerobic glycolysis was utilized by M1-polarized macrophages, while the biosynthesis of inosine monophosphate was upregulated in M2-polarized macrophages. Moreover, we observed a switch in the urea cycle. Gene regulatory network models revealed E2F1, MYC, PPARγ and STAT6 to be the major players in the distinct signatures of these polarization events. Employing functional assays targeting these regulators, we observed the repolarization of M2-like cells into M1-like cells, as evidenced by their specific gene expression signatures and cytokine secretion profiles. The predicted regulators are essential to maintaining the M2-like phenotype and function and thus represent potential targets for the therapeutic reprogramming of immunosuppressive M2-like macrophages.
Collapse
Affiliation(s)
- Franziska Hörhold
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - David Eisel
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Marcus Oswald
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Amol Kolte
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Daniela Röll
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| | - Wolfram Osen
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B. Eichmüller
- Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer König
- Center for Sepsis Control and Care, University Hospital, Jena, Germany
| |
Collapse
|
12
|
Kamaladevi A, Marudhupandiyan S, Balamurugan K. Model system based proteomics to understand the host response during bacterial infections. MOLECULAR BIOSYSTEMS 2018; 13:2489-2497. [PMID: 29082410 DOI: 10.1039/c7mb00372b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infectious diseases caused by bacterial pathogens pose a major concern to public health and, thus, greater attention must be given to providing insightful knowledge on host-pathogen interactions. There are several theories addressing the dynamics of complex mechanisms of host-pathogen interactions. The availability of an ample number of universally accepted model systems, including vertebrates, invertebrates, and mammalian cells, provides in-depth transcriptomics data to evaluate these complex mechanisms during host-pathogen interactions. Recent model system based proteomic studies have addressed the issues related to human diseases by establishing the protein profile of model animals that closely resemble the environment. As a result, model system based proteomics has been widely accepted as a powerful and effective approach to understand the highly complex host-pathogen interfaces at their protein levels. This review offers a snapshot of the contributions of selective model systems on host-bacterial pathogen interactions through proteomic approaches.
Collapse
Affiliation(s)
- Arumugam Kamaladevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| | | | | |
Collapse
|
13
|
Thompson A, Fulde M, Tedin K. The metabolic pathways utilized by Salmonella Typhimurium during infection of host cells. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:140-154. [PMID: 29411544 DOI: 10.1111/1758-2229.12628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Only relatively recently has research on the metabolism of intracellular bacterial pathogens within their host cells begun to appear in the published literature. This reflects in part the experimental difficulties encountered in separating host metabolic processes from those of the resident pathogen. One of the most genetically tractable and thoroughly studied intracellular bacterial pathogens, Salmonella enterica serovar Typhimurium (S. Typhimurium), has been at the forefront of metabolic studies within eukaryotic host cells. In this review, we offer a synthesis of what has been discovered to date regarding the metabolic adaptation of S. Typhimurium to survival and growth within the infected host. We discuss many studies in the context of techniques used, types of host cells, how host metabolites contribute to intracellular survival and proliferation of the pathogen and how bacterial metabolism affects the virulence and persistence of the pathogen.
Collapse
Affiliation(s)
- Arthur Thompson
- Institute for Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| | - Karsten Tedin
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
14
|
Kamal AHM, Fessler MB, Chowdhury SM. Comparative and network-based proteomic analysis of low dose ethanol- and lipopolysaccharide-induced macrophages. PLoS One 2018; 13:e0193104. [PMID: 29481576 PMCID: PMC5826526 DOI: 10.1371/journal.pone.0193104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Macrophages are specialized phagocytes that play an essential role in inflammation, immunity, and tissue repair. Profiling the global proteomic response of macrophages to microbial molecules such as bacterial lipopolysaccharide is key to understanding fundamental mechanisms of inflammatory disease. Ethanol is a widely abused substance that has complex effects on inflammation. Reports have indicated that ethanol can activate or inhibit the lipopolysaccharide receptor, Toll-like Receptor 4, in different settings, with important consequences for liver and neurologic inflammation, but the underlying mechanisms are poorly understood. To profile the sequential effect of low dose ethanol and lipopolysaccharide on macrophages, a gel-free proteomic technique was applied to RAW 264.7 macrophages. Five hundred four differentially expressed proteins were identified and quantified with high confidence using ≥ 5 peptide spectral matches. Among these, 319 proteins were shared across all treatment conditions, and 69 proteins were exclusively identified in ethanol-treated or lipopolysaccharide-stimulated cells. The interactive impact of ethanol and lipopolysaccharide on the macrophage proteome was evaluated using bioinformatics tools, enabling identification of differentially responsive proteins, protein interaction networks, disease- and function-based networks, canonical pathways, and upstream regulators. Five candidate protein coding genes (PGM2, ISYNA1, PARP1, and PSAP) were further validated by qRT-PCR that mostly related to glucose metabolism and fatty acid synthesis pathways. Taken together, this study describes for the first time at a systems level the interaction between ethanol and lipopolysaccharide in the proteomic programming of macrophages, and offers new mechanistic insights into the biology that may underlie the impact of ethanol on infectious and inflammatory disease in humans.
Collapse
Affiliation(s)
- Abu Hena M. Kamal
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Michael B. Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
15
|
Inflammatory Proteomic Network Analysis of Statin-treated and Lipopolysaccharide-activated Macrophages. Sci Rep 2018; 8:164. [PMID: 29317699 PMCID: PMC5760528 DOI: 10.1038/s41598-017-18533-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
A significant component of immune biology research is the investigation of protein encoding genes that play central roles in contributing inflammatory response. A gel-free quantitative bottom-up proteomics study was performed on immune cell macrophages after the combined treatment of lipopolysaccharide (LPS) and statin drugs using mass spectrometry and a detailed bioinformatics analyses were conducted. Systematic bioinformatics analysis was applied for discovering novel relationships among proteins and effects of statin and lipopolysaccharide in macrophage cells. Based on gene ontology, majority of protein encoding genes was involved in metabolic and cellular processes and are actively associated with binding, structural molecular, and catalytic activity. Notably, proteomic data analyzed by Ingenuity Pathway Analysis (IPA), discovered the plectin and prohibitin 2 protein interactions network and inflammatory-disease based protein networks. Two up-regulated proteins, plectin and prohibitin 2, were further validated by immunoblotting. Plectin was also cross-validated by immunocytochemistry, since its expression was highly modulated by statin but inhibited during LPS-stimulation. Collectively, the significant up-regulation of plectin due to the treatment of statin, suggests that statin has a significant impact on the cytoskeletal networks of cells. Plectin might have a significant role in the intermediate filament assembly and dynamics, and possibly stabilizing and crosslinking intermediate filament networks.
Collapse
|
16
|
Das S, Ray S, Ryan D, Sahu B, Suar M. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression. Virulence 2018; 9:348-362. [PMID: 29130383 PMCID: PMC5955183 DOI: 10.1080/21505594.2017.1392428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis), one of the causative agents for non-typhoidal gastrointestinal diseases in humans is an intracellular bacterium and mechanism for its invasion into host cells is critical to cause infection. The virulence of the pathogen is explained by the expression of genes located on its pathogenicity islands, mostly encoded under SPI-1 and SPI-2. However, S. Typhimurium SL1344, despite sharing ∼98% of its genome with S. Enteritidis P125109, lacks few regions of differences (ROD) that are hypothesized to impart virulence potential to S. Enteritidis. In this study, we created different mutants in the ROD9 island of S. Enteritidis, also referred as SPI-19 and identified a novel locus, SEN1005, encoding a hypothetical protein that is involved in its pathogenesis. ΔSEN1005 displayed significantly reduced entry into cultured epithelial cells as well as uptake by macrophages and failed to cause acute colitis in C57BL/6 mice at day 3 post-infection (p.i.). Additionally, the global transcriptome analysis revealed a highly repressed SPI-1 and other down-regulated genes responsible for flagellar assembly, chemotaxis and motility in the mutant which correlated with decreased invasion and abated inflammation as compared to the wild-type. Therefore, our findings revealed that ΔSEN1005 was attenuated in vitro as well as in vivo and we propose this hypothetical protein to play a role in altering the expression of genes involved in Salmonella virulence.
Collapse
Affiliation(s)
- Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Daniel Ryan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Bikash Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| |
Collapse
|
17
|
Lee JH, Hou X, Kummari E, Borazjani A, Edelmann MJ, Ross MK. Endocannabinoid hydrolases in avian HD11 macrophages identified by chemoproteomics: inactivation by small-molecule inhibitors and pathogen-induced downregulation of their activity. Mol Cell Biochem 2017; 444:125-141. [DOI: 10.1007/s11010-017-3237-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
18
|
Andjelković U, Šrajer Gajdošik M, Gašo-Sokač D, Martinović T, Josić D. Foodomics and Food Safety: Where We Are. Food Technol Biotechnol 2017; 55:290-307. [PMID: 29089845 PMCID: PMC5654429 DOI: 10.17113/ftb.55.03.17.5044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The power of foodomics as a discipline that is now broadly used for quality assurance of food products and adulteration identification, as well as for determining the safety of food, is presented. Concerning sample preparation and application, maintenance of highly sophisticated instruments for both high-performance and high-throughput techniques, and analysis and data interpretation, special attention has to be paid to the development of skilled analysts. The obtained data shall be integrated under a strong bioinformatics environment. Modern mass spectrometry is an extremely powerful analytical tool since it can provide direct qualitative and quantitative information about a molecule of interest from only a minute amount of sample. Quality of this information is influenced by the sample preparation procedure, the type of mass spectrometer used and the analyst's skills. Technical advances are bringing new instruments of increased sensitivity, resolution and speed to the market. Other methods presented here give additional information and can be used as complementary tools to mass spectrometry or for validation of obtained results. Genomics and transcriptomics, as well as affinity-based methods, still have a broad use in food analysis. Serious drawbacks of some of them, especially the affinity-based methods, are the cross-reactivity between similar molecules and the influence of complex food matrices. However, these techniques can be used for pre-screening in order to reduce the large number of samples. Great progress has been made in the application of bioinformatics in foodomics. These developments enabled processing of large amounts of generated data for both identification and quantification, and for corresponding modeling.
Collapse
Affiliation(s)
- Uroš Andjelković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, RS-11000 Belgrade, Serbia
| | - Martina Šrajer Gajdošik
- Department of Chemistry, J. J. Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Dajana Gašo-Sokač
- Faculty of Food Technology, J. J. Strossmayer University of Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Tamara Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Warren Alpert Medical School, Brown University, 222 Richmond St, Providence, RI 02903, USA
| |
Collapse
|
19
|
Qi L, Hu M, Fu J, Liu Y, Wu M, Yu K, Liu X. Quantitative proteomic analysis of host epithelial cells infected by Salmonella enterica serovar Typhimurium. Proteomics 2017; 17. [PMID: 28544771 DOI: 10.1002/pmic.201700092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
Systems-level analyses have the capability to offer new insight into host-pathogen interactions on the molecular level. Using Salmonella infection of host epithelial cells as a model system, we previously analyzed intracellular bacterial proteome as a window into pathogens' adaptations to their host environment [Infect. Immun. 2015; J. Proteome Res. 2017]. Herein we extended our efforts to quantitatively examine protein expression of host cells during infection. In total, we identified more than 5000 proteins with 194 differentially regulated proteins upon bacterial infection. Notably, we found marked induction of host integrin signaling and glycolytic pathways. Intriguingly, up-regulation of host glucose metabolism concurred with increased utilization of glycolysis by intracellular Salmonella during infection. In addition to immunoblotting assays, we also verified the up-regulation of PARP1 in the host nucleus by selected reaction monitoring and immunofluorescence studies. Furthermore, we provide evidence that PARP1 elevation is likely specific to Salmonella infection and independent of one of the bacterial type III secretion systems. Our work demonstrates that unbiased high-throughput proteomics can be used as a powerful approach to provide new perspectives on host-pathogen interactions.
Collapse
Affiliation(s)
- Linlu Qi
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mo Hu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yanhua Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Kaiwen Yu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
20
|
Liu Y, Yu K, Zhou F, Ding T, Yang Y, Hu M, Liu X. Quantitative Proteomics Charts the Landscape of Salmonella Carbon Metabolism within Host Epithelial Cells. J Proteome Res 2016; 16:788-797. [DOI: 10.1021/acs.jproteome.6b00793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanhua Liu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kaiwen Yu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Zhou
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tao Ding
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yufei Yang
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mo Hu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry
and Synthetic and Functional Biomolecules Center, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolism"). Microbiol Spectr 2016; 3. [PMID: 26185075 DOI: 10.1128/microbiolspec.mbp-0002-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and--when available--the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle. Furthermore, we address the growing evidence that pathogen-specific factors may also trigger metabolic responses of the infected mammalian cells affecting the carbon and nitrogen metabolism as well as defense reactions. We also point out that many studies on the metabolic host cell responses induced by the pathogens have to be scrutinized due to the use of established cell lines as model host cells, as these cells are (in the majority) cancer cells that exhibit a dysregulated primary carbon metabolism. As the exact knowledge of the metabolic host cell responses may also provide new concepts for antibacterial therapies, there is undoubtedly an urgent need for host cell models that more closely reflect the in vivo infection conditions.
Collapse
|
22
|
Packialakshmi B, Liyanage R, Lay JO, Makkar SK, Rath NC. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides. PROTEOMICS INSIGHTS 2016; 7:1-9. [PMID: 27053921 PMCID: PMC4818023 DOI: 10.4137/pri.s31609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 12/25/2022]
Abstract
Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation.
Collapse
Affiliation(s)
- Balamurugan Packialakshmi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.; Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Jackson O Lay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Sarbjeet K Makkar
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.; Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| | - Narayan C Rath
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
23
|
A Comparison of the ATP Generating Pathways Used by S. Typhimurium to Fuel Replication within Human and Murine Macrophage and Epithelial Cell Lines. PLoS One 2016; 11:e0150687. [PMID: 26930214 PMCID: PMC4773185 DOI: 10.1371/journal.pone.0150687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/18/2016] [Indexed: 12/21/2022] Open
Abstract
The metabolism of S. Typhimurium within infected host cells plays a fundamental role in virulence since it enables intracellular proliferation and dissemination and affects the innate immune response. An essential requirement for the intracellular replication of S. Typhimurium is the need to regenerate ATP. The metabolic route used to fulfil this requirement is the subject of the present study. For infection models we used human and murine epithelial and macrophage cell lines. The epithelial cell lines were mICc12, a transimmortalised murine colon enterocyte cell line that shows many of the characteristics of a primary epithelial cell line, and HeLa cells. The model macrophage cell lines were THP-1A human monocyte/macrophages and RAW 264.7 murine macrophages. Using a mutational approach combined with an exometabolomic analysis, we showed that neither fermentative metabolism nor anaerobic respiration play major roles in energy generation in any of the cell lines studied. Rather, we identified overflow metabolism to acetate and lactate as the foremost route by which S. Typhimurium fulfils its energy requirements.
Collapse
|
24
|
Piscatelli HL, Li M, Zhou D. Dual 4- and 5-phosphatase activities regulate SopB-dependent phosphoinositide dynamics to promote bacterial entry. Cell Microbiol 2015; 18:705-19. [PMID: 26537021 DOI: 10.1111/cmi.12542] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 10/21/2015] [Accepted: 10/24/2015] [Indexed: 12/16/2022]
Abstract
Salmonella are able to invade non-phagocytic cells such as intestinal epithelial cells by modulating the host actin cytoskeleton to produce membrane ruffles. Two type III effector proteins SopB and SopE play key roles to this modulation. SopE is a known guanine nucleotide exchange factor (GEF) capable of activating Rac1 and CDC42. SopB is a phosphatidylinositol 4-phosphatase and 5-phosphatase promoting membrane ruffles and invasion of Salmonella through undefined mechanisms. Previous studies have demonstrated that the 4-phosphatase activity of SopB is required for PtdIns-3-phosphate (PtdIns(3)P) accumulation and SopB-mediated invasion. We show here that both the 4-phosphatase as well as the 5-phosphatase activities of SopB are essential in ruffle formation and subsequent invasion. We found that the 5-phosphatase activity of SopB is likely responsible for generating PtdIns-3,4-bisphosphate (PtdIns(3,4)P(2)) and subsequent recruitment of sorting nexin 9 (SNX9), an actin modulating protein. Intriguingly, the 4-phosphatase activity is responsible for the dephosphorylation of PtdIns(3,4)P(2) into PtdIns(3)P. Alone, neither activity is sufficient for ruffling but when acting in conjunction with one another, the 4-phosphatase and 5-phosphatase activities led to SNX9-mediated ruffling and Salmonella invasion. This work reveals the unique ability of bacterial effector protein SopB to utilize both its 4- and 5-phosphatase activities to regulate phosphoinositide dynamics to promote bacterial entry.
Collapse
Affiliation(s)
- Heather L Piscatelli
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Menghan Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Daoguo Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
25
|
Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Protein Cell 2015; 6:265-74. [PMID: 25722051 PMCID: PMC4383758 DOI: 10.1007/s13238-015-0136-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/21/2015] [Indexed: 02/08/2023] Open
Abstract
Elucidation of molecular mechanisms underlying host-pathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.
Collapse
|
26
|
Schatten H, Eisenstark A. Quantitative proteomic identification of host factors involved in the Salmonella typhimurium infection cycle. Methods Mol Biol 2015; 1225:29-45. [PMID: 25253246 PMCID: PMC7121999 DOI: 10.1007/978-1-4939-1625-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Quantitative proteomics, based on stable isotope labeling by amino acids in cell culture (SILAC), can be used to identify host proteins involved in the intracellular interplay with pathogens. This method allows identification of proteins subject to degradation or upregulation in response to intracellular infection. It can also be used to study intracellular dynamics (trafficking) of proteins in response to the infection. Here, we describe the analysis of changes in protein profiles determined in Golgi-enriched fractions isolated from cells that were either mock-infected or infected with Salmonella typhimurium. Using the SILAC approach we were able to identify 105 proteins in Golgi-enriched fractions that were significantly changed in their abundance as a result of Salmonella infection.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri USA
| | | |
Collapse
|
27
|
Chauhan AK, Kang SC. Thymol disrupts the membrane integrity of Salmonella ser. typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Res Microbiol 2014; 165:559-65. [DOI: 10.1016/j.resmic.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/14/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
28
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
29
|
Wang Y, Huang KY, Huo Y. Proteomic comparison between Salmonella Typhimurium and Salmonella Typhi. J Microbiol 2014; 52:71-6. [PMID: 24390840 DOI: 10.1007/s12275-014-3204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 11/26/2022]
Abstract
The genus Salmonella contains more than 2500 serovars. While most cause the self-limiting gastroenteritis, a few serovars can elicit typhoid fever, a severe systemic infection. S. enterica subsp. enterica serovar Typhimurium and S. Typhi are the representatives of the gastroenteritis and typhoid fever types of Salmonella. In this study, we adopted Stable Isotope Labeling with Amino acids in Cell culture (SILAC) technology to quantitatively compare the proteomes of the two serovars. We found several proteins with serovar-specific expression, which could be developed as new biomarkers for clinical serotype diagnosis. We found that flagella and chemotaxis genes were down-regulated in S. Typhi in comparison with S. Typhimurium. We attributed this observation to the fact that the smooth cellular structure of S. Typhi may better fit its systemic lifestyle. Instead of known virulence factors that were located within Salmonella Pathogenecity Islands, a number of core genes, which were involved in metabolism and transport of carbohydrates and amino acids, showed differential expression between the two serovars. Further studies on the roles of these differentially-expressed genes in the pathogenesis should be undertaken.
Collapse
Affiliation(s)
- Yue Wang
- Department of Gynecology and Obstetrics, Women's Hospital School of Medicine Zhejiang University, Hangzhou, P. R. China
| | | | | |
Collapse
|
30
|
Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig. Comp Immunol Microbiol Infect Dis 2013; 37:59-67. [PMID: 24268431 DOI: 10.1016/j.cimid.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023]
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is one of the most frequent Salmonella serotypes isolated from European pigs. Despite the advances in understanding the mechanisms involved in host-pathogen interactions and host cell responses to S. typhimurium, the global change that occurs in naturally exposed populations has been poorly characterized. Here, we present a proteomics study on intestinal mucosa of pigs naturally infected with S. typhimurium, in order to better understand the pathogenesis of salmonellosis and the pathways which might be affected after infection. Samples were analyzed by 2D-DIGE and 44 different proteins exhibited statistically significant differences. The data set was analyzed by employing the Ingenuity Pathway Analysis and the physiological function most significantly perturbed were immunological and infectious disease, cellular assembly and organization and metabolism. The pathways implicated in the porcine immune response to S. typhimurium were gluconeogenesis and Rho GDI/RhoA signaling, and our results suggest that keratins and the intermediate filaments could play an important role in the damage of the mucosa and in the success of infection. The role of these findings in salmonellosis has been discussed, as well as the importance of analyzing naturally infected animals to have a complete picture of the infection. Also, we compared the results found in this work with those obtained in a similar study using experimentally infected animals.
Collapse
|
31
|
Buckner MMC, Antunes LCM, Gill N, Russell SL, Shames SR, Finlay BB. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium. PLoS One 2013; 8:e69759. [PMID: 23922794 PMCID: PMC3724865 DOI: 10.1371/journal.pone.0069759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/02/2022] Open
Abstract
15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified role for this prostaglandin.
Collapse
Affiliation(s)
- Michelle M. C. Buckner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M Antunes
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Navkiran Gill
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie R. Shames
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
32
|
Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 2013; 3:24. [PMID: 23847769 PMCID: PMC3705551 DOI: 10.3389/fcimb.2013.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Center of Isotopologue Profiling, Technische Universität München Garching, Germany
| | | | | | | |
Collapse
|
33
|
Pieper R, Zhang Q, Clark DJ, Parmar PP, Alami H, Suh MJ, Kuntumalla S, Braisted JC, Huang ST, Tzipori S. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets. PLoS One 2013; 8:e66462. [PMID: 23840478 PMCID: PMC3686733 DOI: 10.1371/journal.pone.0066462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/05/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Shiga toxin (Stx)-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E) lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects. METHODOLOGY/PRINCIPAL FINDINGS Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition) and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB) suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029) and outer membrane (OM) assembly (LptD, MlaA, MlaC) suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3) with the bacterial cell envelope. SIGNIFICANCE Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM were altered. Enhanced expression of type III secretion system effectors correlated with a metabolic shift back to a more aerobic milieu in vivo. Apparent pathogen pattern recognition molecules from piglet intestinal secretions adhered strongly to the bacterial cell surface.
Collapse
Affiliation(s)
- Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| | - Quanshun Zhang
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - David J. Clark
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Hamid Alami
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Moo-Jin Suh
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - John C. Braisted
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Shih-Ting Huang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Saul Tzipori
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
34
|
Chua RYR, Wong SH. SNX3 recruits to phagosomes and negatively regulates phagocytosis in dendritic cells. Immunology 2013; 139:30-47. [PMID: 23237080 DOI: 10.1111/imm.12051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022] Open
Abstract
Phagocytes such as dendritic cells (DC) and macrophages employ phagocytosis to take up pathogenic bacteria into phagosomes, digest the bacteria and present the bacteria-derived peptide antigens to the adaptive immunity. Hence, efficient antigen presentation depends greatly on a well-regulated phagocytosis process. Lipids, particularly phosphoinositides, are critical components of the phagosomes. Phosphatidylinositol-3,4,5-triphosphate [PI(3,4,5)P3 ] is formed at the phagocytic cup, and as the phagosome seals off from the plasma membrane, rapid disappearance of PI(3,4,5)P3 is accompanied by high levels of phosphatidylinositol-3-phosphate (PI3P) formation. The sorting nexin (SNX) family consists of a diverse group of Phox-homology (PX) domain-containing cytoplasmic and membrane-associated proteins that are potential effectors of phosphoinositides. We hypothesized that SNX3, a small sorting nexin that contains a single PI3P lipid-binding PX domain as its only protein domain, localizes to phagosomes and regulates phagocytosis in DC. Our results show that SNX3 recruits to nascent phagosomes and silencing of SNX3 enhances phagocytic uptake of bacteria by DC. Furthermore, SNX3 competes with PI3P lipid-binding protein, early endosome antigen-1 (EEA1) recruiting to membranes. Our results indicate that SNX3 negatively regulates phagocytosis in DC possibly by modulating recruitment of essential PI3P lipid-binding proteins of the phagocytic pathways, such as EEA1, to phagosomal membranes.
Collapse
Affiliation(s)
- Rong Yuan Ray Chua
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
35
|
Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, Farhan H, Mazé A, Bumann D. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 2013; 9:e1003301. [PMID: 23633950 PMCID: PMC3636032 DOI: 10.1371/journal.ppat.1003301] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.
Collapse
Affiliation(s)
- Benjamin Steeb
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil A. Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Petra Tienz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Hesso Farhan
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
36
|
Khare S, Lawhon SD, Drake KL, Nunes JES, Figueiredo JF, Rossetti CA, Gull T, Everts RE, Lewin HA, Galindo CL, Garner HR, Adams LG. Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerance. PLoS One 2012; 7:e42127. [PMID: 22912686 PMCID: PMC3422314 DOI: 10.1371/journal.pone.0042127] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/03/2012] [Indexed: 12/31/2022] Open
Abstract
Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways and specifically modified mechanistic genes contributing to the colonization of Peyer's patch.
Collapse
Affiliation(s)
- Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kenneth L. Drake
- Seralogix, Limited Liability Company, Austin, Texas, United States of America
| | - Jairo E. S. Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Josely F. Figueiredo
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Carlos A. Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Cristi L. Galindo
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Harold R. Garner
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Leslie Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
37
|
Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim YM, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN, Hyduke DR, Adkins JN, Palsson BO. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 2012; 8:558. [PMID: 22735334 PMCID: PMC3397418 DOI: 10.1038/msb.2012.21] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/09/2012] [Indexed: 12/11/2022] Open
Abstract
Macrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying connections between activation and metabolic effectors.
Collapse
Affiliation(s)
- Aarash Bordbar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Monica L Mo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Bryan C Frank
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Daniel R Hyduke
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
Collado-Romero M, Martins RP, Arce C, Moreno Á, Lucena C, Carvajal A, Garrido JJ. An in vivo proteomic study of the interaction between Salmonella Typhimurium and porcine ileum mucosa. J Proteomics 2012; 75:2015-26. [DOI: 10.1016/j.jprot.2012.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/08/2011] [Accepted: 01/01/2012] [Indexed: 11/29/2022]
|
39
|
McDermott JE, Yoon H, Nakayasu ES, Metz TO, Hyduke DR, Kidwai AS, Palsson BO, Adkins JN, Heffron F. Technologies and approaches to elucidate and model the virulence program of salmonella. Front Microbiol 2011; 2:121. [PMID: 21687430 PMCID: PMC3108385 DOI: 10.3389/fmicb.2011.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/15/2011] [Indexed: 11/13/2022] Open
Abstract
Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches used to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated large amounts of data and necessitated the development of computational approaches for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird's eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.
Collapse
Affiliation(s)
- Jason E. McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Hyunjin Yoon
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | - Ernesto S. Nakayasu
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Thomas O. Metz
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Daniel R. Hyduke
- Systems Biology, University of California San DiegoSan Diego, CA, USA
| | - Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| | | | - Joshua N. Adkins
- Biological Separations and Mass Spectroscopy Group, Pacific Northwest National LaboratoryRichland WA, USA
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences UniversityPortland, OR, USA
| |
Collapse
|
40
|
Bewley MA, Pham TK, Marriott HM, Noirel J, Chu HP, Ow SY, Ryazanov AG, Read RC, Whyte MKB, Chain B, Wright PC, Dockrell DH. Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae. Mol Cell Proteomics 2011; 10:M111.008193. [PMID: 21474794 PMCID: PMC3108842 DOI: 10.1074/mcp.m111.008193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Indexed: 11/23/2022] Open
Abstract
Macrophages are central effectors of innate immune responses to bacteria. We have investigated how activation of the abundant macrophage lysosomal protease, cathepsin D, regulates the macrophage proteome during killing of Streptococcus pneumoniae. Using the cathepsin D inhibitor pepstatin A, we demonstrate that cathepsin D differentially regulates multiple targets out of 679 proteins identified and quantified by eight-plex isobaric tag for relative and absolute quantitation. Our statistical analysis identified 18 differentially expressed proteins that passed all paired t-tests (α = 0.05). This dataset was enriched for proteins regulating the mitochondrial pathway of apoptosis or inhibiting competing death programs. Five proteins were selected for further analysis. Western blotting, followed by pharmacological inhibition or genetic manipulation of cathepsin D, verified cathepsin D-dependent regulation of these proteins, after exposure to S. pneumoniae. Superoxide dismutase-2 up-regulation was temporally related to increased reactive oxygen species generation. Gelsolin, a known regulator of mitochondrial outer membrane permeabilization, was down-regulated in association with cytochrome c release from mitochondria. Eukaryotic elongation factor (eEF2), a regulator of protein translation, was also down-regulated by cathepsin D. Using absence of the negative regulator of eEF2, eEF2 kinase, we confirm that eEF2 function is required to maintain expression of the anti-apoptotic protein Mcl-1, delaying macrophage apoptosis and confirm using a murine model that maintaining eEF2 function is associated with impaired macrophage apoptosis-associated killing of Streptococcus pneumoniae. These findings demonstrate that cathepsin D regulates multiple proteins controlling the mitochondrial pathway of macrophage apoptosis or competing death processes, facilitating intracellular bacterial killing.
Collapse
Affiliation(s)
| | - Trong K. Pham
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | | | - Josselin Noirel
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | - Hseuh-Ping Chu
- ‖Department of Pharmacology University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Jersey, USA
| | - Saw Y. Ow
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | - Alexey G. Ryazanov
- ‖Department of Pharmacology University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Jersey, USA
| | - Robert C. Read
- From the ‡Medical School
- ‡‡Sheffield Teaching Hospitals and
| | | | - Benny Chain
- ¶Division of Infection and Immunity, University College London, London, UK
| | - Phillip C. Wright
- §ChELSI Institute, Department of Chemical and Processing Engineering, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
41
|
Rodríguez-Escudero I, Ferrer NL, Rotger R, Cid VJ, Molina M. Interaction of the Salmonella Typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Mol Microbiol 2011; 80:1220-40. [DOI: 10.1111/j.1365-2958.2011.07639.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
43
|
Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: anaplasma phagocytophilum and ehrlichia chaffeensis. Front Microbiol 2011; 2:24. [PMID: 21687416 PMCID: PMC3109344 DOI: 10.3389/fmicb.2011.00024] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 01/31/2011] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | | | | | | | | |
Collapse
|
44
|
Impact of salmonella infection on host hormone metabolism revealed by metabolomics. Infect Immun 2011; 79:1759-69. [PMID: 21321075 DOI: 10.1128/iai.01373-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The interplay between pathogens and their hosts has been studied for decades using targeted approaches, such as the analysis of mutants and host immunological responses. Although much has been learned from such studies, they focus on individual pathways and fail to reveal the global effects of infection on the host. To alleviate this issue, high-throughput methods, such as transcriptomics and proteomics, have been used to study host-pathogen interactions. Recently, metabolomics was established as a new method to study changes in the biochemical composition of host tissues. We report a metabolomic study of Salmonella enterica serovar Typhimurium infection. Our results revealed that dozens of host metabolic pathways are affected by Salmonella in a murine infection model. In particular, multiple host hormone pathways are disrupted. Our results identify unappreciated effects of infection on host metabolism and shed light on mechanisms used by Salmonella to cause disease and by the host to counter infection.
Collapse
|
45
|
Response of porcine intestinal in vitro organ culture tissues following exposure to Lactobacillus plantarum JC1 and Salmonella enterica serovar Typhimurium SL1344. Appl Environ Microbiol 2010; 76:6645-57. [PMID: 20639369 DOI: 10.1128/aem.03115-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of novel intervention strategies for the control of zoonoses caused by bacteria such as Salmonella spp. in livestock requires appropriate experimental models to assess their suitability. Here, a novel porcine intestinal in vitro organ culture (IVOC) model utilizing cell crown (CC) technology (CCIVOC) (Scaffdex) was developed. The CCIVOC model was employed to investigate the characteristics of association of S. enterica serovar Typhimurium strain SL1344 with porcine intestinal tissue following exposure to a Lactobacillus plantarum strain. The association of bacteria to host cells was examined by light microscopy and electron microscopy (EM) after appropriate treatments and staining, while changes in the proteome of porcine jejunal tissues were investigated using quantitative label-free proteomics. Exposure of porcine intestinal mucosal tissues to L. plantarum JC1 did not reduce the numbers of S. Typhimurium bacteria associating to the tissues but was associated with significant (P < 0.005) reductions in the percentages of areas of intestinal IVOC tissues giving positive staining results for acidic mucins. Conversely, the quantity of neutrally charged mucins present within the goblet cells of the IVOC tissues increased significantly (P < 0.05). In addition, tubulin-α was expressed at high levels following inoculation of jejunal IVOC tissues with L. plantarum. Although L. plantarum JC1 did not reduce the association of S. Typhimurium strain SL1344 to the jejunal IVOC tissues, detection of increased acidic mucin secretion, host cytoskeletal rearrangements, and proteins involved in the porcine immune response demonstrated that this strain of L. plantarum may contribute to protecting the pig from infections by S. Typhimurium or other pathogens.
Collapse
|
46
|
Initial receptor-ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis. Eur J Cell Biol 2010; 89:693-704. [PMID: 20579766 DOI: 10.1016/j.ejcb.2010.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/27/2010] [Accepted: 04/29/2010] [Indexed: 12/31/2022] Open
Abstract
The receptors engaged during recognition and phagocytic uptake of microorganisms and particles influence signaling events and diverse subcellular responses that occur during phagosome formation and maturation. However, pathogens generally have multiple ligands on their surface, making it difficult to dissect the roles of individual receptors during phagocytosis. Moreover, it remains elusive to which extent receptor-ligand interactions and early binding events define the subsequent intracellular fate of phagosomes. Here, we used latex beads coupled to single ligands, focusing on immunoglobulin G, mannan, bacterial lipopolysaccharides and avidin, and monitored: (1) phagocytic uptake rates, (2) fusion of phagosomes with lysosomal compartments, (3) the gene expression profile during phagocytosis, (4) the protein composition of mature phagosomes and (5) time-dependent dynamics of protein association with phagosomes in J774.A1 mouse macrophages. The differently coated latex beads were internalized at different rates and exhibited different kinetics of phagolysosomal fusion events dependent on their specific ligand. Furthermore, less than 60% of identified phagosomal proteins and only 10-15% of changes in gene expression were common to all investigated ligands. These findings demonstrate that each single ligand induced a distinct pattern of genes and a different protein composition of phagosomes. Taken together, our data argue that phagocytic receptor-specific programs of signaling events direct phagosomes to different physiological states and support the existence of a specific receptor-ligand 'signature' during the whole process of phagocytosis.
Collapse
|
47
|
Kim K, Yang E, Vu GP, Gong H, Su J, Liu F, Lu S. Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol 2010; 10:166. [PMID: 20529336 PMCID: PMC2897801 DOI: 10.1186/1471-2180-10-166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 06/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied. RESULTS Using stable isotope labeling coupled with mass spectrometry, we performed quantitative proteomic analysis of Salmonella enterica serovar Enteritidis and identified 76 proteins whose expression is modulated upon exposure to H2O2. SPI-1 effector SipC was expressed about 3-fold higher and SopB was expressed approximately 2-fold lower in the presence of H2O2, while no significant change in the expression of another SPI-1 protein SipA was observed. The relative abundance of SipA, SipC, and SopB was confirmed by Western analyses, validating the accuracy and reproducibility of our approach for quantitative analysis of protein expression. Furthermore, immuno-detection showed substantial expression of SipA and SipC but not SopB in the late phase of infection in macrophages and in the spleen of infected mice. CONCLUSIONS We have identified Salmonella proteins whose expression is modulated in the presence of H2O2. Our results also provide the first direct evidence that SipC is highly expressed in the spleen at late stage of salmonellosis in vivo. These results suggest a possible role of SipC and other regulated proteins in supporting survival and replication of Salmonella under oxidative stress and during its systemic infection in vivo.
Collapse
Affiliation(s)
- Kihoon Kim
- University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Bhavsar AP, Auweter SD, Finlay BB. Proteomics as a probe of microbial pathogenesis and its molecular boundaries. Future Microbiol 2010; 5:253-65. [DOI: 10.2217/fmb.09.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Proteomic technology offers an unprecedented systematic approach to investigate the protein complement of any organism. The field of microbial pathogenesis has greatly benefited from other systems approaches, and the application of proteomics to the study of infectious agents is beginning to emerge. Such applications include unambiguously identifying complete virulence factor inventories, studying the response of both host and pathogen to the infection process and elucidating mechanistic actions of virulence factors as they interface with host cells. This review will highlight examples where proteomic studies have contributed to our understanding of pathogenesis in these areas, with an emphasis on pathogens that employ type III and type IV secretion systems. In addition, we will discuss areas where proteomics may help shape further investigation and discovery in this field.
Collapse
Affiliation(s)
- Amit P Bhavsar
- The University of British Columbia, Michael Smith Laboratories, 301-2185 East Mall Road, Vancouver, BC, V6T 1Z4, Canada
| | - Sigrid D Auweter
- The University of British Columbia, Michael Smith Laboratories, 301-2185 East Mall Road, Vancouver, BC, V6T 1Z4, Canada
| | - B Brett Finlay
- The University of British Columbia, Michael Smith Laboratories, 301–2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
49
|
Kint G, Fierro C, Marchal K, Vanderleyden J, De Keersmaecker SCJ. Integration of ‘omics’ data: does it lead to new insights into host–microbe interactions? Future Microbiol 2010; 5:313-28. [DOI: 10.2217/fmb.10.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The interaction between both beneficial and pathogenic microbes and their host has been the subject of many studies. Although the field of systems biology is rapidly evolving, the use of a systems biology approach by means of high-throughput techniques to study host–microbe interactions is just beginning to be explored. In this review, we discuss some of the most recently developed high-throughput ‘omics’ techniques and their use in the context of host–microbe interaction. Moreover, we highlight studies combining several techniques that are pioneering the integration of ‘omics’ data related to host–microbe interactions. Finally, we list the major challenges ahead for successful systems biology research on host–microbe interactions.
Collapse
Affiliation(s)
- Gwendoline Kint
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Carolina Fierro
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Kathleen Marchal
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial & Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | | |
Collapse
|
50
|
Windle HJ, Brown PA, Kelleher DP. Proteomics of bacterial pathogenicity: therapeutic implications. Proteomics Clin Appl 2010; 4:215-27. [PMID: 21137045 DOI: 10.1002/prca.200900145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 01/04/2023]
Abstract
Identification of the molecular mechanisms of host-pathogen interaction is becoming a key focus of proteomics. Analysis of these interactions holds promise for significant developments in the identification of new therapeutic strategies to combat infectious diseases, a process that will also benefit parallel improvements in molecular diagnostics, biomarker identification and drug discovery. This review highlights recent advances in functional proteomics initiatives in infectious disease with emphasis on studies undertaken within physiologically relevant parameters that enable identification of the infectious proteome rather than that of the vegetative state. Deciphering the molecular details of what constitutes physiologically relevant host-pathogen interactions remains an underdeveloped aspect of research into infectious disease. The magnitude of this deficit will be largely influenced by the ease with which model systems can be established to investigate such interactions. As the selective pressures exerted by the host on an infecting pathogen are numerous, the adequacy of certain model systems should be considered carefully.
Collapse
Affiliation(s)
- Henry J Windle
- Institute of Molecular Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| | | | | |
Collapse
|