1
|
Ríos Colombo NS, Paul Ross R, Hill C. Synergistic and off-target effects of bacteriocins in a simplified human intestinal microbiome: implications for Clostridioides difficile infection control. Gut Microbes 2025; 17:2451081. [PMID: 39817466 PMCID: PMC11740676 DOI: 10.1080/19490976.2025.2451081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Clostridioides difficile is a major cause of nosocomial diarrhea. As current antibiotic treatment failures and recurrence of infections are highly frequent, alternative strategies are needed for the treatment of this disease. This study explores the use of bacteriocins, specifically lacticin 3147 and pediocin PA-1, which have reported inhibitory activity against C. difficile. We engineered Lactococcus lactis strains to produce these bacteriocins individually or in combination, aiming to enhance their activity against C. difficile. Our results show that lacticin 3147 and pediocin PA-1 display synergy, resulting in higher anti-C. difficile activity. We then evaluated the effects of these L. lactis strains in a Simplified Human Intestinal Microbiome (SIHUMI-C) model, a bacterial consortium of eight diverse human gut species that includes C. difficile. After introducing the bacteriocin-producing L. lactis strains into SIHUMI-C, samples were collected over 24 hours, and the genome copies of each species were assessed using qPCR. Contrary to expectations, the combined bacteriocins increased C. difficile levels in the consortium despite showing synergy against C. difficile in agar-based screening. This can be rationally explained by antagonistic inter-species interactions within SIHUMI-C, providing new insights into how broad-spectrum antimicrobials might fail to control targeted species in complex gut microbial communities. These findings highlight the need to mitigate off-target effects in complex gut microbiomes when developing bacteriocin-based therapies with potential clinical implications for infectious disease treatment.
Collapse
Affiliation(s)
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Liu X, Tang H, Huang X, Xu M. Butyrate affects bacterial virulence: a new perspective on preventing enteric bacterial pathogen invasion. Future Microbiol 2024; 19:73-84. [PMID: 38085176 DOI: 10.2217/fmb-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/11/2023] [Indexed: 02/15/2024] Open
Abstract
Enteric bacterial pathogens are a major threat to intestinal health. With the widespread use of antibiotics, bacterial resistance has become a problem, and there is an urgent need for a new treatment to reduce dependence on antibiotics. Butyrate can control enteric bacterial pathogens by regulating the expression of their virulence genes, promoting the posttranslational modification of their proteins, maintaining an anaerobic environment, regulating the host immune system and strengthening the intestinal mucosal barrier. Here, this review describes the mechanisms by which butyrate regulates the pathogenicity of enteric bacterial pathogens from various perspectives and discusses the prospects and limitations of butyrate as a new option for the control of pathogenic bacteria.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Hao Tang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu, 212013, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212008, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
3
|
Winter MG, Hughes ER, Muramatsu MK, Jimenez AG, Chanin RB, Spiga L, Gillis CC, McClelland M, Andrews-Polymenis H, Winter SE. Formate oxidation in the intestinal mucus layer enhances fitness of Salmonella enterica serovar Typhimurium. mBio 2023; 14:e0092123. [PMID: 37498116 PMCID: PMC10470504 DOI: 10.1128/mbio.00921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Salmonella enterica serovar Typhimurium induces intestinal inflammation to create a niche that fosters the outgrowth of the pathogen over the gut microbiota. Under inflammatory conditions, Salmonella utilizes terminal electron acceptors generated as byproducts of intestinal inflammation to generate cellular energy through respiration. However, the electron donating reactions in these electron transport chains are poorly understood. Here, we investigated how formate utilization through the respiratory formate dehydrogenase-N (FdnGHI) and formate dehydrogenase-O (FdoGHI) contribute to gut colonization of Salmonella. Both enzymes fulfilled redundant roles in enhancing fitness in a mouse model of Salmonella-induced colitis, and coupled to tetrathionate, nitrate, and oxygen respiration. The formic acid utilized by Salmonella during infection was generated by its own pyruvate-formate lyase as well as the gut microbiota. Transcription of formate dehydrogenases and pyruvate-formate lyase was significantly higher in bacteria residing in the mucus layer compared to the lumen. Furthermore, formate utilization conferred a more pronounced fitness advantage in the mucus, indicating that formate production and degradation occurred predominantly in the mucus layer. Our results provide new insights into how Salmonella adapts its energy metabolism to the local microenvironment in the gut. IMPORTANCE Bacterial pathogens must not only evade immune responses but also adapt their metabolism to successfully colonize their host. The microenvironments encountered by enteric pathogens differ based on anatomical location, such as small versus large intestine, spatial stratification by host factors, such as mucus layer and antimicrobial peptides, and distinct commensal microbial communities that inhabit these microenvironments. Our understanding of how Salmonella populations adapt its metabolism to different environments in the gut is incomplete. In the current study, we discovered that Salmonella utilizes formate as an electron donor to support respiration, and that formate oxidation predominantly occurs in the mucus layer. Our experiments suggest that spatially distinct Salmonella populations in the mucus layer and the lumen differ in their energy metabolism. Our findings enhance our understanding of the spatial nature of microbial metabolism and may have implications for other enteric pathogens as well as commensal host-associated microbial communities.
Collapse
Affiliation(s)
- Maria G. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Elizabeth R. Hughes
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew K. Muramatsu
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| | - Angel G. Jimenez
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rachael B. Chanin
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Luisella Spiga
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Caroline C. Gillis
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, UC Irvine, Irvine, California, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M College of Medicine, College Station, Texas, USA
| | - Sebastian E. Winter
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
4
|
Gül E, Bakkeren E, Salazar G, Steiger Y, Abi Younes A, Clerc M, Christen P, Fattinger SA, Nguyen BD, Kiefer P, Slack E, Ackermann M, Vorholt JA, Sunagawa S, Diard M, Hardt WD. The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence. PLoS Biol 2023; 21:e3002253. [PMID: 37651408 PMCID: PMC10499267 DOI: 10.1371/journal.pbio.3002253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Guillem Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Markus V, Paul AA, Teralı K, Özer N, Marks RS, Golberg K, Kushmaro A. Conversations in the Gut: The Role of Quorum Sensing in Normobiosis. Int J Mol Sci 2023; 24:ijms24043722. [PMID: 36835135 PMCID: PMC9963693 DOI: 10.3390/ijms24043722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
An imbalance in gut microbiota, termed dysbiosis, has been shown to affect host health. Several factors, including dietary changes, have been reported to cause dysbiosis with its associated pathologies that include inflammatory bowel disease, cancer, obesity, depression, and autism. We recently demonstrated the inhibitory effects of artificial sweeteners on bacterial quorum sensing (QS) and proposed that QS inhibition may be one mechanism behind such dysbiosis. QS is a complex network of cell-cell communication that is mediated by small diffusible molecules known as autoinducers (AIs). Using AIs, bacteria interact with one another and coordinate their gene expression based on their population density for the benefit of the whole community or one group over another. Bacteria that cannot synthesize their own AIs secretly "listen" to the signals produced by other bacteria, a phenomenon known as "eavesdropping". AIs impact gut microbiota equilibrium by mediating intra- and interspecies interactions as well as interkingdom communication. In this review, we discuss the role of QS in normobiosis (the normal balance of bacteria in the gut) and how interference in QS causes gut microbial imbalance. First, we present a review of QS discovery and then highlight the various QS signaling molecules used by bacteria in the gut. We also explore strategies that promote gut bacterial activity via QS activation and provide prospects for the future.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, Nicosia 99258, Cyprus
| | - Nazmi Özer
- Department of Biochemistry, Faculty of Pharmacy, Girne American University, Kyrenia 99428, Cyprus
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| |
Collapse
|
6
|
Structural and functional neuroimaging of the effects of the gut microbiome. Eur Radiol 2022; 32:3683-3692. [PMID: 35029734 PMCID: PMC9124675 DOI: 10.1007/s00330-021-08486-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 11/28/2021] [Indexed: 11/04/2022]
Abstract
Interactions between intestinal microbiota and the central nervous system profoundly influence brain structure and function. Over the past 15 years, intense research efforts have uncovered the significant association between gut microbial dysbiosis and neurologic, neurodegenerative, and psychiatric disorders; however, our understanding of the effect of gut microbiota on quantitative neuroimaging measures of brain microstructure and function remains limited. Many current gut microbiome studies specifically focus on discovering correlations between specific microbes and neurologic disease states that, while important, leave critical mechanistic questions unanswered. To address this significant gap in knowledge, quantitative structural and functional brain imaging has emerged as a vital bridge and as the next step in understanding how the gut microbiome influences the brain. In this review, we examine the current state-of-the-art, raise awareness of this important topic, and aim to highlight immense new opportunities-in both research and clinical imaging-for the imaging community in this emerging field of study. Our review also highlights the potential for preclinical imaging of germ-free and gnotobiotic models to significantly advance our understanding of the causal mechanisms by which the gut microbiome alters neural microstructure and function. KEY POINTS: • Alterations to the gut microbiome can significantly influence brain structure and function in health and disease. • Quantitative neuroimaging can help elucidate the effect of gut microbiota on the brain and with future translational advances, neuroimaging will be critical for both diagnostic assessment and therapeutic monitoring.
Collapse
|
7
|
Strain R, Stanton C, Ross RP. Effect of diet on pathogen performance in the microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:13. [PMID: 38045644 PMCID: PMC10688830 DOI: 10.20517/mrr.2021.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/05/2023]
Abstract
Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their associated metabolites, and how these can contribute to or preclude pathogen survival.
Collapse
Affiliation(s)
- Ronan Strain
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 K8AF, Ireland
| |
Collapse
|
8
|
Zhou C, Zou Y, Zhang Y, Teng S, Ye K. Involvement of CCN1 Protein and TLR2/4 Signaling Pathways in Intestinal Epithelial Cells Response to Listeria monocytogenes. Int J Mol Sci 2022; 23:ijms23052739. [PMID: 35269881 PMCID: PMC8911323 DOI: 10.3390/ijms23052739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022] Open
Abstract
CCN1 is well studied in terms of its functions in injury repair, cell adhesion survival and apoptosis, bacterial clearance and mediation of inflammation-related pathways, such as the TLR2/4 pathways. However, the role of CCN1 protein and its interaction with TLR2/4 pathways in intestinal epithelial cells was not elucidated after Listeria monocytogenes infection. The results of this study confirm that L. monocytogenes infection induced intestinal inflammation and increased the protein expression of CCN1, TLR2, TLR4 and p38, which followed a similar tendency in the expression of genes related to the TLR2/4 pathways. In addition, organoids infected by L. monocytogenes showed a significant increase in the expression of CCN1 and the activation of TLR2/4 pathways. Furthermore, pre-treatment with CCN1 protein to organoids infected by L. monocytogenes could increase the related genes of TLR2/4 pathways and up-regulate the expression of TNF, and increase the count of pathogens in organoids, which indicates that the interaction between the CCN1 protein and TLR2/4 signaling pathways in intestinal epithelial cells occurred after L. monocytogenes infection. This study will provide a novel insight of the role of CCN1 protein after L. monocytogenes infection in the intestine.
Collapse
|
9
|
AL-MEGRIN WA, YEHIA HM, KORANY SM, ALKHATEEB MA, ALAHDAL H, SONBOL H, ALKHURIJI AF, ELKHADRAGY MF. In vitro and in vivo evaluation of probiotic as immunomodulatory and anti-Campylobacter agent. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.20322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Hadil ALAHDAL
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Hana SONBOL
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | |
Collapse
|
10
|
Small Intestinal Levels of the Branched Short-Chain Fatty Acid Isovalerate Are Elevated during Infection with Heligmosomoides polygyrus and Can Promote Helminth Fecundity. Infect Immun 2021; 89:e0022521. [PMID: 34460289 DOI: 10.1128/iai.00225-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heligmosomoides polygyrus is a helminth which naturally infects mice and is widely used as a laboratory model of chronic small intestinal helminth infection. While it is known that infection with H. polygyrus alters the composition of the host's bacterial microbiota, the functional implications of this alteration are unclear. We investigated the impact of H. polygyrus infection on short-chain fatty acid (SCFA) levels in the mouse intestine and sera. We found that helminth infection resulted in significantly upregulated levels of the branched SCFA isovaleric acid, exclusively in the proximal small intestine, which is the site of H. polygyrus colonization. We next set out to test the hypothesis that elevating local levels of isovaleric acid was a strategy used by H. polygyrus to promote its own fitness within the mammalian host. To test this, we supplemented the drinking water of mice with isovalerate during H. polygyrus infection and examined whether this affected helminth fecundity or chronicity. We did not find that isovaleric acid supplementation affected helminth chronicity; however, we found that it did promote helminth fecundity, as measured by helminth egg output in the feces of mice. Through antibiotic treatment of helminth-infected mice, we found that the bacterial microbiota was required in order to support elevated levels of isovaleric acid in the proximal small intestine during helminth infection. Overall, our data reveal that during H. polygyrus infection there is a microbiota-dependent localized increase in the production of isovaleric acid in the proximal small intestine and that this supports helminth fecundity in the murine host.
Collapse
|
11
|
Lactobacillus casei protects intestinal mucosa from damage in chicks caused by Salmonella pullorum via regulating immunity and the Wnt signaling pathway and maintaining the abundance of gut microbiota. Poult Sci 2021; 100:101283. [PMID: 34229217 PMCID: PMC8261010 DOI: 10.1016/j.psj.2021.101283] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of the intestinal mucosal barrier of chicks caused by Salmonella pullorum is of great harm to the poultry industry. Probiotics are recognized for their beneficial health-promoting properties, promoting maintenance of bowel epithelial integrity and host immune system homeostasis. Our previous research showed that Lactobacillus casei protects jejunal mucosa from injury in chicks infected with S. pullorum. However, the specific mechanisms underlying its protective properties are still not fully understood. In the present study, we aimed to explore the mechanisms underlying the protective effects of L. casei on the intestinal mucosal barrier of chicks infected with S. pullorum through histological, immunological, and molecular biology methods. The results indicated that L. casei significantly reduced the diarrhea rate, increased the daily weight gain, and maintained normal levels of IgA, IgM, and IgG in the serum of chicks infected with S. pullorum. Furthermore, we found that L. casei markedly improved the immunity of gut mucosa by regulating cytokine and chemokine receptor balance, elevating the number of intraepithelial lymphocytes, and hence effectively restraining bowel inflammation. Strikingly, feeding of infected chicks with L. casei notably boosted interleukin-22 expression to activate the Wingless-Int pathway, moderated diamine oxidase and D-lactic acid levels, diminished the generation of myosin light chain kinase, and expanded tight junction protein levels (Zonulin-1 and Claudin-1), strengthening the function of the gut mucosal epithelium. In addition, experiments using 16S rDNA sequencing also demonstrated that L. casei immensely weakened the adhesion of S. pullorum, mainly manifesting as improved diversity of the intestinal microbiota in the V4 area of infected chicks. Taken together, these results show that the application of L. casei may be a good strategy to regulate the intestinal inflammatory response of chicks infected with S. pullorum, providing new perspectives in producing antibiotic substitutes in poultry farms.
Collapse
|
12
|
Poll BG, Xu J, Jun S, Sanchez J, Zaidman NA, He X, Lester L, Berkowitz DE, Paolocci N, Gao WD, Pluznick JL. Acetate, a Short-Chain Fatty Acid, Acutely Lowers Heart Rate and Cardiac Contractility Along with Blood Pressure. J Pharmacol Exp Ther 2021; 377:39-50. [PMID: 33414131 PMCID: PMC7985618 DOI: 10.1124/jpet.120.000187] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced almost exclusively by the gut microbiota and are an essential mechanism by which gut microbes influence host physiology. Given that SCFAs induce vasodilation, we hypothesized that they might have additional cardiovascular effects. In this study, novel mechanisms of SCFA action were uncovered by examining the acute effects of SCFAs on cardiovascular physiology in vivo and ex vivo. Acute delivery of SCFAs in conscious radiotelemetry-implanted mice results in a simultaneous decrease in both mean arterial pressure and heart rate (HR). Inhibition of sympathetic tone by the selective β-1 adrenergic receptor antagonist atenolol blocks the acute drop in HR seen with acetate administration, yet the decrease in mean arterial pressure persists. Treatment with tyramine, an indirect sympathomimetic, also blocks the acetate-induced acute drop in HR. Langendorff preparations show that acetate lowers HR only after long-term exposure and at a smaller magnitude than seen in vivo. Pressure-volume loops after acetate injection show a decrease in load-independent measures of cardiac contractility. Isolated trabecular muscle preparations also show a reduction in force generation upon SCFA treatment, though only at supraphysiological concentrations. These experiments demonstrate a direct cardiac component of the SCFA cardiovascular response. These data show that acetate affects blood pressure and cardiac function through parallel mechanisms and establish a role for SCFAs in modulating sympathetic tone and cardiac contractility, further advancing our understanding of the role of SCFAs in blood pressure regulation. SIGNIFICANCE STATEMENT: Acetate, a short-chain fatty acid, acutely lowers heart rate (HR) as well as mean arterial pressure in vivo in radiotelemetry-implanted mice. Acetate is acting in a sympatholytic manner on HR and exerts negative inotropic effects in vivo. This work has implications for potential short-chain fatty acid therapeutics as well as gut dysbiosis-related disease states.
Collapse
Affiliation(s)
- Brian G Poll
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jiaojiao Xu
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Seungho Jun
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jason Sanchez
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Nathan A Zaidman
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Xiaojun He
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Laeben Lester
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Dan E Berkowitz
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Nazareno Paolocci
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Wei Dong Gao
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| | - Jennifer L Pluznick
- Department of Physiology (B.G.P., J.X., J.S., N.Z., J.L.P.), Division of Cardiology (S.J., N.P.), Department of Anesthesiology and Critical Care Medicine (X.H., L.L., W.D.G.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham (D.B.); and Department of Biomedical Sciences, University of Padova, Padova, Italy (N.P.)
| |
Collapse
|
13
|
Bescucci DM, Clarke ST, Brown CLJ, Boras VF, Montina T, Uwiera RRE, Inglis GD. The absence of murine cathelicidin-related antimicrobial peptide impacts host responses enhancing Salmonella enterica serovar Typhimurium infection. Gut Pathog 2020; 12:53. [PMID: 33292444 PMCID: PMC7666523 DOI: 10.1186/s13099-020-00386-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/03/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cathelicidins are a class of antimicrobial peptide, and the murine cathelicidin-related antimicrobial peptide (mCRAMP) has been demonstrated in vitro to impair Salmonella enterica serovar Typhimurium proliferation. However, the impact of mCRAMP on host responses and the microbiota following S. Typhimurium infection has not been determined. In this study mCRAMP-/- and mCRAMP+/+ mice (± streptomycin) were orally inoculated with S. enterica serovar Typhimurium DT104 (SA +), and impacts on the host and enteric bacterial communities were temporally evaluated. RESULTS Higher densities of the pathogen were observed in cecal digesta and associated with mucosa in SA+/mCRAMP-/- mice that were pretreated (ST+) and not pretreated (ST-) with streptomycin at 24 h post-inoculation (hpi). Both SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were more susceptible to infection exhibiting greater histopathologic changes (e.g. epithelial injury, leukocyte infiltration, goblet cell loss) at 48 hpi. Correspondingly, immune responses in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were affected (e.g. Ifnγ, Kc, Inos, Il1β, RegIIIγ). Systemic dissemination of the pathogen was characterized by metabolomics, and the liver metabolome was affected to a greater degree in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice (e.g. taurine, cadaverine). Treatment-specific changes to the structure of the enteric microbiota were associated with infection and mCRAMP deficiency, with a higher abundance of Enterobacteriaceae and Veillonellaceae observed in infected null mice. The microbiota of mice that were administered the antibiotic and infected with Salmonella was dominated by Proteobacteria. CONCLUSION The study findings showed that the absence of mCRAMP modulated both host responses and the enteric microbiota enhancing local and systemic infection by Salmonella Typhimurium.
Collapse
Affiliation(s)
- Danisa M Bescucci
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Sandra T Clarke
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Catherine L J Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Valerie F Boras
- Chinook Regional Hospital, Alberta Health Services, Lethbridge, AB, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.,Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, Canada
| | - Richard R E Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - G Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
14
|
Salmonella enterica Serovar Typhimurium Temporally Modulates the Enteric Microbiota and Host Responses To Overcome Colonization Resistance in Swine. Appl Environ Microbiol 2020; 86:AEM.01569-20. [PMID: 32859592 DOI: 10.1128/aem.01569-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a prevalent incitant of enteritis in human beings and nonhuman animals. It has been proposed that host defense responses incited by Salmonella allow the bacterium to overcome colonization resistance. Piglets (n = 24) were orally inoculated with S. enterica serovar Typhimurium DT104 or buffer alone, and the host and microbial responses were temporally examined at the acute (2 days postinoculation [dpi]), subacute (6 dpi), and recovery (10 dpi) stages of salmonellosis. At the acute stage of disease, body temperatures were elevated, and feed consumption and weight gain were reduced. The densities of Salmonella associated with the gut mucosa decreased over time, with higher densities of the bacterium in the ileum and the large intestine. Moreover, substantive histopathological changes were observed as a function of time, with prominent epithelial injury and neutrophil infiltration observed at 2 dpi. Correspondingly, a variety of host metrics were temporally affected in piglets with salmonellosis (e.g., TNFα, IFNγ, PR39, βD2, iNOS, IL8, REGIIIγ). The enteric microbiota was characterized using culture-independent and -dependent methods in concert, and taxon- and location-specific changes to the microbiota were observed in infected piglets. Bacteroides spp. (e.g., Bacteroides uniformis, Bacteroides fragilis), Streptococcus spp. (e.g., Streptococcus gallolyticus), and various Gammaproteobacteria were highly associated with inflamed tissues, while bacteria within the Ruminococcaceae and Veillonellaceae families were mainly associated with healthy mucosae. In conclusion, the study findings showed that S Typhimurium incited temporal and spatial modifications to the swine autochthonous microbiota, and to host defense responses, that were consistent with overcoming colonization resistance to incite salmonellosis in swine.IMPORTANCE Limited information is available on host and enteric microbiota responses incited by Salmonella enterica serovar Typhimurium in swine and on possible mechanisms by which the bacterium overcomes colonization resistance to incite salmonellosis. Temporal characterization of a variety of host metrics in piglets (e.g., physiological, histopathological, and immunological) showed the importance of studying the progression of salmonellosis. A number of host responses integrally associated with disease development were identified. Utilization of next-generation sequence analysis to characterize the enteric microbiota was found to lack sufficient resolution; however, culture-dependent and -independent methods in combination identified taxon- and location-specific changes to bacterial communities in infected piglets. The study identified bacterial and host responses associated with salmonellosis, which will be beneficial in understanding colonization resistance and in the development of effective alternatives to antibiotics to mitigate salmonellosis.
Collapse
|
15
|
Tabashsum Z, Peng M, Alvarado-Martinez Z, Aditya A, Bhatti J, Romo PB, Young A, Biswas D. Competitive reduction of poultry-borne enteric bacterial pathogens in chicken gut with bioactive Lactobacillus casei. Sci Rep 2020; 10:16259. [PMID: 33004922 PMCID: PMC7530658 DOI: 10.1038/s41598-020-73316-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023] Open
Abstract
In this study, the effect of sustainable probiotics on Campylobacter jejuni colonization and gut microbiome composition was evaluated using chicken as a model organism. Chickens were given Lactobacillus casei over-expressing myosin-cross-reactive antigen (LC+mcra). LC+mcra can generate bioactive compounds in larger quantity including conjugated linoleic acid. A total of 120 chickens were used in duplicate trials to investigate the effectiveness of LC+mcra in decreasing C. jejuni colonization by means of kanamycin resistant strain compared to the control group. We observed that LC+mcra can efficiently colonize various parts of the chicken gut and competitively reduce colonization of natural and challenged C. jejuni and natural Salmonella enterica. LC+mcra was found to reduce C. jejuni colonization in cecum, ileum and jejunum, by more than one log CFU/g when compared to the no-probiotic control group. Furthermore, 16S rRNA compositional analysis revealed lower abundance of Proteobacteria, higher abundance of Firmicutes, along with enriched bacterial genus diversity in gut of LC+mcra fed chicken. Decreased contamination of drinking water by C. jejuni and S. enterica was also observed, suggesting a potential function of reducing horizontal transfer of enteric bacteria in poultry. Outcomes of this study reveal high potential of LC+mcra as sustainable approach to decrease colonization of C. jejuni and S. enterica in poultry gut along with other beneficial attributes.
Collapse
Affiliation(s)
- Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA
| | - Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zabdiel Alvarado-Martinez
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA
| | - Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Jacob Bhatti
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA
| | - Paulina Bravo Romo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Alana Young
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Debabrata Biswas
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, MD, 20742, USA.
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Tsugawa H, Kabe Y, Kanai A, Sugiura Y, Hida S, Taniguchi S, Takahashi T, Matsui H, Yasukawa Z, Itou H, Takubo K, Suzuki H, Honda K, Handa H, Suematsu M. Short-chain fatty acids bind to apoptosis-associated speck-like protein to activate inflammasome complex to prevent Salmonella infection. PLoS Biol 2020; 18:e3000813. [PMID: 32991574 PMCID: PMC7524008 DOI: 10.1371/journal.pbio.3000813] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Short-chain fatty acids (SCFAs) produced by gastrointestinal microbiota regulate immune responses, but host molecular mechanisms remain unknown. Unbiased screening using SCFA-conjugated affinity nanobeads identified apoptosis-associated speck-like protein (ASC), an adaptor protein of inflammasome complex, as a noncanonical SCFA receptor besides GPRs. SCFAs promoted inflammasome activation in macrophages by binding to its ASC PYRIN domain. Activated inflammasome suppressed survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) in macrophages by pyroptosis and facilitated neutrophil recruitment to promote bacterial elimination and thus inhibit systemic dissemination in the host. Administration of SCFAs or dietary fibers, which are fermented to SCFAs by gut bacteria, significantly prolonged the survival of S. Typhimurium–infected mice through ASC-mediated inflammasome activation. SCFAs penetrated into the inflammatory region of the infected gut mucosa to protect against infection. This study provided evidence that SCFAs suppress Salmonella infection via inflammasome activation, shedding new light on the therapeutic activity of dietary fiber. This study shows that short-chain fatty acids (SCFAs) bind to the inflammasome adaptor protein, apoptosis-associated speck-like protein (ASC). SCFAs thereby promote inflammasome activation in macrophages and protect against Salmonella infection via bacterial elimination in gut, shedding new light on the therapeutic activity of dietary fiber.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- * E-mail: (HT); (YK); (MS)
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
- * E-mail: (HT); (YK); (MS)
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shun’ichiro Taniguchi
- Department of Comprehensive Cancer Therapy, Shinshu University School Medicine, Matsumoto, Japan
| | - Toshio Takahashi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Hidenori Matsui
- Omura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | | | | | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- * E-mail: (HT); (YK); (MS)
| |
Collapse
|
17
|
Peng M, Tabashsum Z, Patel P, Bernhardt C, Biswas C, Meng J, Biswas D. Prevention of enteric bacterial infections and modulation of gut microbiota with conjugated linoleic acids producing Lactobacillus in mice. Gut Microbes 2020; 11:433-452. [PMID: 31411526 PMCID: PMC7524329 DOI: 10.1080/19490976.2019.1638724] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Probiotics are recognized for outcompeting pathogenic bacteria by competitive receptor-mediated colonization and secretion of functional metabolites which are antimicrobial against certain microbes as well as improving host's gut health and immunity. Recently, we have constructed a bioactive Lactobacillus casei (LC) strain, LC+mcra , by inserting mcra (myosin cross-reactive antigen) gene, which stimulates the conversion of conjugated linoleic acids. In this study, we evaluated the modulation of gut microbiome and protective roles of LC+mcra against pathogenic Salmonella enterica serovar Typhimurium (ST) and enterohemorrhagic E. coli (EHEC) infections in BALB/cJ mice. We observed that LC+mcra colonized efficiently in mice gut intestine and competitively reduced the infection with ST and EHEC in various locations of small and large intestine, specifically cecum, jejunum, and ileum (p < 0.05). Positive modulation of the cecal microbiota, for example, higher relative abundances of Firmicutes, lower relative abundances of Proteobacteria, and increased bacterial species diversity/richness, was detected in ST-challenged mice pretreated with LC+mcra based on 16S metagenomic sequencing. Cytokine gene expression analysis indicated that mice pretreated with LC+mcra associated with attenuated bacterial pathogen-induced gut inflammation. Furthermore, mice fed daily with LC+mcra for one week could protect themselves from the impairments caused by enteric infections with ST or EHEC. These impairments include weight loss, negative hematological changes, intestinal histological alterations, and potential death. This in vivo study suggests that daily consumption of novel conjugated linoleic acids over-producing probiotic effectively improves intestinal microbiota composition and prevents/combats foodborne enteric bacterial infections with pathogenic Salmonella and diarrheagenic E. coli.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA,Biological Sciences Program, University of Maryland, College Park, MD, USA
| | - Zajeba Tabashsum
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Puja Patel
- Biological Sciences Program, University of Maryland, College Park, MD, USA
| | - Cassandra Bernhardt
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - Chitrine Biswas
- Biological Sciences Program, University of Maryland, College Park, MD, USA
| | - Jianghong Meng
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA,Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA,Biological Sciences Program, University of Maryland, College Park, MD, USA,Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA,CONTACT Debabrata Biswas Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
18
|
Samuels AN, Roggiani M, Smith KA, Zhu J, Goulian M, Kohli RM. Deciphering the Role of Colicins during Colonization of the Mammalian Gut by Commensal E. coli. Microorganisms 2020; 8:microorganisms8050664. [PMID: 32370119 PMCID: PMC7284606 DOI: 10.3390/microorganisms8050664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Colicins are specific and potent toxins produced by Enterobacteriaceae that result in the rapid elimination of sensitive cells. Colicin production is commonly found throughout microbial populations, suggesting its potential importance for bacterial survival in complex microbial environments. Nonetheless, as colicin biology has been predominately studied using synthetic models, it remains unclear how colicin production contributes to survival and fitness of a colicin-producing commensal strain in a natural environment. To address this gap, we took advantage of MP1, an E. coli strain that harbors a colicinogenic plasmid and is a natural colonizer of the murine gut. Using this model, we validated that MP1 is competent for colicin production and then directly interrogated the importance of colicin production and immunity for MP1 survival in the murine gut. We showed that colicin production is dispensable for sustained colonization in the unperturbed gut. A strain lacking colicin production or immunity shows minimal fitness defects and can resist displacement by colicin producers. This report extends our understanding of the role that colicin production may play for E. coli during gut colonization and suggests that colicin production is not essential for a commensal to persist in its physiologic niche in the absence of exogenous challenges.
Collapse
Affiliation(s)
- Amanda N. Samuels
- Department of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Graduate Group on Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Manuela Roggiani
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
| | - Kathryn A. Smith
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
- Department of Biology, Solenis LLC., Wilmington, DE 19803, USA
| | - Jun Zhu
- Graduate Group on Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Mark Goulian
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, PA 19104, USA; (M.R.); (K.A.S.); (M.G.)
| | - Rahul M. Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-(215)-573-7523
| |
Collapse
|
19
|
Alkhuriji AF, Majrashi NA, Alomar S, El-Khadragy MF, Awad MA, Khatab AR, Yehia HM. The Beneficial Effect of Eco-Friendly Green Nanoparticles Using Garcinia mangostana Peel Extract against Pathogenicity of Listeria monocytogenes in Female BALB/c Mice. Animals (Basel) 2020; 10:E573. [PMID: 32235366 PMCID: PMC7222409 DOI: 10.3390/ani10040573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/24/2023] Open
Abstract
Listeria monocytogenes is a psychrophilic bacterium, which causes widespread zoonosis in the natural environment, and mainly affects goat, sheep, and cattle herds. Recently, we predicted that it can be transmitted through food. It causes listeriosis, a severe infectious disease, which occurs with food contaminated with the pathogenic bacterium. Anti-inflammatory factors are important to treat the dangers of chronic inflammation associated with chronic diseases. Natural foodstuffs have made and are continuing to make vital contributions to the search for new antilisterial agents. The use of natural products in association with silver nanoparticles has drawn attention because of its easy, nonpathogenic, eco-friendly, and economical protocol. Hence, we aimed to biosynthesize silver nanoparticles (Ag-NPs) using Garcinia mangostana peel extract, which was found to be a good source for the synthesis of silver nanoparticles, their formation being confirmed by color change and stability in solution, and investigated the antilisterial activity of these nanoparticles in a murine model of L. monocytogenes infection. A total of 28 mice were divided into four groups-healthy control, infected, infected mice treated with green Ag-NPs biosynthesized with G. mangostana (5 mg/mL), and infected mice pretreated with Ag-NPs. From our results, oral treatment with Ag-NPs biosynthesized with G. mangostana peel extract resulted in a significant reduction in malondialdehyde (MDA), enhanced antioxidant enzyme activities, and increased the levels of the antiapoptotic protein, compared with the untreated mice. These results indicate that G. mangostana may provide therapeutic value against L. monocytogenes-induced oxidative stress and histopathological alterations, and that these effects may be related to antiapoptotic and antioxidant activities.
Collapse
Affiliation(s)
- Afrah F. Alkhuriji
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia; (A.F.A.); (N.A.M.); (A.R.K.); (M.F.E.-K.)
| | - Nada A. Majrashi
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia; (A.F.A.); (N.A.M.); (A.R.K.); (M.F.E.-K.)
| | - Suliman Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Manal F. El-Khadragy
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia; (A.F.A.); (N.A.M.); (A.R.K.); (M.F.E.-K.)
- Zoology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Manal A. Awad
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Alaa R. Khatab
- Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia; (A.F.A.); (N.A.M.); (A.R.K.); (M.F.E.-K.)
| | - Hany M. Yehia
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Food Science and Nutrition, Faculty of Home Economics, Helwan University, Cairo 11221, Egypt
| |
Collapse
|
20
|
Jiménez-Avalos JA, Arrevillaga-Boni G, González-López L, García-Carvajal ZY, González-Avila M. Classical methods and perspectives for manipulating the human gut microbial ecosystem. Crit Rev Food Sci Nutr 2020; 61:234-258. [PMID: 32114770 DOI: 10.1080/10408398.2020.1724075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A healthy Human Gut Microbial Ecosystem (HGME) is a necessary condition for maintaining the orderly function of the whole body. Major alterations in the normal gut microbial composition, activity and functionality (dysbiosis) by an environmental or host-related disruptive event, can compromise metabolic, inflammatory, and neurological processes, causing disorders such as obesity, inflammatory bowel disease, colorectal cancer, and depressive episodes. The restore or the maintaining of the homeostatic balance of Gut Microbiota (GM) populations (eubiosis) is possible through diet, the use of probiotics, prebiotics, antibiotics, and even Fecal Microbiota Transplantation (FMT). Although these "classic methods" represent an effective and accepted way to modulate GM, the complexity of HGME requires new approaches to control it in a more appropriate way. Among the most promising emergent strategies for modulating GM are the use of engineered nanomaterials (metallic nanoparticles (NP), polymeric-NP, quantum dots, micelles, dendrimers, and liposomes); phagotherapy (i.e., phages linked with the CRISPR/Cas9 system), and the use of antimicrobial peptides, non-antibiotic drugs, vaccines, and immunoglobulins. Here we review the current state of development, implications, advantages, disadvantages, and perspectives of the different approaches for manipulating HGME.
Collapse
Affiliation(s)
- Jorge Armando Jiménez-Avalos
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Gerardo Arrevillaga-Boni
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | | | - Zaira Yunuen García-Carvajal
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Marisela González-Avila
- Medical and Pharmaceutical Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, Mexico
| |
Collapse
|
21
|
A Novel Mouse Model of Enteric Vibrio parahaemolyticus Infection Reveals that the Type III Secretion System 2 Effector VopC Plays a Key Role in Tissue Invasion and Gastroenteritis. mBio 2019; 10:mBio.02608-19. [PMID: 31848276 PMCID: PMC6918077 DOI: 10.1128/mbio.02608-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Gram-negative marine bacterium Vibrio parahaemolyticus is a common cause of infectious gastroenteritis due to the ingestion of contaminated seafood. Most virulent V. parahaemolyticus strains encode two type III secretion systems (T3SS1 and T3SS2); however, the roles they and their translocated effectors play in causing intestinal disease remain unclear. While studies have identified T3SS1 effectors as responsible for killing epithelial cells in culture, the T3SS2 effectors caused massive epithelial cell disruption in a rabbit ileal loop model. Additional models are thus needed to clarify the pathogen-host interactions that drive V. parahaemolyticus-associated gastroenteritis. Germfree mice were infected with a pathogenic clinical isolate of V. parahaemolyticus, RIMD2210633 (RIMD). The pathogen was found to adhere to as well as invade the cecal mucosa, accompanied by severe inflammation and dramatic mucosal damage, including widespread sloughing of infected epithelial cells. Mice infected with a V. parahaemolyticus strain lacking the T3SS1 (POR2) also developed severe pathology, similar to that seen with RIMD. In contrast, the ΔT3SS2 strain (POR3) appeared unable to invade the intestinal mucosa or cause any mucosal pathology. Confirming a role for TS332 effectors, a strain expressing the T3SS2 but lacking VopC (POR2ΔvopC), a T3SS2 effector implicated in epithelial cell invasion in culture, was strongly attenuated in invading the intestinal mucosa and in causing gastroenteritis, although infection with this mutant resulted in more pathology than the ΔT3SS2 strain. We thus present an experimental system that enables further characterization of T3SS effectors as well as the corresponding host inflammatory response involved in the gastroenteritis caused by invasive V. parahaemolyticus IMPORTANCE Vibrio parahaemolyticus causes severe gastroenteritis following consumption of contaminated seafood. Global warming has allowed this pathogen to spread worldwide, contributing to recent outbreaks. Clinical isolates are known to harbor an array of virulence factors, including T3SS1 and T3SS2; however, the precise role these systems play in intestinal disease remains unclear. There is an urgent need to improve our understanding of how V. parahaemolyticus infects hosts and causes disease. We present a novel mouse model for this facultative intracellular pathogen and observe that the T3SS2 is essential to pathogenicity. Moreover, we show that the T3SS2 effector VopC, previously shown to be a Rac and Cdc42 deamidase that facilitates bacterial uptake by nonphagocytic cells, also plays a key role in the ability of V. parahaemolyticus to invade the intestinal mucosa and cause gastroenteritis. This experimental model thus provides a valuable tool for future elucidation of virulence mechanisms used by this facultative intracellular pathogen during in vivo infection.
Collapse
|
22
|
Ghalayini M, Magnan M, Dion S, Zatout O, Bourguignon L, Tenaillon O, Lescat M. Long-term evolution of the natural isolate of Escherichia coli 536 in the mouse gut colonized after maternal transmission reveals convergence in the constitutive expression of the lactose operon. Mol Ecol 2019; 28:4470-4485. [PMID: 31482587 DOI: 10.1111/mec.15232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
Abstract
In vitro experimental evolution has taught us many lessons on the molecular bases of adaptation. To move towards more natural settings, evolution in the mice gut has been successfully performed. Yet, these experiments suffered from the use of laboratory strains as well as the use of axenic or streptomycin-treated mice to maintain the inoculated strains. To circumvent these limitations, we conducted a one-year experimental evolution in vivo using a natural isolate of E. coli, strain 536, in conditions mimicking as much as possible natural environment with mother-to-offspring microbiota transmission. Mice were then distributed in 24 independent cages and separated into two different diets: a regular one (chow diet, CD) and high-fat and high-sugar one (Western Diet, WD). Genome sequences revealed an early and rapid selection during the breastfeeding period that selected the constitutive expression of the well-characterized lactose operon. E. coli was lost significantly more in CD than WD; however, we could not detect any genomic signature of selection, nor any diet specificities during the later part of the experiments. The apparently neutral evolution presumably due to low population size maintained nevertheless at high frequency the early selected mutations affecting lactose regulation. The rapid loss of lactose operon regulation challenges the idea that plastic gene expression is both optimal and stable in the wild.
Collapse
Affiliation(s)
- Mohamed Ghalayini
- IAME, INSERM, Université Paris 13, Bobigny, France.,Service de Réanimation Médico-Chirurgicale, Hôpital Avicenne, AP - HP, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | - Melanie Magnan
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | - Sara Dion
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | | | - Lucie Bourguignon
- IAME, INSERM, Université de Paris, Paris, France.,École de l'Inserm Liliane Bettencourt, Paris, France
| | - Olivier Tenaillon
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France
| | - Mathilde Lescat
- IAME, INSERM, Université Paris 13, Bobigny, France.,IAME, INSERM, Université de Paris, Paris, France.,Service de Microbiologie, Hôpital Avicenne, AP - HP, Bobigny, France
| |
Collapse
|
23
|
Fu Y, Moscoso DI, Porter J, Krishnareddy S, Abrams JA, Seres D, Chong DH, Freedberg DE. Relationship Between Dietary Fiber Intake and Short-Chain Fatty Acid-Producing Bacteria During Critical Illness: A Prospective Cohort Study. JPEN J Parenter Enteral Nutr 2019; 44:463-471. [PMID: 31385326 DOI: 10.1002/jpen.1682] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dietary fiber increases short-chain fatty acid (SCFA)-producing bacteria yet is often withheld in the intensive care unit (ICU). This study evaluated the safety and effect of fiber in ICU patients with gut microbiome sampling. METHODS This was a retrospective study nested within a prospective cohort. Adults were included if newly admitted to the ICU and could receive oral nutrition, enteral feedings, or no nutrition. Rectal swabs were performed at admission and 72 hours later. The primary exposure was fiber intake over 72 hours, classified in tertiles and adjusted for energy intake. The primary outcome was the relative abundance (RA) of SCFA producers via 16S RNA sequencing and the tolerability of fiber. RESULTS In 129 patients, median fiber intake was 13.4 g (interquartile range 0-35.4 g) over 72 hours. The high-fiber group had less abdominal distension (11% high fiber vs 28% no fiber, P < .01) and no increase in diarrhea (15% high fiber vs 13% no fiber, P = .94) or other adverse events. The median RA of SCFA producers after 72 hours was 0.40%, 0.50%, and 1.8% for the no-, low-, and high-fiber groups (P = .05 for trend). After correcting for energy intake, the median RA of SCFA producers was 0.41%, 0.32%, and 2.35% in the no-, low-, and high-corrected-fiber categories (P < .01). These associations remained significant after adjusting for clinical factors including antibiotics. CONCLUSIONS During the 72 hours after ICU admission, fiber was well tolerated, and higher fiber intake was associated with more SCFA-producers.
Collapse
Affiliation(s)
- Yichun Fu
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Joyce Porter
- Irving Medical Center, Columbia University, New York, New York, USA
| | - Suneeta Krishnareddy
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Julian A Abrams
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - David Seres
- Department of Medicine, Division of Preventive Medicine and Nutrition and Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - David H Chong
- Division of Allergy, Pulmonary and Critical Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Daniel E Freedberg
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, New York, USA.,Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
24
|
Schwerdtfeger LA, Nealon NJ, Ryan EP, Tobet SA. Human colon function ex vivo: Dependence on oxygen and sensitivity to antibiotic. PLoS One 2019; 14:e0217170. [PMID: 31095647 PMCID: PMC6522050 DOI: 10.1371/journal.pone.0217170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Human intestines contain a heterogeneous collection of cells that include immune, neural and epithelial elements interacting in a highly complex physiology that is challenging to maintain ex vivo. There is an extreme oxygen gradient across the intestinal wall due in part to microbiota in the lumen and close to the gut wall, which complicates the design of tissue culture systems. The current study established the use of an organotypic slice model of human intestinal tissue derived from colonoscopy biopsies to study host-microbial interactions after antibiotic treatment, and the influence of oxygen concentration on gut wall function. Methods Organotypic slices from human colon biopsies collected during routine colonoscopy provided three-dimensional environments that maintained cellular morphology ex vivo. Biopsy slices were used to study impacts of oxygen concentrations and antibiotic treatments on epithelial proliferation rates, and metabolites from tissue culture supernatants. Results Immune function was validated via demonstration of a T lymphocyte response to Salmonella enterica serovar Typhimurium. Following 24 h of Salmonella exposure there was a significant increase in CD3+ T-lymphocytes in biopsy slices. Metabolite profiling of tissue culture supernatants validated the influence of antibiotic treatment under varied oxygen culture conditions on both host and microbiome-mediated metabolism. Epithelial health was influenced by oxygen and antibiotic. Increased epithelial proliferation was measured in lowered oxygen conditions (1% = 5.9 mmHg) compared to atmospheric conditions standard at 5000 feet above sea level in Colorado (~17% = 100 mmHg). Antibiotic treatment reduced epithelial proliferation only in 5.9 mmHg oxygen cultured slices. Conclusions A human colon organotypic slice model was established for applications ranging from gut epithelial proliferation to enteric pathogen influence on mucosal immune functions ex vivo. The results further support the need to account for oxygen concentration in primary tissue cultures, and that antibiotic use impacts gut-microbe-immune interactions.
Collapse
Affiliation(s)
- Luke A. Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nora Jean Nealon
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elizabeth P. Ryan
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Stuart A. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ormsby MJ, Logan M, Johnson SA, McIntosh A, Fallata G, Papadopoulou R, Papachristou E, Hold GL, Hansen R, Ijaz UZ, Russell RK, Gerasimidis K, Wall DM. Inflammation associated ethanolamine facilitates infection by Crohn's disease-linked adherent-invasive Escherichia coli. EBioMedicine 2019; 43:325-332. [PMID: 31036531 PMCID: PMC6557746 DOI: 10.1016/j.ebiom.2019.03.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The predominance of specific bacteria such as adherent-invasive Escherichia coli (AIEC) within the Crohn's disease (CD) intestine remains poorly understood with little evidence uncovered to support a selective pressure underlying their presence. Intestinal ethanolamine is however readily accessible during periods of intestinal inflammation, and enables pathogens to outcompete the host microbiota under such circumstances. METHODS Quantitative RT-PCR (qRT-PCR) to determine expression of genes central to ethanolamine metabolism; transmission electron microscopy to detect presence of bacterial microcompartments (MCPs); in vitro infections of both murine and human macrophage cell lines examining intracellular replication of the AIEC-type strain LF82 and clinical E. coli isolates in the presence of ethanolamine; determination of E. coli ethanolamine utilization (eut) operon transcription in faecal samples from healthy patients, patients with active CD and the same patients in remission following treatment. RESULTS Growth on the intestinal short chain fatty acid propionic acid (PA) stimulates significantly increased transcription of the eut operon (fold change relative to glucose: >16.9; p-value <.01). Additionally ethanolamine was accessible to intra-macrophage AIEC and stimulated significant increases in growth intracellularly when it was added extracellularly at concentrations comparable to those in the human intestine. Finally, qRT-PCR indicated that expression of the E. coli eut operon was increased in children with active CD compared to healthy controls (fold change increase: >4.72; P < .02). After clinical remission post-exclusive enteral nutrition treatment, the same CD patients exhibited significantly reduced eut expression (Pre vs Post fold change decrease: >15.64; P < .01). INTERPRETATION Our data indicates a role for ethanolamine metabolism in selecting for AIEC that are consistently overrepresented in the CD intestine. The increased E. coli metabolism of ethanolamine seen in the intestine during active CD, and its decrease during remission, indicates ethanolamine use may be a key factor in shaping the intestinal microbiome in CD patients, particularly during times of inflammation. FUND: This work was funded by Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/K008005/1 & BB/P003281/1 to DMW; by a Tenovus Scotland grant to MJO; by Glasgow Children's Hospital Charity, Nestle Health Sciences, Engineering and Physical Sciences Research Council (EPSRC) and Catherine McEwan Foundation grants awarded to KG; and by a Natural Environment Research Council (NERC) fellowship (NE/L011956/1) to UZI. The IBD team at the Royal Hospital for Children, Glasgow are supported by the Catherine McEwan Foundation and Yorkhill IBD fund. RKR and RH are supported by NHS Research Scotland Senior fellowship awards.
Collapse
Affiliation(s)
- Michael J Ormsby
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Michael Logan
- School of Engineering, University of Glasgow, Glasgow, Rankine Building, 79-85 Oakfield Ave, Glasgow G12 8LT, United Kingdom
| | - Síle A Johnson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Anne McIntosh
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Ghaith Fallata
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Eleftheria Papachristou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW, Australia
| | - Richard Hansen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, Rankine Building, 79-85 Oakfield Ave, Glasgow G12 8LT, United Kingdom
| | - Richard K Russell
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children, 1345 Govan Road, Glasgow G51 4TF, United Kingdom
| | - Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, United Kingdom
| | - Daniel M Wall
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davies Building, University of Glasgow, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
26
|
Schwerdtfeger LA, Tobet SA. From organotypic culture to body-on-a-chip: A neuroendocrine perspective. J Neuroendocrinol 2019; 31:e12650. [PMID: 30307079 DOI: 10.1111/jne.12650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
The methods used to study neuroendocrinology have been as diverse as the discoveries to come out of the field. Maintaining live neurones outside of a body in vitro was important from the beginning, building on methods that dated back to at least the first decade of the 20th Century. Neurosecretion defines an essential foundation of neuroendocrinology based on work that began in the 1920s and 1930s. Throughout the first half of the 20th Century, many paradigms arose for studying everything from single neurones to whole organs in vitro. Two of these survived as preeminent systems for use throughout the second half of the century: cell cultures and explant systems. Slice cultures and explants that emerged as organotypic technologies included such neuroendocrine organs such as the brain, pituitary, adrenals and intestine. The vast majority of these studies were carried out in static cultures for which media were changed over a time scale of days. Tissues were used for experimental techniques such as electrical recording of neuronal physiology in single cells and observation by live microscopy. When maintained in vitro, many of these systems only partially capture the in vivo physiology of the organ system of interest, often because of a lack of cellular diversity (eg, neuronal cultures lacking glia). Modern microfluidic methodologies show promise for organ systems, ranging from the reproductive to the gastrointestinal to the brain. Moving forward and striving to understand the mechanisms that drive neuroendocrine signalling centrally and peripherally, there will always be a need to consider the heterogeneous cellular compositions of organs in vivo.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
27
|
von Halling Laier C, Gibson B, Moreno JAS, Rades T, Hook S, Nielsen LH, Boisen A. Microcontainers for protection of oral vaccines, in vitro and in vivo evaluation. J Control Release 2019; 294:91-101. [DOI: 10.1016/j.jconrel.2018.11.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
|
28
|
Salmonella Pathogenicity Island 1 Is Expressed in the Chicken Intestine and Promotes Bacterial Proliferation. Infect Immun 2018; 87:IAI.00503-18. [PMID: 30396895 DOI: 10.1128/iai.00503-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a common cause of foodborne illness in the United States. The bacterium can be transmitted to humans via contaminated chicken meat and eggs, and virulence in humans requires type III secretion system 1 (TTSS-1), encoded on Salmonella pathogenicity island 1 (SPI-1). Chickens often carry S Enteritidis subclinically, obscuring the role of SPI-1 in facilitating bacterial colonization. To evaluate the role of SPI-1 in the infection of chicks by Salmonella, we created and utilized strains harboring a stable fluorescent reporter fusion designed to quantify SPI-1 expression within the intestinal tracts of animals. Using mutants unable to express TTSS-1, we demonstrated the important role of the secretion system in facilitating bacterial colonization. We further showed that coinoculation of an SPI-1 mutant with the wild-type strain increased the number of mutant organisms in intestinal tissue and contents, suggesting that the wild type rescues the mutant. Our results support the hypothesis that SPI-1 facilitates S Enteritidis colonization of the chicken and make SPI-1 an attractive target in preventing Salmonella carriage and colonization in chickens to reduce contamination of poultry meat and eggs by this foodborne pathogen.
Collapse
|
29
|
Bronner DN, Faber F, Olsan EE, Byndloss MX, Sayed NA, Xu G, Yoo W, Kim D, Ryu S, Lebrilla CB, Bäumler AJ. Genetic Ablation of Butyrate Utilization Attenuates Gastrointestinal Salmonella Disease. Cell Host Microbe 2018; 23:266-273.e4. [PMID: 29447698 DOI: 10.1016/j.chom.2018.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/11/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Salmonella enterica serovar (S.) Typhi is an extraintestinal pathogen that evolved from Salmonella serovars causing gastrointestinal disease. Compared with non-typhoidal Salmonella serovars, the genomes of typhoidal serovars contain various loss-of-function mutations. However, the contribution of these genetic differences to this shift in pathogen ecology remains unknown. We show that the ydiQRSTD operon, which is deleted in S. Typhi, enables S. Typhimurium to utilize microbiota-derived butyrate during gastrointestinal disease. Unexpectedly, genetic ablation of butyrate utilization reduces S. Typhimurium epithelial invasion and attenuates intestinal inflammation. Deletion of ydiD renders S. Typhimurium sensitive to butyrate-mediated repression of invasion gene expression. Combined with the gain of virulence-associated (Vi) capsular polysaccharide and loss of very-long O-antigen chains, two features characteristic of S. Typhi, genetic ablation of butyrate utilization abrogates S. Typhimurium-induced intestinal inflammation. Thus, the transition from a gastrointestinal to an extraintestinal pathogen involved discrete genetic changes, providing insights into pathogen evolution and emergence.
Collapse
Affiliation(s)
- Denise N Bronner
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Erin E Olsan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nada A Sayed
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Gege Xu
- Department of Chemistry, College of Letters and Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Woongjae Yoo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Dajeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Carlito B Lebrilla
- Department of Chemistry, College of Letters and Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Kulkarni DH, McDonald KG, Knoop KA, Gustafsson JK, Kozlowski KM, Hunstad DA, Miller MJ, Newberry RD. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol 2018; 11:1103-1113. [PMID: 29445136 PMCID: PMC6037413 DOI: 10.1038/s41385-018-0007-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/04/2023]
Abstract
Dietary antigen acquisition by lamina propria (LP) dendritic cells (DCs) is crucial to induce oral tolerance and maintain homeostasis. However, encountering innocuous antigens during infection can lead to inflammatory responses, suggesting processes may limit steady-state luminal antigen capture during infection. We observed that goblet cell (GC) associated antigen passages (GAPs), a steady-state pathway delivering luminal antigens to LP-DCs, are inhibited during Salmonella infection. GAP inhibition was mediated by IL-1β. Infection abrogated luminal antigen delivery and antigen-specific T cell proliferation in the mesenteric lymph node (MLN). Antigen-specific T cell proliferation to dietary antigen was restored by overriding GAP suppression; however, this did not restore regulatory T cell induction, but induced inflammatory T cell responses. Salmonella translocation to the MLN required GCs and correlated with GAPs. Genetic manipulations overriding GAP suppression, or antibiotics inducing colonic GAPs, but not antibiotics that do not, increased dissemination and worsened outcomes independent of luminal pathogen burden. Thus, steady-state sampling pathways are suppressed during infection to prevent responses to dietary antigens, limit pathogen entry, and lessen the disease. Moreover, antibiotics may worsen Salmonella infection by means beyond blunting gut microbiota colonization resistance, providing new insight into how precedent antibiotic use aggravates enteric infection.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jenny K Gustafsson
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Konrad M Kozlowski
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mark J Miller
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Yacoub R, Jacob A, Wlaschin J, McGregor M, Quigg RJ, Alexander JJ. Lupus: The microbiome angle. Immunobiology 2018; 223:460-465. [DOI: 10.1016/j.imbio.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 02/08/2023]
|
32
|
Zhang YG, Singhal M, Lin Z, Manzella C, Kumar A, Alrefai WA, Dudeja PK, Saksena S, Sun J, Gill RK. Infection with enteric pathogens Salmonella typhimurium and Citrobacter rodentium modulate TGF-beta/Smad signaling pathways in the intestine. Gut Microbes 2018; 9:326-337. [PMID: 29381406 PMCID: PMC6219646 DOI: 10.1080/19490976.2018.1429878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Salmonella and Citrobacter are gram negative, members of Enterobacteriaceae family that are important causative agents of diarrhea and intestinal inflammation. TGF-β1 is a pleiotropic multifunctional cytokine that has been implicated in modulating the severity of microbial infections. How these pathogens alter the TGF-β1 signaling pathways in the intestine is largely unknown. Streptomycin-pretreated C57BL/6J mouse model colonized with S. typhimurium for 8 hours (acute) and 4 days (chronic) infection and FVB/N mice infected with C. rodentium for 6 days were utilized. Results demonstrated an increase in TGF-β1 receptor I expression (p<0.05) in S. typhimurium infected mouse ileum at both acute and chronic post-infection vs control. This was associated with activation of Smad pathways as evidenced by increased phosphorylated (p)-Smad2 and p-Smad3 levels in the nucleus. The inhibitory Smad7 mRNA levels showed a significant up regulation during acute phase of Salmonella infection but no change at 4d post-infection. In contrast to Salmonella, infection with Citrobacter caused drastic downregulation of TGF receptor I and II concomitant with a decrease in levels of Smad 2, 3, 4 and 7 expression in the mouse colon. We speculate that increased TGF-β1 signaling in response to Salmonella may be a host compensatory response to promote mucosal healing; while C. rodentium decreases TGF-β1 signaling pathways to promote inflammation and contribute to disease pathogenesis. These findings increase our understanding of how enteric pathogens subvert specific aspects of the host-cellular pathways to cause disease.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Megha Singhal
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhijie Lin
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Manzella
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Anoop Kumar
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A. Alrefai
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K. Dudeja
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Seema Saksena
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Department of Research, Jesse brown VA Medical Center, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,Jun Sun, Ph.D., AGAF, Associate Professor Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB Chicago, IL 60612
| | - Ravinder K. Gill
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,CONTACT Ravinder K. Gill, Ph.D., Associate Professor Division of Gastroenterology & Hepatology, Department of Medicine, University of Illinois at Chicago, 820 South Damen Avenue Chicago, IL 60612
| |
Collapse
|
33
|
The Typhoid Toxin Produced by the Nontyphoidal Salmonella enterica Serotype Javiana Is Required for Induction of a DNA Damage Response In Vitro and Systemic Spread In Vivo. mBio 2018; 9:mBio.00467-18. [PMID: 29588404 PMCID: PMC5874915 DOI: 10.1128/mbio.00467-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Salmonella cytolethal distending toxin (S-CDT), first described as the “typhoid toxin” in Salmonella enterica subsp. enterica serotype Typhi, induces DNA damage in eukaryotic cells. Recent studies have shown that more than 40 nontyphoidal Salmonella (NTS) serotypes carry genes that encode S-CDT, yet very little is known about the activity, function, and role of S-CDT in NTS. Here we show that deletion of genes encoding the binding subunit (pltB) and a bacteriophage muramidase predicted to play a role in toxin export (ttsA) does not abolish toxin activity in the S-CDT-positive NTS Salmonella enterica subsp. enterica serotype Javiana. However, S. Javiana strains harboring deletions of both pltB and its homolog artB, had a complete loss of S-CDT activity, suggesting that S. Javiana carries genes encoding two variants of the binding subunit. S-CDT-mediated DNA damage, as determined by phosphorylation of histone 2AX (H2AX), producing phosphorylated H2AX (γH2AX), was restricted to epithelial cells in S and G2/M phases of the cell cycle and did not result in apoptosis or cell death. Compared to mice infected with a ΔcdtB strain, mice infected with wild-type S. Javiana had significantly higher levels of S. Javiana in the liver, but not in the spleen, ileum, or cecum. Overall, we show that production of active S-CDT by NTS serotype S. Javiana requires different genes (cdtB, pltA, and either pltB or artB) for expression of biologically active toxin than those reported for S-CDT production by S. Typhi (cdtB, pltA, pltB, and ttsA). However, as in S. Typhi, NTS S-CDT influences the outcome of infection both in vitro and in vivo. Nontyphoidal Salmonella (NTS) are a major cause of bacterial food-borne illness worldwide; however, our understanding of virulence mechanisms that determine the outcome and severity of nontyphoidal salmonellosis is incompletely understood. Here we show that S-CDT produced by NTS plays a significant role in the outcome of infection both in vitro and in vivo, highlighting S-CDT as an important virulence factor for nontyphoidal Salmonella serotypes. Our data also contribute novel information about the function of S-CDT, as S-CDT-mediated DNA damage occurs only during certain phases of the cell cycle, and the resulting damage does not induce cell death as assessed using a propidium iodide exclusion assay. Importantly, our data support that, despite having genetically similar S-CDT operons, NTS serotype S. Javiana has different genetic requirements than S. Typhi, for the production and export of active S-CDT.
Collapse
|
34
|
Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy. Cell Host Microbe 2018; 21:769-776.e3. [PMID: 28618272 DOI: 10.1016/j.chom.2017.05.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/31/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023]
Abstract
Shigella is a leading cause of dysentery worldwide, with the majority of infections caused by two subgroups, S. flexneri and S. sonnei. Although S. flexneri has been highly prevalent in low-income countries, global development has brought an increase in S. sonnei at the expense of S. flexneri. However, the mechanisms behind this shift are not understood. Here we report that S. sonnei, but not S. flexneri, encodes a type VI secretion system (T6SS) that provides a competitive advantage in the gut. S. sonnei competes against E. coli and S. flexneri in mixed cultures, but this advantage is reduced in T6SS mutant strains. In addition, S. sonnei can persist as well as outcompete E. coli and S. flexneri in mice in a T6SS-dependent manner. These findings suggest that S. sonnei has a competitive advantage over S. flexneri and potentially explain the increasing global prevalence of S. sonnei.
Collapse
|
35
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
36
|
Abstract
The human gut is home to trillions of bacteria and provides the scaffold for one of the most complex microbial ecosystems in nature. Inflammatory bowel diseases, such as Crohn's disease, involve a compositional shift in the microbial constituents of this ecosystem with a marked expansion of Enterobacteriaceae, particularly Escherichia coli. Adherent-invasive E. coli (AIEC) strains are frequently isolated from the biopsies of Crohn's patients, where their ability to elicit inflammation suggests a possible role in Crohn's pathology. Here, we consider the origins of the AIEC pathovar and discuss how risk factors associated with Crohn's disease might influence AIEC colonization dynamics within the host to alter the overall disease potential of the microbial community.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Alexander Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,CONTACT Brian K. Coombes , Department of Biochemistry and Biomedical Sciences, McMaster University, MDCL 2319, Hamilton, ON Canada L8S 4K1
| |
Collapse
|
37
|
Palmer AD, Slauch JM. Mechanisms of Salmonella pathogenesis in animal models. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2017; 23:1877-1892. [PMID: 31031557 PMCID: PMC6484827 DOI: 10.1080/10807039.2017.1353903] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Animal models play an important role in understanding the mechanisms of bacterial pathogenesis. Here we review recent studies of Salmonella infection in various animal models. Although mice are a classic animal model for Salmonella, mice do not normally get diarrhea, raising the question of how well the model represents normal human infection. However, pretreatment of mice with oral streptomycin, which apparently reduces the normal microbiota, leads to an inflammatory diarrheal response upon oral infection with Salmonella. This has led to a re-evaluation of the role of various Salmonella virulence factors in colonization of the intestine and induction of diarrhea. Indeed, it is now clear that Salmonella purposefully induces inflammation, which leads to the production of both carbon sources and terminal electron acceptors by the host that allow Salmonella to outgrow the normal intestinal microbiota. Overall use of this modified mouse model provides a more nuanced understanding of Salmonella intestinal infection in the context of the microbiota with implications for the ability to predict human risk.
Collapse
Affiliation(s)
- Alexander D Palmer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
38
|
Hyun H, Hashimoto-Hill S, Kim M, Tsifansky MD, Kim CH, Yeo Y. Succinylated chitosan derivative has local protective effects on intestinal inflammation. ACS Biomater Sci Eng 2017; 3:1853-1860. [PMID: 29450257 DOI: 10.1021/acsbiomaterials.7b00262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously reported on the anti-inflammatory effects of a water-soluble chitosan derivative, zwitterionic chitosan (ZWC). In the present study, we hypothesized that orally-administered ZWC would provide local anti-inflammatory effects in the intestinal lumen. ZWC indeed showed anti-inflammatory effects in various in-vitro models including peritoneal macrophages, engineered THP1 monocytes, and Caco-2 cells. In Caco-2 cells, ZWC applied before the lipopolysaccharide (LPS) challenge was more effective than when it was applied after it in preventing LPS-induced cell damage. When administered to mice via drinking water as a prophylactic measure, ZWC protected the animals from 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis, helping them to recover the body weight, restore the gross and histological appearance of the colon, and generate FoxP3+ T cells. In contrast, orally-administered ZWC did not protect the animals from LPS-induced systemic inflammation. These results indicate that orally-administered ZWC reaches the colon with minimal absorption through the upper gastrointestinal tract and provides a local anti-inflammatory effect.
Collapse
Affiliation(s)
- Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Seika Hashimoto-Hill
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Myunghoo Kim
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Michael D Tsifansky
- Department of Pediatrics and the Congenital Heart Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chang H Kim
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.,Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
39
|
Aviello G, Knaus UG. ROS in gastrointestinal inflammation: Rescue Or Sabotage? Br J Pharmacol 2017; 174:1704-1718. [PMID: 26758851 PMCID: PMC5446568 DOI: 10.1111/bph.13428] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
The intestine is composed of many distinct cell types that respond to commensal microbiota or pathogens with immune tolerance and proinflammatory signals respectively. ROS produced by mucosa-resident cells or by newly recruited innate immune cells are essential for antimicrobial responses and regulation of signalling pathways including processes involved in wound healing. Impaired ROS production due to inactivating patient variants in genes encoding NADPH oxidases as ROS source has been associated with Crohn's disease and pancolitis, whereas overproduction of ROS due to up-regulation of oxidases or altered mitochondrial function was linked to ileitis and ulcerative colitis. Here, we discuss recent advances in our understanding of how maintaining a redox balance is crucial to preserve gut homeostasis. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G Aviello
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
| | - UG Knaus
- National Children's Research CentreOur Lady's Children's HospitalDublinIreland
- Conway Institute, School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
40
|
Olsan EE, Byndloss MX, Faber F, Rivera-Chávez F, Tsolis RM, Bäumler AJ. Colonization resistance: The deconvolution of a complex trait. J Biol Chem 2017; 292:8577-8581. [PMID: 28389556 DOI: 10.1074/jbc.r116.752295] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae are an emerging threat to hospitals worldwide, and antibiotic exposure is a risk factor for developing fecal carriage that may lead to nosocomial infection. Here, we review how antibiotics reduce colonization resistance against Enterobacteriaceae to pinpoint possible control points for curbing their spread. Recent work identifies host-derived respiratory electron acceptors as a critical resource driving a post-antibiotic expansion of Enterobacteriaceae within the large bowel. By providing a conceptual framework for colonization resistance against Enterobacteriaceae, these mechanistic insights point to the metabolism of epithelial cells as a possible target for intervention strategies.
Collapse
Affiliation(s)
- Erin E Olsan
- From the Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California 95616
| | - Mariana X Byndloss
- From the Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California 95616
| | - Franziska Faber
- From the Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California 95616
| | - Fabian Rivera-Chávez
- From the Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California 95616
| | - Renée M Tsolis
- From the Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California 95616
| | - Andreas J Bäumler
- From the Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California 95616
| |
Collapse
|
41
|
Rivera-Chávez F, Lopez CA, Bäumler AJ. Oxygen as a driver of gut dysbiosis. Free Radic Biol Med 2017; 105:93-101. [PMID: 27677568 DOI: 10.1016/j.freeradbiomed.2016.09.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Changes in the composition of gut-associated microbial communities may underlie many inflammatory and allergic diseases. However, the processes that help maintain a stable community structure are poorly understood. Here we review topical work elucidating the nutrient-niche occupied by facultative anaerobic bacteria of the family Enterobacteriaceae, whose predominance within the gut-associated microbial community is a common marker of dysbiosis. A paucity of exogenous respiratory electron acceptors limits growth of Enterobacteriaceae within a balanced gut-associated microbial community. However, recent studies suggest that the availability of oxygen in the large bowel is markedly elevated by changes in host physiology that accompany antibiotic treatment or infection with enteric pathogens, such as Salmonella serovars or attaching and effacing (AE) pathogens. The resulting increase in oxygen availability, alone or in conjunction with other electron acceptors, drives an uncontrolled luminal expansion of Enterobacteriaceae. Insights into the underlying mechanisms provide important clues about factors that control the balance between the host and its resident microbial communities.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christopher A Lopez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Li J, Yang K, Ju T, Ho T, McKay CA, Gao Y, Forget SK, Gartner SR, Field CJ, Chan CB, Willing BP. Early life antibiotic exposure affects pancreatic islet development and metabolic regulation. Sci Rep 2017; 7:41778. [PMID: 28150721 PMCID: PMC5288777 DOI: 10.1038/srep41778] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
Childhood antibiotic exposure has been recently linked with increased risk of metabolic disease later in life. A better understanding of this association would potentially provide strategies to reduce the childhood chronic disease epidemic. Therefore, we explored the underlying mechanisms using a swine model that better mimics human infants than rodents, and demonstrated that early life antibiotic exposure affects glucose metabolism 5 weeks after antibiotic withdrawal, which was associated with changes in pancreatic development. Antibiotics exerted a transient impact on postnatal gut microbiota colonization and microbial metabolite production, yet changes in the expression of key genes involved in short-chain fatty acid signaling and pancreatic development were detected in later life. These findings suggest a programming effect of early life antibiotic exposure that merits further investigation.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kaiyuan Yang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Tracy Ho
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Catharine A McKay
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Yanhua Gao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Shay K Forget
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Stephanie R Gartner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Catherine B Chan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
43
|
Koskela KA, Kalin-Mänttäri L, Hemmilä H, Smura T, Kinnunen PM, Niemimaa J, Henttonen H, Nikkari S. Metagenomic Evaluation of Bacteria from Voles. Vector Borne Zoonotic Dis 2017; 17:123-133. [DOI: 10.1089/vbz.2016.1969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | | | - Teemu Smura
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Paula M. Kinnunen
- Centre for Military Medicine, Helsinki, Finland
- Defence Command Finland, Plans and Policy Division, Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, Knippenberg M, Cook ECL, Hanekamp D, Veldhoen M, Hartog A, Roeselers G, Mackay CR, Mebius RE. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2172-2181. [DOI: 10.4049/jimmunol.1600165] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 12/16/2016] [Indexed: 12/27/2022]
|
45
|
Differential effect of early antibiotic intervention on bacterial fermentation patterns and mucosal gene expression in the colon of pigs under diets with different protein levels. Appl Microbiol Biotechnol 2016; 101:2493-2505. [PMID: 27913852 DOI: 10.1007/s00253-016-7985-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
Abstract
The study aimed to evaluate the effects of early antibiotic intervention (EAI) on bacterial fermentation patterns and mucosal immune markers in the colon of pigs with different protein level diets. Eighteen litters of piglets at day (d) 7 were fed creep feed without or with growth promoting antibiotics until d 42. At d 42, pigs within each group were further randomly assigned to a normal- or low-crude protein (CP) diet. At d 77 and d 120, five pigs per group were slaughtered for analyzing colonic bacteria, metabolites, and mucosal gene expressions. Results showed that low-CP diet increased propionate and butyrate concentrations at d 77 but reduced ammonia and phenol concentrations (P < 0.05). EAI increased p-cresol and indole concentrations under normal-CP diet at d 77 (P < 0.05). Low-CP diet significantly affected (P < 0.05) some bacteria groups (Firmicutes, Clostridium cluster IV, Clostridium cluster XIVa, Escherichia coli, and Lactobacillus), but EAI showed limited effects. Low-CP diet down-regulated gene expressions of pro-inflammatory cytokines, toll-like receptor (TLR4), myeloid differentiating factor 88 (MyD88), and nuclear factor-κB p65 (NF-κB p65) (P < 0.05). EAI up-regulated mRNA expressions of interleukin-8 (IL-8) and interferon-γ (IFN-γ) under normal-CP diet at d 77 (P < 0.05). Furthermore, reductions of E. coli and ammonia under low-CP diet were positively correlated with down-regulated gene expressions of pro-inflammatory cytokines, which were positively correlated with the down-regulated TLR4-MyD88-NF-κB signaling pathway. In conclusion, EAI had short-term effects under normal-CP diet with increased aromatic amino acid fermentation and gene expressions of pro-inflammatory cytokines. Low-CP diet markedly reduced protein fermentation, modified microbial communities, and down-regulated gene expressions of pro-inflammatory cytokines possibly via down-regulating TLR4-MyD88-NF-κB signaling pathway.
Collapse
|
46
|
Costa LF, Mol JPS, Silva APC, Macêdo AA, Silva TMA, Alves GES, Winter S, Winter MG, Velazquez EM, Byndloss MX, Bäumler AJ, Tsolis RM, Paixão TA, Santos RL. Iron acquisition pathways and colonization of the inflamed intestine by Salmonella enterica serovar Typhimurium. Int J Med Microbiol 2016; 306:604-610. [PMID: 27760693 PMCID: PMC5140723 DOI: 10.1016/j.ijmm.2016.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serotype Typhimurium is able to expand in the lumen of the inflamed intestine through mechanisms that have not been fully resolved. Here we utilized streptomycin-pretreated mice and dextran sodium sulfate (DSS)-treated mice to investigate how pathways for S. Typhimurium iron acquisition contribute to pathogen expansion in the inflamed intestine. Competitive infection with an iron uptake-proficient S. Typhimurium strain and mutant strains lacking tonB feoB, feoB, tonB or iroN in streptomycin pretreated mice demonstrated that ferric iron uptake requiring IroN and TonB conferred a fitness advantage during growth in the inflamed intestine. However, the fitness advantage conferred by ferrous iron uptake mechanisms was independent of inflammation and was only apparent in models where the normal microbiota composition had been disrupted by antibiotic treatment.
Collapse
Affiliation(s)
- Luciana F Costa
- Departamento de Patologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana P S Mol
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Patricia C Silva
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | - Auricélio A Macêdo
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | - Teane M A Silva
- Departamento de Patologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Geraldo E S Alves
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sebastian Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric M Velazquez
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA
| | - Mariana X Byndloss
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.
| | - Tatiane A Paixão
- Departamento de Patologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L Santos
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
47
|
In JG, Foulke-Abel J, Estes MK, Zachos NC, Kovbasnjuk O, Donowitz M. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol 2016; 13:633-642. [PMID: 27677718 PMCID: PMC5079760 DOI: 10.1038/nrgastro.2016.142] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5+ intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.
Collapse
Affiliation(s)
- Julie G In
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
48
|
Uchiyama K, Sakiyama T, Hasebe T, Musch MW, Miyoshi H, Nakagawa Y, He TC, Lichtenstein L, Naito Y, Itoh Y, Yoshikawa T, Jabri B, Stappenbeck T, Chang EB. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development. Sci Rep 2016; 6:32094. [PMID: 27561676 PMCID: PMC4999796 DOI: 10.1038/srep32094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022] Open
Abstract
Proliferation and spatial development of colonic epithelial cells are highly regulated along the crypt vertical axis, which, when perturbed, can result in aberrant growth and carcinogenesis. In this study, two key factors were identified that have important and counterbalancing roles regulating these processes: pericrypt myofibroblast-derived Wnt-5a and the microbial metabolite butyrate. Cultured YAMC cell proliferation and heat shock protein induction were analzyed after butryate, conditioned medium with Wnt5a activity, and FrzB containing conditioned medium. In vivo studies to modulate Hsp25 employed intra-colonic wall Hsp25 encoding lentivirus. To silence Wnt-5a in vivo, intra-colonic wall Wnt-5a silencing RNA was used. Wnt-5a, secreted by stromal myofibroblasts of the lower crypt, promotes proliferation through canonical β-catenin activation. Essential to this are two key requirements: (1) proteolytic conversion of the highly insoluble ~40 kD Wnt-5a protein to a soluble 36 mer amino acid peptide that activates epithelial β-catenin and cellular proliferation, and (2) the simultaneous inhibition of butyrate-induced Hsp25 by Wnt-5a which is necessary to arrest the proliferative process in the upper colonic crypt. The interplay and spatial gradients of these factors insures that crypt epithelial cell proliferation and development proceed in an orderly fashion, but with sufficient plasticity to adapt to physiological perturbations including inflammation.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA.,Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Toshio Sakiyama
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA.,Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 8908520; Japan
| | - Takumu Hasebe
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | - Mark W Musch
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | - Hiroyuki Miyoshi
- Department of Pathology, Washington University at St. Louis, St. Louis, MO, USA
| | - Yasushi Nakagawa
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | - Tong-Chuan He
- Department of Surgery, University of Chicago; Chicago, IL 60637; USA
| | - Lev Lichtenstein
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA.,Department of Gastroenterology, Soroka University Medical Center, Beer-Sheva 84101; Israel
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Toshikazu Yoshikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 6028566; Japan
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| | | | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637; USA
| |
Collapse
|
49
|
Hung CC, Eade CR, Altier C. The protein acyltransferase Pat post-transcriptionally controls HilD to repress Salmonella invasion. Mol Microbiol 2016; 102:121-36. [PMID: 27341691 DOI: 10.1111/mmi.13451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/12/2023]
Abstract
N-Lysine acylation is a post-translational modification important for both prokaryotic and eukaryotic cells to control a wide array of cellular functions. Here we demonstrate that the protein acyltransferase Pat regulates genes on Salmonella Pathogenicity Island 1 (SPI1) that are required for the invasion of the intestinal epithelium. Mutation of pat slightly increased spleen colonization by Salmonella in streptomycin-treated mice, with more of the pat mutant reaching the spleen than the wild type strain. Growth of Salmonella under specific conditions selectively induced expression of Pat, and deletion of pat increased SPI1 gene expression under the same growth conditions. In addition, over-expression of Pat repressed SPI1 expression and bacterial entry into epithelial cells. These results demonstrate that Salmonella invasion is negatively controlled by Pat. Regulation of the SPI1 central regulator HilD was essential for Pat to exert its effects. The control of HilD by Pat was through post-transcriptional mechanisms, moderately repressing hilD translation while significantly reducing HilD stability. Additionally, growth of Salmonella in the presence of histone deacetylases inhibitors reduced expression of SPI1 by affecting HilD stability, supporting the concept that altering the stability of this regulator is required for Pat to control Salmonella invasion.
Collapse
Affiliation(s)
- Chien-Che Hung
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Colleen R Eade
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
50
|
Bile Acids Function Synergistically To Repress Invasion Gene Expression in Salmonella by Destabilizing the Invasion Regulator HilD. Infect Immun 2016; 84:2198-2208. [PMID: 27185788 DOI: 10.1128/iai.00177-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023] Open
Abstract
Salmonella spp. are carried by and can acutely infect agricultural animals and humans. After ingestion, salmonellae traverse the upper digestive tract and initiate tissue invasion of the distal ileum, a virulence process carried out by the type III secretion system encoded within Salmonella pathogenicity island 1 (SPI-1). Salmonellae coordinate SPI-1 expression with anatomical location via environmental cues, one of which is bile, a complex digestive fluid that causes potent repression of SPI-1 genes. The individual components of bile responsible for SPI-1 repression have not been previously characterized, nor have the bacterial signaling processes that modulate their effects been determined. Here, we characterize the mechanism by which bile represses SPI-1 expression. Individual bile acids exhibit repressive activity on SPI-1-regulated genes that requires neither passive diffusion nor OmpF-mediated entry. By using genetic methods, the effects of bile and bile acids were shown to require the invasion gene transcriptional activator hilD and to function independently of known upstream signaling pathways. Protein analysis techniques showed that SPI-1 repression by bile acids is mediated by posttranslational destabilization of HilD. Finally, we found that bile acids function synergistically to achieve the overall repressive activity of bile. These studies demonstrate a common mechanism by which diverse environmental cues (e.g., certain short-chain fatty acids and bile acids) inhibit SPI-1 expression. These data provide information relevant to Salmonella pathogenesis during acute infection in the intestine and during chronic infection of the gallbladder and inform the basis for development of therapeutics to inhibit invasion as a means of repressing Salmonella pathogenicity.
Collapse
|