1
|
Sá-Pessoa J, Calderón-González R, Lee A, Bengoechea JA. Klebsiella pneumoniae emerging anti-immunology paradigms: from stealth to evasion. Trends Microbiol 2025; 33:533-545. [PMID: 39884872 DOI: 10.1016/j.tim.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Klebsiella pneumoniae (KP) is a global threat to human health due to the isolation of multidrug-resistant strains. Despite advancements in understanding KP's population structure, antibiotic resistance mechanisms, and transmission patterns, a gap remains in how KP evades defenses, allowing the pathogen to flourish in tissues despite an activated immune system. KP infection biology has been shaped by the notion that the pathogen has evolved to shield from defenses more than actively suppress them. This review describes new paradigms of how KP exploits the coevolution with the innate immune system to hijack immune effectors and receptors to ablate signaling pathways and to counteract cell-intrinsic immunity, making apparent that KP can no longer be considered only as a stealth pathogen.
Collapse
Affiliation(s)
- Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alix Lee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK.
| |
Collapse
|
2
|
Wang Q, Yan T, Ma C, Teng X, Shen C, Wang N, Yu K, Chu W, Zhou Q, Liu Z. Poor Glycemic Control in Carbapenem-Resistant Klebsiella pneumoniae Infections: Impact on Epidemiological Features, Mortality Risks, and Polymyxin Resistance. Infect Drug Resist 2025; 18:647-660. [PMID: 39916694 PMCID: PMC11799852 DOI: 10.2147/idr.s501632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Purpose This study aims to investigate the relationship between glycemic control and epidemiological characteristics of patients infected with carbapenem-resistant Klebsiella pneumoniae (CRKP), to identify mortality risk factors associated with CRKP infection, and to evaluate the impact of glucose on the resistance of CRKP to polymyxin and serum killing. Patients and Methods Clinical cases of 218 patients infected with CRKP were collected from a large tertiary public hospital in Anhui Province. We analyzed whether the glycemic control impacts the clinical and laboratory manifestations of infected patients. Logistic regression identified mortality risk factors. Antibiotic sensitivity, capsular serotypes, and virulence genes were tested of the strains. Three clinically isolated CRKP strains were used to investigate the effect of glucose on bacterial capsule synthesis and the impact on bacterial resistance to polymyxin and serum killing. Results Patients with poor glycemic control experienced more severe infections and had a higher likelihood of chronic kidney disease (CKD) and acute renal insufficiency compared to those with good glycemic control. They also exhibited an increased mortality rate. Logistic regression analysis identified age, glycosylated hemoglobin (HbA1c) ≥7%, CKD, tumor, mechanical ventilation, and sepsis as independent risk factors for death associated with CRKP infection. A 0.5% (0.5 g/100mL) glucose environment can stimulate CRKP capsule synthesis, which is inhibitable by cyclic adenosine monophosphate (cAMP). Moreover, a high-glucose environment can enhance CRKP's resistance to polymyxin and serum killing. Conclusion A persistent hyperglycemic environment resulting from poor glycemic control may stimulate the synthesis of CRKP capsules, which could enhance the resistance of CRKP to polymyxin and serum killing, thereby further increasing the risk of patient mortality.
Collapse
Affiliation(s)
- Qiuyan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Tao Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chengcheng Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xuan Teng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People’s Republic of China
| | - Na Wang
- Institute of Health Sciences and Technology, Institutes of Physical and Information Technology, Anhui University, Hefei, Anhui, People’s Republic of China
| | - Kexue Yu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Wenwen Chu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Department of Clinical Laboratory Center, Anhui Chest Hospital, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
3
|
Chen L, Xiang H, Yang H, Zhang J, Huang B, Tan Z, Wang Y, Ma H. Inhibition of porcine origin Klebsiella pneumoniae capsular polysaccharide and immune escape by BY3 compounded traditional Chinese medicine residue fermentation broth. Microb Pathog 2024; 195:106853. [PMID: 39147214 DOI: 10.1016/j.micpath.2024.106853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a gram-negative conditionally pathogenic bacterium that causes disease primarily in immunocompromised individuals. Recently, highly virulent K. pneumoniae strains have caused severe disease in healthy individuals, posing significant challenges to global infection control. Capsular polysaccharide (CPS), a major virulence determinant of K. pneumoniae, protects the bacteria from being killed by the host immune system, suggesting an urgent need for the development of drugs to prevent or treat K. pneumoniae infections. In this study, BY3 compounded traditional Chinese medicine residue (TCMR) was carried out using Lactobacillus rhamnosus as a fermentation strain, and BY3 compounded TCMR fermentation broth (BY3 fermentation broth) was obtained. The transcription of K. pneumoniae CPS-related biosynthesis genes after treatment with BY3 fermentation broth was detected using quantitative real-time polymerase chain reaction. The effects of BY3 fermentation broth on K. pneumoniae serum killing, macrophage phagocytosis, complement deposition and human β-defensin transcription were investigated. The therapeutic effect of BY3 fermentation broth on K. pneumoniae-infected mice was also observed, and the major active components of BY3 fermentation broth were analysed via LC‒MS analysis, network pharmacology, and molecular docking. The results showed that BY3 fermentation broth inhibited K. pneumoniae CPS production and downregulated transcription of CPS-related biosynthesis genes, which weakened bacterial resistance to serum killing and phagocytosis, while promoting bacterial surface complement C3 deposition and human β-defensin expression. BY3 fermentation broth demonstrated safety and therapeutic effects in vivo and in vitro, restoring body weight and visceral indices, significantly reducing the organ bacterial load and serum cytokine levels, and alleviating pathological organ damage in mice. In addition, three natural compounds-oleanolic acid, quercetin, and palmitoleic acid-were identified as the major active components in the BY3 fermentation broth. Therefore, BY3 fermentation broth may be a promising strategy for the prevention or treatment of K. pneumoniae infections.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Xiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Yang
- Jilin Province Wanbang Goose Technical Service Company, Changchun, 130000, China
| | - Jiabin Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Bowen Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Zining Tan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China
| | - Yiming Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China; The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongxia Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China; The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
4
|
Stercz B, Domokos J, Dunai ZA, Makra N, Juhasz J, Ostorhazi E, Kocsis B, Szabo D. The Roles of a Multidrug-Resistant Klebsiella pneumoniae High-Risk Clone and Its Resistance Plasmids on the Gastrointestinal Colonization and Host-Defense Effectors in the Gut. Antibiotics (Basel) 2024; 13:698. [PMID: 39199998 PMCID: PMC11350818 DOI: 10.3390/antibiotics13080698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The asymptomatic gastrointestinal colonization of multidrug-resistant (MDR) bacteria can lead to difficult-to-treat infections. We investigated the role of host factors influencing colonization in an orogastrical murine infection model using a CTX-M-15- and OXA-162-producing Klebsiella pneumoniae ST15 (MDR-KP) strain, as well as Escherichia coli J53 (EC) and E. coli transconjugants with an IncFII(K) plasmid carrying CTX-M-15 (EC-CTXM), and with an IncL plasmid carrying OXA-162 (EC-OXA) genes. The fecal bacterial count in colony-forming unit/gram stool (CFU/g) was determined by cultivation, IgA and defensin levels by ELISA, and gut microbiota by 16S rRNA analysis. The CFU was the lowest in EC, followed by EC-OXA and EC-CTXM, and the highest in the MDR-KP group. The IgA level in feces increased in MDR-KP, EC-CTXM, and EC-OXA, and did not change in EC. The beta-defensin 3 level markedly increased in all groups, with the highest values in MDR-KP and EC-CTXM. Alpha-defensin-5 increased in all groups especially in EC. In microbiota, the Bacteroidota phylum was dominant in MDR-KP, EC-CTXM, and EC-OXA, whereas Proteobacteria was dominant in EC. The Muribaculaceae family was significantly more common in the MDR-KP and EC-OXA groups, while the Lachnospiraceae family was dominant in the EC group. While fecal IgA levels positively correlated with colonizing bacterial CFU, the alpha-defensin 5 levels inversely correlated with CFUs and IgA levels. The presence of the IncFII(K) plasmid induced beta-defensin 3 production. The amounts of the Muribaculaceae family members exhibited a correlation with the IncL plasmid. The detected amounts of the Lachnospiraceae family indicated the protective role against the high-risk clone and the resistance plasmids' dissemination. Our results suggest that not only the MDR-KP clone itself but also the resistance plasmids play a primary role in the colonization rate in the gastrointestinal tract. Both the MDR-KP clone as well as the IncFII(K) and IncL resistance plasmids provide survival and colonization benefits in the gut.
Collapse
Affiliation(s)
- Balazs Stercz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (N.M.); (J.J.); (E.O.); (B.K.)
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary;
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (N.M.); (J.J.); (E.O.); (B.K.)
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary;
| | | | - Nora Makra
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (N.M.); (J.J.); (E.O.); (B.K.)
| | - Janos Juhasz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (N.M.); (J.J.); (E.O.); (B.K.)
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Eszter Ostorhazi
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (N.M.); (J.J.); (E.O.); (B.K.)
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (N.M.); (J.J.); (E.O.); (B.K.)
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; (B.S.); (J.D.); (N.M.); (J.J.); (E.O.); (B.K.)
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary;
- Neurosurgical and Neurointervention Clinic, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
5
|
Lueschow-Guijosa SR, Stanford AH, Berger JN, Gong H, Boly TJ, Jensen BA, Nordkild P, Leegwater AJ, Wehkamp J, Underwood MA, McElroy SJ. Host defense peptides human β defensin 2 and LL-37 ameliorate murine necrotizing enterocolitis. iScience 2024; 27:109993. [PMID: 38846005 PMCID: PMC11154634 DOI: 10.1016/j.isci.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of preterm infant morbidity and mortality. Treatment for NEC is limited and non-targeted, which makes new treatment and prevention strategies critical. Host defense peptides (HDPs) are essential components of the innate immune system and have multifactorial mechanisms in host defense. LL-37 and hBD2 are two HDPs that have been shown in prior literature to protect from neonatal sepsis-induced mortality or adult inflammatory bowel disease, respectively. Therefore, this article sought to understand if these two HDPs could influence NEC severity in murine preclinical models. NEC was induced in P14-16 C57Bl/6 mice and HDPs were provided as a pretreatment or treatment. Both LL-37 and hBD2 resulted in decreased NEC injury scores as a treatment and hBD2 as a pretreatment. Our data suggest LL-37 functions through antimicrobial properties, while hBD2 functions through decreases in inflammation and improvement of intestinal barrier integrity.
Collapse
Affiliation(s)
| | - Amy H. Stanford
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer N. Berger
- Department of Pediatrics, Children’s Minnesota, Minneapolis, MN 55404, USA
| | - Huiyu Gong
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Timothy J. Boly
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin A.H. Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | | | | | - Jan Wehkamp
- Department of Internal Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Mark A. Underwood
- Department of Pediatrics, University of California Davis, Sacramento, CA 95616, USA
| | - Steven J. McElroy
- Department of Pediatrics, University of California Davis, Sacramento, CA 95616, USA
| |
Collapse
|
6
|
van Linge CCA, Hulme KD, Peters-Sengers H, Sirard JC, Goessens WHF, de Jong MD, Russell CA, de Vos AF, van der Poll T. Immunostimulatory Effect of Flagellin on MDR- Klebsiella-Infected Human Airway Epithelial Cells. Int J Mol Sci 2023; 25:309. [PMID: 38203480 PMCID: PMC10778885 DOI: 10.3390/ijms25010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.
Collapse
Affiliation(s)
- Christine C. A. van Linge
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Katina D. Hulme
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Jean-Claude Sirard
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, INSERM U1019, CNRS UMR9017, CHU Lille, University Lille, 59000 Lille, France
| | - Wil H. F. Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
- Department of Global Health, School of Public Health, Boston University, Boston, MA 02215, USA
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| |
Collapse
|
7
|
Patyra E, Kwiatek K. Insect Meals and Insect Antimicrobial Peptides as an Alternative for Antibiotics and Growth Promoters in Livestock Production. Pathogens 2023; 12:854. [PMID: 37375544 DOI: 10.3390/pathogens12060854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The extensive use of antibiotics in animal production has led to the development of antibiotic-resistant microorganisms and the search for alternative antimicrobial agents in animal production. One such compound may be antimicrobial peptides (AMPs), which are characterized by, among others, a wide range of biocidal activity. According to scientific data, insects produce the largest number of antimicrobial peptides, and the changing EU legislation has allowed processed animal protein derived from insects to be used in feed for farm animals, which, in addition to a protein supplement, may prove to be an alternative to antibiotics and antibiotic growth promoters due to their documented beneficial impact on livestock health. In animals that were fed feeds with the addition of insect meals, changes in their intestinal microbiota, strengthened immunity, and increased antibacterial activity were confirmed to be positive effects obtained thanks to the insect diet. This paper reviews the literature on sources of antibacterial peptides and the mechanism of action of these compounds, with particular emphasis on insect antibacterial peptides and their potential impact on animal health, and legal regulations related to the use of insect meals in animal nutrition.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland
| |
Collapse
|
8
|
Kikuchi S, Kosai K, Ota K, Mitsumoto-Kaseida F, Sakamoto K, Hasegawa H, Izumikawa K, Mukae H, Yanagihara K. Clinical and microbiological characteristics of bloodstream infection caused by Klebsiella pneumoniae harboring rmpA in Japanese adults. Sci Rep 2023; 13:6571. [PMID: 37085513 PMCID: PMC10121676 DOI: 10.1038/s41598-023-33265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
We investigated the clinical features of bloodstream infections (BSIs) caused by Klebsiella pneumoniae harboring rmpA and molecular characteristics of the bacteria. We retrospectively investigated adult patients with K. pneumoniae BSI from January 2010 to March 2021 at Nagasaki University Hospital. A matched case-control study in a 1:3 ratio was conducted to clarify the clinical and bacterial characteristics of BSI caused by rmpA-positive K. pneumoniae compared with those caused by rmpA-negative isolates. Antimicrobial susceptibility testing and multilocus sequence typing (MLST) were performed for rmpA-positive isolates. The rmpA was detected in 36 (13.4%) of the 268 isolates. Of these 36 isolates, 31 (86.1%) harbored iucA and 35 (97.2%) each possessed peg-344 and iroB; capsular types were identified as K1 in 9 (25.0%) and K2 in 10 isolates (27.8%). Contrarily, of the 108 rmpA-negative isolates, which were matched for case-control studies, 5 isolates (4.6%) harbored iucA and 1 (0.9%) each possessed peg-344 and iroB; 2 (1.9%) and 3 isolates (2.8%) had K1 and K2 capsular types, respectively. Among the rmpA-positive isolates, ST23/K1 (eight isolates) was the most frequent, followed by ST412/non-K1/K2 (seven isolates), ST86/K2 (five isolates), and ST268/non-K1/K2 (four isolates). In a multivariate analysis using clinical factors, liver abscess positively correlated with rmpA-positive isolates, whereas biliary tract infection and use of anticancer drugs negatively correlated with rmpA-positive isolates in patients with K. pneumoniae BSI. Considering the correlation between rmpA-positive isolates and clinical features, rmpA can be used as a marker for understanding the pathophysiology of K. pneumoniae BSI.
Collapse
Affiliation(s)
- Shota Kikuchi
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan.
| | - Kenji Ota
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Fujiko Mitsumoto-Kaseida
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kei Sakamoto
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8501, Japan
| |
Collapse
|
9
|
Chen Q, Wang M, Han M, Xu L, Zhang H. Molecular basis of Klebsiella pneumoniae colonization in host. Microb Pathog 2023; 177:106026. [PMID: 36773942 DOI: 10.1016/j.micpath.2023.106026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a common cause of nosocomial infection, which causing disseminated infections such as cystitis, pneumonia and sepsis. K. pneumoniae is intrinsic resistant to penicillin, and members of the population usually have acquired resistance to a variety of antibiotics, which makes it a major threat to clinical and public health. Bacteria can colonize on or within the hosts, accompanied by growth and reproduction of the organisms, but no clinical symptoms are presented. As the "first step" of bacterial infection, colonization in the hosts is of great importance. Colonization of bacteria can last from days to years, with resolution influenced by immune response to the organism, competition at the site from other organisms and, sometimes, use of antimicrobials. Colonized pathogenic bacteria cause healthcare-associated infections at times of reduced host immunity, which is an important cause of clinical occurrence of postoperative complications and increased mortality in ICU patients. Though, K. pneumoniae is one of the most common conditional pathogens of hospital-acquired infections, the mechanisms of K. pneumoniae colonization in humans are not completely clear. In this review, we made a brief summary of the molecular basis of K. pneumoniae colonization in the upper respiratory tract and intestinal niche, and provided new insights for understanding the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Qi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Leyi Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection. Nat Commun 2023; 14:871. [PMID: 36797302 PMCID: PMC9935632 DOI: 10.1038/s41467-023-36629-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Bacteria can inhibit the growth of other bacteria by injecting effectors using a type VI secretion system (T6SS). T6SS effectors can also be injected into eukaryotic cells to facilitate bacterial survival, often by targeting the cytoskeleton. Here, we show that the trans-kingdom antimicrobial T6SS effector VgrG4 from Klebsiella pneumoniae triggers the fragmentation of the mitochondrial network. VgrG4 colocalizes with the endoplasmic reticulum (ER) protein mitofusin 2. VgrG4 induces the transfer of Ca2+ from the ER to the mitochondria, activating Drp1 (a regulator of mitochondrial fission) thus leading to mitochondrial network fragmentation. Ca2+ elevation also induces the activation of the innate immunity receptor NLRX1 to produce reactive oxygen species (ROS). NLRX1-induced ROS limits NF-κB activation by modulating the degradation of the NF-κB inhibitor IκBα. The degradation of IκBα is triggered by the ubiquitin ligase SCFβ-TrCP, which requires the modification of the cullin-1 subunit by NEDD8. VgrG4 abrogates the NEDDylation of cullin-1 by inactivation of Ubc12, the NEDD8-conjugating enzyme. Our work provides an example of T6SS manipulation of eukaryotic cells via alteration of the mitochondria.
Collapse
|
11
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
12
|
Wei S, Xu T, Chen Y, Zhou K. Autophagy, cell death, and cytokines in K. pneumoniae infection: Therapeutic Perspectives. Emerg Microbes Infect 2022; 12:2140607. [DOI: 10.1080/22221751.2022.2140607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sha Wei
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
do Nascimento Soares T, Silva Valadares V, Cardoso Amorim G, de Mattos Lacerda de Carvalho M, Berrêdo‐Pinho M, Ceneviva Lacerda Almeida F, Mascarello Bisch P, Batista PR, Miranda Santos Lery L. The C‐terminal extension of
VgrG4
from
Klebsiella pneumoniae
remodels host cell microfilaments. Proteins 2022; 90:1655-1668. [PMID: 35430767 PMCID: PMC9542434 DOI: 10.1002/prot.26344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen, which concerns public health systems worldwide, as multiple antibiotic‐resistant strains are frequent. One of its pathogenicity factors is the Type VI Secretion System (T6SS), a macromolecular complex assembled through the bacterial membranes. T6SS injects effector proteins inside target cells. Such effectors confer competitive advantages or modulate the target cell signaling and metabolism to favor bacterial infection. The VgrG protein is a T6SS core component. It may present a variable C‐terminal domain carrying an additional effector function. Kp52.145 genome encodes three VgrG proteins, one of them with a C‐terminal extension (VgrG4‐CTD). VgrG4‐CTD is 138 amino acids long, does not contain domains of known function, but is conserved in some Klebsiella, and non‐Klebsiella species. To get insights into its function, recombinant VgrG4‐CTD was used in pulldown experiments to capture ligands from macrophages and lung epithelial cells. A total of 254 proteins were identified: most of them are ribosomal proteins. Cytoskeleton‐associated and proteins involved in the phagosome maturation pathway were also identified. We further showed that VgrG4‐CTD binds actin and induces actin remodeling in macrophages. This study presents novel clues on the role of K. pneumoniae T6SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Berrêdo‐Pinho
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz Rio de Janeiro Brazil
| | - Fábio Ceneviva Lacerda Almeida
- Centro Nacional de Ressonância Magnética Nuclear Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física‐Biológica Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
14
|
Nucci A, Rocha EPC, Rendueles O. Adaptation to novel spatially-structured environments is driven by the capsule and alters virulence-associated traits. Nat Commun 2022; 13:4751. [PMID: 35963864 PMCID: PMC9376106 DOI: 10.1038/s41467-022-32504-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular capsule is a major virulence factor, but its ubiquity in free-living bacteria with large environmental breadths suggests that it shapes adaptation to novel niches. Yet, how it does so, remains unexplored. Here, we evolve three Klebsiella strains and their capsule mutants in parallel. Their comparison reveals different phenotypic and genotypic evolutionary changes that alter virulence-associated traits. Non-capsulated populations accumulate mutations that reduce exopolysaccharide production and increase biofilm formation and yield, whereas most capsulated populations become hypermucoviscous, a signature of hypervirulence. Hence, adaptation to novel environments primarily occurs by fine-tuning expression of the capsular locus. The same evolutionary conditions selecting for mutations in the capsular gene wzc leading to hypermucoviscosity also result in increased susceptibility to antibiotics by mutations in the ramA regulon. This implies that general adaptive processes outside the host can affect capsule evolution and its role in virulence and infection outcomes may be a by-product of such adaptation. Phenotypic and genotypic evolution in worrisome Klebsiella spp. is influenced by the capsule. Here the authors show that adaptation outside the host can impact virulence-associated traits, including de novo emergence of hypermucoviscosity.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France.
| |
Collapse
|
15
|
Inosine and D-Mannose Secreted by Drug-Resistant Klebsiella pneumoniae Affect Viability of Lung Epithelial Cells. Molecules 2022; 27:molecules27092994. [PMID: 35566345 PMCID: PMC9106066 DOI: 10.3390/molecules27092994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
The antibiotic resistance rates of Klebsiella pneumoniae have been steadily increasing in recent years. Nevertheless, the metabolic features of the drug-resistant Klebsiella pneumoniae and its associated benefits for bacterial pathogenicity are far from expounded. This study aims to unravel the unique physiological and metabolic properties specific to drug-resistant K. pneumoniae. Using scanning electron microscopy (SEM), we observed a thicker extracellular mucus layer around a drug-resistant K. pneumonia strain (Kp-R) than a drug-sensitive K. pneumonia strain (Kp-S). Kp-R also produced more capsular polysaccharide (CPS) and biofilm, and appeared to have a significant competitive advantage when co-cultured with Kp-S. Moreover, Kp-R was easier to adhere to and invade A549 epithelial cells than Kp-S but caused less cell-viability damage according to cell counting kit-8 (CCK-8) tests. Immunofluorescence revealed that both Kp-R and Kp-S infection destroyed the tight junctions and F-actin of epithelial cells, while the damage caused by Kp-S was more severe than Kp-R. We detected the extracellular metabolites secreted by the two strains with UHPLC-Q-TOF MS to explore the critical secretion products. We identified 16 predominant compounds that were differentially expressed. Among them, inosine increased the viability of epithelial cells in a dose-dependent manner, and an A2AR antagonist can abolish such enhancement. D-mannose, which was secreted less in Kp-R, inhibited the viability of A549 cells in the range of low doses. These findings provide potential targets and research strategies for preventing and treating drug-resistant K. pneumoniae infections.
Collapse
|
16
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
17
|
Zhang H, Chen F, Li Y, Shan X, Yin L, Hao X, Zhong Y. The effects of autophagy in rat tracheal epithelial cells induced by silver nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27565-27576. [PMID: 33515144 DOI: 10.1007/s11356-020-12259-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The massive use of silver nanoparticles (AgNPs) is potentially harmful to exposed humans. Although previous studies have found that AgNPs can induce cell autophagy, few studies have focused on the toxic pathways and mechanisms of autophagy induced by AgNPs in rat respiratory epithelial (RTE) cells. In this study, RTE cells were exposed to two kinds of AgNPs in vitro to ascertain the influence of mTOR-autophagy pathway-associated protein expression, including Beclin1, LC3B, Atg5, and Atg7. After exposure to different sizes and concentrations of AgNPs for 12 h, the uptake of silver in RTE cells reached 0.45 μg/L to 1.11 μg/L, indicating that AgNPs can enter RTE cells, leading to toxic effects. Our study found that this toxic effect was related to autophagy caused by ROS accumulation that was mediated by the mTOR pathway. With increasing AgNP exposure concentrations, the expression of p-mTOR was significantly downregulated, and expression of the autophagy-related proteins Beclin1, LC3B, Atg5, and Atg7 was significantly increased in RTE cells in all exposed groups. At a concentration of 1000 μg/L, the expression of LC3BII/LC3BI in all exposed groups was 24.49 times and 12.71 times that of the control, and the expression of Atg7 in all exposed groups was 23.21 times and 13.21 times that of the control. The upregulation of autophagy-related proteins in the AgNP-10 nm exposure groups was greater than that of the AgNP-100 nm exposure group. In summary, the mTOR pathway mediates AgNP-induced autophagy in RTE cells, which leads to damage to the respiratory system barrier and human health risks. This study can facilitate the development of prevention and intervention policies against adverse consequences induced by AgNPs.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Feifei Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Yan Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Xiaodong Shan
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Lu Yin
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Xiaojing Hao
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318#, Hangzhou, 311121, Zhejiang Province, China.
| |
Collapse
|
18
|
Modulation of Bovine Endometrial Cell Receptors and Signaling Pathways as a Nanotherapeutic Exploration against Dairy Cow Postpartum Endometritis. Animals (Basel) 2021; 11:ani11061516. [PMID: 34071093 PMCID: PMC8224678 DOI: 10.3390/ani11061516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The provision of updated information on the molecular pathogenesis of bovine endometritis with host-pathogen interactions and the possibility of exploring the cellular sensors mechanism in a nanotechnology-based drug delivery system against persistent endometritis were reported in this review. The mechanism of Gram-negative bacteria and their ligands has been vividly explored, with the paucity of research detail on Gram-positive bacteria in bovine endometritis. The function of cell receptors, biomolecules proteins, and sensors were reportedly essential in transferring signals into cell signaling pathways to induce immuno-inflammatory responses by elevating pro-inflammatory cytokines. Therefore, understanding endometrial cellular components and signaling mechanisms across pathogenesis are essential for nanotherapeutic exploration against bovine endometritis. The nanotherapeutic discovery that could inhibit infectious signals at the various cell receptors and signal transduction levels, interfering with transcription factors activation and pro-inflammatory cytokines and gene expression, significantly halts endometritis. Abstract In order to control and prevent bovine endometritis, there is a need to understand the molecular pathogenesis of the infectious disease. Bovine endometrium is usually invaded by a massive mobilization of microorganisms, especially bacteria, during postpartum dairy cows. Several reports have implicated the Gram-negative bacteria in the pathogenesis of bovine endometritis, with information dearth on the potentials of Gram-positive bacteria and their endotoxins. The invasive bacteria and their ligands pass through cellular receptors such as TLRs, NLRs, and biomolecular proteins of cells activate the specific receptors, which spontaneously stimulates cellular signaling pathways like MAPK, NF-kB and sequentially triggers upregulation of pro-inflammatory cytokines. The cascade of inflammatory induction involves a dual signaling pathway; the transcription factor NF-κB is released from its inhibitory molecule and can bind to various inflammatory genes promoter. The MAPK pathways are concomitantly activated, leading to specific phosphorylation of the NF-κB. The provision of detailed information on the molecular pathomechanism of bovine endometritis with the interaction between host endometrial cells and invasive bacteria in this review would widen the gap of exploring the potential of receptors and signal transduction pathways in nanotechnology-based drug delivery system. The nanotherapeutic discovery of endometrial cell receptors, signal transduction pathway, and cell biomolecules inhibitors could be developed for strategic inhibition of infectious signals at the various cell receptors and signal transduction levels, interfering on transcription factors activation and pro-inflammatory cytokines and genes expression, which may significantly protect endometrium against postpartum microbial invasion.
Collapse
|
19
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
20
|
Chiarelli A, Cabanel N, Rosinski-Chupin I, Zongo PD, Naas T, Bonnin RA, Glaser P. Diversity of mucoid to non-mucoid switch among carbapenemase-producing Klebsiella pneumoniae. BMC Microbiol 2020; 20:325. [PMID: 33109078 PMCID: PMC7590720 DOI: 10.1186/s12866-020-02007-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background Klebsiella pneumoniae is a leading cause of intractable hospital-acquired multidrug-resistant infections and carbapenemase-producing K. pneumoniae (CPKp) are particularly feared. Most of the clinical isolates produce capsule as a major virulence factor. Recombination events at the capsule locus are frequent and responsible for capsule diversity within Klebsiella spp. Capsule diversity may also occur within clonal bacterial populations generating differences in colony aspect. However, little is known about this phenomenon of phenotypic variation in CPKp and its consequences. Results Here, we explored the genetic causes of in vitro switching from capsulated, mucoid to non-mucoid, non-capsulated phenotype in eight clinical CPKp isolates. We compared capsulated, mucoid colony variants with one of their non-capsulated, non-mucoid isogenic variant. The two colony variants were distinguished by their appearance on solid medium. Whole genome comparison was used to infer mutations causing phenotypic differences. The frequency of phenotypic switch was strain-dependent and increased along with colony development on plate. We observed, for 72 non-capsulated variants that the loss of the mucoid phenotype correlates with capsule deficiency and diverse genetic events, including transposition of insertion sequences or point mutations, affecting genes belonging to the capsule operon. Reduced or loss of capsular production was associated with various in vitro phenotypic changes, affecting susceptibility to carbapenem but not to colistin, in vitro biofilm formation and autoaggregation. Conclusions The different impact of the phenotypic variation among the eight isolates in terms of capsule content, biofilm production and carbapenem susceptibility suggested heterogeneous selective advantage for capsular loss according to the strain and the mutation. Based on our results, we believe that attention should be paid in the phenotypic characterization of CPKp clinical isolates, particularly of traits related to virulence and carbapenem resistance. Supplementary information Supplementary information accompanies this paper at 10.1186/s12866-020-02007-y.
Collapse
Affiliation(s)
- Adriana Chiarelli
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France.,Sorbonne Université, 75015, Paris, France
| | - Nicolas Cabanel
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France
| | - Isabelle Rosinski-Chupin
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France
| | - Pengdbamba Dieudonné Zongo
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,UMR CNRS 3525, 75015, Paris, France
| | - Thierry Naas
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,EA 7361 Structure, dynamic, function and expression of broad-spectrum beta-lactamases", Faculty of Medicine University Paris-Sud, University Paris-Saclay, Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Rémy A Bonnin
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France.,EA 7361 Structure, dynamic, function and expression of broad-spectrum beta-lactamases", Faculty of Medicine University Paris-Sud, University Paris-Saclay, Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- EERA Unit "Ecology and Evolution of Antibiotic Resistance", Institut Pasteur - Assistance Publique/Hôpitaux de Paris - University Paris-Saclay, Paris, France. .,UMR CNRS 3525, 75015, Paris, France.
| |
Collapse
|
21
|
Animal Model To Study Klebsiella pneumoniae Gastrointestinal Colonization and Host-to-Host Transmission. Infect Immun 2020; 88:IAI.00071-20. [PMID: 32839189 PMCID: PMC7573435 DOI: 10.1128/iai.00071-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
An important yet poorly understood facet of the life cycle of a successful pathogen is host-to-host transmission. Hospital-acquired infections (HAI) resulting from the transmission of drug-resistant pathogens affect hundreds of millions of patients worldwide. Klebsiella pneumoniae, a Gram-negative bacterium, is notorious for causing HAI, with many of these infections difficult to treat, as K. pneumoniae has become multidrug resistant. Epidemiological studies suggest that K. pneumoniae host-to-host transmission requires close contact and generally occurs through the fecal-oral route. An important yet poorly understood facet of the life cycle of a successful pathogen is host-to-host transmission. Hospital-acquired infections (HAI) resulting from the transmission of drug-resistant pathogens affect hundreds of millions of patients worldwide. Klebsiella pneumoniae, a Gram-negative bacterium, is notorious for causing HAI, with many of these infections difficult to treat, as K. pneumoniae has become multidrug resistant. Epidemiological studies suggest that K. pneumoniae host-to-host transmission requires close contact and generally occurs through the fecal-oral route. Here, we describe a murine model that can be utilized to study mucosal (oropharynx and gastrointestinal [GI]) colonization, shedding within feces, and transmission of K. pneumoniae through the fecal-oral route. Using an oral route of inoculation, and fecal shedding as a marker for GI colonization, we showed that K. pneumoniae can asymptomatically colonize the GI tract in immunocompetent mice and modifies the host GI microbiota. Colonization density within the GI tract and levels of shedding in the feces differed among the clinical isolates tested. A hypervirulent K. pneumoniae isolate was able to translocate from the GI tract and cause hepatic infection that mimicked the route of human infection. Expression of the capsule was required for colonization and, in turn, robust shedding. Furthermore, K. pneumoniae carrier mice were able to transmit to uninfected cohabitating mice. Lastly, treatment with antibiotics led to changes in the host microbiota and development of a transient supershedder phenotype, which enhanced transmission efficiency. Thus, this model can be used to determine the contribution of host and bacterial factors toward K. pneumoniae dissemination.
Collapse
|
22
|
Kongkham B, Prabakaran D, Puttaswamy H. Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia 2020; 147:104762. [PMID: 33069839 DOI: 10.1016/j.fitote.2020.104762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Development of antibiotic resistance (ABR) in bacteria and its multidimensional spread is an emerging global threat that needs immediate attention. Extensive antibiotics (AB) usage results in development of ABR in bacteria by target modification, production of AB degrading enzymes, porin modifications, efflux pumps overexpression, etc. To counter this, apart from strict regulation of AB use and behavioural changes, research and development (R&D) of newer antimicrobials are in place. One such emerging approach to combat ABR is the use of structurally and functionally diverse plant secondary metabolites (PSMs) in combination with the conventional AB. Either the PSMs are themselves antimicrobial or they potentiate the activity of the AB through a range of mechanisms. However, their use is lagging due to poor knowledge of mode of action, structure-activity relationships, pharmacokinetics, etc. This review paper discussed the opportunities and challenges in managing ABR using PSMs. Mechanisms of ABR development in bacteria and current strategies to counter them were studied and the areas where PSMs can play an important role were highlighted. The use of PSMs, both as an anti-resistance and anti-virulence agent in combination therapy to counter multi-drug resistance along with their mechanisms of action, has been discussed in detail. The difficulties in the commercialisation of PSMs and strategies to overcome them along with future priority areas of research have also been given. Following the given R&D path will definitely help in better understanding and utilising the full potential of PSMs in solving the problem of antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Bhani Kongkham
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Duraivadivel Prabakaran
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Hariprasad Puttaswamy
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Delhi 110016, India.
| |
Collapse
|
23
|
Mues N, Chu HW. Out-Smarting the Host: Bacteria Maneuvering the Immune Response to Favor Their Survival. Front Immunol 2020; 11:819. [PMID: 32477341 PMCID: PMC7235365 DOI: 10.3389/fimmu.2020.00819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/09/2020] [Indexed: 12/29/2022] Open
Abstract
Bacteria adapt themselves to various environmental conditions in nature, which can lead to bacterial adaptation and persistence in the host as commensals or pathogens. In healthy individuals, host defense mechanisms prevent the opportunistic bacteria/commensals from becoming a pathological infection. However, certain pathological conditions can impair normal defense barriers leading to bacterial survival and persistence. Under pathological conditions such as chronic lung inflammation, bacteria employ various mechanisms from structural changes to protease secretion to manipulate and evade the host immune response and create a niche permitting commensal bacteria to thrive into infections. Therefore, understanding the mechanisms by which pathogenic bacteria survive in the host tissues and organs may offer new strategies to overcome persistent bacterial infections. In this review, we will discuss and highlight the complex interactions between airway pathogenic bacteria and immune responses in several major chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
24
|
Fan J, Luo Y, Qin Y, Wu C, Han X, Ouyang H, Zhang L, Cai P, Li N. The expression of β-Defensin-2, IL-22, IL-22R1 and IL-10R2 in rat model of Klebsiella pneumonia and their correlation with histological grades. Exp Lung Res 2020; 46:109-116. [PMID: 32169023 DOI: 10.1080/01902148.2020.1725690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/13/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022]
Abstract
Backgrounds and Aims:Klebsiella pneumoniae represents the most common opportunistic pathogen contributing to Klebsiella pneumonia in hospital-acquired infections. Klebsiella pneumonia has a rapidly progressive clinical course and multi-drug resistant (MDR). Identification of the effective biochemical markers is crucial for improving early diagnosis and treatment of Klebsiella pneumonia. The aims of our study are to 1) investigate the expression of β-Defensin-2(rβD2), IL-22, IL-22R1 and IL-10R2 in Klebsiella pneumonia-infected rats and 2) their association with the histological grades of Klebsiella pneumonia.Methods and Materials: Fifty specific pathogen free (SPF) male SD rats were randomly divided into two groups: control group (treated with normal saline) and pneumonia group (treated with K. pneumoniae). All animals were sacrificed 1 h, 12 h, 1 d, 3 d, 5 d post infection. The severity and property of pneumonia was evaluated by histopathologic observation and pathogen identification. The mRNA expression of rβD2, IL-22, IL-22R1 and IL-10R2 was measured by RT-qPCR assay. The expression of rβD2 in rat lung tissue was determined by Western blot analysis, and the level of IL-22 in rat serum was determined by ELISA.Results: Histopathologic examination and bacterial counting of lung tissues confirmed the successful establishment of rat pneumonia model. The gene expression of rβD2, IL-22, IL-22R1 and IL-10R2 in pneumonia rats were significantly higher than those in healthy control mice (P < 0.05). The expression of rβD2 was correlated with histological grades of Klebsiella pneumonia and the level of IL-22. RT-qPCR results showed that the peak expression of IL-22R1 appeared earlier than IL-10R2 in rat pneumonia model.Conclusions: The expression of rβD2 and IL-22 was increased significantly at early stage in rat Klebsiella pneumonia model, suggesting that IL-22 and rβD2 might serve as potential biomarkers for the early diagnosis of Klebsiella pneumonia.
Collapse
Affiliation(s)
- Jianyong Fan
- Department of Respiratory Diseases, Xi'an International Medical Center, Xi'an, Shanxi Province, China
| | - Yuan Luo
- Department of Respiratory Diseases, Hefei Second People's Hospital, Hefei, Anhui Province, China
| | - Yan Qin
- Department of Geriatrics Diseases, Xi'an 521 Hospital, Xi'an, Shanxi Province, China
| | - Changgui Wu
- Department of Respiratory Diseases, Xi'an International Medical Center, Xi'an, Shanxi Province, China
| | - Xinpeng Han
- Department of Respiratory Diseases, Xi'an International Medical Center, Xi'an, Shanxi Province, China
| | - Haifeng Ouyang
- Department of Respiratory Diseases, Xi'an International Medical Center, Xi'an, Shanxi Province, China
| | - Liyuan Zhang
- Department of Respiratory Diseases, Xi'an International Medical Center, Xi'an, Shanxi Province, China
| | - Pei Cai
- Department of Respiratory Diseases, Xi'an International Medical Center, Xi'an, Shanxi Province, China
| | - Nie Li
- Department of Respiratory Diseases, Xi'an International Medical Center, Xi'an, Shanxi Province, China
| |
Collapse
|
25
|
Abstract
The implementation of infection models that approximate human disease is essential to understand infections and for testing new therapies before they enter into clinical stages. Rodents are used in most preclinical studies, although the differences between mice and humans have fueled the conclusion that murine studies are unreliable predictors of human outcomes. In this study, we have developed a whole-lung porcine model of infection using the ex vivo lung perfusion (EVLP) system established to recondition human lungs for transplant. As a proof of principle, we provide evidence demonstrating that infection of the porcine EVLP with the human pathogen Klebsiella pneumoniae recapitulates the known features of Klebsiella-triggered pneumonia. Moreover, our data revealed that the porcine EVLP model is useful to reveal features of the virulence of K. pneumoniae, including the manipulation of immune cells. Together, the findings of this study support the utility of the EVLP model using pig lungs as a surrogate host for assessing respiratory infections. The use of animal infection models is essential to understand microbial pathogenesis and to develop and test treatments. Insects and two-dimensional (2D) and 3D tissue models are increasingly being used as surrogates for mammalian models. However, there are concerns about whether these models recapitulate the complexity of host-pathogen interactions. In this study, we developed the ex vivo lung perfusion (EVLP) model of infection using porcine lungs to investigate Klebsiella pneumoniae-triggered pneumonia as a model of respiratory infections. The porcine EVLP model recapitulates features of K. pneumoniae-induced pneumonia lung injury. This model is also useful to assess the pathogenic potential of K. pneumoniae, as we observed that the attenuated Klebsiella capsule mutant strain caused less pathological tissue damage with a concomitant decrease in the bacterial burden compared to that in lungs infected with the wild type. The porcine EVLP model allows assessment of inflammatory responses following infection; similar to the case with the mouse pneumonia model, we observed an increase of il-10 in the lungs infected with the wild type and an increase of ifn-γ in lungs infected with the capsule mutant. This model also allows monitoring of phenotypes at the single-cell level. Wild-type K. pneumoniae skews macrophages toward an M2-like state. In vitro experiments probing pig bone marrow-derived macrophages uncovered the role for the M2 transcriptional factor STAT6 and that Klebsiella-induced il-10 expression is controlled by p38 and extracellular signal-regulated kinase (ERK). Klebsiella-induced macrophage polarization is dependent on the capsule. Together, the findings of this study support the utility of the EVLP model using pig lungs as a platform to investigate the infection biology of respiratory pathogens.
Collapse
|
26
|
Abstract
Hypervirulent K. pneumoniae (hvKp) is an evolving pathotype that is more virulent than classical K. pneumoniae (cKp). hvKp usually infects individuals from the community, who are often healthy. Infections are more common in the Asian Pacific Rim but are occurring globally. hvKp infection frequently presents at multiple sites or subsequently metastatically spreads, often requiring source control. hvKp has an increased ability to cause central nervous system infection and endophthalmitis, which require rapid recognition and site-specific treatment. The genetic factors that confer hvKp's hypervirulent phenotype are present on a large virulence plasmid and perhaps integrative conjugal elements. Increased capsule production and aerobactin production are established hvKp-specific virulence factors. Similar to cKp, hvKp strains are becoming increasingly resistant to antimicrobials via acquisition of mobile elements carrying resistance determinants, and new hvKp strains emerge when extensively drug-resistant cKp strains acquire hvKp-specific virulence determinants, resulting in nosocomial infection. Presently, clinical laboratories are unable to differentiate cKp from hvKp, but recently, several biomarkers and quantitative siderophore production have been shown to accurately predict hvKp strains, which could lead to the development of a diagnostic test for use by clinical laboratories for optimal patient care and for use in epidemiologic surveillance and research studies.
Collapse
Affiliation(s)
- Thomas A Russo
- Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo-State University of New York, Buffalo, New York, USA
- The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, Buffalo, New York, USA
- The Veterans Administration Western New York Healthcare System, Buffalo, New York, USA
| | - Candace M Marr
- Department of Medicine, University at Buffalo-State University of New York, Buffalo, New York, USA
- Erie County Medical Center, Buffalo, New York, USA
| |
Collapse
|
27
|
Castillo LA, Birnberg-Weiss F, Rodriguez-Rodrigues N, Martire-Greco D, Bigi F, Landoni VI, Gomez SA, Fernandez GC. Klebsiella pneumoniae ST258 Negatively Regulates the Oxidative Burst in Human Neutrophils. Front Immunol 2019; 10:929. [PMID: 31105712 PMCID: PMC6497972 DOI: 10.3389/fimmu.2019.00929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
The epidemic clone of Klebsiella pneumoniae (Kpn), sequence type 258 (ST258), carbapenamase producer (KPC), commonly infects hospitalized patients that are left with scarce therapeutic option since carbapenems are last resort antibiotics for life-threatening bacterial infections. To improve prevention and treatment, we should better understand the biology of Kpn KPC ST258 infections. Our hypothesis was that Kpn KPC ST258 evade the first line of defense of innate immunity, the polymorphonuclear neutrophil (PMN), by decreasing its functional response. Therefore, our aim was to evaluate how the ST258 Kpn clone affects PMN responses, focusing on the respiratory burst, compared to another opportunistic pathogen, Escherichia coli (Eco). We found that Kpn KPC ST258 was unable to trigger bactericidal responses as reactive oxygen species (ROS) generation and NETosis, compared to the high induction observed with Eco, but both bacterial strains were similarly phagocytized and cause increases in cell size and CD11b expression. The absence of ROS induction was also observed with other Kpn ST258 strains negative for KPC. These results reflect certain selectivity in terms of the functions that are triggered in PMN by Kpn, which seems to evade specifically those responses critical for bacterial survival. In this sense, bactericidal mechanisms evasion was associated with a higher survival of Kpn KPC ST258 compared to Eco. To investigate the mechanisms and molecules involved in ROS inhibition, we used bacterial extracts (BE) and found that BE were able to inhibit ROS generation triggered by the well-known ROS inducer, fMLP. A sequence of experiments led us to elucidate that the polysaccharide part of LPS was responsible for this inhibition, whereas lipid A mediated the other responses that were not affected by bacteria, such as cell size increase and CD11b up-regulation. In conclusion, we unraveled a mechanism of immune evasion of Kpn KPC ST258, which may contribute to design more effective strategies for the treatment of these multi-resistant bacterial infections.
Collapse
Affiliation(s)
- Luis A Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Nahuel Rodriguez-Rodrigues
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Veronica I Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A Gomez
- Servicio de Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas Dr. Carlos G. Malbrán (INEI), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Buenos Aires, Argentina
| | - Gabriela C Fernandez
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)- Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
2-Hydroxylation of Acinetobacter baumannii Lipid A Contributes to Virulence. Infect Immun 2019; 87:IAI.00066-19. [PMID: 30745327 PMCID: PMC6434125 DOI: 10.1128/iai.00066-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii causes a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. Acinetobacter baumannii causes a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. There is a major gap in knowledge on the infection biology of A. baumannii, and only a few virulence factors have been characterized, including lipopolysaccharide. The lipid A expressed by A. baumannii is hepta-acylated and contains 2-hydroxylaurate. The late acyltransferases controlling the acylation of lipid A have been already characterized. Here, we report the characterization of A. baumannii LpxO, which encodes the enzyme responsible for the 2-hydroxylation of lipid A. By genetic methods and mass spectrometry, we demonstrate that LpxO catalyzes the 2-hydroxylation of the laurate transferred by A. baumannii LpxL. LpxO-dependent lipid A 2-hydroxylation protects A. baumannii from polymyxin B, colistin, and human β-defensin 3. LpxO contributes to the survival of A. baumannii in human whole blood and is required for pathogen survival in the waxmoth Galleria mellonella. LpxO also protects Acinetobacter from G. mellonella antimicrobial peptides and limits their expression. Further demonstrating the importance of LpxO-dependent modification in immune evasion, 2-hydroxylation of lipid A limits the activation of the mitogen-activated protein kinase Jun N-terminal protein kinase to attenuate inflammatory responses. In addition, LpxO-controlled lipid A modification mediates the production of the anti-inflammatory cytokine interleukin-10 (IL-10) via the activation of the transcriptional factor CREB. IL-10 in turn limits the production of inflammatory cytokines following A. baumannii infection. Altogether, our studies suggest that LpxO is a candidate for the development of anti-A. baumannii drugs.
Collapse
|
29
|
Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 2019; 43:145-161. [PMID: 30657899 PMCID: PMC6435450 DOI: 10.1093/femsre/fuy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| |
Collapse
|
30
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
31
|
β-Defensins Coordinate In Vivo to Inhibit Bacterial Infections of the Trachea. Vaccines (Basel) 2018; 6:vaccines6030057. [PMID: 30154362 PMCID: PMC6161282 DOI: 10.3390/vaccines6030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
β-defensins are predicted to play an important role in innate immunity against bacterial infections in the airway. We previously observed that a type III-secretion product of Bordetella bronchiseptica inhibits the NF-κB-mediated induction of a β-defensin in airway epithelial cells in vitro. To confirm this in vivo and to examine the relative roles of other β-defensins in the airway, we infected wild-type C57BL/6 mice and mice with a deletion of the mBD-1 gene with B. bronchiseptica wild-type strain, RB50 and its mutant strain lacking the type III-secretion system, WD3. The bacteria were quantified in the trachea and the nasal tissue and mRNA levels of mouse β-defensin-3 (mBD-3) were assessed after 24 h. Infection with the wild-type bacterial strain resulted in lower mBD-3 mRNA levels in the trachea than in mice infected with the type III-deficient strain. Furthermore, we observed an increase in bacterial numbers of RB50 only in the tracheas of mBD-1-deficient mice. Neutrophils were also more abundant on the trachea in RB50 infected WT mice but not in the bronchiolar lavage fluid (BAL), compared with WD3 infected WT and mBD-1−/− mice, indicating that the coordination of β-defensin chemotactic effects may be confined to tracheal epithelial cells (TEC). RB50 decreased the ability of mice to mount an early specific antibody response, seven days after infection in both WT and mBD-1−/− mice but there were no differences in titers between RB50-infected WT and mBD-1−/− mice or between WD3-infected WT and mBD-1−/− mice, indicating mBD-1 was not involved in induction of the humoral immune response to the B. bronchiseptica. Challenge of primary mouse TEC in vitro with RB50 and WD3, along with IL-1β, further corroborated the in vivo studies. The results demonstrate that at least two β-defensins can coordinate early in an infection to limit the growth of bacteria in the trachea.
Collapse
|
32
|
Identification of Two Regulators of Virulence That Are Conserved in Klebsiella pneumoniae Classical and Hypervirulent Strains. mBio 2018; 9:mBio.01443-18. [PMID: 30087173 PMCID: PMC6083908 DOI: 10.1128/mbio.01443-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Klebsiella pneumoniae is widely recognized as a pathogen with a propensity for acquiring antibiotic resistance. It is capable of causing a range of hospital-acquired infections (urinary tract infections [UTI], pneumonia, sepsis) and community-acquired invasive infections. The genetic heterogeneity of K. pneumoniae isolates complicates our ability to understand the virulence of K. pneumoniae. Characterization of virulence factors conserved between strains as well as strain-specific factors will improve our understanding of this important pathogen. The MarR family of regulatory proteins is widely distributed in bacteria and regulates cellular processes such as antibiotic resistance and the expression of virulence factors. Klebsiella encodes numerous MarR-like proteins, and they likely contribute to the ability of K. pneumoniae to respond to and survive under a wide variety of environmental conditions, including those present in the human body. We tested loss-of-function mutations in all the marR homologues in a murine pneumonia model and found that two (kvrA and kvrB) significantly impacted the virulence of K1 and K2 capsule type hypervirulent (hv) strains and that kvrA affected the virulence of a sequence type 258 (ST258) classical strain. In the hv strains, kvrA and kvrB mutants displayed phenotypes associated with reduced capsule production, mucoviscosity, and transcription from galF and manC promoters that drive expression of capsule synthesis genes. In contrast, kvrA and kvrB mutants in the ST258 strain had no effect on capsule gene expression or capsule-related phenotypes. Thus, KvrA and KvrB affect virulence in classical and hv strains but the effect on virulence may not be exclusively due to effects on capsule production. In addition to having a reputation as the causative agent for hospital-acquired infections as well as community-acquired invasive infections, Klebsiella pneumoniae has gained widespread attention as a pathogen with a propensity for acquiring antibiotic resistance. Due to the rapid emergence of carbapenem resistance among K. pneumoniae strains, a better understanding of virulence mechanisms and identification of new potential drug targets are needed. This study identified two novel regulators (KvrA and KvrB) of virulence in K. pneumoniae and demonstrated that their effect on virulence in invasive strains is likely due in part to effects on capsule production (a major virulence determinant) and hypermucoviscosity. KvrA also impacts the virulence of classical strains but does not appear to affect capsule gene expression in this strain. KvrA and KvrB are conserved among K. pneumoniae strains and thus could regulate capsule expression and virulence in diverse strains regardless of capsule type.
Collapse
|
33
|
Rhinoscleroma pathogenesis: The type K3 capsule of Klebsiella rhinoscleromatis is a virulence factor not involved in Mikulicz cells formation. PLoS Negl Trop Dis 2018; 12:e0006201. [PMID: 29381692 PMCID: PMC5806929 DOI: 10.1371/journal.pntd.0006201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/09/2018] [Accepted: 12/31/2017] [Indexed: 12/16/2022] Open
Abstract
Rhinoscleroma is a human specific chronic granulomatous infection of the nose and upper airways caused by the Gram-negative bacterium Klebsiella pneumoniae subsp. rhinoscleromatis. Although considered a rare disease, it is endemic in low-income countries where hygienic conditions are poor. A hallmark of this pathology is the appearance of atypical foamy monocytes called Mikulicz cells. However, the pathogenesis of rhinoscleroma remains poorly investigated. Capsule polysaccharide (CPS) is a prominent virulence factor in bacteria. All K. rhinoscleromatis strains are of K3 serotype, suggesting that CPS can be an important driver of rhinoscleroma disease. In this study, we describe the creation of the first mutant of K. rhinoscleromatis, inactivated in its capsule export machinery. Using a murine model recapitulating the formation of Mikulicz cells in lungs, we observed that a K. rhinoscleromatis CPS mutant (KR cps-) is strongly attenuated and that mice infected with a high dose of KR cps- are still able to induce Mikulicz cells formation, unlike a K. pneumoniae capsule mutant, and to partially recapitulate the characteristic strong production of IL-10. Altogether, the results of this study show that CPS is a virulence factor of K. rhinoscleromatis not involved in the specific appearance of Mikulicz cells.
Collapse
|
34
|
Kidd TJ, Mills G, Sá-Pessoa J, Dumigan A, Frank CG, Insua JL, Ingram R, Hobley L, Bengoechea JA. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med 2017; 9:430-447. [PMID: 28202493 PMCID: PMC5376759 DOI: 10.15252/emmm.201607336] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Klebsiella pneumoniae is an important cause of multidrug‐resistant infections worldwide. Recent studies highlight the emergence of multidrug‐resistant K. pneumoniae strains which show resistance to colistin, a last‐line antibiotic, arising from mutational inactivation of the mgrB regulatory gene. However, the precise molecular resistance mechanisms of mgrB‐associated colistin resistance and its impact on virulence remain unclear. Here, we constructed an mgrB gene K. pneumoniae mutant and performed characterisation of its lipid A structure, polymyxin and antimicrobial peptide resistance, virulence and inflammatory responses upon infection. Our data reveal that mgrB mutation induces PhoPQ‐governed lipid A remodelling which confers not only resistance to polymyxins, but also enhances K. pneumoniae virulence by decreasing antimicrobial peptide susceptibility and attenuating early host defence response activation. Overall, our findings have important implications for patient management and antimicrobial stewardship, while also stressing antibiotic resistance development is not inexorably linked with subdued bacterial fitness and virulence.
Collapse
Affiliation(s)
- Timothy J Kidd
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Qld, Australia
| | - Grant Mills
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Joana Sá-Pessoa
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amy Dumigan
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Christian G Frank
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - José L Insua
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Rebecca Ingram
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Laura Hobley
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - José A Bengoechea
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
35
|
Identification and Characterization of Two Klebsiella pneumoniae lpxL Lipid A Late Acyltransferases and Their Role in Virulence. Infect Immun 2017; 85:IAI.00068-17. [PMID: 28652313 DOI: 10.1128/iai.00068-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs.
Collapse
|
36
|
Gomez-Simmonds A, Uhlemann AC. Clinical Implications of Genomic Adaptation and Evolution of Carbapenem-Resistant Klebsiella pneumoniae. J Infect Dis 2017; 215:S18-S27. [PMID: 28375514 DOI: 10.1093/infdis/jiw378] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae poses a major challenge to healthcare worldwide as an important cause of multidrug-resistant infections. Nosocomial clones, including epidemic sequence type 258 (ST258), have shown an affinity for acquiring and disseminating resistance plasmids, particularly variants of the K. pneumoniae carbapenemase. By comparison, the resurgence of severe community-associated K. pneumoniae infections has led to increased recognition of hypervirulent strains belonging to the K1 and K2 capsular serotypes, predominantly in eastern Asia. Genomic and functional studies suggest that a variety of virulence and immune evasive factors contribute to the success of nosocomial and community-associated clonal lineages, aided by mechanisms of genetic plasticity that contribute to uptake of genes associated with antimicrobial resistance and pathogenicity. While there currently appears to be limited overlap between resistant and hypervirulent lineages, specific bacterial and host factors contributing to the emergence of dominant clones remain incompletely understood. This review summarizes recent advances in our understanding of the molecular epidemiology, virulence potential, and host-pathogen interactions of K. pneumoniae.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|
37
|
Salloum T, Arabaghian H, Alousi S, Abboud E, Tokajian S. Genome sequencing and comparative analysis of an NDM-1-producing Klebsiella pneumoniae ST15 isolated from a refugee patient. Pathog Glob Health 2017; 111:166-175. [PMID: 28395597 DOI: 10.1080/20477724.2017.1314069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The escalating problem of antibiotic resistance, specifically cabarpenemase and extended-spectrum β-lacatamase (ESBL) producing K. pneumoniae strains, is directly correlated with increased patient morbidity and mortality and prolonged hospitalization and costs. In this study, a comprehensive genomic analysis encompassing the resistomics, virulence repertoire and mobile genetic elements of an NDM-1 positive ESBL-producing K. pneumoniae EA-MEH ST15 isolated from a urine sample collected from a Syrian refugee was conducted. Illumina paired-end libraries were prepared and sequenced resulting in 892,300 high-quality reads. The initial assembly produced 329 contigs with a combined 5,954,825 bp and a 56.5% G+C content. Resistome analysis revealed the presence of several β-lactamases including NDM-1, SHV-28, CTX-M-15 and OXA-1 in addition to 18 other genes encoding for resistance, among which are aph(3')-Ia, aac(6')Ib-cr, armA, strB, strA and aadA2 genes. Additionally, five plasmids IncFIB(Mar), IncHI1B, IncFIB(pKPHS1), IncFIB(K) and IncFII(K) and four integrated phages were detected. In silico MLST analysis revealed that the isolate was of sequence type ST15. To our knowledge this is the first in-depth genomic analysis of a NDM-1 positive K. pneumoniae ST15 in Lebanon associated with the recent population migration. The potential dissemination of such MDR strains is an important public health concern.
Collapse
Affiliation(s)
- Tamara Salloum
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| | - Harout Arabaghian
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| | - Sahar Alousi
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| | - Edmond Abboud
- b Clinical Laboratory , The Middle East Institute of Health , Bsalim , Lebanon
| | - Sima Tokajian
- a Department of Natural Sciences, School of Arts and Sciences , Lebanese American University , Byblos , Lebanon
| |
Collapse
|
38
|
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections.
Collapse
|
39
|
Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human β-defensins in allergic diseases. Clin Exp Allergy 2016; 46:1522-1530. [PMID: 27790779 DOI: 10.1111/cea.12843] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides (AMPs), also referred to as host defence peptides (HDPs), comprise a large family of small molecules broadly distributed throughout the animal and plant kingdom, historically serving as natural antibiotics. In mammals, there are two major families of AMPs/HDPs, the defensins and the cathelicidins. These peptides have evolved to protect against a wide range of infections from bacteria, viruses, fungi and some parasites. However, in addition to their broad-spectrum killing activities, AMPs/HDPs also possess various biological functions. They activate a variety of cell types, such as keratinocytes, airway epithelial cells and mast cells, among others, and regulate cytokine/chemokine production, cell migration, proliferation, differentiation, angiogenesis, the wound healing process and maintenance of the skin barrier function. Recently, it has become clear that alterations in the level of AMPs/HDPs are associated with the initiation and development of various inflammatory and allergic diseases. In this review, we will discuss the regulation and functions of human β-defensins and outline the current evidence supporting the role of these peptides in the pathogenesis of allergic diseases, including atopic dermatitis, allergic rhinitis, asthma and chronic rhinosinusitis. Understanding the functions and mechanisms of human β-defensins may aid in the development of novel therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- F Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - C Kiatsurayanon
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - H Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 2016; 32:17-30. [PMID: 27522641 DOI: 10.1016/j.cytogfr.2016.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host's immune response to certain bacteria when antibiotics are not completely effective.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Barbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Isidora Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Chile
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
41
|
Beta-defensin gene (DEFB1) polymorphisms are associated with the susceptibility to chronic respiratory diseases. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Abstract
Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Collapse
|
43
|
Abstract
Cationic antimicrobial peptides (CAMPs) are important innate immune defenses that inhibit colonization by pathogens and contribute to clearance of infections. Gram-negative bacterial pathogens are a major target, yet many of them have evolved mechanisms to resist these antimicrobials. These resistance mechanisms can be critical contributors to bacterial virulence and are often crucial for survival within the host. Here, we summarize methods used by Gram-negative bacteria to resist CAMPs. Understanding these mechanisms may lead to new therapeutic strategies against pathogens with extensive CAMP resistance.
Collapse
Affiliation(s)
- Victor I. Band
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA; E-Mail:
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
| | - David S. Weiss
- Yerkes Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-404-727-8214; Fax: +1-404-727-8199
| |
Collapse
|
44
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
45
|
Ares MA, Fernández-Vázquez JL, Rosales-Reyes R, Jarillo-Quijada MD, von Bargen K, Torres J, González-y-Merchand JA, Alcántar-Curiel MD, De la Cruz MA. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide. Front Cell Infect Microbiol 2016; 6:13. [PMID: 26904512 PMCID: PMC4746245 DOI: 10.3389/fcimb.2016.00013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de PediatríaMexico City, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José L Fernández-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| | - Jorge A González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - María D Alcántar-Curiel
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| |
Collapse
|
46
|
Abstract
The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.
Collapse
|
47
|
Hielpos MS, Ferrero MC, Fernández AG, Bonetto J, Giambartolomei GH, Fossati CA, Baldi PC. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection. PLoS One 2015; 10:e0140408. [PMID: 26448160 PMCID: PMC4598116 DOI: 10.1371/journal.pone.0140408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/24/2015] [Indexed: 01/18/2023] Open
Abstract
Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site.
Collapse
Affiliation(s)
- M Soledad Hielpos
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Ferrero
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea G Fernández
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Josefina Bonetto
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", Buenos Aires, Argentina
| | - Carlos A Fossati
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo C Baldi
- Instituto de Estudios de la Inmunidad Humoral (IDEHU, CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Haarmann H, Steiner T, Schreiber F, Heinrich A, Zweigner J, N'Guessan PD, Slevogt H. The role and regulation of Moraxella catarrhalis-induced human beta-defensin 3 expression in human pulmonary epithelial cells. Biochem Biophys Res Commun 2015; 467:46-52. [PMID: 26417692 DOI: 10.1016/j.bbrc.2015.09.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacterial colonisation with Moraxella catarrhalis may partly sustain chronic inflammation in the lower airways of patients with chronic obstructive pulmonary disease (COPD). In addition, this bacterium causes infectious exacerbations of COPD, which often necessitate treatment with antibiotics. Antimicrobial peptides are the body's own antibiotic substances with bactericidal and bacteriostatic, as well as immunomodulatory function. In particular, human beta-defensin 3 (hBD-3) exerts an antimicrobial effect against an extraordinarily broad spectrum of pathogens. We therefore investigated the role of hBD-3 in infections of pulmonary epithelial cells with M. catarrhalis. METHODS The antimicrobial activity of hBD-3 vs. M. catarrhalis was evaluated in an antimicrobial susceptibility assay. We analyzed hBD-3 secretion of M. catarrhalis-infected pulmonary epithelial cells using ELISA. The role of M. catarrhalis-specific virulence factors, toll-like receptors (TLR) 2 and 4, MAPK pathways, and transcription factors AP-1 and NF-κB in the induction and regulation of hBD-3 expression were explored with specific inhibitors, small interference RNA, Western Blot, and chromatin immunoprecipitation (ChIP) assays. RESULTS HBD-3 exhibited a strong bactericidal effect against M. catarrhalis. M. catarrhalis induced hBD-3 expression in pulmonary epithelial cells, which was dependent on M. catarrhalis membranous lipoolygosaccharide (LOS), while the surface proteins UspA1 and UspA2 were not involved. Gene silencing of TLR2, but not TLR4, led to a reduced hBD-3 secretion after stimulation with M. catarrhalis or M. catarrhalis LOS. Inhibition of MAPKs ERK1/2 and JNK, but not p38, reduced hBD-3 secretion. HBD-3 expression was mediated through the recruitment of AP-1 to the hBD-3 gene promoter and was independent of NF-κB. CONCLUSION The immune response of pulmonary epithelial cells towards M. catarrhalis involves secretion of hBD-3, which has a bactericidal effect against this pathogen. Binding of M. catarrhalis virulence factor LOS to TLR2 causes an ERK1/2- and JNK-dependent induction of AP-1-related transcription of the hBD-3 gene, resulting in the production and secretion of hBD-3.
Collapse
Affiliation(s)
- Helge Haarmann
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; Department of Internal Medicine/Infectious Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tamara Steiner
- Department of Internal Medicine/Infectious Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Neurological Rehabilitation Center for Children and Adolescents, Helios Klinikum Hohenstücken, Brandenburg, Germany
| | | | | | - Janine Zweigner
- Department of Infection Control and Hospital Hygiene, University Hospital Cologne, Cologne, Germany
| | - Philippe Dje N'Guessan
- Department of Pulmonary and Critical Care Medicine, Red Cross Hospital, Stuttgart, Germany
| | | |
Collapse
|
49
|
Cano V, March C, Insua JL, Aguiló N, Llobet E, Moranta D, Regueiro V, Brennan GP, Millán-Lou MI, Martín C, Garmendia J, Bengoechea JA. Klebsiella pneumoniaesurvives within macrophages by avoiding delivery to lysosomes. Cell Microbiol 2015; 17:1537-60. [DOI: 10.1111/cmi.12466] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Victoria Cano
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
| | - Catalina March
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
| | - Jose Luis Insua
- Centre for Infection and Immunity; Queen's University Belfast; Belfast UK
| | - Nacho Aguiló
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Enrique Llobet
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - David Moranta
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - Verónica Regueiro
- Laboratory Infection and Immunity; Fundació d'Investigació Sanitària de les Illes Balears (FISIB); Bunyola Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Institut d'Investigació Sanitària de Palma (IdISPa); Palma Spain
| | - Gerard P. Brennan
- School of Biological Sciences; Queen's University Belfast; Belfast UK
| | - Maria Isabel Millán-Lou
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Carlos Martín
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; Zaragoza Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES); Bunyola Spain
- Instituto de Agrobiotecnología; CSIC - Universidad Pública de Navarra-Gobierno de Navarra; Mutilva Spain
| | - José A. Bengoechea
- Centre for Infection and Immunity; Queen's University Belfast; Belfast UK
- Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
| |
Collapse
|
50
|
Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 2015; 9:1071-81. [PMID: 25340836 DOI: 10.2217/fmb.14.48] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Typical Klebsiella pneumoniae is an opportunistic pathogen, which mostly affects those with weakened immune systems and tends to cause nosocomial infections. A subset of hypervirulent K. pneumoniae serotypes with elevated production of capsule polysaccharide can affect previously healthy persons and cause life-threatening community-acquired infections, such as pyogenic liver abscess, meningitis, necrotizing fasciitis, endophthalmitis and severe pneumonia. K. pneumoniae utilizes a variety of virulence factors, especially capsule polysaccharide, lipopolysaccharide, fimbriae, outer membrane proteins and determinants for iron acquisition and nitrogen source utilization, for survival and immune evasion during infection. This article aims to present the state-of-the-art understanding of the molecular pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Bei Li
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | | | | | | | |
Collapse
|