1
|
Abd-Elhakim YM, Abdel-Motal SM, Malhat SM, Mostafa HI, Ibrahim WM, Beheiry RR, Moselhy AAA, Said EN. Curcumin attenuates gentamicin and sodium salicylate ototoxic effects by modulating the nuclear factor-kappaB and apoptotic pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89954-89968. [PMID: 35859240 PMCID: PMC9722864 DOI: 10.1007/s11356-022-21932-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/05/2022] [Indexed: 05/24/2023]
Abstract
This study aimed to investigate the effectiveness of curcumin (CCM) against gentamicin (GEN) and sodium salicylates (NaS)-induced ototoxic effects in rats. For 15 consecutive days, seven rat groups were given 1 mL/rat physiological saline orally, 1 mL/rat olive oil orally, 50 mg/kg bwt CCM orally, 120 mg/kg bwt GEN intraperitoneally, 300 mg/kg bwt NaS intraperitoneally, CCM+GEN, or CCM+NaS. The distortion product otoacoustic emission measurements were conducted. The rats' hearing function and balance have been behaviorally assessed using auditory startle response, Preyer reflex, and beam balance scale tests. The serum lipid peroxidation and oxidative stress biomarkers have been measured. Immunohistochemical investigations of the apoptotic marker caspase-3 and the inflammatory indicator nuclear factor kappa (NF-κB) in cochlear tissues were conducted. GEN and NaS exposure resulted in deficit hearing and impaired ability to retain balance. GEN and NaS exposure significantly decreased the reduced glutathione level and catalase activity but increased malondialdehyde content. GEN and NaS exposure evoked pathological alterations in cochlear and vestibular tissues and increased caspase-3 and NF-κB immunoexpression. CCM significantly counteracted the GEN and NaS injurious effects. These outcomes concluded that CCM could be a naturally efficient therapeutic agent against GEN and NaS-associated ototoxic side effects.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Seham M Malhat
- Department of Pharmacology, Animal health research institute, Zagazig, Egypt
| | - Hend I Mostafa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walied M Ibrahim
- Audiology unit, Otorhinolaryngology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Attia A A Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Serum Fibrinogen Level and Cytokine Production as Prognostic Biomarkers for Idiopathic Sudden Sensorineural Hearing Loss. Otol Neurotol 2022; 43:e712-e719. [PMID: 35802892 DOI: 10.1097/mao.0000000000003552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES No clinically useful prognostic factors have been identified for idiopathic sudden sensorineural hearing loss (ISSNHL). The current study therefore sought to identify useful prognostic factors for idiopathic sudden sensorineural hearing loss from blood biomarkers while attempting to classify the pathogenic mechanism and formulate treatment strategies based on these results. STUDY DESIGN Prospective cohort study. SETTING Tertiary referral center. METHODS A total of 47 patients with acute phase ISSNHL were treated with steroid at an initial dose of 1 mg/kg/day and hyperbaric oxygen therapy and followed up for 6 months. Serum fibrinogen levels, peripheral blood mononu- clear cells (PBMCs), and interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α production levels from PBMCs were measured, after which patient's pre- and post- treatment hearing was compared. RESULTS In the overall cohort, the mean improvement level, mean recovery rate, and mean fibrinogen level was 20.3 dB, 46.2%, 292.0 mg/mL, respectively. The mean levels of IL-1β, IL-6, and TNF-α produced by peripheral blood mononu- clear cells cultured under lipopolysaccharide stimulation were 318.4, 498.1, and 857.6 pg/mL, respectively. High fibrinogen levels were associated with poor hearing progno- sis. Lipopolysaccharide-stimulated cytokine production by PBMCs did not correlate with hearing changes; however, the prognosis was significantly better in patients with low fibrinogen levels and high IL-1β levels produced by PBMCs than in other patients. CONCLUSIONS Our results suggest that patients with simple inflammatory-type ISSNHL responded well to standard therapy. Therefore, serum fibrinogen levels and PBMCs cytokine production may help determine the management of ISSNHL based on its pathogenic mechanism.
Collapse
|
3
|
Chan J, Telang R, Kociszewska D, Thorne PR, Vlajkovic SM. A High-Fat Diet Induces Low-Grade Cochlear Inflammation in CD-1 Mice. Int J Mol Sci 2022; 23:5179. [PMID: 35563572 PMCID: PMC9101486 DOI: 10.3390/ijms23095179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the development of inner ear inflammation using a rodent model. Three-week-old CD-1 (Swiss) mice were fed an HFD or a control diet for ten weeks. After ten weeks, mouse cochleae were harvested, and markers of cochlear inflammation were assessed at the protein level using immunohistochemistry and at the gene expression level using quantitative real-time RT-PCR. We identified increased immunoexpression of pro-inflammatory biomarkers in animals on an HFD, including intracellular adhesion molecule 1 (ICAM1), interleukin 6 receptor α (IL6Rα), and toll-like-receptor 2 (TLR2). In addition, increased numbers of ionized calcium-binding adapter molecule 1 (Iba1) positive macrophages were found in the cochlear lateral wall in mice on an HFD. In contrast, gene expression levels of inflammatory markers were not affected by an HFD. The recruitment of macrophages to the cochlea and increased immunoexpression of inflammatory markers in mice fed an HFD provide direct evidence for the association between HFD and cochlear inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (J.C.); (R.T.); (D.K.); (P.R.T.)
| |
Collapse
|
4
|
Blood Transcriptome Analysis Reveals Gene Expression Differences between Yangtze Finless Porpoises from Two Habitats: Natural and Ex Situ Protected Waters. FISHES 2022. [DOI: 10.3390/fishes7030096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis, YFP) is a critically endangered small odontocete species, mainly distributed in the middle and lower reaches of the Yangtze River, Poyang Lake, and Dongting Lake. Under the influence of human activities, many factors are threatening the survival and reproduction of YFPs in their natural habitat. Ex situ conservation is of great significance to strengthen the rescuing conservation of YFPs by providing suitable alternative habitats and promoting the reproduction and growth of the ex situ population. To reveal the differences in gene expression of YFPs in natural and ex situ protected waters, and to investigate the effects of environmental factors on YFPs and their mechanisms, we performed transcriptome sequencing for blood tissues of YFPs collected from natural waters and ex situ protected waters. Using RNA-seq we identified 4613 differentially expressed genes (DEGs), of which 4485 were up-regulated and 128 were down-regulated in the natural population. GO analysis showed that DEGs were significantly enriched in entries related to binding, catalytic activity, and biological regulation; KEGG analysis showed that DEGs were enriched mainly in signal transduction, endocrine system, immune system, and sensory system-related pathways. Further analysis revealed that water pollution in natural waters may affect the hormone secretion of YFPs by altering the expression pattern of endocrine genes, thus interfering with normal endocrine activities; noise pollution may induce oxidative stress and inflammatory responses in YFPs, thus impairing the auditory function of YFPs. This study provides a new perspective for further research on the effect of habitat conditions on the YFPs and suggests that improving the habitat environment may help in the conservation of YFPs.
Collapse
|
5
|
Massa HM, Spann KM, Cripps AW. Innate Immunity in the Middle Ear Mucosa. Front Cell Infect Microbiol 2021; 11:764772. [PMID: 34778109 PMCID: PMC8586084 DOI: 10.3389/fcimb.2021.764772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Otitis media (OM) encompasses a spectrum of clinical presentations ranging from the readily identifiable Acute OM (AOM), which is characterised by otalgia and fever, to chronic otitis media with effusion (COME) where impaired hearing due to middle ear effusion may be the only clinical symptom. Chronic suppurative OM (CSOM) presents as a more severe form of OM, involving perforation of the tympanic membrane. The pathogenesis of OM in these varied clinical presentations is unclear but activation of the innate inflammatory responses to viral and/or bacterial infection of the upper respiratory tract performs an integral role. This localised inflammatory response can persist even after pathogens are cleared from the middle ear, eustachian tubes and, in the case of respiratory viruses, even the nasal compartment. Children prone to OM may experience an over exuberant inflammatory response that underlies the development of chronic forms of OM and their sequelae, including hearing impairment. Treatments for chronic effusive forms of OM are limited, with current therapeutic guidelines recommending a "watch and wait" strategy rather than active treatment with antibiotics, corticosteroids or other anti-inflammatory drugs. Overall, there is a clear need for more targeted and effective treatments that either prevent or reduce the hyper-inflammatory response associated with chronic forms of OM. Improved treatment options rely upon an in-depth understanding of OM pathogenesis, particularly the role of the host innate immune response during acute OM. In this paper, we review the current literature regarding the innate immune response within the middle ear to bacterial and viral otopathogens alone, and as co-infections. This is an important consideration, as the role of respiratory viruses as primary pathogens in OM is not yet fully understood. Furthermore, increased reporting from PCR-based diagnostics, indicates that viral/bacterial co-infections in the middle ear are more common than bacterial infections alone. Increasingly, the mechanisms by which viral/bacterial co-infections may drive or maintain complex innate immune responses and inflammation during OM as a chronic response require investigation. Improved understanding of the pathogenesis of chronic OM, including host innate immune response within the middle ear is vital for development of improved diagnostic and treatment options for our children.
Collapse
Affiliation(s)
- Helen M Massa
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland, School of Medicine, Griffith University, Gold Coast, QLD, Australia.,School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Jensen MJ, Peel A, Horne R, Chamberlain J, Xu L, Hansen MR, Guymon CA. Antifouling and Mechanical Properties of Photografted Zwitterionic Hydrogel Thin-Film Coatings Depend on the Cross-Link Density. ACS Biomater Sci Eng 2021; 7:4494-4502. [PMID: 34347419 PMCID: PMC8441969 DOI: 10.1021/acsbiomaterials.1c00852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Zwitterionic polymer networks have shown promise in reducing the short- and long-term inflammatory foreign body response to implanted biomaterials by combining the antifouling properties of zwitterionic polymers with the mechanical stability provided by cross-linking. Cross-link density directly modulates mechanical properties (i.e., swelling behavior, resistance to stress and strain, and lubricity) but theoretically could reduce desirable biological properties (i.e., antifouling) of zwitterionic materials. This work examined the effect of varying poly(ethylene glycol) dimethacrylate cross-linker concentration on protein adsorption, cell adhesion, equilibrium swelling, compressive modulus, and lubricity of zwitterionic thin films. Furthermore, this work aimed to determine the appropriate balance among each of these mechanical and biologic properties to produce thin films that are strong, durable, and lubricious, yet also able to resist biofouling. The results demonstrated nearly a 20-fold reduction in fibrinogen adsorption on zwitterionic thin films photografted on polydimethylsiloxane (PDMS) across a wide range of cross-link densities. Interestingly, either at high or low cross-link densities, increased levels of protein adsorption were observed. In addition to fibrinogen, macrophage and fibroblast cell adhesion was reduced significantly on zwitterionic thin films, with a large range of cross-link densities, resulting in low cell counts. The macrophage count was reduced by 30-fold, while the fibroblast count was reduced nearly 10-fold on grafted zwitterionic films relative to uncoated films. Increasing degrees of cell adhesion were noted as the cross-linker concentration exceeded 50%. As expected, increased cross-link density resulted in a reduced swelling but greater compressive modulus. Notably, the coefficient of friction was dramatically reduced for zwitterionic thin films compared to uncoated PDMS across a broad range of cross-link densities, an attractive property for insertional implants. This work identified a broad range of cross-link densities that provide desirable antifouling effects while also maintaining the mechanical functionality of the thin films.
Collapse
Affiliation(s)
- Megan J Jensen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Adreann Peel
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Ryan Horne
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jamison Chamberlain
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Linjing Xu
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, United States.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, United States
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Wang Q, Shen Y, Hu H, Fan C, Zhang A, Ding R, Ye B, Xiang M. Systematic Transcriptome Analysis of Noise-Induced Hearing Loss Pathogenesis Suggests Inflammatory Activities and Multiple Susceptible Molecules and Pathways. Front Genet 2020; 11:968. [PMID: 33005175 PMCID: PMC7483666 DOI: 10.3389/fgene.2020.00968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is characterized by damage to cochlear neurons and associated hair cells; however, a systematic evaluation of NIHL pathogenesis is still lacking. Here, we systematically evaluated differentially expressed genes of 22 cochlear samples in an NIHL mouse model. We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and weighted gene co-expression network analysis (WGCNA). Core modules were detected using protein–protein interactions and WGCNA with functional annotation, diagnostic value evaluation, and experimental validation. Pooled functional annotation suggested the involvement of multiple inflammatory pathways, including the TNF signaling pathway, IL-17 signaling pathway, NF-kappa B signaling pathway, rheumatoid arthritis, and p53 signaling pathway. The core modules suggested that responses to cytokines, heat, cAMP, ATP, mechanical stimuli, and immune responses were important in NIHL pathogenesis. These activities primarily occurred on the external side of the plasma membrane, the extracellular region, and the nucleus. Binding activities, including CCR2 receptor binding, protein binding, and transcription factor binding, may be important. Additionally, the hub molecules with diagnostic value included Relb, Hspa1b, Ccl2, Ptgs2, Ldlr, Plat, and Ccl17. An evaluation of Relb and Hspa1b protein levels showed that Relb was upregulated in spiral ganglion neurons, which might have diagnostic value. In conclusion, this study indicates that the inflammatory response is involved in auditory organ changes in NIHL pathogenesis; moreover, several molecules and activities have essential and subtle influences that have translational potential for pharmacological intervention.
Collapse
Affiliation(s)
- Quan Wang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixia Hu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Fan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ding
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Zou J. Autoinflammatory characteristics and short-term effects of delivering high-dose steroids to the surface of the intact endolymphatic sac and incus in refractory Ménière's disease. J Otol 2019; 14:40-50. [PMID: 31223300 PMCID: PMC6570643 DOI: 10.1016/j.joto.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate immune-related genetic background in intractable Meniere’s disease (MD) and the immediate results of a novel therapy by delivering steroids to the surface of the intact endolymphatic sac (ES) and incus in a sustainable manner. Case report and methods Candidate genes involved in immune regulation were sequenced using a next-generation sequencing method in a patient with intractable MD. Mutations were confirmed using the Sanger sequencing method. The ES was exposed, and gelatin sponge particles were immersed in high-dose methylprednisolone solution and placed onto the surface of ES. “L”-shaped gelatin sponge strips were immersed in dexamethasone solution and served as a guiding device for the steroids by touching the incus and gelatin sponge particles on the surface of the ES. Gelatin sponge particles immersed in dexamethasone solution were placed around the gelatin sponge strips and sealed using fibrin glue. Results Autoinflammation in the refractory MD case was indicated by genotype, including novel heterozygous mutations of PRF1, UNC13D, SLC29A3, ITCH, and JAK3, as well as phenotype. The vertigo was fully relieved immediately after operation. Tinnitus and aural fullness were resolved 3 weeks after operation, whereas hearing improved in 2 mon postoperation. No recurrence was noted during the 5-monfollow-up, and the final MRI supported the novel therapeutic hypothesis. Conclusion Autoinflammation was involved in a refractory MD. This novel therapy, which involves the delivery of steroids to the surface of the intact ES and incus, is effective in relieving vertigo and tinnitus and improves hearing function of refractory MD.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Moon SK, Woo JI, Lim DJ. Involvement of TNF-α and IFN-γ in Inflammation-Mediated Cochlear Injury. Ann Otol Rhinol Laryngol 2019; 128:8S-15S. [DOI: 10.1177/0003489419837689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: Inflammation is crucial for the pathogenesis of acquired sensorineural hearing loss, but the precise mechanism involved remains elusive. Among a number of inflammatory mediators, tumor necrosis factor-alpha (TNF-α) plays a pivotal role in cisplatin ototoxicity. However, TNF-α alone is cytotoxic to cochlear sensory cells only at the extremely high concentrations, suggesting the involvement of other factors that may sensitize cells to TNF-α cytotoxicity. Since interferon gamma (IFN-γ) importantly contributes to the cochlear inflammatory processes, we aim to determine whether and how IFN-γ affects TNF-α cytotoxicity to cochlear sensory cells. Methods: TNF-α expression was determined with western blotting in RSL cells and immunolabeling of mouse temporal bone sections. HEI-OC1 cell viability was determined with MTT assays, cytotoxicity assays, and cytometric analysis with methylene blue staining. Cochlear sensory cell injury was determined in the organotypic culture of the mouse organ of Corti. Results: Spiral ligament fibrocytes were shown to upregulate TNF-α in response to pro-inflammatory stimulants. We demonstrated IFN-γ increases the susceptibility of HEI-OC1 cells to TNF-α cytotoxicity via JAK1/2-STAT1 signaling. TNFR1-mediated Caspase-1 activation was found to mediate the sensitization effect of IFN-γ on TNF-α cytotoxicity. The combination of IFN-γ and TNF-α appeared to augment cisplatin cytotoxicity to cochlear sensory cells ex vivo. Conclusions: Taken together, these findings suggest the involvement of IFN-γ in the sensitization of cochlear cells to TNF-α cytotoxicity, which would enable us to better understand the complex mechanisms underlying inflammation-mediated cochlear injury.
Collapse
Affiliation(s)
- Sung K. Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jeong-Im Woo
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - David J. Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
10
|
Zou J, Feng H, Sood R, Kinnunen PKJ, Pyykko I. Biocompatibility of Liposome Nanocarriers in the Rat Inner Ear After Intratympanic Administration. NANOSCALE RESEARCH LETTERS 2017; 12:372. [PMID: 28549377 PMCID: PMC5445035 DOI: 10.1186/s11671-017-2142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Liposome nanocarriers (LPNs) are potentially the future of inner ear therapy due to their high drug loading capacity and efficient uptake in the inner ear after a minimally invasive intratympanic administration. However, information on the biocompatibility of LPNs in the inner ear is lacking. The aim of the present study is to document the biocompatibility of LPNs in the inner ear after intratympanic delivery. LPNs with or without gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA) were delivered to the rats through transtympanic injection. The distribution of the Gd-DOTA-containing LPNs in the middle and inner ear was tracked in vivo using MRI. The function of the middle and inner ear barriers was evaluated using gadolinium-enhanced MRI. The auditory function was measured using auditory brainstem response (ABR). The potential inflammatory response was investigated by analyzing glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression in the inner ear. The potential apoptosis was analyzed using terminal transferase (TdT) to label the free 3'OH breaks in the DNA strands of apoptotic cells with TMR-dUTP (TUNEL staining). As a result, LPNs entered the inner ear efficiently after transtympanic injection. The transtympanic injection of LPNs with or without Gd-DOTA neither disrupted the function of the middle and inner ear barriers nor caused hearing impairment in rats. The critical inflammatory biological markers in the inner ear, including glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression, were not influenced by the administration of LPNs. There was no significant cell death associated with the administration of LPNs. The transtympanic injection of LPNs is safe for the inner ear, and LPNs may be applied as a drug delivery matrix in the clinical therapy of sensorineural hearing loss.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology Head and Neck Surgery, Center for Otolaryngology-Head and Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Changhai Road #168, 200433, Shanghai, China.
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Tampere, Finland.
| | - Hao Feng
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Tampere, Finland
- Present Address: Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Rohit Sood
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Sciences, Aalto University, Espoo, Finland
| | - Paavo K J Kinnunen
- Helsinki Biophysics and Biomembrane Group, Department of Biomedical Engineering and Computational Sciences, Aalto University, Espoo, Finland
| | - Ilmari Pyykko
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
11
|
Mwangi M, Kil SH, Phak D, Park HY, Lim DJ, Park R, Moon SK. Interleukin-10 Attenuates Hypochlorous Acid-Mediated Cytotoxicity to HEI-OC1 Cochlear Cells. Front Cell Neurosci 2017; 11:314. [PMID: 29056901 PMCID: PMC5635053 DOI: 10.3389/fncel.2017.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Inflammatory reaction plays a crucial role in the pathophysiology of acquired hearing loss such as ototoxicity and labyrinthitis. In our earlier work, we showed the pivotal role of otic fibrocytes in cochlear inflammation and the critical involvement of proinflammatory cytokines in cisplatin ototoxicity. We also demonstrated that otic fibrocytes inhibit monocyte chemoattractant protein 1 (CCL2) upregulation in response to interleukin-10 (IL-10) via heme oxygenase 1 (HMOX1) signaling, resulting in suppression of cochlear inflammation. However, it is still unclear how IL-10 affects inflammation-mediated cochlear injury. Here we aim to determine how hypochlorous acid, a model inflammation mediator affects cochlear cell viability and how IL-10 affects hypochlorous acid-mediated cochlear cell injury. NaOCl, a sodium salt of hypochlorous acid (HOCl) was found to induce cytotoxicity of HEI-OC1 cells in a dose-dependent manner. Combination of hydrogen peroxide and myeloperoxidase augmented cisplatin cytotoxicity, and this synergism was inhibited by N-Acetyl-L-cysteine and ML-171. The rat spiral ligament cell line (RSL) appeared to upregulate the antioxidant response element (ARE) activities upon exposure to IL-10. RSL cells upregulated the expression of NRF2 (an ARE ligand) and NR0B2 in response to CoPP (a HMOX1 inducer), but not to ZnPP (a HMOX1 inhibitor). Adenovirus-mediated overexpression of NR0B2 was found to suppress CCL2 upregulation. IL-10-positive cells appeared in the mouse stria vascularis 1 day after intraperitoneal injection of lipopolysaccharide (LPS). Five days after injection, IL-10-positive cells were observed in the spiral ligament, spiral limbus, spiral ganglia, and suprastrial area, but not in the stria vascularis. IL-10R1 appeared to be expressed in the mouse organ of Corti as well as HEI-OC1 cells. HEI-OC1 cells upregulated Bcl-xL expression in response to IL-10, and IL-10 was shown to attenuate NaOCl-induced cytotoxicity. In addition, HEI-OC1 cells upregulated IL-22RA upon exposure to cisplatin, and NaOCl cytotoxicity was inhibited by IL-22. Taken together, our findings suggest that hypochlorous acid is involved in cochlear injury and that IL-10 potentially reduces cochlear injury through not only inhibition of inflammation but also enhancement of cochlear cell viability. Further studies are needed to determine immunological characteristics of intracochlear IL-10-positive cells and elucidate molecular mechanisms involved in the otoprotective activity of IL-10.
Collapse
Affiliation(s)
- Martin Mwangi
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Phak
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hun Yi Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, South Korea
| | - David J Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raekil Park
- Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Feng H, Pyykkö I, Zou J. Involvement of Ubiquitin-Editing Protein A20 in Modulating Inflammation in Rat Cochlea Associated with Silver Nanoparticle-Induced CD68 Upregulation and TLR4 Activation. NANOSCALE RESEARCH LETTERS 2016; 11:240. [PMID: 27142878 PMCID: PMC4854861 DOI: 10.1186/s11671-016-1430-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Silver nanoparticles (AgNPs) were shown to temporarily impair the biological barriers in the skin of the external ear canal, mucosa of the middle ear, and inner ear, causing partially reversible hearing loss after delivery into the middle ear. The current study aimed to elucidate the molecular mechanism, emphasizing the TLR signaling pathways in association with the potential recruitment of macrophages in the cochlea and the modulation of inflammation by ubiquitin-editing protein A20. Molecules potentially involved in these signaling pathways were thoroughly analysed using immunohistochemistry in the rat cochlea exposed to AgNPs at various concentrations through intratympanic injection. The results showed that 0.4 % AgNPs but not 0.02 % AgNPs upregulated the expressions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral ligament fibrocytes, and non-sensory supporting cells of Corti's organ. 0.4 % AgNPs had no effect on CD44, TLR2, MCP2, Rac1, myosin light chain, VCAM1, Erk1/2, JNK, p38, IL-1β, TNF-α, TNFR1, TNFR2, IL-10, or TGF-β. This study suggested that AgNPs might confer macrophage-like functions on the strial basal cells and spiral ligament fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's organ through the upregulation of CD68, which might be involved in TLR4 activation. A20 and RNF11 played roles in maintaining cochlear homeostasis via negative regulation of the expressions of inflammatory cytokines.
Collapse
Affiliation(s)
- Hao Feng
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland
| | - Jing Zou
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland.
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head and Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
13
|
Zhao L, Xia J, Li T, Zhou H, Ouyang W, Hong Z, Ke Y, Qian J, Xu F. Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization. J Infect Dis 2016; 214:625-33. [PMID: 27330052 DOI: 10.1093/infdis/jiw205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection.
Collapse
Affiliation(s)
| | - Jingyan Xia
- Department of Oncology Radiation, Second Affiliated Hospital
| | | | - Hui Zhou
- Department of Infectious Diseases Experimental Medical Class 1102, Chu Kochen Honor College, Zhejiang University
| | | | - Zhuping Hong
- Department of Infectious Diseases College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology Program in Molecular Cell Biology, Zhejiang University School of Medicine
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences
| | - Feng Xu
- Department of Infectious Diseases
| |
Collapse
|
14
|
Urrutia RA, Kalinec F. Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of Corti. Hear Res 2015; 330:26-38. [PMID: 25987503 PMCID: PMC5391798 DOI: 10.1016/j.heares.2015.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
The current review article seeks to extend our understanding on the role of lipid droplets within the organ of Corti. In addition to presenting an overview of the current information about the origin, structure and function of lipid droplets we draw inferences from the collective body of knowledge about this cellular organelle to build a conceptual framework to better understanding their role in auditory function. This conceptual model considers that lipid droplets play a significant role in the synthesis, storage, and release of lipids and proteins for energetic use and/or modulating cell signaling pathways. We describe the role and mechanism by which LD play a role in human diseases, and we also review emerging data from our laboratory revealing the potential role of lipid droplets from Hensen cells in the auditory organ. We suggest that lipid droplets might help to develop rapidly and efficiently the resolution phase of inflammatory responses in the mammalian cochlea, preventing inflammatory damage of the delicate inner ear structures and, consequently, sensorineural hearing loss.
Collapse
Affiliation(s)
- Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo Clinic, Rochester, MN 55905, USA
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Trune DR, Kempton B, Hausman FA, Larrain BE, MacArthur CJ. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media. Hear Res 2015; 326:49-58. [PMID: 25922207 DOI: 10.1016/j.heares.2015.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/23/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Beth Kempton
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Frances A Hausman
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Barbara E Larrain
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Carol J MacArthur
- Oregon Hearing Research Center, Department of Otolaryngology Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
16
|
Woo JI, Kil SH, Oh S, Lee YJ, Park R, Lim DJ, Moon SK. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3953-61. [PMID: 25780042 DOI: 10.4049/jimmunol.1402751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
Cochlear inflammatory diseases, such as tympanogenic labyrinthitis, are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aimed to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on IL-10 and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10Rs are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line was found to inhibit nontypeable Haemophilus influenzae (NTHi)-induced upregulation of monocyte chemotactic protein-1 (MCP-1; CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt Protoporphyrin IX and CO-releasing molecule-2. In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced rat SLF cell line-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 upregulation. Chromatin immunoprecipitation assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying a therapeutic potential for a CO-based approach for inflammation-associated cochlear diseases.
Collapse
Affiliation(s)
- Jeong-Im Woo
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sejo Oh
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, CA 90057; and
| | - Yoo-Jin Lee
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Raekil Park
- Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749, South Korea
| | - David J Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095;
| |
Collapse
|
17
|
Co-upregulation of Toll-like receptors 2 and 6 on peripheral blood cells in patients with obstructive sleep apnea. Sleep Breath 2015; 19:873-82. [PMID: 25604476 DOI: 10.1007/s11325-014-1116-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/01/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE Toll-like receptor (TLR) 2 can heterodimerise with TLR6 to detect diacylated lipoproteins. Hypoxia inducible factor-1 α co-ordinates selective induction of TLR2 and TLR6 during persistent hypoxia. We hypothesized that TLR 2/6 co-expression may be upregulated by chronic intermittent hypoxia with re-oxygenation (IHR) in obstructive sleep apnea (OSA). METHODS TLR2/6 expressions on blood immune cells were measured in 144 patients with sleep-disordered breathing (SDB), including primary snoring (PS, n = 24), moderate to severe OSA (MSO, n = 60), very severe OSA (VSO, n = 36), and very severe OSA on continuous positive airway pressure (CPAP) treatment (VSOC, n = 24). An in vitro IHR experiment was also undertaken. RESULTS Patients in both the MSO and VSO groups had increased TLR2/6 co-expression on CD16(+) neutrophil than those in the PS group. Patients in the VSOC group had reduced TLR2/6 co-expression on neutrophil than those in either the MSO or VSO group. Blood absolute neutrophil count was positively but weakly correlated with TLR2/6 co-expression on neutrophil. TLR2/6 co-expressions on both CD14(+) monocyte and CD3(+)CD4(+)T helper cell, and TLR2 expressions on both monocyte and T helper cell in SDB patients with low Minimum SaO₂ (≦70%) were all higher than those with high Minimum SaO₂. In vitro IHR for 1-4 days resulted in TLR2/6 co-upregulation on both neutrophil and monocyte. CONCLUSIONS OSA patients had increased TLR2/6 co-expressions on blood immune cells, which were related to their immune cell counts and could be reversed with CPAP treatment. In vitro IHR could induce TLR2/6 co-upregulation.
Collapse
|
18
|
Cadoni G, Gaetani E, Picciotti PM, Arzani D, Quarta M, Giannantonio S, Paludetti G, Boccia S. A case-control study on proinflammatory genetic Polymorphisms on sudden sensorineural hearing loss. Laryngoscope 2014; 125:E28-32. [DOI: 10.1002/lary.24743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/22/2014] [Accepted: 04/26/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Gabriella Cadoni
- Department of Otorhinolaryngology; Catholic University of the Sacred Heart; Rome Italy
| | - Eleonora Gaetani
- Department of Special Pathology and Medical Semiotics; Catholic University of the Sacred Heart; Rome Italy
| | | | - Dario Arzani
- Department of Hygiene; Catholic University of the Sacred Heart; Rome Italy
| | - Miriam Quarta
- Department of Special Pathology and Medical Semiotics; Catholic University of the Sacred Heart; Rome Italy
| | - Sara Giannantonio
- Department of Otorhinolaryngology; Catholic University of the Sacred Heart; Rome Italy
| | - Gaetano Paludetti
- Department of Otorhinolaryngology; Catholic University of the Sacred Heart; Rome Italy
| | - Stefania Boccia
- Department of Hygiene; Catholic University of the Sacred Heart; Rome Italy
| |
Collapse
|
19
|
Jesic S, Jotic A, Tomanovic N, Zivkovic M. Expression of toll-like receptors 2, 4 and nuclear factor kappa B in mucosal lesions of human otitis: pattern and relationship in a clinical immunohistochemical study. Ann Otol Rhinol Laryngol 2014; 123:434-41. [PMID: 24690988 DOI: 10.1177/0003489414527229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The objectives were to detect and compare the expression of toll-like receptors (TLRs) 2, 4 and nuclear factor kappa B in mucosal lesions of chronic otitis. METHODS Fifty-five tissue samples obtained from children and adults operated on for otitis were investigated by semiquantitative immunohistochemical methods using polyclonal antibodies for TLR 2, 4 and NFkappaB. Kruskal-Wallis, Mann-Whitney, and Kendall's tau rank correlation tests were used. RESULTS Stronger expression of TLR2, 4 was found in inflamed mucosa than in the control for children and adults (TLR2: H = 23.86, P < .0011; TLR4: H = 22.80, P < .00 1) (TLR2: H = 17.53, P < .001; TLR4: H = 11.99, P < .001); in cholesteatoma perimatrix compared to tubotympanic lesions in children (TLR2: H = 11.06, P = .004; TLR4: H = 10.61, P = .005) and adults (TLR2: H = 10.73, P = .013; TLR4: H = 9.65, P = .021). No differences were found in NFkB expression (H = 0.042, P = .99). Significant correlations were found for all pairs of molecules in cholesteatoma and tubotympanic mucosa of adults (TLR2, 4: P = .002, P < .001; TLR2-NfkappaB: P = .032, P = .021; TLR4-NFkB: P = .035, P = .0013), only TLR4-NFkappaB in tubotympanic otitis of children (P = .026). CONCLUSIONS Toll-like receptors 2,4 and NFkB mediate inflammation in cholesteatoma and mucosal lesions oftubotympanic otitis in children and adults. Significant correlations betweenall pairs of molecules in all samples were detected in adults, but only TLR4-NFkappaB in children.
Collapse
|
20
|
Woo JI, Kil SH, Brough DE, Lee YJ, Lim DJ, Moon SK. Therapeutic potential of adenovirus-mediated delivery of β-defensin 2 for experimental otitis media. Innate Immun 2014; 21:215-24. [PMID: 24842664 DOI: 10.1177/1753425914534002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Otitis media (OM), one of the most prevalent diseases in young children, is clinically important owing to its high incidence in children and its potential impact on language development and motor coordination. OM is the most common reason for the prescription of antibiotics (accounting for 25% of prescriptions) due to its extremely high incidence. A recent increase in antibiotic resistance among OM pathogens is emerging as a major public health concern globally, which led us to consider non-antibiotic approaches for the management of OM. In this study, we evaluated gene transfer of an antimicrobial peptide, human β-defensin 2 (DEFB4), using an adenoviral vector (Ad5 with deletions of E1/E3/E4) as a potential therapeutic approach. We demonstrated that the transduction of human β-defensin 2 induces the production of human β-defensin 2 and suppresses non-typeable Haemophilus influenzae (NTHi) adhesion to human middle ear epithelial cells. Moreover, intratympanic inoculation of Ad-DEFB4 was found to attenuate NTHi-induced middle ear effusions without eliciting a significant immune response. Most importantly, intratympanic inoculation of Ad-DEFB4 appeared to significantly augment clearance of NTHi from middle ear cavity. Collectively, our results suggest that intratympanic gene delivery of antimicrobial molecules may serve as an alternative/adjuvant approach for the management of OM.
Collapse
Affiliation(s)
- Jeong-Im Woo
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | | | - Yoo Jin Lee
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - David J Lim
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| | - Sung K Moon
- Department of Head and Neck Surgery, University of California, Los Angeles, CA, USA
| |
Collapse
|
21
|
NOD2/RICK-dependent β-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection. PLoS One 2014; 9:e90933. [PMID: 24625812 PMCID: PMC3953203 DOI: 10.1371/journal.pone.0090933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media.
Collapse
|
22
|
de Assis RM, de Lourdes Higuchi M, Reis MM, Palomino SAP, Crespo Hirata RD, Hirata MH. Involvement of TLR2 and TLR4, <i>Chlamydophila pneumoniae</i> and <i>Mycoplasma pneumoniae</i> in adventitial inflammation of aortic atherosclerotic aneurysm. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjcd.2014.41004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Woo JI, Kil SH, Pan H, Lee YJ, Lim DJ, Moon SK. Distal NF-kB binding motif functions as an enhancer for nontypeable H. influenzae-induced DEFB4 regulation in epithelial cells. Biochem Biophys Res Commun 2013; 443:1035-40. [PMID: 24368180 DOI: 10.1016/j.bbrc.2013.12.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Among the antimicrobial molecules produced by epithelial cells, DEFB4 is inducible in response to proinflammatory signals such as cytokines and bacterial molecules. Nontypeable Haemophilus influenzae (NTHi) is an important human pathogen that exacerbates chronic obstructive pulmonary disease in adult and causes otitis media and sinusitis in children. Previously, we have demonstrated that DEFB4 effectively kills NTHi and is induced by NTHi via TLR2 signaling. The 5'-flanking region of DEFB4 contains several NF-κB binding motifs, but their NTHi-specific activity remains unclear. In this study, we aimed to elucidate molecular mechanism involved in DEFB4 regulation, focusing on the role of the distal NF-κB binding motif of DEFB4 responding to NTHi. Here, we show that the human middle ear epithelial cells up-regulate DEFB4 expression in response to NTHi via NF-κB activation mediated by IκKα/β-IκBα signaling. Deletion of the distal NF-κB binding motif led to a significant reduction in NTHi-induced DEFB4 up-regulation. A heterologous construct containing the distal NF-κB binding motif was found to increase the promoter activity in response to NTHi, indicating a NTHi-responding enhancer activity of the distal NF-κB binding motif. Furthermore, electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that the p65 domain of NF-κB binds to the distal NF-κB binding motif in response to NTHi. Taken together, our results suggest that NTHi-induced binding of p65 NF-κB to the distal NF-κB binding motif of DEFB4 enhances NTHi-induced DEFB4 regulation in epithelial cells.
Collapse
Affiliation(s)
- Jeong-Im Woo
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sung-Hee Kil
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Huiqi Pan
- House Research Institute, Los Angeles, CA, USA
| | - Yoo Jin Lee
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David J Lim
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sung K Moon
- Department of Head & Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
MacArthur CJ, Hausman F, Kempton JB, Choi D, Trune DR. Otitis media impacts hundreds of mouse middle and inner ear genes. PLoS One 2013; 8:e75213. [PMID: 24124478 PMCID: PMC3790799 DOI: 10.1371/journal.pone.0075213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/11/2013] [Indexed: 12/14/2022] Open
Abstract
Objective Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. Methods To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes. Results Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear. Conclusion Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media.
Collapse
Affiliation(s)
- Carol J. MacArthur
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Fran Hausman
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - J. Beth Kempton
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Dongseok Choi
- Department of Public Health & Preventive Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Dennis R. Trune
- Department of Otolaryngology Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
25
|
Sensorineural hearing loss: a complication of acute otitis media in adults. Eur Arch Otorhinolaryngol 2013; 271:1879-84. [DOI: 10.1007/s00405-013-2675-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
|
26
|
Inner ear tissue remodeling and ion homeostasis gene alteration in murine chronic otitis media. Otol Neurotol 2013; 34:338-46. [PMID: 23269288 DOI: 10.1097/mao.0b013e31827b4d0a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Studies were designed to ascertain the impact of chronic middle ear infection on the numerous ion and water channels, transporters, and tissue remodeling genes in the inner and middle ear. BACKGROUND Permanent sensorineural hearing loss is a significant problem resulting from chronic middle ear disease, although the inner ear processes involved are poorly defined. Maintaining a balanced ionic composition of endolymph in the inner ear is crucial for hearing; thus, it was hypothesized that this may be at risk with inflammation. METHODS Inner and middle ear RNA collected separately from 6-month-old C3H/HeJ mice with prolonged middle ear disease were subjected to qRT-PCR for 8 common inflammatory cytokine genes, 24 genes for channels controlling ion (sodium, potassium, and chloride) and water (aquaporin) transport, tight junction claudins, and gap junction connexins, and 32 tissue remodeling genes. Uninfected Balb/c mice were used as controls. RESULTS Significant increase in inner ear inflammatory and ion homeostasis (claudin, aquaporin, and gap junction) gene expression, and both upregulation and downregulation of tissue remodeling gene expression occurred. Alteration in middle ear ion homeostasis and tissue remodeling gene expression was noted in the setting of uniform upregulation of cytokine genes. CONCLUSION Chronic inflammatory middle ear disease can impact inner ear ion and water transport functions and induce tissue remodeling. Recognizing these inner ear mechanisms at risk may identify potential therapeutic targets to maintain hearing during prolonged otitis media.
Collapse
|
27
|
Abstract
Cytokines are a group of diverse molecules that influence the function of every organ system. They are most well studied in their effects on the immune system and their integral role in mediating inflammation. The common cold and otitis media are two such disease states, and much has been learned about the various effects of cytokines in each disease. Most often the viruses isolated include rhinovirus (RV), respiratory syncytial virus (RSV), adenovirus, coronavirus, and picornavirus. Otitis media, sinusitis, bronchiolitis, pneumonia, and asthma exacerbation are commonly accepted as complications of viral upper respiratory tract infections. Furthermore, otitis media and upper respiratory infections are inextricably linked in that the majority (>70 %) of cases of acute otitis media occur as complications of the common cold. Cytokine polymorphisms have been associated with the severity of colds as well as the frequency of otitis media. This article attempts to update the reader on various studies that have recently been published regarding the role of cytokines in these two disease entities.
Collapse
Affiliation(s)
- Todd M Wine
- Division of Pediatric Otolaryngology, Children's Hospital of Pittsburgh of UPMC, Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
28
|
Cayé-Thomasen P, Hermansson A, Bakaletz L, Hellstrøm S, Kanzaki S, Kerschner J, Lim D, Lin J, Mason K, Spratley J. Panel 3: Recent advances in anatomy, pathology, and cell biology in relation to otitis media pathogenesis. Otolaryngol Head Neck Surg 2013; 148:E37-51. [PMID: 23536531 DOI: 10.1177/0194599813476257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 01/08/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES The pathogenesis of otitis media (OM) involves a number of factors related to the anatomy, pathology, and cell biology of the middle ear, the mastoid, the Eustachian tube, and the nasopharynx. Although some issues of pathogenesis are fairly well established, others are only marginally indicated by current knowledge, and yet others remain undisclosed. The objective of this article is to provide a state-of-the-art review on recent scientific achievements in the pathogenesis of OM, as related to anatomy, pathology, and cell biology. DATA SOURCES PubMed, Ovid Medline, and Cochrane Library. REVIEW METHODS Articles published on the pathogenesis of OM and the anatomy, pathology, and cell biology of the middle ear, the mastoid, the Eustachian tube, and the nasopharynx between January 2007 and June 2011 were identified. Among almost 1900 abstracts, the authors selected 130 articles for full article review and inclusion in this report. RESULTS New knowledge on a number of issues emerged, including cell-specific expression and function of fluid transportation and innate immune system molecules, mucous cell metaplasia, mucin expression, bacterial adherence, and epithelial internalization, as well as the occurrence, composition, dynamics, and potential role of bacterial biofilm. In addition, the potential role of gastroesophageal reflux disease and cigarette smoke exposure has been explored further. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE Over the past 4 years, considerable scientific progress has been made on the pathogenesis of OM, as related to issues of anatomy, pathology, and cell biology. Based on these new achievements and a sustained lack of essential knowledge, suggestions for future research are outlined.
Collapse
Affiliation(s)
- Per Cayé-Thomasen
- Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang J, Si Y, Wu C, Sun L, Ma Y, Ge A, Li B. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway. Lipids Health Dis 2012; 11:139. [PMID: 23072373 PMCID: PMC3485618 DOI: 10.1186/1476-511x-11-139] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/30/2012] [Indexed: 12/23/2022] Open
Abstract
Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, the General Hospital of PLA, Beijing, 100853, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Oh S, Woo JI, Lim DJ, Moon SK. ERK2-dependent activation of c-Jun is required for nontypeable Haemophilus influenzae-induced CXCL2 upregulation in inner ear fibrocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:3496-505. [PMID: 22379036 DOI: 10.4049/jimmunol.1103182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inner ear, composed of the cochlea and the vestibule, is a specialized sensory organ for hearing and balance. Although the inner ear has been known as an immune-privileged organ, there is emerging evidence indicating an active immune reaction of the inner ear. Inner ear inflammation can be induced by the entry of proinflammatory molecules derived from middle ear infection. Because middle ear infection is highly prevalent in children, middle ear infection-induced inner ear inflammation can impact the normal development of language and motor coordination. Previously, we have demonstrated that the inner ear fibrocytes (spiral ligament fibrocytes) are able to recognize nontypeable Haemophilus influenzae, a major pathogen of middle ear infection, and upregulate a monocyte-attracting chemokine through TLR2-dependent NF-κB activation. In this study, we aimed to determine the molecular mechanism involved in nontypeable H. influenzae-induced cochlear infiltration of polymorphonuclear cells. The rat spiral ligament fibrocytes were found to release CXCL2 in response to nontypeable H. influenzae via activation of c-Jun, leading to the recruitment of polymorphonuclear cells to the cochlea. We also demonstrate that MEK1/ERK2 signaling pathway is required for nontypeable H. influenzae-induced CXCL2 upregulation in the rat spiral ligament fibrocytes. Two AP-1 motifs in the 5'-flanking region of CXCL2 appeared to function as a nontypeable H. influenzae-responsive element, and the proximal AP-1 motif was found to have a higher binding affinity to nontypeable H. influenzae-activated c-Jun than that of the distal one. Our results will enable us better to understand the molecular pathogenesis of middle ear infection-induced inner ear inflammation.
Collapse
Affiliation(s)
- Sejo Oh
- Division of Clinical and Translational Research, House Research Institute, Los Angeles, CA 90057, USA
| | | | | | | |
Collapse
|
31
|
Cheeseman MT, Tyrer HE, Williams D, Hough TA, Pathak P, Romero MR, Hilton H, Bali S, Parker A, Vizor L, Purnell T, Vowell K, Wells S, Bhutta MF, Potter PK, Brown SDM. HIF-VEGF pathways are critical for chronic otitis media in Junbo and Jeff mouse mutants. PLoS Genet 2011; 7:e1002336. [PMID: 22028672 PMCID: PMC3197687 DOI: 10.1371/journal.pgen.1002336] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 08/26/2011] [Indexed: 01/13/2023] Open
Abstract
Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF–mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF–mediated pathways, and we conclude that targeting molecules in HIF–VEGF signaling pathways has therapeutic potential in the treatment of chronic OM. Otitis media with effusion (OME) is the commonest cause of hearing loss in children, and treatment using grommets remains the commonest surgical procedure in children. Chronic forms of OM are known from human population studies to have a significant genetic component, but little is known of the underlying genes or pathways involved. We have analyzed two chronic OM mouse models, the Junbo and Jeff mutants, and have found that both demonstrate hypoxia and hypoxia-inducible factor (HIF) mediated responses. There is upregulation of inflammatory pathways in the mutant middle ears and in Junbo elevation of cytokines that modulate Hif-1α. Hif-1α levels are raised in the middle ear as well as downstream targets of HIF such as Vegfa. We explored the effects of small-molecule inhibitors of HSP90 and VEGF receptor signaling in the Junbo mutant and found significant reductions in hearing loss, the occurrence of bulla fluid, and moderation of vascular changes in the inflamed middle ear mucosa with the VEGF receptor inhibitors. The study of the Junbo and Jeff mutants demonstrates the role of hypoxia and HIF mediated pathways in OM pathogenesis, and it indicates that targeting the HIF–VEGF pathway may represent a novel approach to therapeutic intervention in chronic OM.
Collapse
MESH Headings
- Animals
- Blister/metabolism
- Blister/pathology
- Body Fluids/metabolism
- Cell Hypoxia/genetics
- Disease Models, Animal
- Ear, Middle/drug effects
- Ear, Middle/metabolism
- Ear, Middle/pathology
- Gene Expression Regulation
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Hearing Loss/etiology
- Hearing Loss/genetics
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Indoles/pharmacology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Mutant Strains/genetics
- Nitroimidazoles/analysis
- Otitis Media with Effusion/complications
- Otitis Media with Effusion/genetics
- Phthalazines/pharmacology
- Pyridines/pharmacology
- Pyrroles/pharmacology
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Signal Transduction
- Sunitinib
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
|
32
|
Sale MM, Chen WM, Weeks DE, Mychaleckyj JC, Hou X, Marion M, Segade F, Casselbrant ML, Mandel EM, Ferrell RE, Rich SS, Daly KA. Evaluation of 15 functional candidate genes for association with chronic otitis media with effusion and/or recurrent otitis media (COME/ROM). PLoS One 2011; 6:e22297. [PMID: 21857919 PMCID: PMC3156706 DOI: 10.1371/journal.pone.0022297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/22/2011] [Indexed: 12/01/2022] Open
Abstract
DNA sequence variants in genes involved in the innate immune response and secondary response to infection may confer susceptibility to chronic otitis media with effusion and/or recurrent otitis media (COME/ROM). We evaluated single nucleotide polymorphisms (SNPs) in 15 functional candidate genes. A total of 99 SNPs were successfully genotyped on the Sequenom platform in 142 families (618 subjects) from the Minnesota COME/ROM Family Study. Data were analyzed for association with COME/ROM using the Generalized Disequilibrium Test (GDT). Sex and age at exam were adjusted as covariates, relatedness was accounted for, and genotype differences from all phenotypically discordant relative pairs were utilized to measure the evidence of association between COME/ROM and each SNP. SNP rs2735733 in the region of the mucin 5, subtypes A/C gene (MUC5AC) exhibited nominal evidence for association with COME/ROM (P = 0.002). Two additional SNPs from this region had P values<0.05. Other variants exhibiting associations with COME/ROM at P<0.05 included the SCN1B SNP rs8100085 (P = 0.013), SFTPD SNP rs1051246 (P = 0.039) and TLR4 SNP rs2770146 (P = 0.038). However, none of these associations replicated in an independent sample of COME/ROM families. The candidate gene variants examined do not appear to make a major contribution to COME/ROM susceptibility, despite a priori evidence from functional or animal model studies for a role in COME/ROM pathology.
Collapse
Affiliation(s)
- Michèle M Sale
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yoshida A, Kitajiri SI, Nakagawa T, Hashido K, Inaoka T, Ito J. Adipose tissue-derived stromal cells protect hair cells from aminoglycoside. Laryngoscope 2011; 121:1281-6. [PMID: 21557227 DOI: 10.1002/lary.21551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Previous studies have demonstrated the therapeutic paracrine activity of adipose tissue-derived stromal cells (ADSCs). This study aimed to examine the ADSC potential for protecting auditory hair cells from aminoglycoside toxicity via paracrine of multiple growth factors and cytokines. STUDY DESIGN Experimental study. METHODS We assessed hair cell protection from neomycin toxicity by ADSC-derived factors using an explant culture system, in which cochlear explants and ADSCs were separated by a culture mesh insert to avoid direct contact. We measured the levels of growth factors and cytokines in ADSC culture media using an enzyme-linked immunosorbent assay (ELISA). RESULTS Neomycin induced severe degeneration of auditory hair cells in cochlear explants, but co-culture with ADSCs significantly increased the number of surviving hair cells in explants. ELISA analysis revealed that ADSCs secreted insulin-like growth factor-1, nerve growth factor, vascular epithelial growth factor, transforming growth factor β1, monocyte chemotactic protein-1, and most prominently hepatocyte growth factor. CONCLUSIONS These findings demonstrate that ADSCs have the capacity to protect auditory hair cells, and can be a useful strategy to develop therapy for deafness in the clinic. The multiple paracrine growth factors and cytokines secreted by ADSCs might be involved in this effect. Laryngoscope, 2011.
Collapse
Affiliation(s)
- Atsuhiro Yoshida
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto
| | | | | | | | | | | |
Collapse
|
34
|
Nakagawa T. Roles of prostaglandin E2 in the cochlea. Hear Res 2011; 276:27-33. [PMID: 21295127 DOI: 10.1016/j.heares.2011.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/15/2011] [Accepted: 01/19/2011] [Indexed: 12/20/2022]
Abstract
Prostaglandins are one of the major groups of chemical mediators in the mammalian body. Among prostaglandins, prostaglandin E2 (PGE2) is the most abundant prostanoid in humans and involved in regulating many different fundamental biological functions. PGE2 signaling is mediated by four distinct E-prostanoid receptors (EPs) namely EP1-4. Recently, accumulating evidence indicates critical, but complex roles of EP signaling in the pathogenesis of neuronal diseases depending on the context of neuronal injury. Four distinct EPs are expressed in the stria vascularis, spiral ligament, spiral ganglion and organ of Corti, indicating an involvement of EP signaling in the cochlear function. Activation of EP4 in cochleae significantly attenuates noise-induced damage in cochleae, and activation of EP2 or EP4 induces the formation of vascular endothelial growth factor in cochleae. These findings strongly suggest that individual EP signaling may be involved in the maintenance of the cochlear sensory system similarly to the central nervous system. This review highlights recent findings on EP signaling in the central nervous system, and presents its possible roles in regulation of blood flow, protection of sensory cells and immune responses in cochleae.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kawaharacho 54, Shogoin, Sakyoku, Kyoto 606-8507, Japan.
| |
Collapse
|
35
|
Haubner F, Martin L, Steffens T, Strutz J, Kleinjung T. The role of soluble adhesion molecules and cytokines in sudden sensorineural hearing loss. Otolaryngol Head Neck Surg 2011; 144:575-80. [PMID: 21493238 DOI: 10.1177/0194599810394324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The underlying pathology of sudden sensorineural hearing loss (SSNHL) is still not completely understood. Inflammatory and vascular factors are part of the present discussion. The aim of this study was to learn more about the possible role of adhesion molecules and cytokines in patients with SSNHL. These molecules are thought to contribute to endothelial dysfunction. STUDY DESIGN Case-control study with planned data collection. SETTING Tertiary referral center. SUBJECTS AND METHODS Blood samples of 35 patients presenting with SSNHL of more than 30 dB in at least 3 contiguous frequencies were compared to a gender- and age-matched control group of normal-hearing subjects. Levels of the soluble adhesion molecules intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), endothelial selectin (E-selectin), and concentration of interleukin 6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractant protein 1 (MCP-1) were measured using established enzyme-linked immunosorbent assays. These parameters as well as fibrinogen and lipid values were statistically analyzed. RESULTS Levels of soluble ICAM-1, VCAM-1, E-selectin, IL-6, IL-8, and MCP-1 were not significantly elevated in patients with SSNHL. The clinical chemistry and hematologic determinations showed no significant differences between patients and control subjects. CONCLUSION This study revealed no association concerning SSNHL and typical vascular risk factors such as lipids and fibrinogen. Soluble adhesion molecules were not elevated in the SSNHL group. The role of endothelial dysfunction represented by increased levels of soluble adhesion molecules in the pathogenesis of SSNHL remains unclear. Further studies are necessary to elucidate the vascular etiology of SSNHL.
Collapse
Affiliation(s)
- Frank Haubner
- Department of Otorhinolaryngology, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
36
|
MacArthur CJ, Pillers DAM, Pang J, Kempton JB, Trune DR. Altered expression of middle and inner ear cytokines in mouse otitis media. Laryngoscope 2011; 121:365-71. [PMID: 21271590 DOI: 10.1002/lary.21349] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVES/HYPOTHESIS The inner ear is at risk for sensorineural hearing loss in both acute and chronic otitis media (OM), but the mechanisms underlying sensorineural hearing loss are unknown. Previous gene expression array studies have shown that cytokine genes might be upregulated in the cochleas of mice with acute and chronic OM. This finding implies that the inner ear could manifest a direct inflammatory response to OM that may cause sensorineural damage. Therefore, to better understand inner ear cytokine gene expression during OM, quantitative real-time polymerase chain reaction and immunohistochemistry were used in mouse models to evaluate middle and inner ear inflammatory and remodeling cytokines. STUDY DESIGN Basic science experiment. METHODS An acute OM model was created in Balb/c mice by a transtympanic injection of Streptococcus pneumoniae in one ear; the other ear was used as a control. C3H/HeJ mice were screened for unilateral chronic OM, with the noninfected ear serving as a control. RESULTS Both acute and chronic OM caused both the middle ear and inner tissues in these two mouse models to overexpress numerous cytokine genes related to tissue remodeling (tumor necrosis factor-α, bone morphogenetic proteins, fibroblast growth factors) and angiogenesis (vascular endothelial growth factor), as well as inflammatory cell proliferation (interleukin [IL]-1α,β, IL-2, IL-6). Immunohistochemistry confirmed that both the middle ear and inner ear tissues expressed these cytokines. CONCLUSIONS Cochlear tissues are capable of expressing cytokine mRNA that contributes to the inflammation and remodeling that occur in association with middle ear disease. This provides a potential molecular basis for the transient and permanent sensorineural hearing loss often reported with acute and chronic OM.
Collapse
Affiliation(s)
- Carol J MacArthur
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
| | | | | | | | | |
Collapse
|
37
|
Sheng–li L, Zong–fang L, Robert–connelly, Yin–zheng Q. A Model of Spontaneous Chronic Otitis Media with Effusion in Mice with ENU Induced Mutations. J Otol 2010. [DOI: 10.1016/s1672-2930(10)50018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Spiral ligament fibrocyte-derived MCP-1/CCL2 contributes to inner ear inflammation secondary to nontypeable H. influenzae-induced otitis media. BMC Infect Dis 2010; 10:314. [PMID: 21029462 PMCID: PMC2988798 DOI: 10.1186/1471-2334-10-314] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background Otitis media (OM), one of the most common pediatric infectious diseases, causes inner ear inflammation resulting in vertigo and sensorineural hearing loss. Previously, we showed that spiral ligament fibrocytes (SLFs) recognize OM pathogens and up-regulate chemokines. Here, we aim to determine a key molecule derived from SLFs, contributing to OM-induced inner ear inflammation. Methods Live NTHI was injected into the murine middle ear through the tympanic membrane, and histological analysis was performed after harvesting the temporal bones. Migration assays were conducted using the conditioned medium of NTHI-exposed SLFs with and without inhibition of MCP-1/CCL2 and CCR2. qRT-PCR analysis was performed to demonstrate a compensatory up-regulation of alternative genes induced by the targeting of MCP-1/CCL2 or CCR2. Results Transtympanic inoculation of live NTHI developed serous and purulent labyrinthitis after clearance of OM. THP-1 cells actively migrated and invaded the extracellular matrix in response to the conditioned medium of NTHI-exposed SLFs. This migratory activity was markedly inhibited by the viral CC chemokine inhibitor and the deficiency of MCP-1/CCL2, indicating that MCP-1/CCL2 is a main attractant of THP-1 cells among the SLF-derived molecules. We further demonstrated that CCR2 deficiency inhibits migration of monocyte-like cells in response to NTHI-induced SLF-derived molecules. Immunolabeling showed an increase in MCP-1/CCL2 expression in the cochlear lateral wall of the NTHI-inoculated group. Contrary to the in vitro data, deficiency of MCP-1/CCL2 or CCR2 did not inhibit OM-induced inner ear inflammation in vivo. We demonstrated that targeting MCP-1/CCL2 enhances NTHI-induced up-regulation of MCP-2/CCL8 in SLFs and up-regulates the basal expression of CCR2 in the splenocytes. We also found that targeting CCR2 enhances NTHI-induced up-regulation of MCP-1/CCL2 in SLFs. Conclusions Taken together, we suggest that NTHI-induced SLF-derived MCP-1/CCL2 is a key molecule contributing to inner ear inflammation through CCR2-mediated recruitment of monocytes. However, deficiency of MCP-1/CCL2 or CCR2 alone was limited to inhibit OM-induced inner ear inflammation due to compensation of alternative genes.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW To describe ion and water homeostatic mechanisms in the inner ear, how they are compromised in hearing disorders, and what treatments are employed to restore auditory function. RECENT FINDINGS The ion and water transport functions in the inner ear help maintain the proper endolymph K concentration required for hair cell function. Gene defects and idiopathic alterations in these transport functions cause hearing loss, but often the underlying cause is unknown. Current therapies largely involve glucocorticoid treatment, although the mechanisms of restoration are often undeterminable. Recent studies of these ion homeostatic functions in the ear are characterizing their cellular and molecular control. It is anticipated that future management of these hearing disorders will be more targeted to the cellular processes involved and improve the likelihood of hearing recovery. SUMMARY A better understanding of the ion homeostatic processes in the ear will permit more effective management of their associated hearing disorders. Sufficient insight into many homeostatic hearing disorders has now been attained to usher in a new era of better therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Department of Otolaryngology Head Neck Surgery, Oregon Health & Science University, Portland, Oregon 97239-3098, USA.
| |
Collapse
|
40
|
Toll-like receptor signaling in airborne Burkholderia thailandensis infection. Infect Immun 2009; 77:5612-22. [PMID: 19797072 DOI: 10.1128/iai.00618-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melioidosis is a tropical disease endemic in southeast Asia and northern Australia caused by the gram-negative soil saprophyte Burkholderia pseudomallei. Although infection is often systemic, the lung is frequently involved. B. thailandensis is a closely related organism that at high doses causes lethal pneumonia in mice. We examined the role of Toll-like receptors (TLRs), essential components of innate immunity, in vitro and in vivo during murine B. thailandensis pneumonia. TLR2, TLR4, and TLR5 mediate NF-kappaB activation by B. thailandensis in transfected HEK293 or CHO cells. In macrophages, TLR4 and the adaptor molecule MyD88, but not TLR2 or TLR5, are required for tumor necrosis factor alpha production induced by B. thailandensis. In low-dose airborne infection, TLR4 is needed for early, but not late, bacterial containment, and MyD88 is essential for control of infection and host survival. TLR2 and TLR5 are not necessary to contain low-dose infection. In high-dose airborne infection, TLR2 deficiency confers a slight survival advantage. Lung and systemic inflammatory responses are induced by low-dose inhaled B. thailandensis independently of individual TLRs or MyD88. These findings suggest that redundancy in TLR signaling or other MyD88-dependent pathways may be important in pneumonic B. thailandensis infection but that MyD88-independent mechanisms of inflammation are also activated. TLR signaling in B. thailandensis infection is substantially comparable to signaling induced by virulent B. pseudomallei. These studies provide additional insights into the host-pathogen interaction in pneumonic Burkholderia infection.
Collapse
|
41
|
Song JJ, Cho JG, Woo JS, Lee HM, Hwang SJ, Chae SW. Differential expression of toll-like receptors 2 and 4 in rat middle ear. Int J Pediatr Otorhinolaryngol 2009; 73:821-4. [PMID: 19303147 DOI: 10.1016/j.ijporl.2009.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The epithelial cells of the middle ear and Eustachian tube must maintain an adequate mucosal defense system against various antigenic stimuli. Since toll-like receptors (TLRs) are known to play a critical role in mucosal defense, we investigated their expression in the mucosa of the tubotympanum, nasopharynx, and oral cavity of the rat. METHOD The expression of TLR2 and TLR4 was examined in the mucosa of the tubotympanum, nasopharynx and oral cavity of the rat using real time RT-PCR and Western blot analysis. RESULTS Transcripts for TLR2 and TLR4 were detected in the mucosa of the tubotympanum, nasopharynx, and oral cavity of the rat. The expression of TLR2 and TLR4 in the middle ear was increased more than in the other anatomical areas. Differential expression of these molecules at the protein level was confirmed by Western blot analysis. CONCLUSIONS Diverse expression of TLR2 and TLR4 in different parts of the tubotympanum and upper aerodigestive tract suggests region-specific functional modulation of the innate immune system. Differential expression of subtypes of the TLR in the normal physiology of the tubotympanum and upper aerodigestive tract also suggests that they may play a role in the pathophysiology of otitis media.
Collapse
Affiliation(s)
- Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk University International Hospital, Gyeonggi, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Ikeda T, Kajita K, Zhiliang W, Hanamoto T, Mori I, Fujioka K, Okada H, Fujikake T, Uno Y, Morita H, Nagano I, Takahashi Y, Ishizuka T. Effects of phorbol ester-sensitive PKC (c/nPKC) activation on the production of adiponectin in 3T3-L1 adipocytes. IUBMB Life 2009; 61:644-50. [DOI: 10.1002/iub.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Adams JC, Seed B, Lu N, Landry A, Xavier RJ. Selective activation of nuclear factor kappa B in the cochlea by sensory and inflammatory stress. Neuroscience 2009; 160:530-9. [PMID: 19285117 DOI: 10.1016/j.neuroscience.2009.02.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
Abstract
Damage response pathways triggered by mechanical stress might reasonably be expected to be conserved throughout evolution. However, using a nuclear factor kappa B (NF-kappaB) reporter mouse we show here that this phylogenetically recent transcription factor plays a major role in the response to mechanosensory stress in the mammalian inner ear. The protective action of NF-kappaB is exerted in neither sensory nor non-sensory epithelial cells, but rather in connective tissue cells within the spiral ligament and spiral limbus. In the spiral ligament, predominantly type I fibrocytes are activated following noise exposure, whereas type II fibrocytes are activated following systemic inflammatory stress. Immune-mediated and acoustic trauma-mediated hearing loss syndromes in humans may in part result from the vulnerability of type II and type I fibrocytes to systemic inflammatory stress and acoustic trauma, respectively. Unexpected cell-specific and stress-specific NF-kappaB activation found in the inner ear in this in vivo study suggest that this approach may have wide applications in demonstrating similar specializations of stress responses in other tissues, including the brain.
Collapse
Affiliation(s)
- J C Adams
- Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
44
|
Trune DR, Zheng QY. Mouse models for human otitis media. Brain Res 2009; 1277:90-103. [PMID: 19272362 DOI: 10.1016/j.brainres.2009.02.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/11/2009] [Accepted: 02/23/2009] [Indexed: 12/20/2022]
Abstract
Otitis media (OM) remains the most common childhood disease and its annual costs exceed $5 billion. Its potential for permanent hearing impairment also emphasizes the need to better understand and manage this disease. The pathogenesis of OM is multifactorial and includes infectious pathogens, anatomy, immunologic status, genetic predisposition, and environment. Recent progress in mouse model development is helping to elucidate the respective roles of these factors and to significantly contribute toward efforts of OM prevention and control. Genetic predisposition is recognized as an important factor in OM and increasing numbers of mouse models are helping to uncover the potential genetic bases for human OM. Furthermore, the completion of the mouse genome sequence has offered a powerful set of tools for investigating gene function and is generating a rich resource of mouse mutants for studying the genetic factors underlying OM.
Collapse
Affiliation(s)
- Dennis R Trune
- Oregon Hearing Research Center, Mail Code NRC04, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | |
Collapse
|
45
|
Abstract
Increasing evidence is emerging on genetic factors affecting host's response to infection in the middle ear. This review summarizes current knowledge on the field and on the contribution of nonspecific barriers, innate, and adaptive immunity. Better understanding of susceptibility to this very common disease will facilitate identification of high-risk individuals and optimization of prevention and treatment.
Collapse
|