1
|
Martin J, Neubauer V, Rittersberger R, Treitler S, Kopp P, Günday C, Shrimo I, Dabbars A, Rosenau F, Türeli AE, Günday-Türeli N, Haedicke-Peters O, Schindowski K. Development and Characterization of a Primary Ciliated Porcine Airway Model for the Evaluation of In Vitro Mucociliary Clearance and Mucosal Drug Delivery. Pharmaceutics 2025; 17:462. [PMID: 40284456 PMCID: PMC12030231 DOI: 10.3390/pharmaceutics17040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: In vitro models play a crucial role in preclinical respiratory research, enabling the testing and screening of mucosal formulations, dosage forms, and inhaled drugs. Mucociliary clearance (MCC) is an essential defense mechanism in mucosal drug delivery but is often impaired in respiratory diseases. Despite its importance, standardized in vitro MCC assays are rarely reported. Furthermore, many published methods primarily measure cilia beat frequency (CBF), which requires high-speed cameras that are not accessible to all laboratories. Therefore, this study aimed to develop a physiologically relevant, differentiated in vitro model of the respiratory epithelium that incorporates both beating cilia and functional MCC. We chose porcine airway mucosa as an alternative to human tissue due to ethical considerations and limited availability. The established model is designed to provide a reproducible and accessible method for a broad range of research laboratories. Methods: The previously published tracheal mucosal primary cell (TMPC DS) model, derived from porcine tissue, lacked the presence of beating cilia, which are crucial for effective MCC analysis. For accurate MCC assessment, beating cilia are essential as they play a key role in mucus clearance. To address this limitation, the here-described ciliated tracheal mucosal primary cell (cTMPC) model was developed. cTMPCs were isolated from porcine tissue and cultured under air-liquid interface (ALI) conditions for 21 days to promote differentiation. This model was evaluated for cell morphology, tight junction formation, ciliated and mucus-producing cells, barrier function, gene expression, and tracer/IgG transport. MCC and the model's suitability for standardized MCC assays were assessed using an inverted microscope. In contrast to the TMPC DS model, which lacked beating cilia and thus could not support MCC analysis, the cTMPC model allows for comprehensive MCC studies. Results: The developed differentiated in vitro model demonstrated key structural and functional features of the respiratory epithelium, including well-differentiated cell morphology, tight junction integrity, ciliated and mucus-producing cells, and effective barrier function. Functional MCC was observed, confirming the model's potential for standardized clearance assays. Conclusions: This differentiated in vitro model closely replicates the structural and functional characteristics of in vivo airways. It provides a valuable platform for studying mucociliary clearance, toxicology, drug uptake, and evaluating mucosal formulations and dosage forms in respiratory research.
Collapse
Affiliation(s)
- Janik Martin
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Veronika Neubauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Rebecca Rittersberger
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
- Faculty of Natural Science, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Simon Treitler
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Patrick Kopp
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Cemre Günday
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (C.G.); (A.E.T.); (N.G.-T.)
| | - Iman Shrimo
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Annabelle Dabbars
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Akif Emre Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (C.G.); (A.E.T.); (N.G.-T.)
| | - Nazende Günday-Türeli
- MyBiotech GmbH, Industriestraße 1 B, 66802 Überherrn, Germany; (C.G.); (A.E.T.); (N.G.-T.)
| | - Oliver Haedicke-Peters
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; (J.M.); (R.R.); (I.S.); (O.H.-P.)
| |
Collapse
|
2
|
Yabe M, Toyonaga T, Kinoshita M, Furukawa Y, Hamaguchi T, Tahara YO, Arai M, Imada K, Miyata M. Assembly Formation of P65 Protein, Featured by an Intrinsically Disordered Region Involved in Gliding Machinery of Mycoplasma pneumoniae. Biomolecules 2025; 15:429. [PMID: 40149965 PMCID: PMC11940719 DOI: 10.3390/biom15030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Mycoplasma pneumoniae is a human pathogen that glides on host cell surfaces by a repeated catch and release mechanism using sialylated oligosaccharides. At a pole, this organism forms a protrusion called an attachment organelle composed of surface structures, including an adhesin complex and an internal core structure. To clarify the structure and function of the attachment organelle, we focused on a core component, P65, which is essential for stabilization of the adjacent surface and core proteins P30 and HMW2, respectively. Analysis of its amino acid sequence (405 residues) suggested that P65 contains an intrinsically disordered region (residues 1-217) and coiled-coil regions (residues 226-247, 255-283, and 286-320). Four protein fragments and the full-length P65 were analyzed by size exclusion chromatography, analytical centrifugation, circular dichroism spectroscopy, small-angle X-ray scattering, limited proteolysis, and negative staining electron microscopy. The results showed that P65 formed a multimer composed of a central globule with 30 and 23 nm axes and four to six projections 14 nm in length. Our data suggest that the C-terminal region of P65 is responsible for multimerization, while the intrinsically disordered N-terminal region forms a filament. These assignments and roles of P65 in the attachment organelle are discussed.
Collapse
Affiliation(s)
- Masaru Yabe
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (M.Y.); (T.T.); (M.K.); (T.H.); (Y.O.T.)
| | - Takuma Toyonaga
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (M.Y.); (T.T.); (M.K.); (T.H.); (Y.O.T.)
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Miki Kinoshita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (M.Y.); (T.T.); (M.K.); (T.H.); (Y.O.T.)
- OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Yukio Furukawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan;
| | - Tasuku Hamaguchi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (M.Y.); (T.T.); (M.K.); (T.H.); (Y.O.T.)
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuhei O. Tahara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (M.Y.); (T.T.); (M.K.); (T.H.); (Y.O.T.)
- OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Osaka, Japan;
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; (M.Y.); (T.T.); (M.K.); (T.H.); (Y.O.T.)
- OMU Advanced Research Institute for Natural Science and Technology, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
3
|
Vizarraga D, Kawamoto A, Marcos-Silva M, Martín J, Makino F, Miyata T, Roel-Touris J, Marcos E, Pich OQ, Aparicio D, Fita I, Miyata M, Piñol J, Namba K, Kenri T. Dynamics of the adhesion complex of the human pathogens Mycoplasma pneumoniae and Mycoplasma genitalium. PLoS Pathog 2025; 21:e1012973. [PMID: 40153444 PMCID: PMC11984735 DOI: 10.1371/journal.ppat.1012973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/10/2025] [Accepted: 02/11/2025] [Indexed: 03/30/2025] Open
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are bacterial wall-less human pathogens and the causative agents of respiratory and reproductive tract infections. Infectivity, gliding motility and adhesion of these mycoplasmas to host cells are mediated by orthologous adhesin proteins forming a transmembrane adhesion complex that binds to sialylated oligosaccharides human cell ligands. Here we report the cryo-EM structure of M. pneumoniae P1 adhesin bound to the Fab fragment of monoclonal antibody P1/MCA4, which stops gliding and induces detachment of motile cells. The epitope of P1/MCA4 involves residues only from the small C-domain of P1. This epitope is accessible to antibodies only in the "closed conformation" of the adhesion complex and is not accessible in the "open" conformation, when the adhesion complex is ready for attachment to sialylated oligosaccharides. Polyclonal antibodies generated against the large N-domain of P1 or against the whole ectodomain of P40/P90 have little or no effects on adhesion or motility. Moreover, mutations in the highly conserved Engelman motifs found in the transmembrane helix of M. genitalium P110 adhesin also alter adhesion and motility. These results show that antibodies directed to the C-domain of P1 hinder the large conformational rearrangements in this domain required to alternate between the "open" and "closed" conformations of the adhesion complex. Since transition between both conformations is essential to complete the attachment/detachment cycle of the adhesion complex, interfering with the gliding of mycoplasma cells and providing a new potential target to confront M. pneumoniae and M. genitalium infections.
Collapse
Affiliation(s)
- David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Marina Marcos-Silva
- Departament de Bioquímica i de Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jesús Martín
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
- JEOL Ltd., Akishima, Tokyo, Japan
| | - Jorge Roel-Touris
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Enrique Marcos
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Oscar Q. Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA) and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Jaume Piñol
- Departament de Bioquímica i de Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
4
|
Premachandre CK, Quah PS, Tran BM, Vincan E, Deliyannis G, Wong CY, Diaz-Méndez A, Jackson DC, Reading PC, Browning GF, Vaz PK, Wawegama NK. Bovine tracheal organoids for studying Mycoplasma bovis respiratory infections. Vet Microbiol 2025; 300:110340. [PMID: 39675119 DOI: 10.1016/j.vetmic.2024.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
In vitro three-dimensional organoid models simulate key aspects of the structure and function of in vivo organs and have been used to study physiology, host-pathogen interactions, pathogenesis and pharmacodynamics. Although most organoid studies have been developed using human or mouse tissues, recent advancements have enabled the establishment of intestinal and respiratory tract organoids from domestic animal samples. Mycoplasma bovis causes chronic respiratory tract infections in cattle with significant health and economic consequences. The pathogenesis and virulence factors of M. bovis have been studied in several in vitro infection models, but the use of organoids has not been examined previously. In this study, we assessed the feasibility of using a matrix-embedded bovine tracheal organoid system to study respiratory infections with M. bovis. Bovine tracheal organoids were inoculated with M. bovis strain MbovMil and incubated for 72 hours to investigate the ability of M. bovis to proliferate, attach and invade the organoids. M. bovis was able to infect the organoids, resulting in a mean 260-fold increase in the titre of viable M. bovis by 72 hours post-inoculation. Examination of the infected organoids using transmission electron microscopy revealed the presence of mycoplasmas within the organoid cells and membrane bound clusters of M. bovis inside the intercellular junctions. Our findings indicate that bovine tracheal organoids can be used as a model system for studying respiratory tract infections caused by M. bovis.
Collapse
Affiliation(s)
- Chintha K Premachandre
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pin Shie Quah
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Bang Manh Tran
- Department of Infectious Diseases, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Georgia Deliyannis
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chinn Yi Wong
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David C Jackson
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne at the Peter Doherty institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
6
|
Nakane D. Rheotaxis in Mycoplasma gliding. Microbiol Immunol 2023; 67:389-395. [PMID: 37430383 DOI: 10.1111/1348-0421.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, Tokyo, Japan
| |
Collapse
|
7
|
Gandhi NN, Inzana TJ, Rajagopalan P. Bovine Airway Models: Approaches for Investigating Bovine Respiratory Disease. ACS Infect Dis 2023; 9:1168-1179. [PMID: 37257116 DOI: 10.1021/acsinfecdis.2c00618] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bovine respiratory disease (BRD) is a multifactorial condition where different genera of bacteria, such as Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis, and viruses, like bovine respiratory syncytial virus, bovine viral diarrhea virus, and bovine herpes virus-1, infect the lower respiratory tract of cattle. These pathogens can co-infect cells in the respiratory system, thereby making specific treatment very difficult. Currently, the most common models for studying BRD include a submerged tissue culture (STC), where monolayers of epithelial cells are typically covered either in cellular or spent biofilm culture medium. Another model is an air-liquid interface (ALI), where epithelial cells are exposed on their apical side and allowed to differentiate. However, limited work has been reported on the study of three-dimensional (3D) bovine models that incorporate multiple cell types to represent the architecture of the respiratory tract. The roles of different defense mechanisms in an infected bovine respiratory system, such as mucin production, tight junction barriers, and the production of antimicrobial peptides in in vitro cultures require further investigation in order to provide a comprehensive understanding of the disease pathogenesis. In this report, we describe the different aspects of BRD, including the most implicated pathogens and the respiratory tract, which are important to incorporate in disease models assembled in vitro. Although current advancements of bovine respiratory cultures have led to knowledge of the disease, 3D multicellular organoids that better recapitulate the in vivo environment exhibit potential for future investigations.
Collapse
Affiliation(s)
- Neeti N Gandhi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York 11548, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Mizutani M, Miyata M. Direct Measurement of Kinetic Force Generated by Mycoplasma. Methods Mol Biol 2023; 2646:337-346. [PMID: 36842128 DOI: 10.1007/978-1-0716-3060-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Optical tweezers enable us to measure the force generated by bacterial motility and motor proteins. Here, we describe a method, using optical tweezers and related techniques, to measure the force generated during Mycoplasma gliding. An avidin-conjugated polystyrene bead trapped by a focused laser beam is bound to the surface-biotinylated Mycoplasma cell, which pulls the bead from the trap center of the laser. The force generated by Mycoplasma is calculated from a displacement measured and a spring constant of the laser trap.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
- The OMU Advanced Research Center for Natural Science and Technology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
9
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
10
|
Wang X, Li M, Luo M, Luo Q, Kang L, Xie H, Wang Y, Yu X, Li A, Dong M, Huang F, Gong C. Mycoplasma pneumoniae triggers pneumonia epidemic in autumn and winter in Beijing: a multicentre, population-based epidemiological study between 2015 and 2020. Emerg Microbes Infect 2022; 11:1508-1517. [PMID: 35582916 PMCID: PMC9176688 DOI: 10.1080/22221751.2022.2078228] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this paper is to explore the characteristics of Mycoplasma pneumoniae (MP) epidemics in Beijing, China. Patients with acute respiratory tract infection (ARTI) were enrolled from 35 sentinel hospitals in Beijing, 2015–2020. Their medical records were reviewed and respiratory specimens were collected for assay for nucleic acids of 24 respiratory pathogens, including MP. The genotypes of MP were analysed using a real-time PCR method. The domain V of 23s rRNA gene was sequenced to identify macrolide-resistant mutations. A total of 41,677 specimens of ARTI patients were included, with an MP positive rate of 6.16%. MP prevalence mainly occurred between August and January, and peaked in October. The increase in the MP detection rate was coincident with the elevation of the reported number of patients with pneumonia in the 35 sentinel hospitals. One or more respiratory pathogens were co-detected in 27.1% of the MP-positive patients. Type 1 MP remained predominant, and the macrolide-resistant rate of MP had exceeded over 90%. A2063G mutation accounted for 99.0% of macrolide-resistant MP infections. MP epidemic in Beijing mainly occurred between August and January with a remarkable high macrolide-resistant rate. MP is one of the important contributors to the pneumonia epidemic in autumn and winter in Beijing.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Maozhong Li
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Ming Luo
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Qin Luo
- College of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Lu Kang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Hui Xie
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Yiting Wang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Xiali Yu
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Aihua Li
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Mei Dong
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Fang Huang
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| | - Cheng Gong
- Beijing Center for Disease Prevention and Control, Institute for Immunization and Prevention, Beijing, People's Republic of China
| |
Collapse
|
11
|
Mizutani M, Sasajima Y, Miyata M. Force and Stepwise Movements of Gliding Motility in Human Pathogenic Bacterium Mycoplasma pneumoniae. Front Microbiol 2021; 12:747905. [PMID: 34630372 PMCID: PMC8498583 DOI: 10.3389/fmicb.2021.747905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma pneumoniae, a human pathogenic bacterium, binds to sialylated oligosaccharides and glides on host cell surfaces via a unique mechanism. Gliding motility is essential for initiating the infectious process. In the present study, we measured the stall force of an M. pneumoniae cell carrying a bead that was manipulated using optical tweezers on two strains. The stall forces of M129 and FH strains were averaged to be 23.7 and 19.7 pN, respectively, much weaker than those of other bacterial surface motilities. The binding activity and gliding speed of the M129 strain on sialylated oligosaccharides were eight and two times higher than those of the FH strain, respectively, showing that binding activity is not linked to gliding force. Gliding speed decreased when cell binding was reduced by addition of free sialylated oligosaccharides, indicating the existence of a drag force during gliding. We detected stepwise movements, likely caused by a single leg under 0.2-0.3 mM free sialylated oligosaccharides. A step size of 14-19 nm showed that 25-35 propulsion steps per second are required to achieve the usual gliding speed. The step size was reduced to less than half with the load applied using optical tweezers, showing that a 2.5 pN force from a cell is exerted on a leg. The work performed in this step was 16-30% of the free energy of the hydrolysis of ATP molecules, suggesting that this step is linked to the elementary process of M. pneumoniae gliding. We discuss a model to explain the gliding mechanism, based on the information currently available.
Collapse
Affiliation(s)
- Masaki Mizutani
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Yuya Sasajima
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| |
Collapse
|
12
|
Molecular ruler of the attachment organelle in Mycoplasma pneumoniae. PLoS Pathog 2021; 17:e1009621. [PMID: 34111235 PMCID: PMC8191905 DOI: 10.1371/journal.ppat.1009621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Length control is a fundamental requirement for molecular architecture. Even small wall-less bacteria have specially developed macro-molecular structures to support their survival. Mycoplasma pneumoniae, a human pathogen, forms a polar extension called an attachment organelle, which mediates cell division, cytadherence, and cell movement at host cell surface. This characteristic ultrastructure has a constant size of 250–300 nm, but its design principle remains unclear. In this study, we constructed several mutants by genetic manipulation to increase or decrease coiled-coil regions of HMW2, a major component protein of 200 kDa aligned in parallel along the cell axis. HMW2-engineered mutants produced both long and short attachment organelles, which we quantified by transmission electron microscopy and fluorescent microscopy with nano-meter precision. This simple design of HMW2 acting as a molecular ruler for the attachment organelle should provide an insight into bacterial cellular organization and its function for their parasitic lifestyles. Mycoplasma pneumoniae, a pathogen of “walking pneumonia”, have a membrane protrusion with a precise length of 250–300 nm specially developed to support their parasitic lifestyles. To date, however, there has been no report focusing on the potential length-control mechanisms of this characteristic architecture called an attachment organelle. Here, we found that the coiled-coil domains of the 200-kDa protein HMW2 are aligned in parallel along the cell axis, and acts as a molecular ruler by the assembly into a physical scaffold. The molecular ruler could be engineered by genetic modification to produce both longer and shorter attachment organelle. The analyses of the length-controlled mutant highlight a simple design principle of cellular organization in a small bacterium.
Collapse
|
13
|
Feng M, Schaff AC, Balish MF. Mycoplasma pneumoniae biofilms grown in vitro: traits associated with persistence and cytotoxicity. MICROBIOLOGY-SGM 2021; 166:629-640. [PMID: 32421492 DOI: 10.1099/mic.0.000928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The atypical bacterial pathogen Mycoplasma pneumoniae is a leading etiological agent of community-acquired pneumonia in humans; infections are often recalcitrant, recurrent and resistant to antibiotic treatment. These characteristics suggest a mechanism that facilitates long-term colonization in hosts. In an in vitro setting, M. pneumoniae forms biofilms that are unusual in that motility plays no more than a very limited role in their formation and development. Given the unusual nature of M. pneumoniae biofilms, open questions remain concerning phenotypes associated with persistence, such as what properties might favour the bacteria while minimizing host damage. M. pneumoniae also produces several cytotoxic molecules including community-acquired respiratory distress syndrome (CARDS) toxin, H2S and H2O2, but how it deploys these agents during growth is unknown. Whereas several biochemical techniques for biofilm disruption were ineffective, sonication was required for disruption of M. pneumoniae biofilms to generate individual cells for comparative studies, suggesting unusual physical properties likely related to the atypical cell envelope. Nonetheless, like for other bacteria, biofilms were less susceptible to antibiotic inhibition and complement killing than dispersed cells, with resistance increasing as the biofilms matured. CARDS toxin levels and enzymatic activities associated with H2S and H2O2 production were highest during early biofilm formation and decreased over time, suggesting attenuation of virulence in connection with chronic infection. Collectively, these findings result in a model of how M. pneumoniae biofilms contribute to both the establishment and propagation of M. pneumoniae infections, and how both biofilm towers and individual cells participate in persistence and chronic disease.
Collapse
Affiliation(s)
- Monica Feng
- Present address: Department of Medicine, Albert Einstein Medical College, Bronx, NY 10461, USA
| | - Andrew C Schaff
- Present address: Hudson College of Public Health, Department of Biostatistics and Epidemiology, University of Oklahoma Health Schiences Center, Oklahoma City, OK 73104, USA
| | - Mitchell F Balish
- Department of Microbiology, Miami University, 212 Pearson Hall, Oxford, OH 45056, USA
| |
Collapse
|
14
|
Mycoplasma pneumoniae: Atypical Pathogen in Community Acquired Pneumonia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae is a one of most common reasons of respiratory tract infections in both adolescents and children with severity ranged from moderate to high. Many facts in the previous years regarding infections were induced via this organism having extra pathogenic mechanisms. Clinically, resistance to macrolide has produced internationally and represents a treatment trouble. Antimicrobial sensitivity checking out techniques have been applied, and novel antibiotics which are effective towards M. pneumoniae are present processing development. That evaluate concentrates on the several trends occurring in the previous quite a few years which beautify the grasp of that microorganism, which is one of the smallest pathogenic bacteria; however, is of extreme medical significance.
Collapse
|
15
|
Distinct Mycoplasma pneumoniae Interactions with Sulfated and Sialylated Receptors. Infect Immun 2020; 88:IAI.00392-20. [PMID: 32839185 DOI: 10.1128/iai.00392-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/14/2020] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the conducting airways, causing bronchitis and atypical or "walking" pneumonia in humans. M. pneumoniae recognizes sialylated and sulfated oligosaccharide receptors to colonize the respiratory tract, but the contribution of the latter is particularly unclear. We used chamber slides coated with sulfatide (3-O-sulfogalactosylceramide) to provide a baseline for M. pneumoniae binding and gliding motility. As expected, M. pneumoniae bound to surfaces coated with sulfatide in a manner that was dependent on sulfatide concentration and incubation temperature and inhibited by competing dextran sulfate. However, mycoplasmas bound to sulfatide exhibited no gliding motility, regardless of receptor density. M. pneumoniae also bound lactose 3'-sulfate ligated to an inert polymer scaffold, and binding was inhibited by competing dextran sulfate. The major adhesin protein P1 mediates adherence to terminal sialic acids linked α-2,3, but P1-specific antibodies that blocked M. pneumoniae hemadsorption (HA) and binding to the sialylated glycoprotein laminin by 95% failed to inhibit mycoplasma binding to sulfatide, suggesting that P1 does not mediate binding to sulfated galactose. Consistent with this conclusion, the M. pneumoniae HA-negative mutant II-3 failed to bind to sialylated receptors but adhered to sulfatide in a temperature-dependent manner.
Collapse
|
16
|
Paracellular Pathway-Mediated Mycoplasma hyopneumoniae Migration across Porcine Airway Epithelial Barrier under Air-Liquid Interface Conditions. Infect Immun 2020; 88:IAI.00470-20. [PMID: 32747599 DOI: 10.1128/iai.00470-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
Mycoplasma hyopneumoniae is an important respiratory pathogen of pigs that causes persistent and secondary infections. However, the mechanisms by which this occurs are unclear. In this study, we established air-liquid interface culture systems for pig bronchial epithelial cells (ALI-PBECs) that were comparable to the conditions in the native bronchus in vivo We used this ALI-PBECs model to study the infection and migration characteristics of M. hyopneumoniae in vitro Based on the results, we confirmed that M. hyopneumoniae was able to adhere to ALI-PBECs and disrupt mucociliary function. Importantly, M. hyopneumoniae could migrate to the basolateral chamber through the paracellular route but not the transcellular pathway, and this was achieved by reversibly disrupting tight junctions (TJs) and increasing the permeability and damaging the integrity of the epithelial barrier. We examined the migration ability of M. hyopneumoniae using an ALI-PBECs model for the first time. The disruption of the epithelial barrier allowed M. hyopneumoniae to migrate to the basolateral chamber through the paracellular route, which may be related to immune evasion, extrapulmonary dissemination, and persistent infection of M. hyopneumoniae.
Collapse
|
17
|
Contagious Bovine and Caprine Pleuropneumonia: a research community's recommendations for the development of better vaccines. NPJ Vaccines 2020; 5:66. [PMID: 32728480 PMCID: PMC7381681 DOI: 10.1038/s41541-020-00214-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/03/2020] [Indexed: 12/26/2022] Open
Abstract
Contagious bovine pleuropneumonia (CBPP) and contagious caprine pleuropneumonia (CCPP) are major infectious diseases of ruminants caused by mycoplasmas in Africa and Asia. In contrast with the limited pathology in the respiratory tract of humans infected with mycoplasmas, CBPP and CCPP are devastating diseases associated with high morbidity and mortality. Beyond their obvious impact on animal health, CBPP and CCPP negatively impact the livelihood and wellbeing of a substantial proportion of livestock-dependent people affecting their culture, economy, trade and nutrition. The causative agents of CBPP and CCPP are Mycoplasma mycoides subspecies mycoides and Mycoplasma capricolum subspecies capripneumoniae, respectively, which have been eradicated in most of the developed world. The current vaccines used for disease control consist of a live attenuated CBPP vaccine and a bacterin vaccine for CCPP, which were developed in the 1960s and 1980s, respectively. Both of these vaccines have many limitations, so better vaccines are urgently needed to improve disease control. In this article the research community prioritized biomedical research needs related to challenge models, rational vaccine design and protective immune responses. Therefore, we scrutinized the current vaccines as well as the challenge-, pathogenicity- and immunity models. We highlight research gaps and provide recommendations towards developing safer and more efficacious vaccines against CBPP and CCPP.
Collapse
|
18
|
Leung C, Wadsworth SJ, Yang SJ, Dorscheid DR. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1063-L1073. [PMID: 32208929 DOI: 10.1152/ajplung.00190.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human bronchial epithelium is an important barrier tissue that is damaged or pathologically altered in various acute and chronic respiratory conditions. To represent the epithelial component of respiratory disease, it is essential to use a physiologically relevant model of this tissue. The human bronchial epithelium is a highly organized tissue consisting of a number of specialized cell types. Primary human bronchial epithelial cells (HBEC) can be differentiated into a mucociliated tissue in air-liquid interface (ALI) cultures using appropriately supplemented media under optimized growth conditions. We compared the histology, ciliary length, and function, diffusion, and barrier properties of HBEC from donors with no respiratory disease grown in two different media, PneumaCult-ALI or Bronchial Epithelial Differentiation Medium (BEDM). In the former group, HBEC have a more physiological pseudostratified morphology and mucociliary differentiation, including increased epithelial thickness, intracellular expression of airway-specific mucin protein MUC5AC, and total expression of cilia basal-body protein compared with cells from the same donor grown in the other medium. Baseline expression levels of inflammatory mediators, thymic stromal lymphopoietin (TSLP), soluble ST2, and eotaxin-3 were lower in PneumaCult-ALI. Additionally, the physiological cilia beat frequency and electrical barrier properties with transepithelial electrical resistance were significantly different between the two groups. Our study has shown that these primary cell cultures from the same donor grown in the two media possess variable structural and functional characteristics. Therefore, it is important to objectively validate primary epithelial cell cultures before experimentation to ensure they are appropriate to answer a specific scientific question.
Collapse
Affiliation(s)
- Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Samuel J Wadsworth
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - S Jasemine Yang
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Tulum I, Kimura K, Miyata M. Identification and sequence analyses of the gliding machinery proteins from Mycoplasma mobile. Sci Rep 2020; 10:3792. [PMID: 32123220 PMCID: PMC7052211 DOI: 10.1038/s41598-020-60535-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma mobile, a fish pathogen, exhibits its own specialized gliding motility on host cells based on ATP hydrolysis. The special protein machinery enabling this motility is composed of surface and internal protein complexes. Four proteins, MMOBs 1630, 1660, 1670, and 4860 constitute the internal complex, including paralogs of F-type ATPase/synthase α and β subunits. In the present study, the cellular localisation for the candidate gliding machinery proteins, MMOBs 1620, 1640, 1650, and 5430 was investigated by using a total internal reflection fluorescence microscopy system after tagging these proteins with the enhanced yellow fluorescent protein (EYFP). The M. mobile strain expressing a fusion protein MMOB1620-EYFP exhibited reduced cell-binding activity and a strain expressing MMOB1640 fused with EYFP exhibited increased gliding speed, showing the involvement of these proteins in the gliding mechanism. Based on the genomic sequences, we analysed the sequence conservativity in the proteins of the internal and the surface complexes from four gliding mycoplasma species. The proteins in the internal complex were more conserved compared to the surface complex, suggesting that the surface complex undergoes modifications depending on the host. The analyses suggested that the internal gliding complex was highly conserved probably due to its role in the motility mechanism.
Collapse
Affiliation(s)
- Isil Tulum
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kenta Kimura
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
20
|
Chen S, Schoen J. Air-liquid interface cell culture: From airway epithelium to the female reproductive tract. Reprod Domest Anim 2020; 54 Suppl 3:38-45. [PMID: 31512315 DOI: 10.1111/rda.13481] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 01/04/2023]
Abstract
The air-liquid interface (ALI) approach is primarily used to mimic respiratory tract epithelia in vitro. It is also known to support excellent differentiation of 3D multilayered skin models. To establish an ALI culture, epithelial cells are seeded into compartmentalized culture systems on porous filter supports or gel substrata. After an initial propagation period, the culture medium is removed from the apical side of the epithelium, exposing the cells to the surrounding air. Therefore, nutritive supply to the cells is warranted only by the basolateral cell pole. Under these conditions, the epithelial cells differentiate and regain full baso-apical polarity. Some types of epithelia even generate in vivo-like apical fluid or mucus. Interestingly, the ALI culture approach has also been shown to support morphological and functional differentiation of epithelial cells that are not normally exposed to ambient air in vivo. This review aims at giving a brief overview on the characteristics of ALI cultures in general and ALI models of female reproductive tract epithelia in particular. We discuss the applicability of ALI models for the investigation of the early embryonic microenvironment and for its implications in assisted reproductive technologies.
Collapse
Affiliation(s)
- Shuai Chen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
21
|
Refined Mechanism of Mycoplasma mobile Gliding Based on Structure, ATPase Activity, and Sialic Acid Binding of Machinery. mBio 2019; 10:mBio.02846-19. [PMID: 31874918 PMCID: PMC6935860 DOI: 10.1128/mbio.02846-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycoplasma mobile, a fish pathogen, glides on solid surfaces by repeated catch, pull, and release of sialylated oligosaccharides by a unique mechanism based on ATP energy. The gliding machinery is composed of huge surface proteins and an internal "jellyfish"-like structure. Here, we elucidated the detailed three-dimensional structures of the machinery by electron cryotomography. The internal "tentacle"-like structure hydrolyzed ATP, which was consistent with the fact that the paralogs of the α- and β-subunits of F1-ATPase are at the tentacle structure. The electron microscopy suggested conformational changes of the tentacle structure depending on the presence of ATP analogs. The gliding machinery was isolated and showed that the binding activity to sialylated oligosaccharide was higher in the presence of ADP than in the presence of ATP. Based on these results, we proposed a model to explain the mechanism of M. mobile gliding.IMPORTANCE The genus Mycoplasma is made up of the smallest parasitic and sometimes commensal bacteria; Mycoplasma pneumoniae, which causes human "walking pneumonia," is representative. More than ten Mycoplasma species glide on host tissues by novel mechanisms, always in the direction of the distal side of the machinery. Mycoplasma mobile, the fastest species in the genus, catches, pulls, and releases sialylated oligosaccharides (SOs), the carbohydrate molecules also targeted by influenza viruses, by means of a specific receptor and using ATP hydrolysis for energy. Here, the architecture of the gliding machinery was visualized three dimensionally by electron cryotomography (ECT), and changes in the structure and binding activity coupled to ATP hydrolysis were discovered. Based on the results, a refined mechanism was proposed for this unique motility.
Collapse
|
22
|
Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infect Immun 2019; 87:IAI.00078-19. [PMID: 30962401 PMCID: PMC6529648 DOI: 10.1128/iai.00078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.
Collapse
|
23
|
Temporal differentiation of bovine airway epithelial cells grown at an air-liquid interface. Sci Rep 2018; 8:14893. [PMID: 30291311 PMCID: PMC6173764 DOI: 10.1038/s41598-018-33180-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need to develop improved, physiologically-relevant in vitro models of airway epithelia with which to better understand the pathological processes associated with infection, allergies and toxicological insults of the respiratory tract of both humans and domesticated animals. In the present study, we have characterised the proliferation and differentiation of primary bovine bronchial epithelial cells (BBECs) grown at an air-liquid interface (ALI) at three-day intervals over a period of 42 days from the introduction of the ALI. The differentiated BBEC model was highly representative of the ex vivo epithelium from which the epithelial cells were derived; a columnar, pseudostratified epithelium that was highly reflective of native airway epithelium was formed which comprised ciliated, goblet and basal cells. The hallmark defences of the respiratory tract, namely barrier function and mucociliary clearance, were present, thus demonstrating that the model is an excellent mimic of bovine respiratory epithelium. The epithelium was fully differentiated by day 21 post-ALI and, crucially, remained healthy and stable for a further 21 days. Thus, the differentiated BBEC model has a three-week window which will allow wide-ranging and long-term experiments to be performed in the fields of infection, toxicology or general airway physiology.
Collapse
|
24
|
Williams CR, Chen L, Driver AD, Arnold EA, Sheppard ES, Locklin J, Krause DC. Sialylated Receptor Setting Influences Mycoplasma pneumoniae Attachment and Gliding Motility. Mol Microbiol 2018; 109:735-744. [PMID: 29885004 DOI: 10.1111/mmi.13997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 01/21/2023]
Abstract
Mycoplasma pneumoniae is a common cause of human respiratory tract infections, including bronchitis and atypical pneumonia. M. pneumoniae binds glycoprotein receptors having terminal sialic acid residues via the P1 adhesin protein. Here, we explored the impact of sialic acid presentation on M. pneumoniae adherence and gliding on surfaces coated with sialylated glycoproteins, or chemically functionalized with α-2,3- and α-2,6-sialyllactose ligated individually or in combination to a polymer scaffold in precisely controlled densities. In both models, gliding required a higher receptor density threshold than adherence, and receptor density influenced gliding frequency but not gliding speed. However, very high densities of α-2,3-sialyllactose actually reduced gliding frequency over peak levels observed at lower densities. Both α-2,3- and α-2,6-sialyllactose supported M. pneumoniae adherence, but gliding was only observed on the former. Finally, gliding on α-2,3-sialyllactose was inhibited on surfaces also conjugated with α-2,6-sialyllactose, suggesting that both moieties bind P1 despite the inability of the latter to support gliding. Our results indicate that the nature and density of host receptor moieties profoundly influences M. pneumoniae gliding, which could affect pathogenesis and infection outcome. Furthermore, precise functionalization of polymer scaffolds shows great promise for further analysis of sialic acid presentation and M. pneumoniae adherence and gliding.
Collapse
Affiliation(s)
| | - Li Chen
- Department of Chemistry, College of Engineering, and New Materials Institute, University of Georgia, Athens, Georgia, USA
| | - Ashley D Driver
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Edward A Arnold
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Edward S Sheppard
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Jason Locklin
- Department of Chemistry, College of Engineering, and New Materials Institute, University of Georgia, Athens, Georgia, USA
| | - Duncan C Krause
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
25
|
Hasan S, Sebo P, Osicka R. A guide to polarized airway epithelial models for studies of host-pathogen interactions. FEBS J 2018; 285:4343-4358. [PMID: 29896776 DOI: 10.1111/febs.14582] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Mammalian lungs are organs exhibiting the cellular and spatial complexity required for gas exchange to support life. The respiratory epithelium internally lining the airways is susceptible to infections due to constant exposure to inhaled microbes. Biomedical research into respiratory bacterial infections in humans has been mostly carried out using small mammalian animal models or two-dimensional, submerged cultures of undifferentiated epithelial cells. These experimental model systems have considerable limitations due to host specificity of bacterial pathogens and lack of cellular and morphological complexity. This review describes the in vitro differentiated and polarized airway epithelial cells of human origin that are used as a model to study respiratory bacterial infections. Overall, these models recapitulate key aspects of the complexity observed in vivo and can help in elucidating the molecular details of disease processes observed during respiratory bacterial infections.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
26
|
Wang H, He L, Liu B, Feng Y, Zhou H, Zhang Z, Wu Y, Wang J, Gan Y, Yuan T, Wu M, Xie X, Feng Z. Establishment and comparison of air-liquid interface culture systems for primary and immortalized swine tracheal epithelial cells. BMC Cell Biol 2018; 19:10. [PMID: 29954317 PMCID: PMC6025731 DOI: 10.1186/s12860-018-0162-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Background Air-liquid interface (Ali) systems allow the establishment of a culture environment more representative of that in vivo than other culture systems. They are useful for performing mechanistic studies of respiratory epithelial cells as drug permeation barriers and can be used to study the interactions between hosts and respiratory pathogens. However, there have been few studies concerning Ali cultures of primary swine tracheal epithelial cells (STECs) and an immortalized STEC line, and the differences between these two systems remain poorly defined. Results In this study, we established Ali culture systems for primary STECs and for immortalized STEC line, and we systematically compared the differentiation capacities and immunological functions of these systems for the first time. Under Ali culture conditions, immortalized STEC line and primary STECs could survive for at least forty days, formed tight junctions and differentiated into stratified cells. They both possessed complete abilities to produce mucin and inflammatory cytokines and develop cilia. However, in contrast to primary STECs, which had a heterogeneous morphology, Ali-cultured immortalized STEC line appeared to be a homogenous population. The formation of tight junctions in Ali-cultured primary STECs was superior to that in immortalized STEC line. In addition, cilia in Ali-cultured immortalized STEC line were more pronounced, but their duration of expression was shorter than in primary STECs. Conclusions Ali-cultured primary STECs and immortalized STEC line systems possessing complete abilities to undergo ciliary differentiation and inflammatory cytokine production were established for the first time in this study, and several differences in morphology and the formation of tight junctions and cilia were observed between these two systems. These two systems will be important tools for drug screening studies, as well as for detailed analyses of the interactions between hosts and respiratory pathogens.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Lina He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Yanyan Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Yuzi Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Jia Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Yuan Gan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Ting Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Meng Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
27
|
Clinical characteristics of infections caused by Mycoplasma pneumoniae P1 genotypes in children. Eur J Clin Microbiol Infect Dis 2018; 37:1265-1272. [PMID: 29603035 DOI: 10.1007/s10096-018-3243-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) isolates can be classified into two major genetic groups, P1 type 1 (MP1) and P1 type 2 (MP2), based on the DNA sequence of the P1 adhesion protein gene. The aim of our study was to determine if M. pneumoniae P1 genotype is associated with disease manifestation and severity of acute M. pneumoniae infection. We compared epidemiological and clinical data of children infected with either MP1 or MP2. In addition, we separately analysed data of patients presenting with individual manifestations of M. pneumoniae infection. Data of 356 patients infected with MP1 were compared with those of 126 patients infected with MP2. MP2-infected children presented with higher median baseline C-reactive protein levels and were admitted to the hospital more often. The distribution of P1 genotype varied among groups of patients with different manifestations of M. pneumoniae infection. MP2 was more common than MP1 among patients with neurological and cardiovascular manifestations, whereas MP1 was more prevalent in other manifestations. The results from our large cohort indicate that the two P1 subtypes may have different pathogenic potential and that infections with MP2 strains could be more virulent than those with MP1 strains.
Collapse
|
28
|
Seybert A, Gonzalez-Gonzalez L, Scheffer MP, Lluch-Senar M, Mariscal AM, Querol E, Matthaeus F, Piñol J, Frangakis AS. Cryo-electron tomography analyses of terminal organelle mutants suggest the motility mechanism of Mycoplasma genitalium. Mol Microbiol 2018; 108:319-329. [PMID: 29470847 DOI: 10.1111/mmi.13938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/28/2022]
Abstract
The terminal organelle of Mycoplasma genitalium is responsible for bacterial adhesion, motility and pathogenicity. Localized at the cell tip, it comprises an electron-dense core that is anchored to the cell membrane at its distal end and to the cytoplasm at its proximal end. The surface of the terminal organelle is also covered with adhesion proteins. We performed cellular cryoelectron tomography on deletion mutants of eleven proteins that are implicated in building the terminal organelle, to systematically analyze the ultrastructural effects. These data were correlated with microcinematographies, from which the motility patterns can be quantitatively assessed. We visualized diverse phenotypes, ranging from mild to severe cell adhesion, motility and segregation defects. Based on our observations, we propose a double-spring ratchet model for the motility mechanism that explains our current and previous observations. Our model, which expands and integrates the previously suggested inchworm model, allocates specific functions to each of the essential components of this unique bacterial motility system.
Collapse
Affiliation(s)
- Anja Seybert
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Luis Gonzalez-Gonzalez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| | - Maria Lluch-Senar
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ana M Mariscal
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Franziska Matthaeus
- Faculty of Biological Sciences & FIAS, Goethe University Frankfurt, Ruth-Moufang-Straße 1, Frankfurt 60438, Germany
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
29
|
Feng M, Schaff AC, Cuadra Aruguete SA, Riggs HE, Distelhorst SL, Balish MF. Development of Mycoplasma pneumoniae biofilms in vitro and the limited role of motility. Int J Med Microbiol 2018; 308:324-334. [PMID: 29426802 DOI: 10.1016/j.ijmm.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/19/2017] [Accepted: 01/23/2018] [Indexed: 10/18/2022] Open
Abstract
Mycoplasma pneumoniae is a bacterial pathogen of humans that is a major causative agent of chronic respiratory disease. M. pneumoniae infections often recur even after successful treatment of symptoms with antibiotics, and resistance to antibiotics is increasing worldwide, with nearly complete resistance in some places. Although biofilms often contribute to chronicity and resistance, M. pneumoniae biofilms remain poorly characterized. Scanning electron microscopy revealed that cells of wild-type (WT) M. pneumoniae strain M129 biofilms, as well as mutants II-3 and II-3R, in vitro became increasingly rounded as the biofilm towers matured over 5 days. The role of gliding motility in biofilm formation was addressed by analyzing differences in biofilm architecture in non-motile mutant II-3R and hypermotile mutant prpC-and by using time-lapse microcinematography to measure flux of cells around biofilm towers. There were no major differences in biofilm architecture between WT and motility mutants, with perhaps a slight tendency for the prpC- cells to spread outside towers during early stages of biofilm formation. Consistent with an insignificant role of motility in biofilm development, flux of cells near towers, which was low, was dominated by exit of cells. Immunofluorescence microscopy revealed that motility-associated attachment organelle (AO) proteins exhibited no discernable changes in localization to foci over time, but immunoblotting identified a decrease in steady-state levels of protein P200, which is required for normal gliding speed, as the WT culture aged. Non-adherent strain II-3 and non-motile strain II-3R also exhibited a steady decrease in P200 steady-state levels, suggesting that the decrease in P200 levels was not a response to changes in gliding behavior during maturation. We conclude that M. pneumoniae cells undergo morphological changes as biofilms mature, motility plays no major role in biofilm development, and P200 loss might be related to maturation of cells. This study helps to characterize potential therapeutic targets for M. pneumoniae infections.
Collapse
Affiliation(s)
- Monica Feng
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Andrew C Schaff
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Sara A Cuadra Aruguete
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Hailey E Riggs
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Steven L Distelhorst
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Pearson Hall, 700 E. High St., Oxford, OH, 45056, USA.
| |
Collapse
|
30
|
Development and optimization of a differentiated airway epithelial cell model of the bovine respiratory tract. Sci Rep 2018; 8:853. [PMID: 29339818 PMCID: PMC5770467 DOI: 10.1038/s41598-017-19079-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Cattle are subject to economically-important respiratory tract infections by various bacterial and viral pathogens and there is an urgent need for the development of more realistic in vitro models of the bovine respiratory tract to improve our knowledge of disease pathogenesis. In the present study, we have optimized the culture conditions in serum-free medium that allow bovine bronchial epithelial cells (BBECs) grown at an air-liquid interface to differentiate into a three-dimensional epithelium that is highly representative of the bovine airway. Epidermal growth factor was required to trigger both proliferation and differentiation of BBECs whilst retinoic acid was also essential for mucociliary differentiation. Triiodothyronine was demonstrated not to be important for the differentiation of BBECs. Oxygen concentration had a minimal effect although optimal ciliation was achieved when BBECs were cultured at 14% oxygen tension. Insert pore-density had a significant effect on the growth and differentiation of BBECs; a high-pore-density was required to trigger optimum differentiation. The established BBEC model will have wide-ranging applications for the study of bacterial and viral infections of the bovine respiratory tract; it will contribute to the development of improved vaccines and therapeutics and will reduce the use of cattle in in vivo experimentation.
Collapse
|
31
|
Yoo S, Choi SE, Chun J, Ahn YH, Cho KY, Lee YJ, Sung TJ, Lee KH. Current usage and effects of steroids in the management of childhood mycoplasma pneumonia in a secondary hospital. ALLERGY ASTHMA & RESPIRATORY DISEASE 2018. [DOI: 10.4168/aard.2018.6.2.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Susie Yoo
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Seong Eun Choi
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Jiyoung Chun
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Yo Han Ahn
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Yong Ju Lee
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Tae Jung Sung
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Kon Hee Lee
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| |
Collapse
|
32
|
Prince OA, Krunkosky TM, Sheppard ES, Krause DC. Modelling persistent Mycoplasma pneumoniae infection of human airway epithelium. Cell Microbiol 2017; 20. [PMID: 29155483 DOI: 10.1111/cmi.12810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
Abstract
Mycoplasma pneumoniae is a human respiratory tract pathogen causing acute and chronic airway disease states that can include long-term carriage and extrapulmonary spread. The mechanisms of persistence and migration beyond the conducting airways, however, remain poorly understood. We previously described an acute exposure model using normal human bronchial epithelium (NHBE) in air-liquid interface culture, showing that M. pneumoniae gliding motility is essential for initial colonisation and subsequent spread, including localisation to epithelial cell junctions. We extended those observations here, characterizing M. pneumoniae infection of NHBE for up to 4 weeks. Colonisation of the apical surface was followed by pericellular invasion of the basolateral compartment and migration across the underlying transwell membrane. Despite fluctuations in transepithelial electrical resistance and increased NHBE cell desquamation, barrier function remained largely intact. Desquamation was accompanied by epithelial remodelling that included cytoskeletal reorganisation and development of deep furrows in the epithelium. Finally, M. pneumoniae strains S1 and M129 differed with respect to invasion and histopathology, consistent with contrasting virulence in experimentally infected mice. In summary, this study reports pericellular invasion, NHBE cytoskeletal reorganisation, and tissue remodelling with persistent infection in a human airway epithelium model, providing clear insight into the likely route for extrapulmonary spread.
Collapse
Affiliation(s)
- Oliver A Prince
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Thomas M Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | | | - Duncan C Krause
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Krause DC, Hennigan SL, Henderson KC, Clark HJ, Dluhy RA. Variable Selection and Biomarker Correlation in the Analysis of Mycoplasma pneumoniaeStrains by Surface-Enhanced Raman Spectroscopy. ANAL LETT 2017; 50:2412-2425. [DOI: 10.1080/00032719.2017.1287713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Duncan C. Krause
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | | | - Richard A. Dluhy
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
34
|
O'Boyle N, Sutherland E, Berry CC, Davies RL. Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface. PLoS One 2017; 12:e0181583. [PMID: 28746416 PMCID: PMC5529025 DOI: 10.1371/journal.pone.0181583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implications for both human and animal welfare. The development and detailed characterization of cell culture models for studying such forms of disease is of critical importance. In recent years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased markedly, as this method of culture results in the formation of a highly representative, organotypic in vitro model system. In this study we have expanded on previous knowledge of differentiated ovine tracheal epithelial cells by analysing the progression of differentiation over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation approaching a maximum level at day 24. A similar pattern was observed with respect to mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastructural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER) peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little deterioration or de-differentiation was observed over the 45 day time-course indicating that the model is suitable for long-term experiments.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Erin Sutherland
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Catherine C Berry
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Totten AH, Xiao L, Crabb DM, Ratliff AE, Dybvig K, Waites KB, Atkinson TP. Shaken or stirred?: Comparison of methods for dispersion of Mycoplasma pneumoniae aggregates for persistence in vivo. J Microbiol Methods 2017; 132:56-62. [DOI: 10.1016/j.mimet.2016.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
|
37
|
He J, Liu M, Ye Z, Tan T, Liu X, You X, Zeng Y, Wu Y. Insights into the pathogenesis of Mycoplasma pneumoniae (Review). Mol Med Rep 2016; 14:4030-4036. [PMID: 27667580 PMCID: PMC5101875 DOI: 10.3892/mmr.2016.5765] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/25/2016] [Indexed: 11/08/2022] Open
Abstract
Mycoplasma are the smallest prokaryotic microbes present in nature. These wall-less, malleable organisms can pass through cell filters, and grow and propagate under cell-free conditions in vitro. Of the pathogenic Mycoplasma Mycoplasma pneumoniae has been examined the most. In addition to primary atypical pneumonia and community-acquired pneumonia with predominantly respiratory symptoms, M. pneumoniae can also induce autoimmune hemolytic anemia and other diseases in the blood, cardiovascular system, gastrointestinal tract and skin, and can induce pericarditis, myocarditis, nephritis and meningitis. The pathogenesis of M. pneumoniae infection is complex and remains to be fully elucidated. The present review aimed to summarize several direct damage mechanisms, including adhesion damage, destruction of membrane fusion, nutrition depletion, invasive damage, toxic damage, inflammatory damage and immune damage. Further investigations are required for determining the detailed pathogenesis of M. pneumoniae.
Collapse
Affiliation(s)
- Jun He
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mihua Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhufeng Ye
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tianping Tan
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinghui Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxing You
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanhua Zeng
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yimou Wu
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
38
|
Structural Study of MPN387, an Essential Protein for Gliding Motility of a Human-Pathogenic Bacterium, Mycoplasma pneumoniae. J Bacteriol 2016; 198:2352-9. [PMID: 27325681 DOI: 10.1128/jb.00160-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycoplasma pneumoniae is a human pathogen that glides on host cell surfaces with repeated catch and release of sialylated oligosaccharides. At a pole, this organism forms a protrusion called the attachment organelle, which is composed of surface structures, including P1 adhesin and the internal core structure. The core structure can be divided into three parts, the terminal button, paired plates, and bowl complex, aligned in that order from the front end of the protrusion. To elucidate the gliding mechanism, we focused on MPN387, a component protein of the bowl complex which is essential for gliding but dispensable for cytadherence. The predicted amino acid sequence showed that the protein features a coiled-coil region spanning residue 72 to residue 290 of the total of 358 amino acids in the protein. Recombinant MPN387 proteins were isolated with and without an enhanced yellow fluorescent protein (EYFP) fusion tag and analyzed by gel filtration chromatography, circular dichroism spectroscopy, analytical ultracentrifugation, partial proteolysis, and rotary-shadowing electron microscopy. The results showed that MPN387 is a dumbbell-shaped homodimer that is about 42.7 nm in length and 9.1 nm in diameter and includes a 24.5-nm-long central parallel coiled-coil part. The molecular image was superimposed onto the electron micrograph based on the localizing position mapped by fluorescent protein tagging. A proposed role of this protein in the gliding mechanism is discussed. IMPORTANCE Human mycoplasma pneumonia is caused by a pathogenic bacterium, Mycoplasma pneumoniae This tiny, 2-μm-long bacterium is suggested to infect humans by gliding on the surface of the trachea through binding to sialylated oligosaccharides. The mechanism underlying mycoplasma "gliding motility" is not related to any other well-studied motility systems, such as bacterial flagella and eukaryotic motor proteins. Here, we isolated and analyzed the structure of a key protein which is directly involved in the gliding mechanism.
Collapse
|
39
|
Directed Binding of Gliding Bacterium, Mycoplasma mobile, Shown by Detachment Force and Bond Lifetime. mBio 2016; 7:mBio.00455-16. [PMID: 27353751 PMCID: PMC4937208 DOI: 10.1128/mbio.00455-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma mobile, a fish-pathogenic bacterium, features a protrusion that enables it to glide smoothly on solid surfaces at a velocity of up to 4.5 µm s−1 in the direction of the protrusion. M. mobile glides by a repeated catch-pull-release of sialylated oligosaccharides fixed on a solid surface by hundreds of 50-nm flexible “legs” sticking out from the protrusion. This gliding mechanism may be explained by a possible directed binding of each leg with sialylated oligosaccharides, by which the leg can be detached more easily forward than backward. In the present study, we used a polystyrene bead held by optical tweezers to detach a starved cell at rest from a glass surface coated with sialylated oligosaccharides and concluded that the detachment force forward is 1.6- to 1.8-fold less than that backward, which may be linked to a catch bond-like behavior of the cell. These results suggest that this directed binding has a critical role in the gliding mechanism. Mycoplasma species are the smallest bacteria and are parasitic and occasionally commensal, as represented by Mycoplasma pneumoniae, which causes so-called “walking pneumonia” in humans. Dozens of species glide on host tissues, always in the direction of the characteristic cellular protrusion, by novel mechanisms. The fastest species, Mycoplasma mobile, catches, pulls, and releases sialylated oligosaccharides (SOs), which are common targets among influenza viruses, by means of a specific receptor based on the energy of ATP hydrolysis. Here, force measurements made with optical tweezers revealed that the force required to detach a cell from SOs is smaller forward than backward along the gliding direction. The directed binding should be a clue to elucidate this novel motility mechanism.
Collapse
|
40
|
Miyata M, Hamaguchi T. Integrated Information and Prospects for Gliding Mechanism of the Pathogenic Bacterium Mycoplasma pneumoniae. Front Microbiol 2016; 7:960. [PMID: 27446003 PMCID: PMC4923136 DOI: 10.3389/fmicb.2016.00960] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/02/2016] [Indexed: 01/21/2023] Open
Abstract
Mycoplasma pneumoniae forms a membrane protrusion at a cell pole and is known to adhere to solid surfaces, including animal cells, and can glide on these surfaces with a speed up to 1 μm per second. Notably, gliding appears to be involved in the infectious process in addition to providing the bacteria with a means of escaping the host's immune systems. However, the genome of M. pneumoniae does not encode any of the known genes found in other bacterial motility systems or any conventional motor proteins that are responsible for eukaryotic motility. Thus, further analysis of the mechanism underlying M. pneumoniae gliding is warranted. The gliding machinery formed as the membrane protrusion can be divided into the surface and internal structures. On the surface, P1 adhesin, a 170 kDa transmembrane protein forms an adhesin complex with other two proteins. The internal structure features a terminal button, paired plates, and a bowl (wheel) complex. In total, the organelle is composed of more than 15 proteins. By integrating the currently available information by genetics, microscopy, and structural analyses, we have suggested a working model for the architecture of the organelle. Furthermore, in this article, we suggest and discuss a possible mechanism of gliding based on the structural model, in which the force generated around the bowl complex transmits through the paired plates, reaching the adhesin complex, resulting in the repeated catch of sialylated oligosaccharides on the host surface by the adhesin complex.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| | - Tasuku Hamaguchi
- Department of Biology, Graduate School of Science, Osaka City UniversityOsaka, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City UniversityOsaka, Japan
| |
Collapse
|
41
|
Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae. mBio 2016; 7:e00243-16. [PMID: 27073090 PMCID: PMC4959525 DOI: 10.1128/mbio.00243-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding. Human mycoplasma pneumonia, epidemic all over the world in recent years, is caused by a pathogenic bacterium, Mycoplasma pneumoniae. This tiny bacterium, about 2 µm in cell body length, glides on the surface of the human trachea to infect the host by binding to sialylated oligosaccharides, which are also the binding targets of influenza viruses. The mechanism of mycoplasmal gliding motility is not related to any other well-studied motility systems, such as bacterial flagella and cytoplasmic motor proteins. Here, we visualized the attachment organelle, a cellular architecture for gliding, three dimensionally by using electron cryotomography and other conventional methods. A possible gliding mechanism has been suggested based on the architectural images.
Collapse
|
42
|
Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian tracheal epithelium. Int J Med Microbiol 2016; 306:174-86. [PMID: 27079856 DOI: 10.1016/j.ijmm.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 11/24/2022] Open
Abstract
Multiple respiratory infections have a significant impact on health and economy. Pathogenesis of co-infecting viruses and bacteria and their interaction with mucosal surfaces are poorly characterized. In this study we established a co-infection model based on pre-incubation of tracheal organ cultures (TOC) with Mycoplasma (M.) gallisepticum and a subsequent infection with avian influenza virus (AIV). Mycoplasma gallisepticum modified the pathogenesis of AIV as demonstrated in TOC of two different avian species (chickens and turkeys). Co-infection promoted bacterial growth in tracheal epithelium. Depending on the interaction time of M. gallisepticum with the host cells, AIV replication was either promoted or suppressed. M. gallisepticum inhibited the antiviral gene expression and affected AIV attachment to the host cell by desialylation of α-2,3 linked sialic acids. Ultrastructural analysis of co-infected TOC suggests that both pathogens may attach to and possibly infect the same epithelial cell. The obtained results contribute to better understanding of the interaction dynamics between M. gallisepticum and AIV. They highlight the importance of the time interval between infections as well as the biological properties of the involved pathogens as influencing factors in the outcome of respiratory infections.
Collapse
|
43
|
García-Morales L, González-González L, Querol E, Piñol J. A minimized motile machinery forMycoplasma genitalium. Mol Microbiol 2016; 100:125-38. [DOI: 10.1111/mmi.13305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Luis García-Morales
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | - Luis González-González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| | | | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; 08193 Bellaterra Barcelona Spain
| |
Collapse
|
44
|
Nakane D, Kenri T, Matsuo L, Miyata M. Systematic Structural Analyses of Attachment Organelle in Mycoplasma pneumoniae. PLoS Pathog 2015; 11:e1005299. [PMID: 26633540 PMCID: PMC4669176 DOI: 10.1371/journal.ppat.1005299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/02/2015] [Indexed: 02/01/2023] Open
Abstract
Mycoplasma pneumoniae, a human pathogenic bacterium, glides on host cell surfaces by a unique and unknown mechanism. It forms an attachment organelle at a cell pole as a membrane protrusion composed of surface and internal structures, with a highly organized architecture. In the present study, we succeeded in isolating the internal structure of the organelle by sucrose-gradient centrifugation. The negative-staining electron microscopy clarified the details and dimensions of the internal structure, which is composed of terminal button, paired plates, and bowl complex from the end of cell front. Peptide mass fingerprinting of the structure suggested 25 novel components for the organelle, and 3 of them were suggested for their involvement in the structure through their subcellular localization determined by enhanced yellow fluorescent protein (EYFP) tagging. Thirteen component proteins including the previously reported ones were mapped on the organelle systematically for the first time, in nanometer order by EYFP tagging and immunoelectron microscopy. Two, three, and six specific proteins localized specifically to the terminal button, the paired plates, and the bowl, respectively and interestingly, HMW2 molecules were aligned parallel to form the plate. The integration of these results gave the whole image of the organelle and allowed us to discuss possible gliding mechanisms. Human mycoplasma pneumonia, an epidemic of which occurred around the world a few years ago, is caused by a pathogenic bacterium, Mycoplasma pneumoniae. This tiny bacterium, about 2 μm long, infects humans by gliding on the surface of the trachea through binding to sialylated oligosaccharides, which are also the binding targets of influenza viruses. The mechanism underlying Mycoplasma "gliding motility" is not related to any other well-studied motility systems, such as bacterial flagella and eukaryotic motor proteins. Here, we isolated the internal structure of “attachment organelle", a cellular architecture, and suggested novel component proteins. The organelle was analyzed systematically by focusing on the protein components under fluorescence and electron microscopy, and a possible gliding mechanism was suggested.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
- Department of Physics, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Lisa Matsuo
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka, Japan
- * E-mail:
| |
Collapse
|
45
|
Bürki S, Gaschen V, Stoffel MH, Stojiljkovic A, Frey J, Kuehni-Boghenbor K, Pilo P. Invasion and persistence of Mycoplasma bovis in embryonic calf turbinate cells. Vet Res 2015; 46:53. [PMID: 25976415 PMCID: PMC4432498 DOI: 10.1186/s13567-015-0194-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/27/2015] [Indexed: 01/11/2023] Open
Abstract
Mycoplasma bovis is a wall-less bacterium causing bovine mycoplasmosis, a disease showing a broad range of clinical manifestations in cattle. It leads to enormous economic losses to the beef and dairy industries. Antibiotic treatments are not efficacious and currently no efficient vaccine is available. Moreover, mechanisms of pathogenicity of this bacterium are not clear, as few virulence attributes are known. Microscopic observations of necropsy material suggest the possibility of an intracellular stage of M. bovis. We used a combination of a gentamicin protection assay, a variety of chemical treatments to block mycoplasmas entry in eukaryotic cells, and fluorescence and transmission electron microscopy to investigate the intracellular life of M. bovis in calf turbinate cells. Our findings indicate that M. bovis invades and persists in primary embryonic calf turbinate cells. Moreover, M. bovis can multiply within these cells. The intracellular phase of M. bovis may represent a protective niche for this pathogen and contribute to its escape from the host’s immune defense as well as avoidance of antimicrobial agents.
Collapse
Affiliation(s)
- Sibylle Bürki
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland. .,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Ana Stojiljkovic
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Joachim Frey
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Paola Pilo
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
46
|
Elkhal CK, Kean KM, Parsonage D, Maenpuen S, Chaiyen P, Claiborne A, Karplus PA. Structure and proposed mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae. FEBS J 2015; 282:3030-42. [PMID: 25688572 DOI: 10.1111/febs.13233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 02/12/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED The formation of H2 O2 by the FAD-dependent L-α-glycerophosphate oxidase (GlpO) is important for the pathogenesis of Streptococcus pneumoniae and Mycoplasma pneumoniae. The structurally known GlpO from Streptococcus sp. (SspGlpO) is similar to the pneumococcal protein (SpGlpO) and provides a guide for drug design against that target. However, M. pneumoniae GlpO (MpGlpO), having < 20% sequence identity with structurally known GlpOs, appears to represent a second type of GlpO that we designate as type II GlpOs. In the present study, the recombinant His-tagged MpGlpO structure is described at an approximate resolution of 2.5 Å, solved by molecular replacement using, as a search model, the Bordetella pertussis protein 3253 (Bp3253), comprising a protein of unknown function solved by structural genomics efforts. Recombinant MpGlpO is an active oxidase with a turnover number of approximately 580 min(-1), whereas Bp3253 showed no GlpO activity. No substantial differences exist between the oxidized and dithionite-reduced MpGlpO structures. Although, no liganded structures were determined, a comparison with the tartrate-bound Bp3253 structure and consideration of residue conservation patterns guided the construction of a model for L-α-glycerophosphate (Glp) recognition and turnover by MpGlpO. The predicted binding mode also appears relevant for the type I GlpOs (such as SspGlpO) despite differences in substrate recognition residues, and it implicates a histidine conserved in type I and II Glp oxidases and dehydrogenases as the catalytic acid/base. The present study provides a solid foundation for guiding further studies of the mitochondrial Glp dehydrogenases, as well as for continued studies of M. pneumoniae and S. pneumoniae glycerol metabolism and the development of novel therapeutics targeting MpGlpO and SpGlpO. DATABASE Structural data have been deposited in the Protein Data Bank under accession numbers 4X9M (oxidized) and 4X9N (reduced).
Collapse
Affiliation(s)
- Callia K Elkhal
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Kelsey M Kean
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Derek Parsonage
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Al Claiborne
- Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
47
|
Xue D, Ma Y, Li M, Li Y, Luo H, Liu X, Wang Y. Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway. Vet Immunol Immunopathol 2014; 163:57-66. [PMID: 25440083 DOI: 10.1016/j.vetimm.2014.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen-host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory response using a primary air-liquid interface (ALI) epithelial culture model generated from bronchial epithelial cells of Ningxia Tan sheep (Ovis aries). The ALI culture of sheep bronchial epithelial cells showed a fully differentiated epithelium comprising distinct epithelial types, including the basal, ciliated and goblet cells. Exposure of ALI cultures to M. ovipneumoniae led to increased expression of Toll-like receptors (TLRs), and components of the myeloid differentiation factor 88 (MyD88)-dependent TLR signaling pathway, including the MyD88, TNF receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinases (IRAKs) and nuclear factor-kappa B (NF-κB), as well as subsequent pro-inflammatory cytokines in the epithelial cells. Of interest, infection with M. ovipneumoniae failed to induce the expression of TANK-binding kinase 1 (TBK1), TRAF3 and interferon regulatory factor 3 (IRF3), key components of the MyD88-independent signaling pathway. These results suggest that the MyD88-dependent TLR pathway may play a crucial role in sheep airway epithelial cells in response to M. ovipneumoniae infection, which also indicate that the ALI culture system may be a reliable model for investigating pathogen-host interactions between M. ovipneumoniae and airway epithelial cells.
Collapse
Affiliation(s)
- Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yanan Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haixia Luo
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
48
|
Mycoplasma gallisepticum MGA_0676 is a membrane-associated cytotoxic nuclease with a staphylococcal nuclease region essential for nuclear translocation and apoptosis induction in chicken cells. Appl Microbiol Biotechnol 2014; 99:1859-71. [DOI: 10.1007/s00253-014-6185-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/24/2023]
|
49
|
Abstract
In recent decades, bacterial cell biology has seen great advances, and numerous model systems have been developed to study a wide variety of cellular processes, including cell division, motility, assembly of macromolecular structures, and biogenesis of cell polarity. Considerable attention has been given to these model organisms, which include Escherichia coli, Bacillus subtilis, Caulobacter crescentus, and Myxococcus xanthus. Studies of these processes in the pathogenic bacterium Mycoplasma pneumoniae and its close relatives have also been carried out on a smaller scale, but this work is often overlooked, in part due to this organism's reputation as minimalistic and simple. In this minireview, I discuss recent work on the role of the M. pneumoniae attachment organelle (AO), a structure required for adherence to host cells, in these processes. The AO is constructed from proteins that generally lack homology to those found in other organisms, and this construction occurs in coordination with cell cycle events. The proteins of the M. pneumoniae AO share compositional features with proteins with related roles in model organisms. Once constructed, the AO becomes activated for its role in a form of gliding motility whose underlying mechanism appears to be distinct from that of other gliding bacteria, including Mycoplasma mobile. Together with the FtsZ cytoskeletal protein, motility participates in the cell division process. My intention is to bring this deceptively complex organism into alignment with the better-known model systems.
Collapse
|