1
|
van Bohemen A, Bulach D, Frosini SM, Johnstone T, Jepson RE. Evaluation of phylogroup, sequence type, resistome and virulome in Escherichia coli resulting in feline bacterial cystitis and subclinical bacteriuria. Vet Microbiol 2025; 304:110477. [PMID: 40112693 DOI: 10.1016/j.vetmic.2025.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
There is limited information on E. coli from feline urine and whether associated virulence and antimicrobial resistance patterns contribute to disease manifestations. This study aimed to characterise E. coli isolates, sequence types (ST), antimicrobial resistance (ARG) and virulence associated genes (VAG) from cats in primary care with subclinical bacteriuria (SBU) or lower urinary tract infection (LUTI). Whole genome sequencing (WGS) was performed on E. coli isolates that had been stored from a longitudinal health monitoring programme. Clinical records were reviewed to determine underlying disease conditions, phenotypic susceptibility and SBU and LUTI status. Descriptive review of phylogroup and ST was assessed together with evaluation of ARG and VAG by ST and based on SBU or LUTI status. WGS data was available for 152 E. coli isolates from cats (n = 26 with LUTI, n = 126 with SBU). The most common phylogroup was B2 with ST73, ST80, ST83 and ST127 predominating and ST80 being associated with clinical LUTI. Evaluating all isolates, there was no difference in prevalence of MDR status, total VAG or ARG count from cats with SBU or LUTI. Exploring individual VAG, ibeA, an invasin, and kpsT, part of the group 2 polysaccharide capsule, were associated with LUTI whilst P-fimbrial genes (pap) were associated with SBU. Based on this study, evidence is limited that expression of LUTI is directly related to ST or virulome and there is no evidence for increased resistome with SBU. However, low prevalence of cats with clinical LUTI may have precluded identification of associations.
Collapse
Affiliation(s)
- Annelies van Bohemen
- Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawskhead Lane, North Mymms, Herts AL9 7TA, United Kingdom
| | - Dieter Bulach
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth St, Melbourne, Victoria 3000, Australia
| | - Siân-Marie Frosini
- Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawskhead Lane, North Mymms, Herts AL9 7TA, United Kingdom
| | - Thurid Johnstone
- Animal Referral Hospital, 72 Hargrave Avenue, Essendon Field, Victoria 3041, Australia
| | - Rosanne E Jepson
- Royal Veterinary College, Department of Clinical Science and Services, Hawskhead Lane, North Mymms, Herts AL9 7TA, United Kingdom.
| |
Collapse
|
2
|
Ipe DS, Goh KG, Desai D, Ben-Zakour N, Sullivan MJ, Beatson SA, Ulett GC. Group B Streptococcus growth in human urine is associated with asymptomatic bacteriuria rather than urinary tract infection and is unaffected by iron sequestration. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001533. [PMID: 39976609 PMCID: PMC11842879 DOI: 10.1099/mic.0.001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Group B Streptococcus (GBS) causes various infections in adults, including urinary tract infection (UTI) and asymptomatic bacteriuria (ABU). Some bacteria that cause ABU can utilize urine as a substrate for growth, which can promote asymptomatic colonization in the host. An analysis of diverse GBS isolates associated with ABU and UTI for growth in human urine has not been undertaken. Here, we examined a large collection of clinical urinary GBS isolates from individuals with acute UTI (n=62), and ABU with bacteriuria ≥104 c.f.u. ml-1 (n=206) or <104 c.f.u. ml-1 (n=90) for their ability to grow in human urine. Among all 358 GBS isolates analysed, 40 exhibited robust growth in urine in contrast to 25 that were unable to grow and non-culturable after incubation in urine. Growth phenotypes were disproportionately represented among the different groups of isolates, whereby robust growth was significantly more likely to be associated with high-grade ABU versus low-grade ABU or acute UTI (38/40 vs. 11/25; odds ratio 4.6, 95% CI, 1.5-14.8). Growth of bacteria in urine can depend on iron bioavailability, and we therefore performed growth assays using urine supplemented with 2,2-dipyridyl to chelate iron. In contrast to a control strain of ABU Escherichia coli, for which iron limitation significantly attenuated growth, iron sequestration had no significant attenuation effect on the growth of ABU GBS strain 834 in urine. Despite this finding, PCR confirmed the presence of several known growth-associated genes in GBS 834, including fhuD for iron uptake. We conclude that GBS adaptation for growth in human urine is more likely to be associated with high-grade ABU than acute UTI, and for GBS 834, this growth trait is not significantly constrained by conditions of iron sequestration.
Collapse
Affiliation(s)
- Deepak S. Ipe
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Kelvin G.K. Goh
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Nouri Ben-Zakour
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew J. Sullivan
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences, Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| |
Collapse
|
3
|
Mikhaylova Y, Tyumentseva M, Karbyshev K, Tyumentsev A, Slavokhotova A, Smirnova S, Akinin A, Shelenkov A, Akimkin V. Interrelation Between Pathoadaptability Factors and Crispr-Element Patterns in the Genomes of Escherichia coli Isolates Collected from Healthy Puerperant Women in Ural Region, Russia. Pathogens 2024; 13:997. [PMID: 39599550 PMCID: PMC11597047 DOI: 10.3390/pathogens13110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Escherichia coli is a commensal and opportunistic bacterium widely distributed around the world in different niches including intestinal of humans and animals, and its extraordinary genome plasticity led to the emergence of pathogenic strains causing a wide range of diseases. E. coli is one of the monitored species in maternity hospitals, being the main etiological agent of urogenital infections, endometriosis, puerperal sepsis, and neonatal diseases. This study presents a comprehensive analysis of E. coli isolates obtained from the maternal birth canal of healthy puerperant women 3-4 days after labor. According to whole genome sequencing data, 31 sequence types and six phylogenetic groups characterized the collection containing 53 isolates. The majority of the isolates belonged to the B2 phylogroup. The data also includes phenotypic and genotypic antibiotic resistance profiles, virulence factors, and plasmid replicons. Phenotypic and genotypic antibiotic resistance testing did not demonstrate extensive drug resistance traits except for two multidrug-resistant E. coli isolates. The pathogenic factors revealed in silico were assessed with respect to CRISPR-element patterns. Multiparametric and correlation analyses were conducted to study the interrelation of different pathoadaptability factors, including antimicrobial resistance and virulence genomic determinants carried by the isolates under investigation. The data presented will serve as a valuable addition to further scientific investigations in the field of bacterial pathoadaptability, especially in studying the role of CRISPR/Cas systems in the E. coli genome plasticity and evolution.
Collapse
Affiliation(s)
- Yulia Mikhaylova
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| | - Marina Tyumentseva
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| | - Konstantin Karbyshev
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| | - Aleksandr Tyumentsev
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| | - Anna Slavokhotova
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| | - Svetlana Smirnova
- Federal Scientific Research Institute of Viral Infections «Virome», Letnyaya Str., 23, 620030 Ekaterinburg, Russia;
| | - Andrey Akinin
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| | - Andrey Shelenkov
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya Str., 3a, 111123 Moscow, Russia; (Y.M.)
| |
Collapse
|
4
|
Flores C, Ling J, Loh A, Maset RG, Aw A, White IJ, Fernando R, Rohn JL. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. SCIENCE ADVANCES 2023; 9:eadi9834. [PMID: 37939183 PMCID: PMC10631729 DOI: 10.1126/sciadv.adi9834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Collapse
Affiliation(s)
- Carlos Flores
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Jefferson Ling
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Amanda Loh
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ramón G. Maset
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Angeline Aw
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Raymond Fernando
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
- Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK
| | - Jennifer L. Rohn
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| |
Collapse
|
5
|
Morales G, Abelson B, Reasoner S, Miller J, Earl AM, Hadjifrangiskou M, Schmitz J. The Role of Mobile Genetic Elements in Virulence Factor Carriage from Symptomatic and Asymptomatic Cases of Escherichia coli Bacteriuria. Microbiol Spectr 2023; 11:e0471022. [PMID: 37195213 PMCID: PMC10269530 DOI: 10.1128/spectrum.04710-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is extremely diverse genotypically and phenotypically. Individual strains can variably carry diverse virulence factors, making it challenging to define a molecular signature for this pathotype. For many bacterial pathogens, mobile genetic elements (MGEs) constitute a major mechanism of virulence factor acquisition. For urinary E. coli, the total distribution of MGEs and their role in the acquisition of virulence factors is not well defined, including in the context of symptomatic infection versus asymptomatic bacteriuria (ASB). In this work, we characterized 151 isolates of E. coli, derived from patients with either urinary tract infection (UTI) or ASB. For both sets of E. coli, we catalogued the presence of plasmids, prophage, and transposons. We analyzed MGE sequences for the presence of virulence factors and antimicrobial resistance genes. These MGEs were associated with only ~4% of total virulence associated genes, while plasmids contributed to ~15% of antimicrobial resistance genes under consideration. Our analyses suggests that, across strains of E. coli, MGEs are not a prominent driver of urinary tract pathogenesis and symptomatic infection. IMPORTANCE Escherichia coli is the most common etiological agent of urinary tract infections (UTIs), with UTI-associated strains designated "uropathogenic" E. coli or UPEC. Across urinary strains of E. coli, the global landscape of MGEs and its relationship to virulence factor carriage and clinical symptomatology require greater clarity. Here, we demonstrate that many of the putative virulence factors of UPEC are not associated with acquisition due to MGEs. The current work enhances our understanding of the strain-to-strain variability and pathogenic potential of urine-associated E. coli and points toward more subtle genomic differences distinguishing ASB from UTI isolates.
Collapse
Affiliation(s)
- Grace Morales
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin Abelson
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jordan Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Gołębiewska JE, Krawczyk B, Wysocka M, Dudziak A, Dębska-Ślizień A. Asymptomatic Bacteriuria in Kidney Transplant Recipients-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020198. [PMID: 36837399 PMCID: PMC9958684 DOI: 10.3390/medicina59020198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Urinary tract infections (UTIs) are the most prevalent complications in kidney transplant (KTx) recipients. The most frequent finding in this group of patients is asymptomatic bacteriuria (ASB). Here, we provide an overview of the available evidence regarding ASB in KTx recipients, including its etiopathology, clinical impact and management. There is a growing body of evidence from clinical trials that screening for and treating ASB is not beneficial in most KTx recipients. However, there are insufficient data to recommend or discourage the use of a "screen-and-treat strategy" for ASB during the first 1-2 months post-transplant or in the case of an indwelling urinary catheter. Despite its frequency, ASB after KTx is still an understudied phenomenon.
Collapse
Affiliation(s)
- Justyna E. Gołębiewska
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- Correspondence:
| | - Beata Krawczyk
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Magdalena Wysocka
- Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Manchester M13 9PL, UK
| | - Aleksandra Dudziak
- Microbiology Laboratory, University Clinical Center, 80-952 Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
7
|
Maniam L, Vellasamy KM, Jindal HM, Narayanan V, Danaee M, Vadivelu J, Pallath V. Demonstrating the utility of Escherichia coli asymptomatic bacteriuria isolates’ virulence profile towards diagnosis and management—A preliminary analysis. PLoS One 2022; 17:e0267296. [PMID: 35522610 PMCID: PMC9075641 DOI: 10.1371/journal.pone.0267296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Asymptomatic bacteriuria (ASB) caused by Escherichia coli (E. coli) is a significant condition associated with pregnancy and is considered as prognostic for the development of symptomatic urinary tract infection (UTI). However, treating all ASB increases the use of antibiotics and leads to the development of multidrug resistance (MDR). Therefore, this study aimed to identify the distribution of UPEC associated virulence genes and antibiotic susceptibility among phylogroups of E. coli isolated from ASB in pregnancy. Moreover, the gene expression of selected virulence genes was also compared among two E. coli isolates (with different pathogenic potential) to determine its pathogenicity. One hundred and sixty E. coli isolates from midstream urine samples of pregnant women with ASB were subjected to PCR-based detection for its phylogroups and virulence genes. The antibiotic susceptibility of isolated strains was determined by the disc diffusion method. Expression of the virulence genes were determined through microarray analysis and quantitative Real-Time PCR. The prevalence of ASB in this study was 16.1%. Within ASB isolates, the occurrence of phylogroup B2 was the highest, and isolates from this group harboured most of the virulence genes studied. Overall, the most identified virulence genes among all phylogroups in descending order were fimH, chuA, kpsMTII, usp, fyuA, hlyA, iroN, cnf, papC, sfa, ompT, and sat. In this study, higher resistance to antibiotics was observed for ampicillin (77.5%), amoxicillin-clavulanate (54.4%), trimethoprim-sulfamethoxazole (46.9%) and amikacin (43.8%) compared to the other tested antibiotics and 51.9% of the tested isolates were MDR. Furthermore, hierarchical clustering and gene expression analysis demonstrated extreme polarization of pathogenic potential of E. coli causing ASB in pregnancy necessitating the need for bacterial isolate focused approach towards treatment of ASB.
Collapse
Affiliation(s)
- Lalitha Maniam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hassan Mahmood Jindal
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vallikannu Narayanan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmoud Danaee
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vinod Pallath
- Medical Education Research and Development Unit (MERDU), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
8
|
Mcc1229, an Stx2a-amplifying microcin, is produced in vivo and requires CirA for activity. Infect Immun 2021; 90:e0058721. [PMID: 34871041 PMCID: PMC8853679 DOI: 10.1128/iai.00587-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains, including the foodborne pathogen E. coli O157:H7, are responsible for thousands of hospitalizations each year. Various environmental triggers can modulate pathogenicity in EHEC by inducing the expression of Shiga toxin (Stx), which is encoded on a lambdoid prophage and transcribed together with phage late genes. Cell-free supernatants of the sequence type 73 (ST73) E. coli strain 0.1229 are potent inducers of Stx2a production in EHEC, suggesting that 0.1229 secretes a factor that activates the SOS response and leads to phage lysis. We previously demonstrated that this factor, designated microcin 1229 (Mcc1229), was proteinaceous and plasmid-encoded. To further characterize Mcc1229 and support its classification as a microcin, we investigated its regulation, determined its receptor, and identified loci providing immunity. The production of Mcc1229 was increased upon iron limitation, as determined by an enzyme-linked immunosorbent assay (ELISA), lacZ fusions, and quantitative real-time PCR (qRT-PCR). Spontaneous Mcc1229-resistant mutants and targeted gene deletion revealed that CirA was the Mcc1229 receptor. TonB, which interacts with CirA in the periplasm, was also essential for Mcc1229 import. Subcloning of the Mcc1229 plasmid indicated that Mcc activity was neutralized by two open reading frames (ORFs), each predicted to encode a domain of unknown function (DUF)-containing protein. In a germfree mouse model of infection, colonization with 0.1229 suppressed subsequent colonization by EHEC. Although Mcc1229 was produced in vivo, it was dispensable for colonization suppression. The regulation, import, and immunity determinants identified here are consistent with features of other Mccs, suggesting that Mcc1229 should be included in this class of small molecules.
Collapse
|
9
|
Ghosh A, Ghosh B, Mukherjee M. Epidemiologic and molecular characterization of β-lactamase-producing multidrug-resistant uropathogenic Escherichia coli isolated from asymptomatic hospitalized patients. Int Microbiol 2021; 25:27-45. [PMID: 34191193 DOI: 10.1007/s10123-021-00187-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Uropathogenic Escherichia coli (UPECs) are the predominant cause of asymptomatic bacteriuria (ABU) and symptomatic UTI. In this study, multidrug-resistant (MDR) ABU-UPECs from hospitalized patients of Kolkata, India, were characterized with respect to their ESBL phenotype, acquisition of β-lactamase genes, mobile genetic elements (MGEs), phylotype property, ERIC-PCR profile, sequence types (STs), clonal complexes (CCs) and evolutionary and quantitative relationships and compared to the symptomatic ones to understand their epidemiology and evolutionary origin. Statistically significant incidence of ESBL producers, β-lactamase genes, MGEs and novel phylotype property (NPP) among ABU-UPECs similar to the symptomatic ones indicated the probable incidence of chromosomal plasticity on resistance gene acquisition through MGEs due to indiscriminate drug usage. ERIC-PCR typing and MLST analysis showed clonal heterogeneity and predominance of ST940 (CC448) among asymptomatic isolates akin to symptomatic ones along with the evidence of zoonotic transmissions. Minimum spanning tree analysis showed a close association between ABU-UPEC with known and unidentified STs having NPPs with isolates that belonged to phylogroups clade I, D, and B2. This is the first study that reported the occurrence of MGEs and NPPs among ABU-UPECs with the predominance of ESBL production which displayed the deleterious effect of MDR among this pathogen demanding alternative therapeutic interventions. Moreover, this study for the first time attempted to introduce a new approach to ascertain the phylotype property of unassigned UPECs. Withal, increased recognition, proper understanding and characterization of ABU-UPECs with the implementation of appropriate therapeutic measures against them when necessary are the need of the era which otherwise might lead to serious complications in the vulnerable population.
Collapse
Affiliation(s)
- Arunita Ghosh
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Biplab Ghosh
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India.
| |
Collapse
|
10
|
Systemic T Cell Subsets and Cytokines in Patients With Homozygous Sickle Cell Disease and Asymptomatic Urinary Tract Infections in Togo. Ochsner J 2021; 21:163-172. [PMID: 34239376 PMCID: PMC8238108 DOI: 10.31486/toj.20.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: In sickle cell disease (SCD), cytokine expression influences the pivotal pathways that contribute to disease pathogenesis. Additional infection could affect the immune profile of patients with SCD and increase disease mortality. The aim of this study was to investigate the cytokines and T helper cells profile in patients with asymptomatic urinary tract infection and homozygous SCD (HbSS). Methods: From July to September 2018, 22 HbSS subjects were recruited at Centre Hospitalier Universitaire Campus in Lomé, Togo, 12 of whom had urinary tract bacterial infections and 10 of whom were uninfected. Cytokines from plasma were measured by the enzyme-linked immunosorbent assay (ELISA) sandwich method, and immune cell profiles were performed by flow cytometry. The immunogenicity of bacteria-derived antigens isolated from the urine of HbSS subjects with asymptomatic urinary tract infections was studied in a cell culture system, and the induction of the cytokines was measured. Results: The mean age of HbSS subjects with urinary tract infections was 20.33 ± 3.58 years, and the male/female ratio was 0.09 (1:11). HbSS subjects with asymptomatic urinary tract infections had elevated plasma levels of interferon gamma (IFN-γ) and interleukin (IL)-10. CD4+Tbet+IFN-γ+ and CD4+FoxP3+IL-10+ T cell populations were decreased in HbSS subjects with asymptomatic urinary tract infections. Bacterial antigens from HbSS subjects induced the production of IL-10 but not IFN-γ in uninfected volunteer donors (HbAA). Conclusion: Our study demonstrated that patients with SCD and asymptomatic urinary tract infections had elevated IFN-γ and IL-10 levels. This chronic inflammatory condition could be a risk for this group of patients in terms of vaso-occlusive crisis. Systematic cytobacteriologic examination of the urine of HbSS subjects would be of interest.
Collapse
|
11
|
Chagneau CV, Massip C, Bossuet-Greif N, Fremez C, Motta JP, Shima A, Besson C, Le Faouder P, Cénac N, Roth MP, Coppin H, Fontanié M, Martin P, Nougayrède JP, Oswald E. Uropathogenic E. coli induces DNA damage in the bladder. PLoS Pathog 2021; 17:e1009310. [PMID: 33630958 PMCID: PMC7906301 DOI: 10.1371/journal.ppat.1009310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of the cleavage product released during the synthesis of colibactin, a bacterial genotoxin, in 55 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells.
Collapse
Affiliation(s)
| | - Clémence Massip
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | | | - Jean-Paul Motta
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Ayaka Shima
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Céline Besson
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | | | - Nicolas Cénac
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Marie-Paule Roth
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Hélène Coppin
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | | | - Patricia Martin
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
- VibioSphen, Prologue Biotech, Labège, France
| | | | - Eric Oswald
- IRSD, INSERM, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| |
Collapse
|
12
|
Ambite I, Butler D, Wan MLY, Rosenblad T, Tran TH, Chao SM, Svanborg C. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol 2021; 18:468-486. [PMID: 34131331 PMCID: PMC8204302 DOI: 10.1038/s41585-021-00477-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The most common and lethal bacterial pathogens have co-evolved with the host. Pathogens are the aggressors, and the host immune system is responsible for the defence. However, immune responses can also become destructive, and excessive innate immune activation is a major cause of infection-associated morbidity, exemplified by symptomatic urinary tract infections (UTIs), which are caused, in part, by excessive innate immune activation. Severe kidney infections (acute pyelonephritis) are a major cause of morbidity and mortality, and painful infections of the urinary bladder (acute cystitis) can become debilitating in susceptible patients. Disease severity is controlled at specific innate immune checkpoints, and a detailed understanding of their functions is crucial for strategies to counter microbial aggression with novel treatment and prevention measures. One approach is the use of bacterial molecules that reprogramme the innate immune system, accelerating or inhibiting disease processes. A very different outcome is asymptomatic bacteriuria, defined by low host immune responsiveness to bacteria with attenuated virulence. This observation provides the rationale for immunomodulation as a new therapeutic tool to deliberately modify host susceptibility, control the host response and avoid severe disease. The power of innate immunity as an arbitrator of health and disease is also highly relevant for emerging pathogens, including the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ines Ambite
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel Butler
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Therese Rosenblad
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Nephrology Service, Department of Paediatrics, KK Hospital, Singapore, Singapore
| | - Catharina Svanborg
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Success of Escherichia coli O25b:H4 Sequence Type 131 Clade C Associated with a Decrease in Virulence. Infect Immun 2020; 88:IAI.00576-20. [PMID: 32989036 PMCID: PMC7671891 DOI: 10.1128/iai.00576-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli O25b:H4 sequence type 131 (ST131), which is resistant to fluoroquinolones and which is a producer of CTX-M-15, is globally one of the major extraintestinal pathogenic E. coli (ExPEC) lineages. Phylogenetic analyses showed that multidrug-resistant ST131 strains belong to clade C, which recently emerged from clade B by stepwise evolution. It has been hypothesized that features other than multidrug resistance could contribute to this dissemination since other major global ExPEC lineages (ST73 and ST95) are mostly antibiotic susceptible. Escherichia coli O25b:H4 sequence type 131 (ST131), which is resistant to fluoroquinolones and which is a producer of CTX-M-15, is globally one of the major extraintestinal pathogenic E. coli (ExPEC) lineages. Phylogenetic analyses showed that multidrug-resistant ST131 strains belong to clade C, which recently emerged from clade B by stepwise evolution. It has been hypothesized that features other than multidrug resistance could contribute to this dissemination since other major global ExPEC lineages (ST73 and ST95) are mostly antibiotic susceptible. To test this hypothesis, we compared early biofilm production, presence of ExPEC virulence factors (VFs), and in vivo virulence in a mouse sepsis model in 19 and 20 epidemiologically relevant strains of clades B and C, respectively. Clade B strains were significantly earlier biofilm producers (P < 0.001), carriers of more VFs (P = 4e−07), and faster killers of mice (P = 2e−10) than clade C strains. Gene inactivation experiments showed that the H30-fimB and ibeART genes were associated with in vivo virulence. Competition assays in sepsis, gut colonization, and urinary tract infection models between the most anciently diverged strain (B1 subclade), one C1 subclade strain, and a B4 subclade recombining strain harboring some clade C-specific genetic events showed that the B1 strain always outcompeted the C1 strain, whereas the B4 strain outcompeted the C1 strain, depending on the mouse niches. All these findings strongly suggest that clade C evolution includes a progressive loss of virulence involving multiple genes, possibly enhancing overall strain fitness by avoiding severe infections, even if it comes at the cost of a lower colonization ability.
Collapse
|
14
|
Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020; 18:479-490. [PMID: 32461608 DOI: 10.1038/s41579-020-0378-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment failure is of growing concern. Genetically encoded resistance is key in driving this process. However, there is increasing evidence that bacterial antibiotic persistence, a non-genetically encoded and reversible loss of antibiotic susceptibility, contributes to treatment failure and emergence of resistant strains as well. In this Review, we discuss the evolutionary forces that may drive the selection for antibiotic persistence. We review how some aspects of antibiotic persistence have been directly selected for whereas others result from indirect selection in disparate ecological contexts. We then discuss the consequences of antibiotic persistence on pathogen evolution. Persisters can facilitate the evolution of antibiotic resistance and virulence. Finally, we propose practical means to prevent persister formation and how this may help to slow down the evolution of virulence and resistance in pathogens.
Collapse
|
15
|
Legros N, Ptascheck S, Pohlentz G, Karch H, Dobrindt U, Müthing J. PapG subtype-specific binding characteristics of Escherichia coli towards globo-series glycosphingolipids of human kidney and bladder uroepithelial cells. Glycobiology 2020; 29:789-802. [PMID: 31361021 DOI: 10.1093/glycob/cwz059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections (UTIs) in humans. P-fimbriae are key players for bacterial adherence to the uroepithelium through the Galα1-4Gal-binding PapG adhesin. The three identified classes I, II and III of PapG are supposed to adhere differently to host cell glycosphingolipids (GSLs) of the uroepithelial tract harboring a distal or internal Galα1-4Gal sequence. In this study, GSL binding characteristics were obtained in a nonradioactive adhesion assay using biotinylated E. coli UTI and urine isolates combined with enzyme-linked NeutrAvidin for detection. Initial experiments with reference globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer), globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) and Forssman GSL (GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer) revealed balanced adhesion toward the three GSLs for PapG I-mediated attachment. In contrast, E. coli carrying PapG II or PapG III increasingly adhered to growing oligosaccharide chain lengths of Gb3Cer, Gb4Cer and Forssman GSL. Binding studies with GSLs from human A498 kidney and human T24 bladder epithelial cells, both being negative for the Forssman GSL, revealed the less abundant Gb4Cer vs. Gb3Cer as the prevalent receptor in A498 cells of E. coli expressing PapG II or PapG III. On the other hand, T24 cells exhibited a higher relative content of Gb4Cer vs. Gb3Cer alongside dominant binding of PapG II- or PapG III-harboring E. coli toward Gb4Cer and vastly lowered attachment to minor Gb3Cer. Further studies on PapG-mediated interaction with cell surface-exposed GSLs will improve our knowledge on the molecular mechanisms of P-fimbriae-mediated adhesion and may contribute to the development of antiadhesion therapeutics to combat UTIs.
Collapse
Affiliation(s)
- Nadine Legros
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | | | | | - Helge Karch
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany.,Institute of Hygiene, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
16
|
Asymptomatic Bacteriuria: For How Long Will We Keep Swimming Against The Current? MAYO CLINIC PROCEEDINGS: INNOVATIONS, QUALITY & OUTCOMES 2020; 4:132-134. [PMID: 32280922 PMCID: PMC7140012 DOI: 10.1016/j.mayocpiqo.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Eberly AR, Beebout CJ, Carmen Tong CM, Van Horn GT, Green HD, Fitzgerald MJ, De S, Apple EK, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Clayton DB, Stratton CW, Schmitz JE, Hadjifrangiskou M. Defining a Molecular Signature for Uropathogenic versus Urocolonizing Escherichia coli: The Status of the Field and New Clinical Opportunities. J Mol Biol 2020; 432:786-804. [PMID: 31794727 PMCID: PMC7293133 DOI: 10.1016/j.jmb.2019.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023]
Abstract
Urinary tract infections (UTIs) represent a major burden across the population, although key facets of their pathophysiology and host interaction remain unclear. Escherichia coli epitomizes these obstacles: this gram-negative bacterial species is the most prevalent agent of UTIs worldwide and can also colonize the urogenital tract in a phenomenon known as asymptomatic bacteriuria (ASB). Unfortunately, at the level of the individual E. coli strains, the relationship between UTI and ASB is poorly defined, confounding our understanding of microbial pathogenesis and strategies for clinical management. Unlike diarrheagenic pathotypes of E. coli, the definition of uropathogenic E. coli (UPEC) remains phenomenologic, without conserved phenotypes and known genetic determinants that rigorously distinguish UTI- and ASB-associated strains. This article provides a cross-disciplinary review of the current issues from interrelated mechanistic and diagnostic perspectives and describes new opportunities by which clinical resources can be leveraged to overcome molecular challenges. Specifically, we present our work harnessing a large collection of patient-derived isolates to identify features that do (and do not) distinguish UTI- from ASB-associated E. coli strains. Analyses of biofilm formation, previously reported to be higher in ASB strains, revealed extensive phenotypic heterogeneity that did not correlate with symptomatology. However, metabolomic experiments revealed distinct signatures between ASB and cystitis isolates, including in the purine pathway (previously shown to be critical for intracellular survival during acute infection). Together, these studies demonstrate how large-scale, wild-type approaches can help dissect the physiology of colonization versus infection, suggesting that the molecular definition of UPEC may rest at the level of global bacterial metabolism.
Collapse
Affiliation(s)
- Allison R Eberly
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ching Man Carmen Tong
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gerald T Van Horn
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hamilton D Green
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madison J Fitzgerald
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shuvro De
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily K Apple
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Simona G Codreanu
- Center for Innovative Technologies, Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Stacy D Sherrod
- Center for Innovative Technologies, Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - John A McLean
- Center for Innovative Technologies, Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglass B Clayton
- Division of Pediatric Urology, Department of Urology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles W Stratton
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Laboratory Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology & Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan E Schmitz
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Laboratory Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology & Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology & Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Tullus K. Fifteen-minute consultation: Why and how do children get urinary tract infections? Arch Dis Child Educ Pract Ed 2019; 104:244-247. [PMID: 30617151 DOI: 10.1136/archdischild-2018-315023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 11/04/2022]
Abstract
This paper describes urinary tract infections (UTI) from the perspective of a disturbed balance between bacterial virulence and host defence. In some children, a UTI is caused by a virulent Escherichia coli, while in other cases children with abnormal renal tracts can get infected by almost any bacteria. Such knowledge can help in guiding treatment, investigations and follow-up of a child with a UTI.
Collapse
|
19
|
GHAZVINI H, TAHERI K, EDALATI E, SEDIGHI M, MIRKALANTARI S. Virulence factors and antimicrobial resistance in uropathogenic Escherichiacoli strains isolated from cystitis and pyelonephritis. Turk J Med Sci 2019; 49:361-367. [PMID: 30761847 PMCID: PMC7350878 DOI: 10.3906/sag-1805-100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background/aim The aim of this study was to investigate the prevalence of virulence genes as well as patterns of antibiotic resistance in cystitis and pyelonephritis uropathogenic Escherichia coli (UPEC) isolates. Materials and methods Two hundred UPEC isolates were collected from hospitalized patients with pyelonephritis (n = 50) and cystitis (n = 150) in Shafa Hospital in Iran. Antimicrobial susceptibility and ESBL production were determined with confirmatory tests. Polymerase chain reaction assay was performed to determine the prevalence of virulence genes in UPEC strains. Results Of a total 200 UPEC isolates, the highest and lowest resistance rates to antibiotics were for cephalexin (74%) and nitrofurantoin (9%), respectively. Of these isolates, 72 (36%) and 128 (64%) strains were ESBL-positive and ESBL-negative, respectively. The frequency of fimH, papC, and hly was 64%, 38%, and 12%, respectively. The most commonly identified virulence gene in ESBL-positive and ESBL-negative strains was fimH 46 (23%) and 86 (43%), respectively. The hlyA gene was more prevalent among patients with pyelonephritis than cystitis. Conclusion The frequency of virulence genes was not significantly different between pyelonephritis and cystitis UPEC strains in the studied patients, but the prevalence rates of hlyA and papC genes were higher among UPEC strains isolated from inpatients compared to outpatients; hence, they could be considered as useful targets for prophylactic interventions.
Collapse
Affiliation(s)
| | - Keyvan TAHERI
- Department of Biology, Damghan Branch, Islamic Azad University, DamghanIran
| | - Elahe EDALATI
- Department of Microbiology, Kerman Branch, Islamic Azad University, KermanIran
| | - Mansour SEDIGHI
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, TehranIran
- Azarbaijan-Gharbi Regional Blood Transfusion Center, UrmiaIran
| | - Shiva MIRKALANTARI
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, TehranIran
- Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, TehranIran
| |
Collapse
|
20
|
Reid CJ, Wyrsch ER, Roy Chowdhury P, Zingali T, Liu M, Darling AE, Chapman TA, Djordjevic SP. Porcine commensal Escherichia coli: a reservoir for class 1 integrons associated with IS26. Microb Genom 2019; 3. [PMID: 29306352 PMCID: PMC5761274 DOI: 10.1099/mgen.0.000143] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97 % (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98 % (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry.
Collapse
Affiliation(s)
- Cameron J Reid
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ethan R Wyrsch
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tiziana Zingali
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Liu
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Aaron E Darling
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Toni A Chapman
- 2NSW Department of Primary Industries, Elizabeth MacArthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Steven P Djordjevic
- 1The i3 institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
21
|
Stork C, Kovács B, Rózsai B, Putze J, Kiel M, Dorn Á, Kovács J, Melegh S, Leimbach A, Kovács T, Schneider G, Kerényi M, Emödy L, Dobrindt U. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens. Front Microbiol 2018; 9:214. [PMID: 29491858 PMCID: PMC5817090 DOI: 10.3389/fmicb.2018.00214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising candidates for a more detailed assessment of relevant fitness traits in urine and their suitability for therapeutic bladder colonization.
Collapse
Affiliation(s)
- Christoph Stork
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Beáta Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.,First Department of Internal Medicine, University of Pécs, Pécs, Hungary
| | - Barnabás Rózsai
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Matthias Kiel
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ágnes Dorn
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Judit Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | | | | | - György Schneider
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Monika Kerényi
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Levente Emödy
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
22
|
Inactivation of Transcriptional Regulators during Within-Household Evolution of Escherichia coli. J Bacteriol 2017; 199:JB.00036-17. [PMID: 28439032 DOI: 10.1128/jb.00036-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 01/24/2023] Open
Abstract
We analyzed the within-household evolution of two household-associated Escherichia coli strains from pandemic clonal group ST131-H30, using isolates recovered from five individuals within two families, each of which had a distinct strain. Family 1's strain was represented by a urine isolate from the index patient (older sister) with recurrent cystitis and a blood isolate from her younger sister with fatal urosepsis. Family 2's strain was represented by a urine isolate from the index patient (father) with pyelonephritis and renal abscesses, blood and kidney drainage isolates from the daughter with emphysematous pyelonephritis, and urine and fecal isolates from the mother with cystitis. Collectively, the several variants of each family's strain had accumulated a total of 8 (family 1) and 39 (family 2) point mutations; no two isolates were identical. Of the 47 total mutations, 36 resulted in amino acid changes or truncation of coded proteins. Fourteen such mutations (39%) targeted genes encoding transcriptional regulators, and 9 (25%) involved DNA-binding transcription factors (TFs), which significantly exceeded the relative contribution of TF genes to the isolates' genomes (∼6%). At least one-half of the transcriptional regulator mutations were inactivating, based on phenotypic and/or transcriptional analysis. In particular, inactivating mutations in the global regulator LrhA (repressor of type 1 fimbriae and flagella) occurred in the blood isolates from both households and increased the virulence of E. coli strains in a murine sepsis model. The results indicate that E. coli undergoes adaptive evolution between and/or within hosts, generating subpopulations with distinctive phenotypes and virulence potential.IMPORTANCE The clonal evolution of bacterial strains associated with interhost transmission is poorly understood. We characterized the genome sequences of clonal descendants of two Escherichia coli strains, recovered at different time points from multiple individuals within two households who had different types of urinary tract infection. We found evidence that the E. coli strains underwent extensive mutational diversification between and within these individuals, driven disproportionately by inactivation of transcriptional regulators. In urosepsis isolates, the mutations observed in the global regulator LrhA increased bacterial virulence in a murine sepsis model. Our findings help in understanding the adaptive dynamics and strategies of E. coli during short-term natural evolution.
Collapse
|
23
|
Diard M, Hardt WD. Evolution of bacterial virulence. FEMS Microbiol Rev 2017; 41:679-697. [DOI: 10.1093/femsre/fux023] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
|
24
|
de Souza da-Silva AP, de Sousa VS, Martins N, da Silva Dias RC, Bonelli RR, Riley LW, Moreira BM. Escherichia coli sequence type 73 as a cause of community acquired urinary tract infection in men and women in Rio de Janeiro, Brazil. Diagn Microbiol Infect Dis 2017; 88:69-74. [PMID: 28214224 PMCID: PMC5392417 DOI: 10.1016/j.diagmicrobio.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Escherichia coli clones ST131, ST69, ST95, and ST73 are frequent causes of urinary tract infections (UTI) and bloodstream infections. Specific clones and virulence profiles of E. coli causing UTI in men has been rarely described. The aim of this study was to characterize patient and clonal characteristics of community-acquired UTI caused by E. coli in men (n=12) and women (n=127) in Rio de Janeiro, Brazil, complementing a previous work. We characterized isolates in phylogenetic groups, ERIC2-PCR and PFGE types, MLST, genome similarity and virulence gene-profiles. UTI from men were more frequently caused by phylogenetic group B2 isolates (83% versus 42%, respectively, P = 0.01), a group with significantly higher virulence scores compared with women. ST73 was the predominant clone in men (50%) and the second most frequent in women (12%), with the highest virulence score (mean and median=9) among other clones. ST73 gnomes formed at least six clusters. E. coli from men carried significantly higher numbers of virulence genes, such as sfa/focDE (67% versus 27%), hlyA (58% versus 24%), cnf 1 (58% versus 16%), fyuA (100% versus 82%) and MalX (92% versus 44%), compared with isolates from women. These data suggest the predominance and spread of ST73 isolates likely relates to an abundance of virulence determinants.
Collapse
Affiliation(s)
| | - Viviane Santos de Sousa
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil
| | - Natacha Martins
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil
| | | | - Raquel Regina Bonelli
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil
| | - Lee W Riley
- School of Public Health, University of California, Berkeley, CA
| | - Beatriz Meurer Moreira
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
25
|
Tabasi M, Karam MRA, Habibi M, Mostafavi E, Bouzari S. Genotypic Characterization of Virulence Factors in Escherichia coli Isolated from Patients with Acute Cystitis, Pyelonephritis and Asymptomatic Bacteriuria. J Clin Diagn Res 2016; 10:DC01-DC07. [PMID: 28208853 DOI: 10.7860/jcdr/2016/21379.9009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Urinary Tract Infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most common infections worldwide. It is well-documented that the pathogenesis of UPEC is mediated by the production of a wide variety of Virulence Factors (VFs). Thus, detection of these VFs and evaluation of their association with different clinical types of UTIs could help to understand the role of these factors in pathogenesis of UPEC isolates. AIM To investigate the genotypic characteristics of UPEC isolates and to examine the relationship between VFs and different clinical symptoms of UTI. MATERIALS AND METHODS In this cross-sectional study conducted at Pasteur Institute of Iran, a total of 156 UPEC isolated from outpatients and inpatients (symptomatic and asymptomatic UTI patients) visiting general and private hospitals in Tehran, Iran between March 2014 and February 2015 were included. Among them, 49 patients experienced at least one episode of recurrent UTI. A Polymerase Chain Reaction (PCR) assay was developed to detect the presence of different VFs in the isolates. Moreover, Pulsed-Field Gel Electrophoresis (PFGE) was used to characterize clonal relationships among UPEC isolates. RESULTS The prevalence of virulence genes ranged from 0% for cdtB to 100% for fimH. The papEF, hlyA and aer genes were found to be significantly more frequent in UPEC isolated from patients with pyelonephritis, while the afa gene, the only indicator of recurrent UTIs, was more prevalent in UPEC isolated from patients with cystitis. In the present study, 34 PFGE clonal groups were found in the UPEC genome. CONCLUSION Our findings showed that from outpatients and patients with pyelonephritis, isolates were more virulent than those isolated from inpatients and cystitis patients, respectively. PFGE displayed a large diversity in the UPEC isolates that could be considered as an evolutionary strategy in the survival of the bacteria.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Student, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Mohammad Reza Asadi Karam
- Assistant Professor, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Mehri Habibi
- Assistant Professor, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Ehsan Mostafavi
- Associate Professor, Department of Epidemiology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| | - Saeid Bouzari
- Professor, Department of Molecular Biology, Pasteur Institute of Iran , Pasteur Ave., Tehran-13164, Iran
| |
Collapse
|
26
|
Srivastava S, Agarwal J, Mishra B, Srivastava R. Virulence versus fitness determinants in Escherichia coli isolated from asymptomatic bacteriuria in healthy nonpregnant women. Indian J Med Microbiol 2016; 34:46-51. [PMID: 26776118 DOI: 10.4103/0255-0857.174103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Escherichia coli isolated from asymptomatic bacteriuria (ABU) correlated genotypically and phenotypically with cystitis isolates may help in distinguishing urovirulence determinants from 'fitness factors', latter necessary only for survival of E. coli in urinary tract; for gaining insight into the pathogenesis of urinary tract infection. MATERIALS AND METHODS In this cross-sectional study, we compared genotypic (phylogroups and 15 putative virulence genes), and phenotypic profiles of ABU E. coli strains with our previously genotyped collection of cystitis isolates. Virulence score was calculated for each isolate as a number of virulence genes detected. RESULTS Significant differences were observed in the proportion of four phylogenetic groups (P=0.009) amongst cystitis and ABU isolates. Average virulence score was higher for ABU isolates (6.6) than cystitis strains (4.2); and hlyA (P=0.001), cytotoxic necrotising factor 1 (P=0.00), fyuA (P=0.00), ibeA (P=0.00), kpsMII (P=0.01), and malX/pathogenicity-associated island (P=0.01) were more frequently present in ABU strains. CONCLUSIONS The expression of adhesins, haemolysin, aerobactin, and capsule synthesis gene were similar in two groups suggesting their role as fitness factors. ABU isolates were better biofilm producers, reflecting its importance in silent persistence. Serum resistance gene which was more expressed in cystitis isolates may represent virulence determinant. Genetic makeup of E. coli does not change much rather genes helping in survival and colonisation are expressed equally in ABU and cystitis isolates as opposed to phenotypic attenuation of those that helps in invasion or inflammation in ABU isolates.
Collapse
Affiliation(s)
| | - Jyotsna Agarwal
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | | | |
Collapse
|
27
|
Otto A, Biran D, Sura T, Becher D, Ron EZ. Proteomics of septicemic Escherichia coli. Proteomics Clin Appl 2016; 10:1020-1024. [DOI: 10.1002/prca.201600049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Otto
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Dvora Biran
- Department of Molecular Microbiology and Biotechnology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Thomas Sura
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Dörte Becher
- Institute for Microbiology; Ernst-Moritz-Arndt Universität; Greifswald Germany
| | - Eliora Z. Ron
- Department of Molecular Microbiology and Biotechnology; Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
28
|
Muenzner P, Kengmo Tchoupa A, Klauser B, Brunner T, Putze J, Dobrindt U, Hauck CR. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa. PLoS Pathog 2016; 12:e1005608. [PMID: 27171273 PMCID: PMC4865239 DOI: 10.1371/journal.ppat.1005608] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 04/11/2016] [Indexed: 11/18/2022] Open
Abstract
Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. Mucous surfaces are a hallmark of the nasal cavity and the throat as well as the intestinal and urogenital tracts. These surfaces serve as primary entry portals for a large number of pathogenic bacteria. To get a foothold on the mucosa, bacteria not only need to tightly attach to this tissue, but also need to overcome an intrinsic defence mechanism called exfoliation. During the exfoliation process, the outermost cell layer, together with attached bacteria, is released from the tissue surface reducing the microbial burden. A comprehensive understanding of the molecular strategies, which bacteria utilize to undermine this host defence, is currently lacking. Our results suggest that different bacterial pathogens have found a surprisingly similar answer to this problem by targeting a common set of proteins on the tissue surface. Accordingly, these bacteria express unrelated proteins that engage the same host receptors called CEA-related cell adhesion molecules (CEACAMs). Binding of microbes to CEACAMs triggers, via intracellular signaling pathways, an increased stickiness of the infected cells. Thereby, the pathogens suppress the release of superficial host cells from the tissue and effectively block exfoliation. Detailed mechanistic insight into this process and the ability to manipulate exfoliation might help to prevent or treat bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Arnaud Kengmo Tchoupa
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Benedikt Klauser
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Lehrstuhl Biochemische Pharmakologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Johannes Putze
- Institut für Hygiene, Universität Münster, Münster, Germany
| | | | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
29
|
Asymtomatic Bacteriuria as a Model to Study the Coevolution of Hosts and Bacteria. Pathogens 2016; 5:pathogens5010021. [PMID: 26891332 PMCID: PMC4810142 DOI: 10.3390/pathogens5010021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/21/2023] Open
Abstract
During asymptomatic bacteriuria (ABU), bacteria colonize the urinary tract for extended periods of time without causing symptoms of urinary tract infection. Previous studies indicate that many Escherichia coli (E. coli) strains that cause ABU have evolved from uropathogenic E. coli (UPEC) by reductive evolution and loss of the ability to express functional virulence factors. For instance, the prototype ABU strain 83972 has a smaller genome than UPEC strains with deletions or point mutations in several virulence genes. To understand the mechanisms of bacterial adaptation and to find out whether the bacteria adapt in a host-specific manner, we compared the complete genome sequences of consecutive reisolates of ABU strain 83972 from different inoculated individuals and compared them with the genome of the parent strain. Reisolates from different hosts exhibited individual patterns of genomic alterations. Non-synonymous SNPs predominantly occurred in coding regions and often affected the amino acid sequence of proteins with global or pleiotropic regulatory function. These gene products are involved in different bacterial stress protection strategies, and metabolic and signaling pathways. Our data indicate that adaptation of E. coli 83972 to prolonged growth in the urinary tract involves responses to specific growth conditions and stresses present in the individual hosts. Accordingly, modulation of gene expression required for survival and growth under stress conditions seems to be most critical for long-term growth of E. coli 83972 in the urinary tract.
Collapse
|
30
|
Ipe DS, Horton E, Ulett GC. The Basics of Bacteriuria: Strategies of Microbes for Persistence in Urine. Front Cell Infect Microbiol 2016; 6:14. [PMID: 26904513 PMCID: PMC4744864 DOI: 10.3389/fcimb.2016.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
Bacteriuria, the presence of bacteria in urine, is associated with asymptomatic, as well as symptomatic, urinary tract infection (UTI). Bacteriuria underpins some of the dynamics of microbial colonization of the urinary tract, and probably impacts the progression and persistence of infection in some individuals. Recent molecular discoveries in vitro have elucidated how some key bacterial traits can enable organisms to survive and grow in human urine as a means of microbial fitness adaptation for UTI. Several microbial characteristics that confer bacteruric potential have been identified including de novo synthesis of guanine, relative resistance to D-serine, and catabolism of malic acid. Microbial characteristics such as these are increasingly being defined through the use of synthetic human urine (SHU) in vitro as a model to mimic the in vivo environment that bacteria encounter in the bladder. There is considerable variation in the SHU model systems that have been used to study bacteriuria to date, and this influences the utility of these models. In this review, we discuss recent advances in our understanding of bacteruric potential with a focus on the specific mechanisms underlying traits that promote the growth of bacteria in urine. We also review the application of SHU in research studies modeling UTI and discuss the chemical makeup, and benefits and limitations that are encountered in utilizing SHU to study bacterial growth in urine in vitro.
Collapse
Affiliation(s)
| | | | - Glen C. Ulett
- School of Medical Science, Menzies Health Institute Queensland, Griffith UniversityGold Coast, QLD, Australia
| |
Collapse
|
31
|
Genetic Evaluation of E. coli Strains Isolated from Asymptomatic Children with Neurogenic Bladders. Int J Chronic Dis 2015; 2015:206570. [PMID: 26609542 PMCID: PMC4644559 DOI: 10.1155/2015/206570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/27/2022] Open
Abstract
This study was conducted to describe the genetic profiles of E. coli that colonize asymptomatic pediatric neurogenic bladders. E. coli was isolated from 25 of 80 urine samples. Patients were excluded if they presented with symptomatic urinary tract infection or received treatment with antibiotics in the preceding three months. Multiplex PCR was performed to determine E. coli phylotype (A, B1, B2, and D) and the presence of seven pathogenicity islands (PAIs) and 10 virulence factors (VFs). E. coli strains were predominantly of the B1 and B2 phylotype, with few strains in the A or D phylotype. The PAIs IV536, ICFT073, and IICFT073 had the highest prevalence: 76%, 64%, and 48%, respectively. The PAIs II536, IJ96, and IIJ96 were less prevalent: 28%, 20%, and 24%, respectively. The most prevalent VF was vat (40%), while the least prevalent VFs were sfa (8%) and iha (12%). None of the strains carried the VF fyuA, which is very common in uropathogenic E. coli (UPEC). The genetic profiles of E. coli in this cohort seem to be more similar to UPEC than to commensal E. coli. However, they appear to have reduced virulence potential that allows them to colonize asymptomatically.
Collapse
|
32
|
Dale AP, Woodford N. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect 2015; 71:615-26. [PMID: 26409905 DOI: 10.1016/j.jinf.2015.09.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) have a complex phylogeny, broad virulence factor (VF) armament and significant genomic plasticity, and are associated with a spectrum of host infective syndromes ranging from simple urinary tract infection to life-threatening bacteraemia. Their importance as pathogens has come to the fore in recent years, particularly in the context of the global emergence of hyper-virulent and antibiotic resistant strains. Despite this, the mechanisms underlying ExPEC transmission dynamics and clonal selection remain poorly understood. Large-scale epidemiological and clinical studies are urgently required to ascertain the mechanisms underlying these processes to enable the development of novel evidence-based preventative and therapeutic strategies. In the current review, we provide a concise summary of the methods utilised for ExPEC phylogenetic delineation before exploring in detail the associations between ExPEC VFs and site-specific disease. We then consider the role of ExPEC as an intestinal colonist and outline known associations between ExPEC clonal variation, specific disease syndromes and antibiotic resistance.
Collapse
Affiliation(s)
- Adam P Dale
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, South Academic Block, Tremona Road, Southampton SO16 6YD, UK.
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Reference Microbiology Services, Public Health England, London NW9 5EQ, UK; The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
33
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
34
|
Piñero-Lambea C, Bodelón G, Fernández-Periáñez R, Cuesta AM, Álvarez-Vallina L, Fernández LÁ. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth Biol 2015; 4:463-73. [PMID: 25045780 PMCID: PMC4410913 DOI: 10.1021/sb500252a] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
In this work we report synthetic
adhesins (SAs) enabling the rational
design of the adhesion properties of E. coli. SAs
have a modular structure comprising a stable β-domain for outer
membrane anchoring and surface-exposed immunoglobulin domains with
high affinity and specificity that can be selected from large repertoires.
SAs are constitutively and stably expressed in an E. coli strain lacking a conserved set of natural adhesins, directing a
robust, fast, and specific adhesion of bacteria to target antigenic
surfaces and cells. We demonstrate the functionality of SAs in vivo, showing that, compared to wild type E.
coli, lower doses of engineered E. coli are
sufficient to colonize solid tumors expressing an antigen recognized
by the SA. In addition, lower levels of engineered bacteria were found
in non-target tissues. Therefore, SAs provide stable and specific
adhesion capabilities to E. coli against target surfaces
of interest for diverse applications using live bacteria.
Collapse
Affiliation(s)
- Carlos Piñero-Lambea
- Department
of Microbial Biotechnology, Centro Nacional de Biotecnología
(CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Gustavo Bodelón
- Department
of Microbial Biotechnology, Centro Nacional de Biotecnología
(CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| | | | - Angel M. Cuesta
- Molecular
Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Luis Álvarez-Vallina
- Molecular
Immunology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, 28222 Madrid, Spain
| | - Luis Ángel Fernández
- Department
of Microbial Biotechnology, Centro Nacional de Biotecnología
(CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
35
|
Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition. Infect Immun 2015; 83:1749-64. [PMID: 25667270 DOI: 10.1128/iai.02810-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
Collapse
|
36
|
Starčič Erjavec M, Žgur-Bertok D. Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans--the Trojan horse within our gut. FEMS Microbiol Lett 2015; 362:fnu061. [PMID: 25657191 DOI: 10.1093/femsle/fnu061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous investigations have indicated that the reservoir of extraintestinal pathogenic Escherichia coli (ExPEC) strains is the intestinal microbiota. Nevertheless, studies focused on the prevalence of potential ExPEC strains among the bowel microbiota in healthy human individuals practically do not exist and a strong bias towards pathogenic strains among the E. coli data set is obvious. To assess the prevalence of potential ExPEC strains among E. coli from the intestinal microbiota of healthy humans, we performed a search for data on the prevalence of virulence-associated genes and pathogenicity islands among fecal E. coli found in published studies, including studies comparing isolates from patients suffering from extraintestinal E. coli infections with E. coli from feces of healthy humans. An extensive literature search, including more than 500 published papers, revealed 24 papers with data on prevalences of ≥ 5 virulence-associated genes among 21 E. coli collections including ≥ 20 fecal/rectal strains obtained from healthy individuals and 4 papers with prevalences of pathogenicity islands among E. coli collections from healthy humans. The gathered data are presented in this minireview and clearly show that potential ExPEC strains are present among fecal isolates with a prevalence of around ≥ 10%.
Collapse
Affiliation(s)
| | - Darja Žgur-Bertok
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
37
|
Robino L, García-Fulgueiras V, Araujo L, Algorta G, Pírez MC, Vignoli R. Urinary tract infection in Uruguayan children: Aetiology, antimicrobial resistance and uropathogenic Escherichia coli virulotyping. J Glob Antimicrob Resist 2014; 2:293-298. [PMID: 27873690 DOI: 10.1016/j.jgar.2014.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most frequent cause of urinary tract infection (UTI). Virulence factors (VFs) of UPEC in children are not well known. Circulating antibiotic resistance mechanisms in the community are increasing. In this study, the aetiological agents of UTI and antibiotic resistance mechanisms of 124 strains isolated from urine cultures from children with community-acquired UTI were determined. Virulotyping of isolated E. coli strains was also described. β-Lactam, fluoroquinolone and sulfonamide resistance genes as well as integrons were detected by PCR. E. coli phylogenetic groups and 25 VFs were sought by multiplex PCR. E. coli was the most frequent aetiological agent (88.7%), of which 48.2% belonged to phylogenetic group D and 35.5% to group B2. Moreover, 81.8% were considered UPEC and >93% had virulence structures, with kpsMTII, fimH and iutA being the most frequent. Most of the E. coli isolates were susceptible to amoxicillin/clavulanic acid (AMC) (87.3%), nitrofurantoin (97.3%), cefuroxime and third-generation cephalosporins (100%). Resistance levels to oxyimino-cephalosporins were higher in non-E. coli isolates, with circulation of integrons, blaCTX-M-2 and blaCMY-2 detected in the community. Moreover, 8.1% of isolates were resistant to fluoroquinolones, with qnrB found in two isolates. Resistance to trimethoprim/sulfamethoxazole was found in 37.9% of isolates, with 85.5% harbouring sul genes. E. coli isolated from children with UTI presented high rates of VFs. Nitrofurantoin, AMC and cefuroxime would be suitable antibiotics to treat UTI in children. However, the presence of integrons (fundamentally class 1) and circulation of broad-spectrum β-lactamases in the community makes continuous surveillance necessary.
Collapse
Affiliation(s)
- Luciana Robino
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Virginia García-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Lucía Araujo
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay
| | - Gabriela Algorta
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay; Laboratorio Central del Centro Hospitalario Pereira Rossell, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Maria Catalina Pírez
- Departamento de Pediatría, Centro Hospitalario Pereira Rossell, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Alfredo Navarro 3051, CP: 11600 Montevideo, Uruguay.
| |
Collapse
|
38
|
Gomes LC, Silva LN, Simões M, Melo LF, Mergulhão FJ. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. J Biomed Mater Res A 2014; 103:1414-23. [PMID: 25044887 DOI: 10.1002/jbm.a.35277] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/22/2014] [Accepted: 07/09/2014] [Indexed: 11/11/2022]
Abstract
The aim of this work was to test materials typically used in the construction of medical devices regarding their influence in the initial adhesion, biofilm development and antibiotic susceptibility of Escherichia coli biofilms. Adhesion and biofilm development was monitored in 12-well microtiter plates containing coupons of different biomedical materials--silicone (SIL), stainless steel (SS) and polyvinyl chloride (PVC)--and glass (GLA) as control. The susceptibility of biofilms to ciprofloxacin and ampicillin was assessed, and the antibiotic effect in cell morphology was observed by scanning electron microscopy. The surface hydrophobicity of the bacterial strain and materials was also evaluated from contact angle measurements. Surface hydrophobicity was related with initial E. coli adhesion and subsequent biofilm development. Hydrophobic materials, such as SIL, SS, and PVC, showed higher bacterial colonization than the hydrophilic GLA. Silicone was the surface with the greatest number of adhered cells and the biofilms formed on this material were also less susceptible to both antibiotics. It was found that different antibiotics induced different levels of elongation on E. coli sessile cells. Results revealed that, by affecting the initial adhesion, the surface properties of a given material can modulate biofilm buildup and interfere with the outcome of antimicrobial therapy. These findings raise the possibility of fine-tuning surface properties as a strategy to reach higher therapeutic efficacy.
Collapse
Affiliation(s)
- L C Gomes
- LEPABE - Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | | | | | | | | |
Collapse
|
39
|
Dull RB, Friedman SK, Risoldi ZM, Rice EC, Starlin RC, Destache CJ. Antimicrobial treatment of asymptomatic bacteriuria in noncatheterized adults: a systematic review. Pharmacotherapy 2014; 34:941-60. [PMID: 24807583 DOI: 10.1002/phar.1437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Asymptomatic bacteriuria (ASB) is a common clinical finding characterized by the presence of bacteria in the urine of an individual without signs or symptoms suggestive of urinary tract infection. Despite available guidelines on the diagnosis and management of ASB, it is often managed inappropriately. We performed a systematic review of clinical trials evaluating antimicrobial therapy for ASB, identified translational barriers to evidence-based practice, and we offer strategies to optimize antimicrobial use for ASB. We conducted a systematic search of the PubMed, International Pharmaceutical Abstracts, Cumulative Index to Nursing and Allied Health databases, and the Cochrane Library. Randomized controlled trials, cohort trials, case-control studies, and meta-analyses published in the English language were included in this review if they addressed treatment of ASB with at least one antimicrobial agent in nonpregnant adults. Articles were excluded if they evaluated patients with indwelling urinary catheters or were not clinical trials. Of the 304 articles identified from the search, 287 were excluded; thus 17 articles met the inclusion criteria. Although treatment of ASB with antimicrobial therapy may improve short-term microbiologic outcomes, the clinical significance is diminished because the effect is not sustained, there is no measurable improvement in morbidity or mortality, and some data indicate that therapy is deleterious. Several translational barriers that preclude adoption of evidence-based practice are identified. Treatment guidelines may not achieve their desired effect and underscore the need for additional methods to translate clinical trial data into practice. Clinical pharmacists are a core member of the antimicrobial stewardship team and in an important position to participate in initiatives that promote appropriate antimicrobial use. We suggest a multifaceted approach consisting of education and frequent routine prospective audits with feedback coupled with appropriate process and outcome measures.
Collapse
Affiliation(s)
- Ryan B Dull
- Department of Pharmacy Practice, Creighton University School of Pharmacy and Health Professions, Omaha, Nebraska
| | | | | | | | | | | |
Collapse
|
40
|
Rare Emergence of Symptoms during Long-Term Asymptomatic Escherichia coli 83972 Carriage without an Altered Virulence Factor Repertoire. J Urol 2014; 191:519-28. [DOI: 10.1016/j.juro.2013.07.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2013] [Indexed: 12/27/2022]
|
41
|
|
42
|
Abstract
Urinary tract infections (UTIs) are among the most common of bacterial infections in humans. Although a number of Gram-negative bacteria can cause UTIs, most cases are due to infection by uropathogenic E. coli (UPEC). Genomic studies have shown that UPEC encode a number of specialized activities that allow the bacteria to initiate and maintain infections in the environment of the urinary tract. Proteomic analyses have complemented the genomic data and have documented differential patterns of protein synthesis for bacteria growing ex vivo in human urine or recovered directly from the urinary tracts of infected mice. These studies provide valuable insights into the molecular basis of UPEC pathogenesis and have aided the identification of putative vaccine targets. Despite the substantial progress that has been achieved, many future challenges remain in the application of proteomics to provide a comprehensive view of bacterial pathogenesis in both acute and chronic UTIs.
Collapse
Affiliation(s)
- Phillip Cash
- Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB32 6QX, Scotland
| |
Collapse
|
43
|
Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 2013; 28:1-13. [PMID: 24484571 DOI: 10.1016/j.idc.2013.09.003] [Citation(s) in RCA: 812] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections, accounting for 0.9% of all ambulatory visits in the United States. This review defines the major UTI syndromes, their occurrence and recurrence, bacteriology, risk factors, and disease burden.
Collapse
Affiliation(s)
- Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| |
Collapse
|
44
|
Ingersoll MA, Albert ML. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol 2013; 6:1041-53. [PMID: 24064671 DOI: 10.1038/mi.2013.72] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
The pathogenesis of urinary tract infection and mechanisms of the protective effect of Bacillus Calmette-Guerin (BCG) therapy for bladder cancer highlight the importance of studying the bladder as a unique mucosal surface. Innate responses to bacteria are reviewed, and although our collective knowledge remains incomplete, we discuss how adaptive immunity may be generated following bacterial challenge in the bladder microenvironment. Interestingly, the widely held belief that the bladder is sterile has been challenged recently, indicating the need for further study of the impact of commensal microorganisms on the immune response to uropathogen infection or intentional instillation of BCG. This review addresses the aspects of bladder biology that have been well explored and defines what still must be discovered about the immunobiology of this understudied organ.
Collapse
Affiliation(s)
- M A Ingersoll
- 1] Unité d'Immunobiologie des Cellules Dendritiques, Department of Immunology, Institut Pasteur, Paris, France [2] INSERM U818, Department of Immunology, Institut Pasteur, Paris, France [3] Université Paris Descartes, Paris, France
| | | |
Collapse
|
45
|
Yun KW, Kim HY, Park HK, Kim W, Lim IS. Virulence factors of uropathogenic Escherichia coli of urinary tract infections and asymptomatic bacteriuria in children. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:455-61. [PMID: 24064288 DOI: 10.1016/j.jmii.2013.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/05/2013] [Accepted: 07/26/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE The clinical aspects of virulence genes of uropathogenic Escherichia coli (UPEC) are not fully understood. This study compared the presence of virulence genes in UPEC isolated from urinary tract infections (UTIs) and asymptomatic bacteriuria (ABU) in children. METHODS The study included children with UTI (n = 15) or ABU (n = 49) treated at Chung-Ang University Yongsan Hospital between 2010 and 2011. The strains were acquired from each urine sample collected, and 18 major virulence genes were detected by polymerase chain reaction. Antimicrobial susceptibility of all UPEC isolates was determined. RESULTS Sixty-four E. coli strains were isolated from the urine samples. The most commonly identified virulence gene in both groups was fimH (100.0% in the UTI group and 95.9% in the ABU group). The UTI isolates showed a higher prevalence of papEF and fyuA, and a lower prevalence of feoB than ABU isolates (p < 0.01 for all). The profile of virulence gene, fimH(+)kpsMTII(+)feoB(+) also showed a significant difference between the two groups (p < 0.01). Isolates from ABU were more resistant to most antimicrobials tested. The presence of papEF, feoB, and fyuA also correlated with the antimicrobial susceptibility of UPEC. CONCLUSION The virulence gene repertoire was different in the UPEC of UTI and ABU. The papEF, feoB, and fyuA genes showed meaningful differences between the two groups and may have an important role in the pathogenesis of overt UTI.
Collapse
Affiliation(s)
- Ki Wook Yun
- Department of Pediatrics, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hak Young Kim
- Department of Pediatrics, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Hee Kuk Park
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Wonyong Kim
- Department of Microbiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - In Seok Lim
- Department of Pediatrics, College of Medicine, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
46
|
Boehme AK, Kumar AD, Dorsey AM, Siegler JE, Aswani MS, Lyerly MJ, Monlezun DJ, George AJ, Albright KC, Beasley TM, Martin-Schild S. Infections present on admission compared with hospital-acquired infections in acute ischemic stroke patients. J Stroke Cerebrovasc Dis 2013; 22:e582-9. [PMID: 23954599 DOI: 10.1016/j.jstrokecerebrovasdis.2013.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To date, few studies have assessed the influence of infections present on admission (POA) compared with hospital-acquired infections (HAIs) on neurologic deterioration (ND) and other outcome measures in acute ischemic stroke (AIS). METHODS Patients admitted with AIS to our stroke center (July 2010 to December 2010) were retrospectively assessed. The following infections were assessed: urinary tract infection, pneumonia, and bacteremia. Additional chart review was performed to determine whether the infection was POA or HAI. We assessed the relationship between infections in ischemic stroke patients and several outcome measures including ND and poor functional outcome. A mediation analysis was performed to assess the indirect effects of HAI, ND, and poor functional outcome. RESULTS Of the 334 patients included in this study, 77 had any type of infection (23 POA). After adjusting for age, National Institutes of Health Stroke Scale at baseline, glucose on admission, and intravenous tissue plasminogen activator, HAI remained a significant predictor of ND (odds ratio [OR]=8.8, 95% confidence interval [CI]: 4.2-18.7, P<.0001) and poor functional outcome (OR=41.7, 95% CI: 5.2-337.9, P=.005), whereas infections POA were no longer associated with ND or poor functional outcome. In an adjusted analysis, we found that 57% of the effect from HAI infections on poor functional outcome is because of mediation through ND (P<.0001). CONCLUSIONS Our data suggests that HAI in AIS patients increases the odds of experiencing ND and subsequently increases the odds of being discharged with significant disability. This mediated effect suggests a preventable cause of ND that can thereby decrease the odds of poor functional outcomes after an AIS.
Collapse
Affiliation(s)
- Amelia K Boehme
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama; Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lutay N, Ambite I, Grönberg Hernandez J, Rydström G, Ragnarsdóttir B, Puthia M, Nadeem A, Zhang J, Storm P, Dobrindt U, Wullt B, Svanborg C. Bacterial control of host gene expression through RNA polymerase II. J Clin Invest 2013; 123:2366-79. [PMID: 23728172 DOI: 10.1172/jci66451] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/27/2013] [Indexed: 01/25/2023] Open
Abstract
The normal flora furnishes the host with ecological barriers that prevent pathogen attack while maintaining tissue homeostasis. Urinary tract infections (UTIs) constitute a highly relevant model of microbial adaptation in which some patients infected with Escherichia coli develop acute pyelonephritis, while other patients with bacteriuria exhibit an asymptomatic carrier state similar to bacterial commensalism. It remains unclear if the lack of destructive inflammation merely reflects low virulence or if carrier strains actively inhibit disease-associated responses in the host. Here, we identify a new mechanism of bacterial adaptation through broad suppression of RNA polymerase II–dependent (Pol II–dependent) host gene expression. Over 60% of all genes were suppressed 24 hours after human inoculation with the prototype asymptomatic bacteriuria (ABU) strain E. coli 83972, and inhibition was verified by infection of human cells. Specific repressors and activators of Pol II–dependent transcription were modified, Pol II phosphorylation was inhibited, and pathogen-specific signaling was suppressed in cell lines and inoculated patients. An increased frequency of strains inhibiting Pol II was epidemiologically verified in ABU and fecal strains compared with acute pyelonephritis, and a Pol II antagonist suppressed the disease-associated host response. These results suggest that by manipulating host gene expression, ABU strains promote tissue integrity while inhibiting pathology. Such bacterial modulation of host gene expression may be essential to sustain asymptomatic bacterial carriage by ensuring that potentially destructive immune activation will not occur.
Collapse
Affiliation(s)
- Nataliya Lutay
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ipe DS, Sundac L, Benjamin WH, Moore KH, Ulett GC. Asymptomatic bacteriuria: prevalence rates of causal microorganisms, etiology of infection in different patient populations, and recent advances in molecular detection. FEMS Microbiol Lett 2013; 346:1-10. [DOI: 10.1111/1574-6968.12204] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/16/2013] [Accepted: 06/20/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Deepak S. Ipe
- School of Medical Sciences; Centre for Medicine and Oral Health; Griffith University; Gold Coast; QLD; Australia
| | - Lana Sundac
- Department of Medicine; Gold Coast Hospital; Southport; QLD; Australia
| | | | - Kate H. Moore
- Department of Urogynaecology; The St George Hospital; University of New South Wales; Sydney; NSW; Australia
| | - Glen C. Ulett
- School of Medical Sciences; Centre for Medicine and Oral Health; Griffith University; Gold Coast; QLD; Australia
| |
Collapse
|
49
|
Spectrum of bacterial colonization associated with urothelial cells from patients with chronic lower urinary tract symptoms. J Clin Microbiol 2013; 51:2054-62. [PMID: 23596238 DOI: 10.1128/jcm.03314-12] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic lower urinary tract symptoms (LUTS), such as urgency and incontinence, are common, especially among the elderly, but their etiology is often obscure. Recent studies of acute urinary tract infections implicated invasion by Escherichia coli into the cytoplasm of urothelial cells, with persistence of long-term bacterial reservoirs, but the role of infection in chronic LUTS is unknown. We conducted a large prospective study with eligible patients with LUTS and controls over a 3-year period, comparing routine urine cultures of planktonic bacteria with cultures of shed urothelial cells concentrated in centrifuged urinary sediments. This comparison revealed large numbers of bacteria undetected by routine cultures. Next, we typed the bacterial species cultured from patient and control sediments under both aerobic and anaerobic conditions, and we found that the two groups had complex but significantly distinct profiles of bacteria associated with their shed bladder epithelial cells. Strikingly, E. coli, the organism most responsible for acute urinary tract infections, was not the only or even the main offending pathogen in this more-chronic condition. Antibiotic protection assays with shed patient cells and in vitro infection studies using patient-derived strains in cell culture suggested that LUTS-associated bacteria are within or extremely closely associated with shed epithelial cells, which explains how routine cultures might fail to detect them. These data have strong implications for the need to rethink our common diagnoses and treatments of chronic urinary tract symptoms.
Collapse
|
50
|
Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, Riddell K, Rogers P, Qin X, Butler-Wu S, Price LB, Aziz M, Nicolas-Chanoine MH, Debroy C, Robicsek A, Hansen G, Urban C, Platell J, Trott DJ, Zhanel G, Weissman SJ, Cookson BT, Fang FC, Limaye AP, Scholes D, Chattopadhyay S, Hooper DC, Sokurenko EV. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 2013; 207:919-28. [PMID: 23288927 DOI: 10.1093/infdis/jis933] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fluoroquinolone-resistant Escherichia coli are increasingly prevalent. Their clonal origins--potentially critical for control efforts--remain undefined. METHODS Antimicrobial resistance profiles and fine clonal structure were determined for 236 diverse-source historical (1967-2009) E. coli isolates representing sequence type ST131 and 853 recent (2010-2011) consecutive E. coli isolates from 5 clinical laboratories in Seattle, Washington, and Minneapolis, Minnesota. Clonal structure was resolved based on fimH sequence (fimbrial adhesin gene: H subclone assignments), multilocus sequence typing, gyrA and parC sequence (fluoroquinolone resistance-determining loci), and pulsed-field gel electrophoresis. RESULTS Of the recent fluoroquinolone-resistant clinical isolates, 52% represented a single ST131 subclonal lineage, H30, which expanded abruptly after 2000. This subclone had a unique and conserved gyrA/parC allele combination, supporting its tight clonality. Unlike other ST131 subclones, H30 was significantly associated with fluoroquinolone resistance and was the most prevalent subclone among current E. coli clinical isolates, overall (10.4%) and within every resistance category (11%-52%). CONCLUSIONS Most current fluoroquinolone-resistant E. coli clinical isolates, and the largest share of multidrug-resistant isolates, represent a highly clonal subgroup that likely originated from a single rapidly expanded and disseminated ST131 strain. Focused attention to this strain will be required to control the fluoroquinolone and multidrug-resistant E. coli epidemic.
Collapse
Affiliation(s)
- James R Johnson
- Veterans Affairs Medical Center and University of Minnesota, Minneapolis, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|