1
|
Zhang Y, Cheng H, Yu P, Wang S, Dong H, Lu S, Yang R, Li B, Luo J, Mao R, Zhang Z, Qi Y, Chen X, Ding J, He Z, Zhang J, Zhao T, Chen X, Lin R, Li H, Tian Y, Wu Y. High-throughput single-cell analysis reveals Omp38-specific monoclonal antibodies that protect against Acinetobacter baumannii infection. Emerg Microbes Infect 2025; 14:2437243. [PMID: 39614635 DOI: 10.1080/22221751.2024.2437243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
Infections caused by Acinetobacter baumannii (A. baumannii) have emerged as a global public health concern because of high pathogenicity of this bacterium. Monoclonal antibodies (mAbs) have a lower likelihood of promoting drug resistance and offer targeted treatment, thereby reducing potential adverse effects; however, the therapeutic potential of mAbs targeting A. baumannii has not been fully characterized. In this study, mAbs against the outer membrane proteins (OMPs) of A. baumannii were isolated in a high-throughput manner. The ability of Omp38-specific mAbs to bind to A. baumannii strains from diverse sources was confirmed via enzyme-linked immunosorbent assay (ELISA). Intravenous administration of the Omp38-specific mAbs significantly improved the survival rate and reduced the bacterial load in a mouse model of lethal A. baumannii infection. Flow cytometry and ELISA confirmed that immune cell infiltration and cytokine production, respectively, decreased in a mouse model of sublethal A. baumannii infection. In addition, analysis of the Omp38-mAb C3 binding conformation revealed the potential mechanism of broad-spectrum binding activity of this mAb against A. baumannii. Taken together, these findings indicate that mAbs against Omp38 facilitate bacterial clearance from host, minimize inflammatory mediator release and reduce host damage, highlighting the potential of Omp38-specific mAbs in the clinical treatment of A. baumannii infection.
Collapse
Affiliation(s)
- Yiwei Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hao Cheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Peng Yu
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Shufeng Wang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hui Dong
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Song Lu
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Ruiqi Yang
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Baiqing Li
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jie Luo
- The First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ruihan Mao
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhaohui Zhang
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yong Qi
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Xiaohua Chen
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jinya Ding
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zemin He
- The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jingbo Zhang
- General Hospital of Central Theater Command, Wuhan, Hubei, People's Republic of China
| | - Tingting Zhao
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, People's Republic of China
| | - Rong Lin
- Sanya People's Hospital, Sanya, People's Republic of China
| | - Haibo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yi Tian
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Chongqing International Institute for Immunology, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Taesoongnern K, Thirapanmethee K, Chomnawang MT. Molecular sequence typing of carbapenem-resistant Acinetobacter baumannii clinical isolates: A comprehensive global update. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 131:105762. [PMID: 40349940 DOI: 10.1016/j.meegid.2025.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/01/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The emergence and spread of antimicrobial resistance (AMR) pose significant challenges to public health worldwide. Understanding the dynamics of AMR within bacterial populations is crucial for devising effective strategies to mitigate its impact. Clonal lineages, representing genetically related group of bacteria, play a vital role in shaping the landscape of AMR dissemination. This review endeavors to provide a comprehensive update on the molecular sequence typing of carbapenem-resistant Acinetobacter baumannii (CRAB) clinical isolates across various geographical regions, with particular emphasis on the application of multilocus sequence typing (MLST). CRAB poses a silent threat in healthcare settings, emerging as a public health concern globally corporate with limited treatment options due to the resistance to carbapenems, the last-line antibiotics, leading to increased mortality rates. This review will serve as invaluable resources, offering in-depth analysis and interpretation of epidemiological data related to CRAB. Through meticulous examination of this data, healthcare professionals will be equipped with a nuanced understanding of the spread and prevalence of this pathogen across diverse geographic regions. Additionally, by incorporating evidence-based strategies informed by epidemiological insights, stakeholders can enhance their ability to effectively combat this formidable pathogen, thereby safeguarding public health and promoting optimal patient outcomes.
Collapse
Affiliation(s)
- Kamonwan Taesoongnern
- Biopharmaceutical Sciences Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Antimicrobial Resistance Interdisciplinary Center (AMRIC), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Krit Thirapanmethee
- Antimicrobial Resistance Interdisciplinary Center (AMRIC), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Antimicrobial Resistance Interdisciplinary Center (AMRIC), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Devnath K, Pathak A, Bakht P, Pathania R. Arginine utilization in Acinetobacter baumannii is essential for pneumonia pathogenesis and is regulated by virulence regulator GacA. Infect Immun 2025; 93:e0057224. [PMID: 40172535 PMCID: PMC12070743 DOI: 10.1128/iai.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/24/2025] [Indexed: 04/04/2025] Open
Abstract
Nutrient availability in infection niches and the ability of bacterial pathogens to alter their metabolic landscape to utilize diverse carbon sources play a major role in determining the extent of pathogenesis. The vertebrate lung is rich in amino acids, such as arginine, which are available to the pathogens as a nutrient source to establish infection. Arginine is also used by the host nitric oxide synthase to synthesize nitric oxide, which is used against invading pathogens and for lung tissue repair. In this study, we have focused on the arginine catabolic pathway and its importance in the pathophysiology of Acinetobacter baumannii, a nosocomial pathogen, which is one of the major causes of ventilator-associated pneumonia, catheter-associated urinary tract infection, and so on. We show that the arginine succinyltransferase (AST) pathway is the predominant arginine catabolic pathway in A. baumannii. The genes of the AST pathway are arranged in an operon and are conserved in Acinetobacter spp. We show that the deletion mutant of the AST pathway failed to utilize arginine as a carbon source, and its virulence was severely compromised in an in vivo murine pneumonia infection model. We identified GacA as the positive regulator of the AST operon in A. baumannii, which is different from other bacterial pathogens. Our study highlights the importance of arginine utilization in the pathophysiology and virulence of A. baumannii. Owing to its importance in the pathophysiology of A. baumannii, the arginine catabolic pathway can further be investigated to assess its suitability as an antibacterial drug target.
Collapse
Affiliation(s)
- Kuldip Devnath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Perwez Bakht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
4
|
Hosseini SF, Jalali Nadoushan M, Fekrirad Z, Rasooli I. Omp34-Mediated Acinetobacter baumannii Invasion of Human Cervical Carcinoma Epithelial, HeLa Cells, and the Influence of Anti-Omp34 Antibodies. Anal Cell Pathol (Amst) 2025; 2025:1931119. [PMID: 40256153 PMCID: PMC12006715 DOI: 10.1155/ancp/1931119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Acinetobacter baumannii is known for its ability to invade and persist within eukaryotic cells, impacting infection outcomes and disease progression. This study investigates the role of Omp34, a key outer membrane protein (Omp), in A. baumannii interaction with epithelial cells and the protective effects of anti-Omp34 antibodies (Abs). Omp34 is a key regulator of A. baumannii epithelial cell invasion, influencing bacterial adherence, internalization, and intracellular proliferation. The presence of anti-Omp34 Abs mitigates A. baumannii-induced cellular damage and enhances bacterial clearance. The process involved the expression and purification of Omp34, which in turn induced Abs in BALB/c mice against Omp34. The acute toxicity of Omp34 was studied through a histological analysis conducted on six distinct organs in mice. HeLa cells were infected by A. baumannii ATCC 19606 and a clinical strain. Various aspects of A. baumannii behavior with HeLa cells, including HeLa cell viability, adherence, serum resistance, cell internalization, and intracellular proliferation with and without anti-Omp34 sera. Cytoskeleton inhibitors were used to study the potential roles played in the process of A. baumannii invasion by microfilaments and microtubules. Omp34 effectively triggered Ab production in mice without resulting in any toxicity. The assay for serum resistance revealed potent bactericidal and antibiofilm effects on both A. baumannii strains. Bacterial internalization was constrained when actin polymerization was inhibited. Examination under the microscope revealed instances of adherence, alterations in the cell membrane, apoptosis, vacuolization, and cell damage. HeLa cells exposed to anti-Omp34 serum showed decreased cell damage. The results provide substantial evidence of the adherence capacity of A. baumannii to proliferate in the epithelial cells. In conclusion, Omp34 plays a substantial role in regulating interactions between epithelial cells and A. baumannii, the multifaceted nature of which intricately modifies the trajectory of infection within host cells by A. baumannii.
Collapse
Affiliation(s)
| | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran
| |
Collapse
|
5
|
Wittmers F, Poirier C, Bachy C, Eckmann C, Matantseva O, Carlson CA, Giovannoni SJ, Goodenough U, Worden AZ. Symbionts of predatory protists are widespread in the oceans and related to animal pathogens. Cell Host Microbe 2025; 33:182-199.e7. [PMID: 39947132 DOI: 10.1016/j.chom.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 05/09/2025]
Abstract
Protists are major predators of ocean microbial life, with an ancient history of entanglements with prokaryotes, but their delicate cell structures and recalcitrance to culturing hinder exploration of marine symbioses. We report that tiny oceanic protistan predators, specifically choanoflagellates-the closest living unicellular relatives of animals-and uncultivated MAST-3 form symbioses with four bacterial lineages related to animal symbionts. By targeting living phagotrophs on ship expeditions, we recovered genomes from physically associated uncultivated Legionellales and Rickettsiales. The evolutionary trajectories of Marinicoxiellaceae, Cosmosymbacterales, Simplirickettsiaceae, and previously named Gamibacteraceae vary, including host-engagement mechanisms unknown in marine bacteria, horizontally transferred genes that mediate pathogen-microbiome interactions, and nutritional pathways. These symbionts and hosts occur throughout subtropical and tropical oceans. Related bacteria were detected in public data from freshwater, fish, and human samples. Symbiont associations with animal-related protists, alongside relationships to animal pathogens, suggest an unexpectedly long history of shifting associations and possibilities for host expansion as environments change.
Collapse
Affiliation(s)
- Fabian Wittmers
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Olga Matantseva
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Craig A Carlson
- The Marine Science Institute, Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Ursula Goodenough
- Department of Biology, Washington University St. Louis, St. Louis, MO, USA
| | - Alexandra Z Worden
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Max Planck Institute for Evolutionary Biology, Plön, Germany; Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Yousaf A, Ullah MH, Nawaz H, Majeed MI, Rashid N, Alshammari A, Albekairi NA, Ali A, Hussain M, Salfi AB, Aslam MA, Idrees K, Ditta A. SERS-assisted characterization of cell biomass from biofilm-forming Acinetobacter baumannii strains using chemometric tools. RSC Adv 2025; 15:4581-4592. [PMID: 39931412 PMCID: PMC11809493 DOI: 10.1039/d4ra06267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Acinetobacter baumannii (A. baumannii) is an emerging Gram-negative nosocomial pathogen responsible for infection on a global scale. It has the ability to develop biofilms on different surfaces, especially abiotic surfaces, which is considered a major contributor of its pathogenicity. Surface-enhanced Raman spectroscopy (SERS) holds great potential as an effective method for identifying and characterizing the biochemical composition of biofilm-forming species. In this study, cell mass samples from different strains of A. baumannii, categorized based on their biofilm-forming ability (strong, medium and non-biofilm forming) using a 96-well microtiter plate assay (MTP), were analyzed by SERS. The identified spectral features of the SERS spectra were used to characterize bacterial strains capable of producing biofilms. Silver nanoparticles (Ag-NPs) served as the SERS substrate to differentiate biofilm-forming strains of A. baumannii. Chemometric tools, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were employed for the classification and differentiation of SERS spectra from bacterial strains with varying biofilm-producing capacities, achieving 100% sensitivity, 94.3% specificity, and an area under the curve (AUC) value of 0.81 through Monte Carlo cross-validation. Furthermore, K-fold (Leave-K-out cross-validation (LKOCV)) was applied to verify the robustness of the PLS-DA model, and the AUC value was found to be 0.90, with a sensitivity of 100% and specificity of 98%. These results demonstrate that the PLS-DA model is highly effective for the differentiation and classification of bacterial strains with varying capacities for biofilm production.
Collapse
Affiliation(s)
- Arslan Yousaf
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Hafeez Ullah
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Nosheen Rashid
- Department of Chemistry, University of Education, Faisalabad Campus Faisalabad (38000) Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post Box 2455 Riyadh 11451 Saudi Arabia
| | - Arslan Ali
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Munawar Hussain
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Abu Bakar Salfi
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Kinza Idrees
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Agriculture Faisalabad Faisalabad (38000) Pakistan
| | - Allah Ditta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital Aachen 52074 Germany
| |
Collapse
|
7
|
Pană AG, Șchiopu P, Țoc DA, Neculicioiu VS, Butiuc-Keul A, Farkas A, Dobrescu MȘ, Flonta M, Costache C, Szász IÉ, Junie LM. Clonality and the Phenotype-Genotype Correlation of Antimicrobial Resistance in Acinetobacter baumannii Isolates: A Multicenter Study of Clinical Isolates from Romania. Microorganisms 2025; 13:176. [PMID: 39858944 PMCID: PMC11767935 DOI: 10.3390/microorganisms13010176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Antibiotic resistance is on the WHO's top 10 list of global public health threats due to its rapid emergence and spread but also because of the high morbidity and mortality associated with it. Amongst the main species driving this phenomenon is A. baumannii, a member of the ESKAPE group of medical assistance-associated infections causing species famous for its extensively drug-resistant phenotypes. Our findings note a 91.52% frequency of extensively drug-resistant carbapenem-resistant A. baumannii (XDR CRAB) phenotype amongst clinical isolates from multiple hospitals in two major cities from northwestern and central Romania, harboring multiple antibiotic resistance genes such as blaOXA-23-like in 108 (91.5%) isolates, blaOXA-24/40-like in 88 (74.6%) isolates, blaNDM in 29 (25%) isolates, ArmA in 75 (63.6%) isolates, and ant(3″)-I in 69 (58.5%) isolates and sul1 in 113 (95.76%) isolates. The isolates, although nearly identical in phenotype, displayed different genotypical profiles, with varying degrees of similarity across hospitals and cities, raising the possibility of both local outbreaks of a single clone and widespread dissemination of resistant isolates.
Collapse
Affiliation(s)
- Adrian-Gabriel Pană
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 4–6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania; (D.A.Ț.); (V.S.N.); (C.C.); (L.-M.J.)
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Pavel Șchiopu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 4–6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania; (D.A.Ț.); (V.S.N.); (C.C.); (L.-M.J.)
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dan Alexandru Țoc
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 4–6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania; (D.A.Ț.); (V.S.N.); (C.C.); (L.-M.J.)
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vlad Sever Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 4–6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania; (D.A.Ț.); (V.S.N.); (C.C.); (L.-M.J.)
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (A.B.-K.); (A.F.); (M.-Ș.D.)
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Anca Farkas
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (A.B.-K.); (A.F.); (M.-Ș.D.)
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Matei-Ștefan Dobrescu
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania; (A.B.-K.); (A.F.); (M.-Ș.D.)
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogalniceanu Street, 400084 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babes-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Mirela Flonta
- Infectious Disease Clinical Hospital, 23 Iuliu Moldovan Street, 400003 Cluj-Napoca, Romania;
| | - Carmen Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 4–6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania; (D.A.Ț.); (V.S.N.); (C.C.); (L.-M.J.)
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Cluj-Napoca Emergency Clinical County Hospital, 3–5 Clinicilor Street, 400347 Cluj-Napoca, Romania
| | - Izabella Éva Szász
- Târgu-Mureș Emergency Clinical County Hospital, 50 Gheorghe Marinescu Street, 540136 Târgu-Mureș, Romania;
| | - Lia-Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 4–6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania; (D.A.Ț.); (V.S.N.); (C.C.); (L.-M.J.)
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Liu L, Huang Y, Wang Y, Jiang Y, Liu K, Pei Z, Li Z, Zhu Y, Liu D, Li X. Molecular Epidemiology and Genetic Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolates from the ICU of a Tertiary Hospital in East China. Infect Drug Resist 2024; 17:5925-5945. [PMID: 39759767 PMCID: PMC11699857 DOI: 10.2147/idr.s491858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose To evaluate the clinical characteristics, antimicrobial resistance (AMR) phenotypes and genotypes, and homology features of carbapenem-resistant Acinetobacter baumannii (CRAB) in intensive care unit (ICU) and to provide basis for effectively prevention, control and treatment of nosocomial infections caused by CRAB. Methods A total of 39 CRAB strains isolated from hospitalized patients in the ICU and neurosurgical ICU (NICU) between 2020 and 2023 were subjected to antimicrobial susceptibility testing and whole-genome sequencing (WGS). Virulence factor genes (VFGs), antimicrobial resistance genes (ARGs), multilocus sequencing typing (MLST), complete genome multilocus sequencing typing (cgMLST), average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses were performed using WGS. Results All CRAB strains were 100% resistant to ciprofloxacin, ceftazidime, piperacillin/tazobactam, and ticarcillin/clavulanic acid. A total of 48 antimicrobial resistance genes (ARGs) were found in the 39 CRAB strains, including blaOXA-66, blaOXA-23, blaADC-30, blaADC-73, gyrA, ant(3″)-IIa, aph(3″)-Ib, aph(6)-Id, tetB, tetR, sul1, sul2, LpxC and LpxA which confered resistance to carbapenems, cephalosporins, fluoroquinolones, aminoglycosides, tetracycline and sulfonamides. There were 128 VFGs, including genes encoding the AdeFGH efflux pump, lipopolysaccharide (LpsBLC), outer membrane protein A (OmpA), penicillin-binding protein (PbpG), biofilm-associated proteins (bap, pgaBCD, CsuABCDE), type VI secretion system protein (Tss), quorum sensing protein (AbaI/AbaR). Six clonal lineages were identified by Oxford MLST method, whereas one sequence type (ST2) was identified using the Pasteur MLST method. ANI analysis, heat map of SNP analysis, and phylogenetic tree based on core SNP revealed six clusters, and the strain classification results were consistent with these different methods. Ten clonal lineages were identified by cgMLST. Conclusion The CRAB strains were ST2 clones accompanied by severe resistance to commonly used antibiotics and abundant ARGs and VFGs in genotype. Strict measures should be implemented to prevent and control transmissions and infections. CgMLST and SNPs analyses showed excellent discriminatory power in homology analysis.
Collapse
Affiliation(s)
- Lili Liu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yuan Huang
- Department of Science and Education, Anqing Municipal Hospital, Anqing City, Anhui Province, People’s Republic of China
| | - Yaping Wang
- Department of Clinical Laboratory, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yunlan Jiang
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Kang Liu
- Department of Clinical Laboratory, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Zhongxia Pei
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Zhiping Li
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Yuqiong Zhu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Dan Liu
- Department of Nosocomial Infection, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| | - Xiaoyue Li
- Subdean Office, Anqing First People’s Hospital of Anhui Medical University, Anqing City, Anhui Province, People’s Republic of China
| |
Collapse
|
9
|
Hessami A, Mogharari Z, Rahim F, Khalesi B, Jamal Nassrullah O, Reza Rahbar M, Khalili S, Jahangiri A. In silico design of a novel hybrid epitope-based antigen harboring highly exposed immunogenic peptides of BamA, OmpA, and Omp34 against Acinetobacter baumannii. Int Immunopharmacol 2024; 142:113066. [PMID: 39241518 DOI: 10.1016/j.intimp.2024.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Acinetobacter baumannii, is among the highest priority bacteria according to the WHO categorization which necessitate the exploration of alternative strategies such as vaccination. OmpA, BamA, and Omp34 are assigned as appropriate antigens to serve in vaccine development against this pathogen. Experimentally validated exposed epitopes of OmpA and Omp34 along with selected exposed epitopes predicted by an integrative in silico approach were represented by the barrel domain of BamA as a scaffold. Among the 8 external loops of BamA, 5 loops were replaced with selected loops of OmpA and Omp34. The designed antigen was analyzed regarding the physicochemical properties, antigenicity, epitope retrieval, topology, structure, and safety. BamA is a two-domain OMP with a 16-stranded barrel in which L4, L6, and L7 were the longest loops of BamA in order. The designed antigen consisted of 478 amino acids with antigen probability of 0.7793. The novel antigen was a 16-stranded barrel. No identical 8-meric peptides were found in the human proteome against the designed antigen sequence. The designed construct was safe regarding the allergenicity, toxicity, and human proteome reactivity. The designed antigen could develop higher protection against A. baumannii in comparison to either OmpA, BamA, or Omp34 alone.
Collapse
Affiliation(s)
- Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Rahim
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares, P.O. Box: 14115-154, Tehran, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | | | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Oh JH, Park J, Kang HK, Park HJ, Park Y. Tissue damage alleviation and mucin inhibition by P5 in a respiratory infection mouse model with multidrug-resistant Acinetobacter baumannii. Biomed Pharmacother 2024; 181:117724. [PMID: 39612861 DOI: 10.1016/j.biopha.2024.117724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Although the discovery of antibiotics has made significant positive contributions to public health and medicine, it now poses a serious threat due to the increasing antibiotic resistance in various bacteria. Carbapenem-resistant and multidrug-resistant (MDR) Acinetobacter baumannii is spreading globally, exacerbating respiratory diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Antimicrobial peptides (AMPs), with broad antibacterial activity, have emerged as promising alternatives for treating MDR A. baumannii infections. The AMP P5 exhibits strong antibacterial and anti-biofilm activities against MDR A. baumannii strains isolated from patients. Compared to colistin, a commonly used antibiotic for MDR A. baumannii infections, P5 has a lower potential for inducing drug resistance. Additionally, P5 displays stability in human serum and minimal cytotoxicity in human cell lines. P5 not only suppressed the overexpression of pro-inflammatory cytokines and inflammatory transcription factors in lung epithelial cells (A549) and in a mouse model of respiratory infection but also alleviated lung tissue damage caused by infection. Moreover, P5 effectively alleviated excessive mucin secretion in vitro and in vivo by inhibiting inflammatory transcription factors, epidermal growth factor receptor, and signal transducer and activator of transcription 3-key regulators of mucin expression, a hallmark of inflammatory respiratory diseases. These findings highlight the therapeutic potential of P5 in treating MDR A. baumannii infections and associated inflammatory respiratory conditions.
Collapse
Affiliation(s)
- Jun Hee Oh
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Republic of Korea
| | - Hee Kyoung Kang
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Hee Joo Park
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea
| | - Yoonkyung Park
- Department of Integrative Biological Sciences, Chosun University Gwangju 61452, Republic of Korea; Research Center for Proteinaceous Materials (RCPM), Chosun University Gwangju 61452, Republic of Korea.
| |
Collapse
|
11
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Rajabzadeh M, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Characterizing the interplay between Acinetobacter baumannii, A549 cells, and anti-Omp34 antibodies: implications for adherence, internalization, and cytotoxicity. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01218-4. [PMID: 39480642 DOI: 10.1007/s12223-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Acinetobacter baumannii thrives within eukaryotic cells, influencing persistence, treatment approaches, and progression of disease. We probed epithelial cell invasion by A. baumannii and the influence of antibodies raised to outer membrane protein 34 (Omp34) on epithelial interactions. We expressed and purified recombinant Omp34 and induced anti-Omp34 antibodies in Bagg albino or BALB/c mice. Omp34 was evaluated for acute toxicity in mice through histological analysis of six organs. The host cell line, A549, was exposed to both A. baumannii 19606 and a clinical isolate. The study also investigated serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells, with and without anti-Omp34 sera, utilizing cell culture techniques and light microscopy. A549 cell viability was evaluated by A. baumannii challenge and exposure to anti-Omp34 sera. Actin disruption experiments using cytochalasin D probed microfilament and microtubule roles in A. baumannii invasion. Omp34 prompted antibody production without toxicity in mice. The serum showed bactericidal effects on both strains. Additionally, both A. baumannii strains were found to form biofilms. Omp34 serum was observed to decrease biofilm formation, bacterial adherence, internalization, and proliferation in A549 cells. Furthermore, the use of anti-Omp34 serum enhanced the post-infection survival of the host cell. Pre-exposure of A549 cells to cytochalasin D reduced bacterial internalization, highlighting the role of actin polymerization in the invasion process. Microscopic analysis revealed various interactions, such as adherence, membrane alterations, vacuolization, apoptosis, and cellular damage. Anti-Omp34 serum-exposed A549 cells were protected and showed reduced damage. The findings reveal that A. baumannii can significantly multiply intracellularly within host cells. This suggests the bacterium's ability to establish an environment conducive to its replication by preventing fusion with degradative lysosomes and inhibiting acidification. This finding contributes to the understanding of A. baumannii's intracellular persistence and highlights the role of Omp34 in influencing apoptosis, autophagy, and bacterial adherence, which may impact the development of effective treatments against A. baumannii infections.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.
- Department of Biology, and Molecular Microbiology Research Center, Shahed University, Tehran-Qom Expressway, Tehran, 3319118651, Iran.
| |
Collapse
|
13
|
Subbarayudu S, Snega Priya P, Rajagopal R, Alfarhan A, Guru A, Arockiaraj J. Impact of acidic and alkaline conditions on Staphylococcus aureus and Acinetobacter baumannii interactions and their biofilms. Arch Microbiol 2024; 206:426. [PMID: 39375235 DOI: 10.1007/s00203-024-04142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
Bacterial biofilms pose significant challenges due to their association with antibiotic resistance, metabolic adaptation, and survival under harsh conditions. Among notable pathogens forming biofilms, Staphylococcus aureus and Acinetobacter baumannii are concerning pathogens in nosocomial settings. However, their behaviour under acidic (pH 4.5) and alkaline (pH10.5) conditions, especially in co-culture setups, remains insufficiently understood. This study investigates these aspects, by examining growth rates, biofilm formation, pH shifts, phenotypic analysis, and gene expression profiles. The results showed A. baumannii exhibited reduced growth and biofilm formation at pH 4.5, while S. aureus showed slow growth and low biofilm formation at pH10.5 in mono-cultures. S. aureus leaned towards an acidic pH (6-6.5), whereas A. baumannii shifted towards an alkaline pH (8-9). In co-culture environments, growth rates and biofilm formation increased across all pH conditions, converging towards a neutral pH over time. Phenotypic motility assays indicated that A. baumannii exhibited greater motility in alkaline conditions, while S. aureus showed increased staphyloxanthin production under acidic conditions. Gene expression analyses revealed that the fibronectin-binding protein A (FnbA) and N-acetylglucosaminyl-transferase (icaA) genes, responsible for initial attachment during biofilm formation, were highly expressed in acidic co-culture condition but poorly expressed in alkaline condition. In A. baumannii, the outer membrane protein A (OmpA) gene associated with adhesion and virulence, was upregulated in co-culture. The LuxR gene involved in quorum sensing was upregulated in acidic conditions and poorly expressed at pH 10.5. This study elucidates the metabolic adaptability and biofilm formation tendencies of S. aureus towards acidic conditions and A. baumannii towards alkaline conditions, providing insights for better management of biofilm-related infections.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - P Snega Priya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
14
|
Singothu S, Devsani N, Jahidha Begum P, Maddi D, Bhandari V. Molecular docking and molecular dynamics studies of natural products unravel potential inhibitors against OmpA of Acinetobacter baumannii. J Biomol Struct Dyn 2024; 42:9064-9075. [PMID: 37646649 DOI: 10.1080/07391102.2023.2250446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Emerging antimicrobial resistance has highlighted the need to design more effective antibiotics to treat deadly bacterial infections. Acinetobacter baumannii's outer membrane protein A (OmpA) is a critical virulence component involved in biofilm formation, immunomodulation, and antibiotic resistance, which characterizes it as a potential therapeutic target. The present study aimed to screen the natural product database (>1,00,000) to identify the potential inhibitor against OmpA. Molecular docking studies revealed that 10 compounds had good docking scores (≤ -7 kcal/mol) compared to the reported inhibitor epiestriol (-3.079). Further, these 10 compounds were subjected to ADME analysis and MMGBSA analysis. Based on MMGBSA results, we selected 5 compounds [NP-1 (MolPort-039-337-117), NP-5(MolPort-019-932-973), NP-6 (MolPort-005-948-336), NP-8(MolPort-042-673-978) and NP-9(MolPort-042-673-766)] with high binding affinity. Molecular dynamics simulation found that NP-5, NP-8, and NP-9 were stable after analysing their RMSD, RMSF, the radius of gyration, and hydrogen interactions of complexes. Our study revealed that NP-5, NP-8, and NP-9 bind perfectly with OmpA and can act as its potential inhibitors. The results of this study imply that the identified inhibitors have the potential for further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Namrata Devsani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Pathan Jahidha Begum
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Dhanashri Maddi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
15
|
Pumirat P, Santajit S, Tunyong W, Kong-Ngoen T, Tandhavanant S, Lohitthai S, Rungruengkitkun A, Chantratita N, Ampawong S, Reamtong O, Indrawattana N. Impact of AbaI mutation on virulence, biofilm development, and antibiotic susceptibility in Acinetobacter baumannii. Sci Rep 2024; 14:21521. [PMID: 39277662 PMCID: PMC11401864 DOI: 10.1038/s41598-024-72740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
The quorum sensing (QS) system mediated by the abaI gene in Acinetobacter baumannii is crucial for various physiological and pathogenic processes. In this study, we constructed a stable markerless abaI knockout mutant (ΔabaI) strain using a pEXKm5-based allele replacement method to investigate the impact of abaI on A. baumannii. Proteomic analysis revealed significant alterations in protein expression between the wild type (WT) and ΔabaI mutant strains, particularly in proteins associated with membrane structure, antibiotic resistance, and virulence. Notably, the downregulation of key outer membrane proteins such as SurA, OmpA, OmpW, and BamA suggests potential vulnerabilities in outer membrane integrity, which correlate with structural abnormalities in the ΔabaI mutant strain, including irregular cell shapes and compromised membrane integrity, observed by scanning and transmission electron microscopy. Furthermore, diminished expression of regulatory proteins such as OmpR and GacA-GacS highlights the broader regulatory networks affected by abaI deletion. Functional assays revealed impaired biofilm formation and surface-associated motility in the mutant strain, indicative of altered colonization capabilities. Interestingly, the mutant showed a complex antibiotic susceptibility profile. While it demonstrated increased susceptibility to membrane-targeting antibiotics, its response to beta-lactams was more nuanced. Despite increased expression of metallo-beta-lactamase (MBL) superfamily proteins and DcaP-like protein, the mutant unexpectedly showed lower MICs for carbapenems (imipenem and meropenem) compared to the wild-type strain. This suggests that abaI deletion affects antibiotic susceptibility through multiple, potentially competing mechanisms. Further investigation is needed to fully elucidate the interplay between quorum sensing, antibiotic resistance genes, and overall antibiotic susceptibility in A. baumannii. Our findings underscore the multifaceted role of the abaI gene in modulating various cellular processes and highlight its significance in A. baumannii physiology, pathogenesis, and antibiotic resistance. Targeting the abaI QS system may offer novel therapeutic strategies for this clinically significant pathogen.
Collapse
Affiliation(s)
- Pornpan Pumirat
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Sanisa Lohitthai
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Research, Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
16
|
Mosallam FM, Helmy EA, Nasser HA, El-Batal AI. Novel griseofulvin zinc nanohybrid emulsion for intensifying the antimicrobial control of dermatophytes and some opportunistic pathogens. J Mycol Med 2024; 34:101489. [PMID: 38925022 DOI: 10.1016/j.mycmed.2024.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Dermatophytosis is a critical sort of skin infection caused by dermatophytes. The long-term treatment of such skin infections may be improved through the application of nanotechnology. This study aimed to prepare griseofulvin zinc Nanohybrid emulsion (GF-Zn-NHE) to improve griseofulvin activity against dermatophytes and some opportunistic pathogenic yeasts and bacteria. The GF-Zn-NHE is prepared by ultra-homogenization ultra-sonication strategies and validated by UV-visible spectroscopy analysis that confirms presences of griseofulvin and Zn-NPs peaks at 265 and 360 nm, respectively. The GF-Zn-NHE has mean distribution size 50 nm and zeta potential in the range from -40 to -36 mV with no significant changes in size distribution and particle size within 120 day ageing. Fourier transform infrared spectroscopy spectrum confirmed the presence of griseofulvin and Zn-NPs stretching vibration peaks. Gamma ray has a negative influence on GF-Zn-NE production and stability. GF-Zn-NHE drug release 95% up to 24 h and 98% up to 72 h of GF was observed and Zinc 90% up to 24 h and 95% up to 72 h, respectively. High antimicrobial activity was observed with GF-Zn-NHE against dermatophytic pathogens in compare with GF, GF-NE, zinc nitrate and ketoconazole with inhibition zone ranged from 14 to 36 mm. The results have shown that the MIC value for Cryptococcus neoformans, Prophyromonas gingivalis and Pseudomonas aeruginosa is 0.125 mg ml -1 and for Trichophyton rubrum, L. bulgaricus and Escherichia coli value is 0.25 mg ml -1 and for Candida albicans, Malassezia furfur and Enterococcus faecalis is 0.5 mg ml -1 and finally 1 mg ml -1 for Streptococcus mutans. TEM of treated Cryptococcus neoformans cells with GF-Zn-NHE displayed essentially modified morphology, degradation, damage of organelles, vacuoles and other structures.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Eman A Helmy
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Hebatallah A Nasser
- Microbilogy and Public health Department, Faculty of pharmacy, Heliopolis University, Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, Microbiology Lab., Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
17
|
Scribano D, Cheri E, Pompilio A, Di Bonaventura G, Belli M, Cristina M, Sansone L, Zagaglia C, Sarshar M, Palamara AT, Ambrosi C. Acinetobacter baumannii OmpA-like porins: functional characterization of bacterial physiology, antibiotic-resistance, and virulence. Commun Biol 2024; 7:948. [PMID: 39107399 PMCID: PMC11303520 DOI: 10.1038/s42003-024-06645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Acinetobacter baumannii is a critical opportunistic pathogen associated with nosocomial infections. The high rates of antibiotic-resistance acquisition make most antibiotics ineffective. Thus, new medical countermeasures are urgently needed. Outer membrane proteins (OMPs) are prime candidates for developing novel drug targets and antibacterial strategies. However, there are substantial gaps in our knowledge of A. baumannii OMPs. This study reports the impact of OmpA-like protein on bacterial physiology and virulence in A. baumannii strain AB5075. We found that PsaB (ABUW_0505) negatively correlates to stress tolerance, while ArfA (ABUW_2730) significantly affects bacterial stiffness, cell shape, and cell envelope thickness. Furthermore, we expand our knowledge on YiaD (ABUW_3045), demonstrating structural and virulence roles of this porin, in addition to meropenem resistance. This study provides solid foundations for understanding how uncharacterized OMPs contribute to A. baumannii's physiological and pathological processes, aiding the development of innovative therapeutic strategies against A. baumannii infections.
Collapse
Affiliation(s)
- Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Elena Cheri
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Manuel Belli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Laboratory of Molecular and Cellular Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - Mario Cristina
- Laboratory of Molecular and Cellular Pathology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Sansone
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Laboratory of Molecular and Cellular Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy.
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
18
|
Elnagar RM. Cross interaction between bacterial and fungal microbiota and their relevance to human health and disease: mechanistic pathways and prospective therapy. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:309-320. [PMID: 39364131 PMCID: PMC11444862 DOI: 10.12938/bmfh.2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/27/2024] [Indexed: 10/05/2024]
Abstract
Diverse bacterial and fungal microbiota communities inhabit the human body, and their presence is essential for maintaining host homeostasis. The oral cavity, lung, gut, and vagina are just a few of the bodily cavities where these microorganisms communicate with one another, either directly or indirectly. The effects of this interaction can be either useful or detrimental to the host. When the healthy microbial diversity is disturbed, for instance, as a result of prolonged treatment with broad spectrum antibiotics, this allows the growth of specific microbes at the expense of others and alters their pathogenicity, causing a switch of commensal germs into pathogenic germs, which could promote tissue invasion and damage, as occurs in immunocompromised patients. Consequently, antimicrobials that specifically target pathogens may help in minimizing secondary issues that result from the disruption of useful bacterial/fungal interactions (BFIs). The interface between Candida albicans and Aspergillus fumigatus with bacteria at various body sites is emphasized in the majority of the medically important BFIs that have been reported thus far. This interface either supports or inhibits growth, or it enhances or blocks the generation of virulence factors. The aim of this review is to draw attention to the link between the bacterial and fungal microbiota and how they contribute to both normal homeostasis and disease development. Additionally, recent research that has studied microbiota as novel antimicrobials is summarized.
Collapse
Affiliation(s)
- Rasha Mokhtar Elnagar
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Rajangam SL, Narasimhan MK. Current treatment strategies for targeting virulence factors and biofilm formation in Acinetobacter baumannii. Future Microbiol 2024; 19:941-961. [PMID: 38683166 PMCID: PMC11290764 DOI: 10.2217/fmb-2023-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
A higher prevalence of Acinetobacter baumannii infections and mortality rate has been reported recently in hospital-acquired infections (HAI). The biofilm-forming capability of A. baumannii makes it an extremely dangerous pathogen, especially in device-associated hospital-acquired infections (DA-HAI), thereby it resists the penetration of antibiotics. Further, the transmission of the SARS-CoV-2 virus was exacerbated in DA-HAI during the epidemic. This review specifically examines the complex interconnections between several components and genes that play a role in the biofilm formation and the development of infections. The current review provides insights into innovative treatments and therapeutic approaches to combat A. baumannii biofilm-related infections, thereby ultimately improving patient outcomes and reducing the burden of HAI.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
20
|
Guo T, Zhou N, Yang L, Wang Z, Huan C, Lin T, Bao G, Hu J, Li G. Acinetobacter baumannii biofilm was inhibited by tryptanthrin through disrupting its different stages and genes expression. iScience 2024; 27:109942. [PMID: 38812547 PMCID: PMC11134903 DOI: 10.1016/j.isci.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Biofilm formation plays a significant role in antibiotic resistance, necessitating the search for alternative therapies against biofilm-associated infections. This study demonstrates that 20 μg/mL tryptanthrin can hinder biofilm formation above 50% in various A. baumannii strains. Tryptanthrin impacts various stages of biofilm formation, including the inhibition of surface motility and eDNA release in A. baumannii, as well as an increase in its sensitivity to H202. RT-qPCR analysis reveals that tryptanthrin significantly decreases the expression of the following genes: abaI (19.07%), abaR (33.47%), bfmR (43.41%), csuA/B (64.16%), csuE (50.20%), ompA (67.93%), and katE (72.53%), which are related to biofilm formation and quorum sensing. Furthermore, tryptanthrin is relatively safe and can reduce the virulence of A. baumannii in a Galleria mellonella infection model. Overall, our study demonstrates the potential of tryptanthrin in controlling biofilm formation and virulence of A. baumannii by disrupting different stages of biofilm formation and intercellular signaling communication.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Microbiology, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China
| | - Na Zhou
- Department of Microbiology, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Liying Yang
- Department of Microbiology, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Zichen Wang
- Department of Microbiology, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225001, China
| | - Tao Lin
- Department of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou 225009, China
| | - Guangyu Bao
- Department of Laboratory Medicine, Affiliated Hospital, Yangzhou University, Yangzhou 225009, China
| | - Jian Hu
- Department of Laboratory Medicine, Yixing Hospital of Traditional Chinese Medicine/Clinical Medical College, Guangling College, Yangzhou University, Yangzhou 214200, China
| | - Guocai Li
- Department of Microbiology, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China
| |
Collapse
|
21
|
Puca V, Marinacci B, Pellegrini B, Campanile F, Santagati M, Grande R. Biofilm and bacterial membrane vesicles: recent advances. Expert Opin Ther Pat 2024; 34:475-491. [PMID: 38578180 DOI: 10.1080/13543776.2024.2338101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Bacterial Membrane Vesicles (MVs) play important roles in cell-to-cell communication and transport of several molecules. Such structures are essential components of Extracellular Polymeric Substances (EPS) biofilm matrix of many bacterial species displaying a structural function and a role in virulence and pathogenesis. AREAS COVERED In this review were included original articles from the last ten years by searching the keywords 'biofilm' and 'vesicles' on PUBMED and Scopus databases. The articles available in literature mainly describe a positive correlation between bacterial MVs and biofilms formation. The research on Espacenet and Google Patent databases underlines the available patents related to the application of both biofilm MVs and planktonic MVs in inhibiting biofilm formation. EXPERT OPINION This review covers and analyzes recent advances in the study of the relationship between bacterial vesicles and biofilm. The huge number of papers discussing the role of MVs confirms the interest aimed at developing new applications in the medical field. The study of the MVs composition and biogenesis may contribute to the identification of components which could be (i) the target for the development of new drugs inhibiting the biofilm establishment; (ii) candidates for the development of vaccines; (iii) biomarkers for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Valentina Puca
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Lysitsas M, Triantafillou E, Chatzipanagiotidou I, Antoniou K, Spyrou V, Billinis C, Valiakos G. Phenotypic Investigation and Detection of Biofilm-Associated Genes in Acinetobacter baumannii Isolates, Obtained from Companion Animals. Trop Med Infect Dis 2024; 9:109. [PMID: 38787042 PMCID: PMC11125616 DOI: 10.3390/tropicalmed9050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteria of the genus Acinetobacter, especially Acinetobacter baumannii (Ab), have emerged as pathogens of companion animals during the last two decades and are commonly associated with hospitalization and multidrug resistance. A critical factor for the distribution of relevant strains in healthcare facilities, including veterinary facilities, is their adherence to both biotic and abiotic surfaces and the production of biofilms. A group of 41 A. baumannii isolates obtained from canine and feline clinical samples in Greece was subjected to phenotypic investigation of their ability to produce biofilms using the tissue culture plate (TCP) method. All of them (100%) produced biofilms, while 23 isolates (56.1%) were classified as strong producers, 11 (26.8%) as moderate producers, and 7 (17.1%) as weak producers. A correlation between the MDR and XDR phenotypes and weak or moderate biofilm production was identified. Moreover, the presence of four biofilm-associated genes bap, blaPER, ompA, and csuE was examined by PCR, and they were detected in 100%, 65.9%, 97.6%, and 95.1% of the strains respectively. All isolates carried at least two of the investigated genes, whereas most of the strong biofilm producers carried all four genes. In conclusion, the spread and persistence of biofilm-producing Ab strains in veterinary facilities is a matter of concern, since they are regularly obtained from infected animals, indicating their potential as challenging pathogens for veterinarians due to multidrug resistance and tolerance in conventional eradication measures. Furthermore, considering that companion animals can act as reservoirs of relevant strains, public health concerns emerge.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| | | | | | - Konstantina Antoniou
- Vet Analyseis, Private Diagnostic Laboratory, 41335 Larissa, Greece; (E.T.); (K.A.)
| | - Vassiliki Spyrou
- Department of Animal Science, University of Thessaly, 41334 Larissa, Greece;
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (M.L.); (C.B.)
| |
Collapse
|
23
|
Roy S, Morita D, Bhattacharya S, Dutta S, Basu S. Novel sequence type of carbapenem-resistant Acinetobacter pittii ST1451 with enhanced virulence isolated from septicaemic neonates in India. J Antimicrob Chemother 2024; 79:779-783. [PMID: 38334368 DOI: 10.1093/jac/dkae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The clinical relevance of Acinetobacter pittii is increasing, but reports of this organism causing neonatal sepsis are rare. OBJECTIVES To understand the mechanisms of resistance and virulence of A. pittii isolated from neonatal blood belonging to a novel sequence type. MATERIALS AND METHODS Antibiotic susceptibility, MLST, WGS, phylogenomic comparison with a global collection of carbapenemase-harbouring A. pittii were done. To study the pathogenic potential of novel A. pittii, in vitro and in vivo assays were carried out. RESULTS AND DISCUSSION Two novel multidrug-resistant A. pittii from neonatal blood belonging to a novel sequence type 1451 (ST1451) were isolated. WGS revealed that the isolates were almost similar (147 SNP distant) and harbouring two carbapenem resistance genes blaNDM-1 with upstream ISAba125 and downstream bleMBL along with blaOXA-58 with upstream ISAba3. Other resistance genes included blaADC-25, blaOXA-533, aph(3″)-Ib, aph(3')-VIa, aph(6)-Id, aac(3)-IId, mph(E), msr(E), sul2 and tet(39), different efflux pump genes and amino acid substitutions within GyrA (Ser81Leu) and ParC (Ser84Leu; Glu88Ala) were detected among the isolates. The study genomes were closely related to four strains belonging to ST119. The isolates showed biofilm production, serum resistance, growth under iron limiting condition, surface-associated motility and adherence to host cell. Isolates induced cytokine production in the host cell and showed mice mortality. DISCUSSION AND CONCLUSIONS This study is the first report of the presence of blaNDM-1 in A. pittii from India along with another carbapenemase blaOXA-58. Emergence of highly virulent, multidrug-resistant A. pittii with attributes similar to A. baumannii calls for surveillance to identify the novel strains and their pathogenic and resistance potential.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Daichi Morita
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sushmita Bhattacharya
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
24
|
Karampatakis T, Tsergouli K, Behzadi P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:257. [PMID: 38534692 DOI: 10.3390/antibiotics13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for a variety of community- and hospital-acquired infections. It is recognized as a life-threatening pathogen among hospitalized individuals and, in particular, immunocompromised patients in many countries. A. baumannii, as a member of the ESKAPE group, encompasses high genomic plasticity and simultaneously is predisposed to receive and exchange the mobile genetic elements (MGEs) through horizontal genetic transfer (HGT). Indeed, A. baumannii is a treasure trove that contains a high number of virulence factors. In accordance with these unique pathogenic characteristics of A. baumannii, the authors aim to discuss the natural treasure trove of pan-genome and virulence factors pertaining to this bacterial monster and try to highlight the reasons why this bacterium is a great concern in the global public health system.
Collapse
Affiliation(s)
| | - Katerina Tsergouli
- Microbiology Department, Agios Pavlos General Hospital, 55134 Thessaloniki, Greece
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
25
|
Jha NK, Gopu V, Sivasankar C, Singh SR, Devi PB, Murali A, Shetty PH. In vitro and in silico assessment of anti-biofilm and anti-quorum sensing properties of 2,4-Di-tert butylphenol against Acinetobacter baumannii. J Med Microbiol 2024; 73. [PMID: 38506718 DOI: 10.1099/jmm.0.001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.
Collapse
Affiliation(s)
- Nisha Kumari Jha
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chandran Sivasankar
- Department of Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-54596, Republic of Korea
| | - Satya Ranjan Singh
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | | |
Collapse
|
26
|
Potapova A, Garvey W, Dahl P, Guo S, Chang Y, Schwechheimer C, Trebino MA, Floyd KA, Phinney BS, Liu J, Malvankar NS, Yildiz FH. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly. mBio 2024; 15:e0330423. [PMID: 38206049 PMCID: PMC10865864 DOI: 10.1128/mbio.03304-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Biofilms are matrix-encased microbial communities that increase the environmental fitness and infectivity of many human pathogens including Vibrio cholerae. Biofilm matrix assembly is essential for biofilm formation and function. Known components of the V. cholerae biofilm matrix are the polysaccharide Vibrio polysaccharide (VPS), matrix proteins RbmA, RbmC, Bap1, and extracellular DNA, but the majority of the protein composition is uncharacterized. This study comprehensively analyzed the biofilm matrix proteome and revealed the presence of outer membrane proteins (OMPs). Outer membrane vesicles (OMVs) were also present in the V. cholerae biofilm matrix and were associated with OMPs and many biofilm matrix proteins suggesting that they participate in biofilm matrix assembly. Consistent with this, OMVs had the capability to alter biofilm structural properties depending on their composition. OmpU was the most prevalent OMP in the matrix, and its absence altered biofilm architecture by increasing VPS production. Single-cell force spectroscopy revealed that proteins critical for biofilm formation, OmpU, the matrix proteins RbmA, RbmC, Bap1, and VPS contribute to cell-surface adhesion forces at differing efficiency, with VPS showing the highest efficiency whereas Bap1 showing the lowest efficiency. Our findings provide new insights into the molecular mechanisms underlying biofilm matrix assembly in V. cholerae, which may provide new opportunities to develop inhibitors that specifically alter biofilm matrix properties and, thus, affect either the environmental survival or pathogenesis of V. cholerae.IMPORTANCECholera remains a major public health concern. Vibrio cholerae, the causative agent of cholera, forms biofilms, which are critical for its transmission, infectivity, and environmental persistence. While we know that the V. cholerae biofilm matrix contains exopolysaccharide, matrix proteins, and extracellular DNA, we do not have a comprehensive understanding of the majority of biofilm matrix components. Here, we discover outer membrane vesicles (OMVs) within the biofilm matrix of V. cholerae. Proteomic analysis of the matrix and matrix-associated OMVs showed that OMVs carry key matrix proteins and Vibrio polysaccharide (VPS) to help build biofilms. We also characterize the role of the highly abundant outer membrane protein OmpU in biofilm formation and show that it impacts biofilm architecture in a VPS-dependent manner. Understanding V. cholerae biofilm formation is important for developing a better prevention and treatment strategy framework.
Collapse
Affiliation(s)
- Anna Potapova
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - William Garvey
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Peter Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Shuaiqi Guo
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yunjie Chang
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carmen Schwechheimer
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Kyle A. Floyd
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| | - Brett S. Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California-Davis, Davis, California, USA
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nikhil S. Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
27
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Luo K, Liu S, Mi P, Wu X, Liu H, Tian H, Han B, Lei J, Han S, Han L. The role of type VI secretion system genes in antibiotic resistance and virulence in Acinetobacter baumannii clinical isolates. Front Cell Infect Microbiol 2024; 14:1297818. [PMID: 38384301 PMCID: PMC10879597 DOI: 10.3389/fcimb.2024.1297818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The type VI secretion system (T6SS) is a crucial virulence factor in the nosocomial pathogen Acinetobacter baumannii. However, its association with drug resistance is less well known. Notably, the roles that different T6SS components play in the process of antimicrobial resistance, as well as in virulence, have not been systematically revealed. Methods The importance of three representative T6SS core genes involved in the drug resistance and virulence of A. baumannii, namely, tssB, tssD (hcp), and tssM was elucidated. Results A higher ratio of the three core genes was detected in drug-resistant strains than in susceptible strains among our 114 A. baumannii clinical isolates. Upon deletion of tssB in AB795639, increased antimicrobial resistance to cefuroxime and ceftriaxone was observed, alongside reduced resistance to gentamicin. The ΔtssD mutant showed decreased resistance to ciprofloxacin, norfloxacin, ofloxacin, tetracycline, and doxycycline, but increased resistance to tobramycin and streptomycin. The tssM-lacking mutant showed an increased sensitivity to ofloxacin, polymyxin B, and furazolidone. In addition, a significant reduction in biofilm formation was observed only with the ΔtssM mutant. Moreover, the ΔtssM strain, followed by the ΔtssD mutant, showed decreased survival in human serum, with attenuated competition with Escherichia coli and impaired lethality in Galleria mellonella. Discussion The above results suggest that T6SS plays an important role, participating in the antibiotic resistance of A. baumannii, especially in terms of intrinsic resistance. Meanwhile, tssM and tssD contribute to bacterial virulence to a greater degree, with tssM being associated with greater importance.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng Mi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaokang Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Xi’an Daxing Hospital, Xi’an, China
| | - Huohuan Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jin’e Lei
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Yousefi Nojookambari N, Eslami G, Sadredinamin M, Vaezjalali M, Nikmanesh B, Dehbanipour R, Yazdansetad S, Ghalavand Z. Sub-minimum inhibitory concentrations (sub-MICs) of colistin on Acinetobacter baumannii biofilm formation potency, adherence, and invasion to epithelial host cells: an experimental study in an Iranian children's referral hospital. Microbiol Spectr 2024; 12:e0252323. [PMID: 38230925 PMCID: PMC10846280 DOI: 10.1128/spectrum.02523-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/07/2023] [Indexed: 01/18/2024] Open
Abstract
Here, we described the efficacy of colistin sub-minimum inhibitory concentrations (sub-MICs) on biofilm-forming activity, host epithelial cell adherence, and invasion capacity of Acinetobacter baumannii strains collected from children admitted to the Children's Medical Center Hospital. Biofilm formation potency of A. baumannii clinical isolates was measured using a 96-well microtiter plate assay. Distribution of biofilm-related genes, including bap, abaI, ompA, csuE, and blaPER-1, was detected by PCR. The mRNA expression level of ompA and csuE was measured by qPCR in the presence of ¼ and ½ MICs of colistin. A. baumannii adhesion and invasion to eukaryotic host cells were phenotypically assayed at sub-MICs of colistin. Eighty percent (56/70) and 35.7% (25/70) of A. baumannii isolates were multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes, respectively. The strong, moderate, and weak biofilm producers of A. baumannii were 37.1% (26/70), 32.8%, (23/70), and 22.8% (16/70), respectively. The frequencies of biofilm-associated genes were 100% for abaI, ompA, and csuE, followed by 22.8% (16/70) and 24.3% (17/70) for bap and blaPER-1, respectively. The downregulation of csuE and ompA expression levels was observed in the sub-MIC of colistin. In vitro cell culture study showed a decreased capability of A. baumannii to adhere to the human epithelial cells at sub-inhibitory doses of colistin; however, none of the isolates could invade HEp-2 cells. Our study showed that the genes encoding biofilm-associated proteins undergo downregulation in expression levels after exposure to sub-MICs of colistin in A. baumannii. Longitudinal in vivo studies are needed to fully understand the clinical aspects of pathogenicity mechanisms and evolutionary dynamics of drug resistance.IMPORTANCESince the toxicity of colistin is dose dependent, there is a focus on strategies that reduce the dose while maintaining the therapeutic effect of the drug. Our findings about sub-inhibitory doses of colistin provide a novel insight into the logical use of colistin to treat and control Acinetobacter baumannii-related infections in clinical practice.
Collapse
Affiliation(s)
- Neda Yousefi Nojookambari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrzad Sadredinamin
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Nikmanesh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dehbanipour
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sajjad Yazdansetad
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Yaikhan T, Chukamnerd A, Singkhamanan K, Nokchan N, Chintakovid N, Chusri S, Pomwised R, Wonglapsuwan M, Surachat K. Genomic Characterization of Mobile Genetic Elements Associated with Multidrug-Resistant Acinetobacter Non- baumannii Species from Southern Thailand. Antibiotics (Basel) 2024; 13:149. [PMID: 38391535 PMCID: PMC10886146 DOI: 10.3390/antibiotics13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
This study investigated the genetic diversity, antimicrobial resistance profiles, and virulence characteristics of Acinetobacter non-baumannii isolates obtained from four hospitals in southern Thailand. Clinical data, genome information, and average nucleotide identity (ANI) were analyzed for eight isolates, revealing diverse genetic profiles and novel sequence types (STs). Minimum spanning tree analysis indicated potential clonal spread of certain STs across different geographic regions. Antimicrobial resistance genes (ARGs) were detected in all isolates, with a high prevalence of genes conferring resistance to carbapenems, highlighting the challenge of antimicrobial resistance in Acinetobacter spp. infections. Mobile genetic elements (MGEs) carrying ARGs were also identified, emphasizing the role of horizontal gene transfer in spreading resistance. Evaluation of virulence-associated genes revealed a diverse range of virulence factors, including those related to biofilm formation and antibiotic resistance. However, no direct correlation was found between virulence-associated genes in Acinetobacter spp. and specific clinical outcomes, such as infection severity or patient mortality. This complexity suggests that factors beyond gene presence may influence disease progression and outcomes. This study emphasizes the importance of continued surveillance and molecular epidemiological studies to combat the spread of multidrug-resistant (MDR) Acinetobacter non-baumannii strains. The findings provide valuable insights into the epidemiology and genetic characteristics of this bacteria in southern Thailand, with implications for infection control and antimicrobial management efforts.
Collapse
Affiliation(s)
- Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nutwadee Chintakovid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
30
|
Poladi I, Shakib P, Halimi S, Delfani S, Zadeh FE, Rezaei F. Investigation of EpsA, OmpA, and Bap Genes among MDR and XDR Acinetobacter baumannii Isolates in Khorramabad, Iran. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:307-314. [PMID: 38213149 DOI: 10.2174/0127724344274260231220052526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Acinetobacter baumannii is an opportunistic hospital pathogen with high antibiotic resistance, and the ability to produce biofilm. This study aimed to investigate epsA, ompA, and bap genes involved in biofilm formation in MDR and XDR clinical isolates of Acinetobacter baumannii in Khorramabad, Iran. METHODS In this study, 79 A. baumannii isolates were collected from various samples of the patients admitted to tertiary hospitals in Khorramabad city, Iran, between January and August 2019. After performing the semi-quantitative evaluation of biofilm production by microtiter plate assay, screening of isolates carrying epsA, ompA, and bap genes was done by PCR method. Finally, statistical analyses were conducted using SPSS 22. RESULTS Among 79 A. baumannii isolates, 52% XDR, 40% MDR, and 16% non-XDRMDR isolates were found to be biofilm producers. All XDR and 94% MDR isolates had ompA and epsA genes, and bap genes were detected among > 80% of these isolates. Moreover, the presence of biofilm-related genes and biofilm production among non-XDRMDR isolates were less than among resistant isolates (p≤ 0.01). CONCLUSION Based on the results, biofilm production and simultaneous presence of epsA, ompA, and bap genes among MDR, and XDR A. baumannii isolates have been found to be significantly more than non-XDR-MDR isolates.
Collapse
Affiliation(s)
- Iman Poladi
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Delfani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ebrahim Zadeh
- Nutritional Health Research Center, Department of Biostatistics and Epidemiology, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faranak Rezaei
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
31
|
Malheiros Borges KC, Kipnis A, Junior Neves B, Junqueira-Kipnis AP. Promising New Targets for the Treatment of Infections Caused by Acinetobacter baumannii: A Review. Curr Drug Targets 2024; 25:971-986. [PMID: 39225221 DOI: 10.2174/0113894501319269240819060245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Acinetobacter baumannii is a globally disseminated Gram-negative bacterium that causes several types of serious nosocomial infections, the most worrisome being ventilator-associated pneumonia and bacteremia related to using venous catheters. Due to its great ability to form biofilms, combined with its survival for prolonged periods on abiotic surfaces and its potential to acquire and control the genes that determine antibiotic resistance, A. baumannii is at the top of the World Health Organization's priority list of pathogens in urgent need of new therapies. In this sense, this review aimed to present and discuss new molecular targets present in A. baumannii with potential for promising treatment approaches. This review highlights crucial molecular targets, including cell division proteins, membrane synthesis enzymes, and biofilm-associated components, offering promising targets for novel antimicrobial drug development against A. baumannii infections.
Collapse
Affiliation(s)
- Kellen Christina Malheiros Borges
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Microbiology Laboratory, Department of Biology, Academic Areas, Federal Institute of Goiás, Anápolis, Goiás, Brazil
| | - André Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Molecular Bacteriology Laboratory, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
32
|
Barati H, Fekrirad Z, Jalali Nadoushan M, Rasooli I. Anti-OmpA antibodies as potential inhibitors of Acinetobacter baumannii biofilm formation, adherence to, and proliferation in A549 human alveolar epithelial cells. Microb Pathog 2024; 186:106473. [PMID: 38048840 DOI: 10.1016/j.micpath.2023.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Outer membrane protein A (OmpA) is a critical virulence factor in Acinetobacter baumannii, influencing adhesion, biofilm formation, host immune response, and host cell apoptosis. We investigated the invasion of A549 alveolar epithelial cells by A. baumannii and examined how anti-OmpA antibodies impact these interactions. OmpA was expressed and purified, inducing anti-OmpA antibodies in BALB/c mice. The potential toxicity of OmpA was evaluated in mice by analyzing histology from six organs. A549 cells were exposed to A. baumannii strains 19606 and a clinical isolate. Using cell culture and light microscopy, we scrutinized the effects of anti-OmpA sera on serum resistance, adherence, internalization, and proliferation of A. baumannii in A549 cells. The viability of A549 cells was assessed upon exposure to live A. baumannii and anti-OmpA sera. OmpA-induced antibody demonstrated potent bactericidal effects on both strains of A. baumannii. Both strains formed biofilms, which were reduced by anti-OmpA serum, along with decreased bacterial adherence, internalization, and proliferation in A549 cells. Anti-OmpA serum improved the survival of A549 cells post-infection. Pre-treatment with cytochalasin D hindered bacterial internalization, highlighting the role of actin polymerization in invasion. Microscopic examination revealed varied interactions encompassing adherence, apoptosis, membrane alterations, vacuolization, and damage. A549 cells treated with anti-OmpA serum exhibited improved structures and reduced damage. The findings indicate that A. baumannii can adhere to and proliferate within epithelial cells with OmpA playing a pivotal role in these interactions, and the complex nature of these interactions shapes the intricate course of A. baumannii infection in host cells.
Collapse
Affiliation(s)
| | | | - Mohammadreza Jalali Nadoushan
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| |
Collapse
|
33
|
Masadeh MM, Alshogran H, Alsaggar M, Sabi SH, Al Momany EM, Masadeh MM, Alrabadi N, Alzoubi KH. Evaluation of Novel HLM Peptide Activity and Toxicity against Planktonic and Biofilm Bacteria: Comparison to Standard Antibiotics. Curr Protein Pept Sci 2024; 25:826-843. [PMID: 38910428 DOI: 10.2174/0113892037291252240528110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Antibiotic resistance is one of the main concerns of public health, and the whole world is trying to overcome such a challenge by finding novel therapeutic modalities and approaches. This study has applied the sequence hybridization approach to the original sequence of two cathelicidin natural parent peptides (BMAP-28 and LL-37) to design a novel HLM peptide with broad antimicrobial activity. METHODS The physicochemical characteristics of the newly designed peptide were determined. As well, the new peptide's antimicrobial activity (Minimum Inhibitory Concentration (MIC), Minimum Bacterial Eradication Concentration (MBEC), and antibiofilm activity) was tested on two control (Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922) and two resistant (Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA41, New Delhi metallo-beta- lactamase-1 Escherichia coli ATCC BAA-2452) bacterial strains. Furthermore, synergistic studies have been applied to HLM-hybridized peptides with five conventional antibiotics by checkerboard assays. Also, the toxicity of HLM-hybridized peptide was studied on Vero cell lines to obtain the IC50 value. Besides the percentage of hemolysis action, the peptide was tested in freshly heparinized blood. RESULTS The MIC values for the HLM peptide were obtained as 20, 10, 20, and 20 μM, respectively. Also, the results showed no hemolysis action, with low to slightly moderate toxicity action against mammalian cells, with an IC50 value of 10.06. The Biomatik corporate labs, where HLM was manufactured, determined the stability results of the product by Mass Spectrophotometry (MS) and High-performance Liquid Chromatography (HPLC) methods. The HLM-hybridized peptide exhibited a range of synergistic to additive antimicrobial activities upon combination with five commercially available different antibiotics. It has demonstrated the biofilm-killing effects in the same concentration required to eradicate the control strains. CONCLUSION The results indicated that HLM-hybridized peptide displayed a broad-spectrum activity toward different bacterial strains in planktonic and biofilm forms. It showed synergistic or additive antimicrobial activity upon combining with commercially available different antibiotics.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Haneen Alshogran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad Alsaggar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Enaam M Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. box 330127, Zarqa 13133, Jordan
| | - Majd M Masadeh
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, 11800, Penang, Malaysia
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
34
|
Weng Z, Yang N, Shi S, Xu Z, Chen Z, Liang C, Zhang X, Du X. Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application. Vaccines (Basel) 2023; 12:49. [PMID: 38250862 PMCID: PMC10818702 DOI: 10.3390/vaccines12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review focuses on Acinetobacter baumannii, a Gram-negative bacterium that causes various infections and whose multidrug resistance has become a significant challenge in clinical practices. There are multiple bacterial mechanisms in A. baumannii that participate in bacterial colonization and immune responses. It is believed that outer membrane vesicles (OMVs) budding from the bacteria play a significant role in mediating bacterial survival and the subsequent attack against the host. Most OMVs originate from the bacterial membranes and molecules are enveloped in them. Elements similar to the pathogen endow OMVs with robust virulence, which provides a new direction for exploring the pathogenicity of A. baumannii and its therapeutic pathways. Although extensive research has been carried out on the feasibility of OMV-based vaccines against pathogens, no study has yet summarized the bioactive elements, biological activity, and vaccine applicability of A. baumannii OMVs. This review summarizes the components, biogenesis, and function of OMVs that contribute to their potential as vaccine candidates and the preparation methods and future directions for their development.
Collapse
Affiliation(s)
- Zheqi Weng
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
| | - Shujun Shi
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zining Xu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zixu Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Chen Liang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
35
|
Bae JY, Yun I, Jun KI, Kim CJ, Lee M, Choi HJ. Association between Pneumonia Development and Virulence Gene Expression in Carbapenem-Resistant Acinetobacter baumannii Isolated from Clinical Specimens. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8265683. [PMID: 38156310 PMCID: PMC10754638 DOI: 10.1155/2023/8265683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
We investigated the virulence gene expression of carbapenem-resistant Acinetobacter baumanii (CRAB) isolated from the respiratory samples of patients with CRAB pneumonia and those with CRAB colonization to identify the virulence genes contributing to CRAB pneumonia's development and mortality. Patients with CRAB identified from respiratory specimens were screened at a tertiary university hospital between January 2018 and January 2019. Patients were classified into CRAB pneumonia or CRAB colonization groups according to predefined clinical criteria. A. baumannii isolated from respiratory specimens was examined for the expression levels of ompA, uspA, hfq, hisF, feoA, and bfnL by quantitative reverse-transcription polymerase chain reaction. Among 156 patients with CRAB from respiratory specimens, 17 and 24 met the criteria for inclusion in the pneumonia and colonization groups, respectively. The expression level of ompA was significantly higher in the pneumonia group than in the colonization group (1.45 vs. 0.63, P=0.03). The expression levels of ompA (1.97 vs. 0.86, P=0.02), hisF (1.06 vs. 0.10, P < 0.01), uspA (1.62 vs. 1.01, P < 0.01), and bfnL (3.14 vs. 2.14, P=0.03) were significantly higher in patients with 30-day mortality than in the surviving patients. Elevated expression of hisF (adjusted odds ratio = 5.93, P=0.03) and uspA (adjusted odds ratio = 7.36, P=0.02) were associated with 30-day mortality after adjusting for age and the Charlson score. uspA and hisF may serve as putative targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Ji Yun Bae
- Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Ina Yun
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
| | - Kang Il Jun
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Chung-Jong Kim
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Miae Lee
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
- Department of Laboratory Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Hee Jung Choi
- Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
- Ewha Education and Research Center for Infection, Seoul, Republic of Korea
| |
Collapse
|
36
|
Yao Y, Chen Q, Zhou H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics (Basel) 2023; 12:1749. [PMID: 38136783 PMCID: PMC10740465 DOI: 10.3390/antibiotics12121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) has become a notorious pathogen causing nosocomial and community-acquired infections, especially ventilator-associated pneumonia. This opportunistic pathogen is found to possess powerful genomic plasticity and numerous virulence factors that facilitate its success in the infectious process. Although the interactions between A. baumannii and the pulmonary epitheliums have been extensively studied, a complete and specific description of its overall pathogenic process is lacking. In this review, we summarize the current knowledge of the antibiotic resistance and virulence factors of A. baumannii, specifically focusing on the pathogenic mechanisms of this detrimental pathogen in respiratory infectious diseases. An expansion of the knowledge regarding A. baumannii pathogenesis will contribute to the development of effective therapies based on immunopathology or intracellular signaling pathways to eliminate this harmful pathogen during infections.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.Y.); (Q.C.)
| |
Collapse
|
37
|
Mendes SG, Combo SI, Allain T, Domingues S, Buret AG, Da Silva GJ. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies. Eur J Clin Microbiol Infect Dis 2023; 42:1405-1423. [PMID: 37897520 PMCID: PMC10651561 DOI: 10.1007/s10096-023-04677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 β-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.
Collapse
Affiliation(s)
- Sérgio G Mendes
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sofia I Combo
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Thibault Allain
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Andre G Buret
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Gabriela J Da Silva
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
38
|
Maure A, Robino E, Van der Henst C. The intracellular life of Acinetobacter baumannii. Trends Microbiol 2023; 31:1238-1250. [PMID: 37487768 DOI: 10.1016/j.tim.2023.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic bacterium responsible for nosocomial and community-acquired infections. This pathogen is globally disseminated and associated with high levels of antibiotic resistance, which makes it an important threat to human health. Recently, new evidence showed that several A. baumannii isolates can survive and proliferate within eukaryotic professional and/or nonprofessional phagocytic cells, with in vivo consequences. This review provides updated information and describes the tools that A. baumannii possesses to adhere, colonize, and replicate in host cells. Additionally, we emphasize the high genetic and phenotypic heterogeneity detected amongst A. baumannii isolates and its impact on the bacterial intracellular features. We also discuss the need for standardized methods to characterize this pathogen robustly and consequently consider some strains as facultative intracellular bacteria.
Collapse
Affiliation(s)
- Alexandra Maure
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
39
|
Ji F, Tian G, Shang D, Jiang F. Antimicrobial peptide 2K4L disrupts the membrane of multidrug-resistant Acinetobacter baumannii and protects mice against sepsis. Front Microbiol 2023; 14:1258469. [PMID: 37942076 PMCID: PMC10628664 DOI: 10.3389/fmicb.2023.1258469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Antimicrobial peptides represent a promising therapeutic alternative for the treatment of antibiotic-resistant bacterial infections. 2K4L is a rationally-designed analog of a short peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L adopt an α-helical confirm in a membrane-mimetic environment and displayed an improved and broad-spectrum antibacterial activity against sensitive and multidrug-resistant Gram-negative and Gram-positive bacterial strains. Here, the action mechanism of 2K4L on multidrug resistant Acinetobacter baumannii (MRAB) and protection on MRAB-infected mice was investigated. The results demonstrated high bactericidal activity of 2K4L against both a multidrug resistant A. baumannii 0227 strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22934), indicating a potential therapeutic advantage of this peptide. Strong positively-charged residues significantly promoted the electrostatic interaction on 2K4L with lipopolysaccharides (LPS) of the bacterial outer membrane. High hydrophobicity and an α-helical confirm endowed 2K4L remarkably increase the permeability of A. baumannii cytoplasmic membrane by depolarization of membrane potential and disruption of membrane integration, as well as leakage of fluorescein from the liposomes. Additionally, 2K4L at low concentrations inhibited biofilm formation and degraded mature 1-day-old MRAB 0227 biofilms by reducing the expression of biofilm-related genes. In an invasive A. baumannii infection model, 2K4L enhanced the survival of sepsis mice and decreased the production of the proinflammatory cytokines downregulating the phosphorylation level of signaling protein in MAPK and NF-κB signaling pathways, indicating that 2K4L represents a novel therapeutic antibiotic candidate against invasive multidrug-resistant bacterial strain infections.
Collapse
Affiliation(s)
- Fangyu Ji
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Guoxu Tian
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Fengquan Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Carrau A, Tano J, Moyano L, Ripa MB, Petrocelli S, Piskulic L, Moreira LM, Patané JSL, Setubal JC, Orellano EG. A novel BLUF photoreceptor modulates the Xanthomonas citri subsp. citri-host plant interaction. Photochem Photobiol Sci 2023; 22:1901-1918. [PMID: 37209300 DOI: 10.1007/s43630-023-00420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
Plant-pathogen interaction is influenced by multiple environmental factors, including temperature and light. Recent works have shown that light modulates not only the defense response of plants but also the pathogens virulence. Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker, an important plant disease worldwide. The Xcc genome presents four genes encoding putative photoreceptors: one bacteriophytochrome and three blue light photoreceptors, one LOV and two BLUFs (bluf1: XAC2120 and bluf2: XAC3278). The presence of two BLUFs proteins is an outstanding feature of Xcc. In this work we show that the bluf2 gene is functional. The mutant strain, XccΔbluf2, was constructed demonstrating that BLUF2 regulates swimming-type motility, adhesion to leaves, exopolysaccharide production and biofilm formation, features involved in the Xcc virulence processes. An important aspect during the plant-pathogen interaction is the oxidative response of the host and the consequent reaction of the pathogen. We observed that ROS detoxification is regulated by Xcc bluf2 gene. The phenotypes of disease in orange plants produced by WT and XccΔbluf2 strains were evaluated, observing different phenotypes. Altogether, these results show that BLUF2 negatively regulates virulence during citrus canker. This work constitutes the first report on BLUF-like receptors in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Analía Carrau
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Josefina Tano
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Laura Moyano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - María Belén Ripa
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Silvana Petrocelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Laura Piskulic
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Leandro Marcio Moreira
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | - Elena Graciela Orellano
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
41
|
Erol HB, Kaskatepe B, Yildiz S, Altanlar N. The effect of phage-antibiotic combination strategy on multidrug-resistant Acinetobacter baumannii biofilms. J Microbiol Methods 2023; 210:106752. [PMID: 37268109 DOI: 10.1016/j.mimet.2023.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is considered a critical human pathogen due to multi-drug resistance and increased infections. As a result of the resistance of A. baumannii biofilms to antimicrobial agents, it is necessary to develop new biofilm control strategies. In the present study, we evaluated the efficacy of two previously isolated bacteriophage C2 phage, K3 phage and phage cocktail (C2 + K3 phage) as a therapeutic agent in combination with antibiotic (colistin) against biofilm of multidrug-resistant A. baumannii strains (n = 24). The effects of phage and antibiotics on mature biofilm were investigated simultaneously and sequentially in 24 and 48 h. The combination protocol was more effective than antibiotics alone in 54.16% of the strains in 24 h. The sequential application was more effective than the simultaneous protocol compared with the 24 h single applications. When the application of antibiotics and phages alone was compared with their combined administration in 48 h. The sequential and simultaneous applications were more effective than single applications in all strains except two. We observed that combination of phage and antibiotics could increase biofilm eradication and provides new insights into the use of bacteriophages and antibiotics in the treatment of biofilm-associated infections caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hilal Basak Erol
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey.
| | - Banu Kaskatepe
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey.
| | - Sulhiye Yildiz
- Department of Pharmaceutical Microbiology, Lokman Hekim University Faculty of Pharmacy, Ankara, Turkey
| | - Nurten Altanlar
- Department of Pharmaceutical Microbiology, Ankara University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
42
|
Wang Z, Yong H, Zhang S, Liu Z, Zhao Y. Colonization Resistance of Symbionts in Their Insect Hosts. INSECTS 2023; 14:594. [PMID: 37504600 PMCID: PMC10380809 DOI: 10.3390/insects14070594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The symbiotic microbiome is critical in promoting insect resistance against colonization by exogenous microorganisms. The mechanisms by which symbionts contribute to the host's immune capacity is referred to as colonization resistance. Symbionts can protect insects from exogenous pathogens through a variety of mechanisms, including upregulating the expression of host immune-related genes, producing antimicrobial substances, and competitively excluding pathogens. Concordantly, insects have evolved fine-tuned regulatory mechanisms to avoid overactive immune responses against symbionts or specialized cells to harbor symbionts. Alternatively, some symbionts have evolved special adaptations, such as the formation of biofilms to increase their tolerance to host immune responses. Here, we provide a review of the mechanisms about colonization resistance of symbionts in their insect hosts. Adaptations of symbionts and their insect hosts that may maintain such symbiotic relationships, and the significance of such relationships in the coevolution of symbiotic systems are also discussed to provide insights into the in-depth study of the contribution of symbionts to host physiology and behavior.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzi Yong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yaru Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
43
|
Wang F, Wang Z, Tang J. The interactions of Candida albicans with gut bacteria: a new strategy to prevent and treat invasive intestinal candidiasis. Gut Pathog 2023; 15:30. [PMID: 37370138 DOI: 10.1186/s13099-023-00559-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The gut microbiota plays an important role in human health, as it can affect host immunity and susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear. OBJECTIVE This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so as to comprehend an approach to reducing intestinal invasive infection by C. albicans. METHODS This review examined 11 common gut bacteria's interactions with C. albicans, including Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp. RESULTS Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. albicans. CONCLUSIONS Based on the nature of interactions reported so far by the literature between gut bacteria and C. albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200240, China.
| |
Collapse
|
44
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Leukert L, Tietgen M, Krause FF, Schultze TG, Fuhrmann DC, Debruyne C, Salcedo SP, Visekruna A, Wittig L, Göttig S. Infection of Endothelial Cells with Acinetobacter baumannii Reveals Remodelling of Mitochondrial Protein Complexes. Microbiol Spectr 2023; 11:e0517422. [PMID: 37052493 PMCID: PMC10269660 DOI: 10.1128/spectrum.05174-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Acinetobacter baumannii is an antibiotic-resistant, Gram-negative pathogen that causes a multitude of nosocomial infections. However, pathogenicity mechanisms and the host cell response during infection remain unclear. In this study, we determined virulence traits of A. baumannii clinical isolates belonging to the most widely disseminated international clonal lineage, international cluster 2 (IC2), in vitro and in vivo. Complexome profiling of primary human endothelial cells with A. baumannii revealed that mitochondria, and in particular complexes of the electron transport chain, are important host cell targets. Infection with highly virulent A. baumannii remodelled assembly of mitochondrial protein complexes and led to metabolic adaptation. These were characterized by reduced mitochondrial respiration and glycolysis in contrast to those observed in infection with low-pathogenicity A. baumannii. Perturbation of oxidative phosphorylation, destabilization of mitochondrial ribosomes, and interference with mitochondrial metabolic pathways were identified as important pathogenicity mechanisms. Understanding the interaction of human host cells with the current global A. baumannii clone is the basis to identify novel therapeutic targets. IMPORTANCE Virulence traits of Acinetobacter baumannii isolates of the worldwide most prevalent international clonal lineage, IC2, remain largely unknown. In our study, multidrug-resistant IC2 clinical isolates differed substantially in their virulence potential despite their close genetic relatedness. Our data suggest that, at least for some isolates, mitochondria are important target organelles during infection of primary human endothelial cells. Complexes of the respiratory chain were extensively remodelled after infection with a highly virulent A. baumannii strain, leading to metabolic adaptation characterized by severely reduced respiration and glycolysis. Perturbations of both mitochondrial morphology and mitoribosomes were identified as important pathogenicity mechanisms. Our data might help to further decipher the molecular mechanisms of A. baumannii and host mitochondrial interaction during infection.
Collapse
Affiliation(s)
- Laura Leukert
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Manuela Tietgen
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
- University Center of Competence for Infection Control of the State of Hesse, Frankfurt am Main, Germany
| | - Felix F. Krause
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - Tilman G. Schultze
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Dominik C. Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Charline Debruyne
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Suzana P. Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique UMR5086, Université de Lyon, Lyon, France
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University, Marburg, Germany
| | - llka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Cong L, Chen C, Mao S, Han Z, Zhu Z, Li Y. Intestinal bacteria-a powerful weapon for fungal infections treatment. Front Cell Infect Microbiol 2023; 13:1187831. [PMID: 37333850 PMCID: PMC10272564 DOI: 10.3389/fcimb.2023.1187831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection.
Collapse
Affiliation(s)
- Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
47
|
Schmitt BL, Leal BF, Leyser M, de Barros MP, Trentin DS, Ferreira CAS, de Oliveira SD. Increased ompW and ompA expression and higher virulence of Acinetobacter baumannii persister cells. BMC Microbiol 2023; 23:157. [PMID: 37246220 DOI: 10.1186/s12866-023-02904-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii is one of the main causes of healthcare-associated infections that threaten public health, and carbapenems, such as meropenem, have been a therapeutic option for these infections. Therapeutic failure is mainly due to the antimicrobial resistance of A. baumannii, as well as the presence of persister cells. Persisters constitute a fraction of the bacterial population that present a transient phenotype capable of tolerating supra-lethal concentrations of antibiotics. Some proteins have been suggested to be involved in the onset and/or maintenance of this phenotype. Thus, we investigated the mRNA levels of the adeB (AdeABC efflux pump component), ompA, and ompW (outer membrane proteins) in A. baumannii cells before and after exposure to meropenem. RESULTS We found a significant increase (p-value < 0.05) in the expression of ompA (> 5.5-fold) and ompW (> 10.5-fold) in persisters. However, adeB did not show significantly different expression levels when comparing treated and untreated cells. Therefore, we suggest that these outer membrane proteins, especially OmpW, could be part of the mechanism of A. baumannii persisters to deal with the presence of high doses of meropenem. We also observed in the Galleria mellonella larvae model that persister cells are more virulent than regular ones, as evidenced by their LD50 values. CONCLUSIONS Taken together, these data contribute to the understanding of the phenotypic features of A. baumannii persisters and their relation to virulence, as well as highlight OmpW and OmpA as potential targets for drug development against A. baumannii persisters.
Collapse
Affiliation(s)
- Brenda Landvoigt Schmitt
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Mariana Leyser
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Muriel Primon de Barros
- Laboratório de Bacteriologia e Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, R. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Danielle Silva Trentin
- Laboratório de Bacteriologia e Modelos Experimentais Alternativos, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, UFCSPA, R. Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Sílvia Dias de Oliveira
- Laboratório de Imunologia e Microbiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
48
|
Pulami D, Schwabe L, Blom J, Schwengers O, Wilharm G, Kämpfer P, Glaeser SP. Genomic plasticity and adaptive capacity of the quaternary alkyl-ammonium compound and copper tolerant Acinetobacter bohemicus strain QAC-21b isolated from pig manure. Antonie Van Leeuwenhoek 2023; 116:327-342. [PMID: 36642771 PMCID: PMC10024671 DOI: 10.1007/s10482-022-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/26/2022] [Indexed: 01/17/2023]
Abstract
Here, we present the genomic characterization of an Acinetobacter bohemicus strain QAC-21b which was isolated in the presence of a quaternary alky-ammonium compound (QAAC) from manure of a conventional German pig farm. The genetic determinants for QAAC, heavy metal and antibiotic resistances are reported based of the whole genome shotgun sequence and physiological growth tests. A. bohemicus QAC-21b grew in a species typical manner well at environmental temperatures but not at 37 °C. The strain showed tolerance to QAACs and copper but was susceptible to antibiotics relevant for Acinetobacter treatments. The genome of QAC-21b contained several Acinetobacter typical QAAC and heavy metal transporting efflux pumps coding genes, but no key genes for acquired antimicrobial resistances. The high genomic content of transferable genetic elements indicates that this bacterium can be involved in the transmission of antimicrobial resistances, if it is released with manure as organic fertilizer on agricultural fields. The genetic content of the strain was compared to that of two other A. bohemicus strains, the type strain ANC 3994T, isolated from forest soil, and KCTC 42081, originally described as A. pakistanensis, a metal resistant strain isolated from a wastewater treatment pond. In contrast to the forest soil strain, both strains from anthropogenically impacted sources showed genetic features indicating their evolutionary adaptation to the anthropogenically impacted environments. Strain QAC-21b will be used as model strain to study the transmission of antimicrobial resistance to environmentally adapted Acinetobacter in agricultural environments receiving high content of pollutants with organic fertilizers from livestock husbandry.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Lina Schwabe
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Oliver Schwengers
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, 38855, Wernigerode, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
49
|
Cassin EK, Araujo-Hernandez SA, Baughn DS, Londono MC, Rodriguez DQ, Tseng BS. OprF impacts Pseudomonas aeruginosa biofilm matrix eDNA levels in a nutrient-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530729. [PMID: 36909500 PMCID: PMC10002741 DOI: 10.1101/2023.03.01.530729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm is limited. Here we identify a nutrient-dependent effect of OprF in static biofilms, whereby Δ oprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa Δ oprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of mature P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A Δ oprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective Δ oprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in mature biofilms.
Collapse
Affiliation(s)
- Erin K. Cassin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Dena S. Baughn
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Melissa C. Londono
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- Corresponding author: Boo Shan Tseng ()
| |
Collapse
|
50
|
Shadan A, Pathak A, Ma Y, Pathania R, Singh RP. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front Cell Infect Microbiol 2023; 13:1053968. [PMID: 36968113 PMCID: PMC10038080 DOI: 10.3389/fcimb.2023.1053968] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infectionAcinetobacter baumannii is a gram-negative multidrug-resistant nosocomial pathogen and a major cause of hospital acquired infetions. Carbapenem resistant A. baumannii has been categorised as a Priority1 critial pathogen by the World Health Organisation. A. baumannii is responsible for infections in hospital settings, clinical sectors, ventilator-associated pneumonia, and bloodstream infections with a mortality rates up to 35%. With the development of advanced genome sequencing, molecular mechanisms of manipulating bacterial genomes, and animal infection studies, it has become more convenient to identify the factors that play a major role in A. baumannii infection and its persistence. In the present review, we have explored the mechanism of infection, virulence factors, and various other factors associated with the pathogenesis of this organism. Additionally, the role of the innate and adaptive immune response, and the current progress in the development of innovative strategies to combat this multidrug-resistant pathogen is also discussed.
Collapse
Affiliation(s)
- Afreen Shadan
- Department of Microbiology, Dr. Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India
| | - Avik Pathak
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
- *Correspondence: Ying Ma, ; Ranjana Pathania, ; Rajnish Prakash Singh,
| |
Collapse
|