1
|
Clarke A, Llabona IM, Khalid N, Hulvey D, Irvin A, Adams N, Heine HS, Eshraghi A. Tolfenpyrad displays Francisella-targeted antibiotic activity that requires an oxidative stress response regulator for sensitivity. Microbiol Spectr 2023; 11:e0271323. [PMID: 37800934 PMCID: PMC10848828 DOI: 10.1128/spectrum.02713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Francisella species are highly pathogenic bacteria that pose a threat to global health security. These bacteria can be made resistant to antibiotics through facile methods, and we lack a safe and protective vaccine. Given their history of development as bioweapons, new treatment options must be developed to bolster public health preparedness. Here, we report that tolfenpyrad, a pesticide that is currently in use worldwide, effectively inhibits the growth of Francisella. This drug has an extensive history of use and a plethora of safety and toxicity data, making it a good candidate for development as an antibiotic. We identified mutations in Francisella novicida that confer resistance to tolfenpyrad and characterized a transcriptional regulator that is required for sensitivity to both tolfenpyrad and reactive oxygen species.
Collapse
Affiliation(s)
- Ashley Clarke
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Isabelle M. Llabona
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nimra Khalid
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Danielle Hulvey
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Alexis Irvin
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Nicole Adams
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| | - Henry S. Heine
- Institute for Therapeutic Innovation, University of Florida, Orlando, Florida, USA
| | - Aria Eshraghi
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Mlynek KD, Bozue JA. Why vary what's working? Phase variation and biofilm formation in Francisella tularensis. Front Microbiol 2022; 13:1076694. [PMID: 36560950 PMCID: PMC9763628 DOI: 10.3389/fmicb.2022.1076694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The notoriety of high-consequence human pathogens has increased in recent years and, rightfully, research efforts have focused on understanding host-pathogen interactions. Francisella tularensis has been detected in an impressively broad range of vertebrate hosts as well as numerous arthropod vectors and single-celled organisms. Two clinically important subspecies, F. tularensis subsp. tularensis (Type A) and F. tularensis subsp. holarctica (Type B), are responsible for the majority of tularemia cases in humans. The success of this bacterium in mammalian hosts can be at least partly attributed to a unique LPS molecule that allows the bacterium to avoid detection by the host immune system. Curiously, phase variation of the O-antigen incorporated into LPS has been documented in these subspecies of F. tularensis, and these variants often display some level of attenuation in infection models. While the role of phase variation in F. tularensis biology is unclear, it has been suggested that this phenomenon can aid in environmental survival and persistence. Biofilms have been established as the predominant lifestyle of many bacteria in the environment, though, it was previously thought that Type A and B isolates of F. tularensis typically form poor biofilms. Recent studies question this ideology as it was shown that alteration of the O-antigen allows robust biofilm formation in both Type A and B isolates. This review aims to explore the link between phase variation of the O-antigen, biofilm formation, and environmental persistence with an emphasis on clinically relevant subspecies and how understanding these poorly studied mechanisms could lead to new medical countermeasures to combat tularemia.
Collapse
|
3
|
Goel P, Panchal T, Kaushik N, Chauhan R, Saini S, Ahuja V, Thakur CJ. In silico functional and structural characterization revealed virulent proteins of Francisella tularensis strain SCHU4. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:73-84. [PMID: 36059929 PMCID: PMC9336787 DOI: 10.22099/mbrc.2022.43128.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Francisella tularensis is a pathogenic, aerobic gram-negative coccobacillus bacterium. It is the causative agent of tularemia, a rare infectious disease that can attack skin, lungs, eyes, and lymph nodes. The genome of F. tularensis has been sequenced, and ~16% of the proteome is still uncharacterized. Characterizations of these proteins are essential to find new drug targets for better therapeutics. In silico characterization of proteins has become an extremely important approach to determine the functionality of proteins as experimental functional elucidation is unable to keep pace with the current growth of the sequence database. Initially, we have annotated 577 Hypothetical Proteins (HPs) of F. tularensis strain SCHU4 with seven bioinformatics tools which characterized them based on the family, domain and motif. Out of 577 HPs, 119 HPs were annotated by five or more tools and are further screened to predict their virulence properties, subcellular localization, transmembrane helices as well as physicochemical parameters. VirulentPred predicted 66 HPs out of 119 as virulent. These virulent proteins were annotated to find the interacting partner using STRING, and proteins with high confidence interaction scores were used to predict their 3D structures using Phyre2. The three virulent proteins Q5NH99 (phosphoserine phosphatase), Q5NG42 (Cystathionine beta-synthase) and Q5NG83 (Rrf2-type helix turn helix domain) were predicted to involve in modulation of cytoskeletal and innate immunity of host, H2S (hydrogen sulfide) based antibiotic tolerance and nitrite and iron metabolism of bacteria. The above predicted virulent proteins can serve as novel drug targets in the era of antibiotic resistance.
Collapse
Affiliation(s)
- Prerna Goel
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India
| | - Tanya Panchal
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India
| | - Nandini Kaushik
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India
| | - Ritika Chauhan
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India
| | - Sandeep Saini
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India,Department of Biophysics, Panjab University, Sector 25, 160014, Chandigarh, India
| | - Vartika Ahuja
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India
| | - Chander Jyoti Thakur
- Department of Bioinformatics, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32 C, Chandigarh, India,Corresponding Author: Department of Bioinformatics,Goswami Ganesh Dutta Sanatan Dharma College Sector 32 C, Chandigarh, India, 160030. Tel: +91 8699776533; Fax: +91 1722661077, E. mail:
| |
Collapse
|
4
|
Freudenberger Catanzaro KC, Lahmers KK, Allen IC, Inzana TJ. Alginate microencapsulation of an attenuated O-antigen mutant of Francisella tularensis LVS as a model for a vaccine delivery vehicle. PLoS One 2022; 17:e0259807. [PMID: 35275912 PMCID: PMC8916679 DOI: 10.1371/journal.pone.0259807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia and a Tier I Select Agent. Subspecies tularensis (Type A) is the most virulent of the four subspecies and inhalation of as few as 10 cells can cause severe disease in humans. Due to its niche as a facultative intracellular pathogen, a successful tularemia vaccine must induce a robust cellular immune response, which is best achieved by a live, attenuated strain. F. tularensis strains lacking lipopolysaccharide (LPS) O-antigen are highly attenuated, but do not persist in the host long enough to induce protective immunity. Increasing the persistence of an O-antigen mutant may help stimulate protective immunity. Alginate encapsulation is frequently used with probiotics to increase persistence of bacteria within the gastrointestinal system, and was used to encapsulate the highly attenuated LVS O-antigen mutant WbtIG191V. Encapsulation with alginate followed by a poly-L-lysine/alginate coating increased survival of WbtIG191V in complement-active serum. In addition, BALB/c mice immunized intraperitoneally with encapsulated WbtIG191V combined with purified LPS survived longer than mock-immunized mice following intranasal challenge. Alginate encapsulation of the bacteria also increased antibody titers compared to non-encapsulated bacteria. These data suggest that alginate encapsulation provides a slow-release vehicle for bacterial deposits, as evidenced by the increased antibody titer and increased persistence in serum compared to freely suspended cells. Survival of mice against high-dose intranasal challenge with the LVS wildtype was similar between mice immunized within alginate capsules or with LVS, possibly due to the low number of animals used, but bacterial loads in the liver and spleen were the lowest in mice immunized with WbtIG191V and LPS in beads. However, an analysis of the immune response of surviving mice indicated that those vaccinated with the alginate vehicle upregulated cell-mediated immune pathways to a lesser extent than LVS-vaccinated mice. In summary, this vehicle, as formulated, may be more effective for pathogens that require predominately antibody-mediated immunity.
Collapse
Affiliation(s)
- Kelly C. Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kevin K. Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Thomas J. Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- College of Veterinary Medicine, Long Island University, Brookville, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
More than a Pore: Nonlytic Antimicrobial Functions of Complement and Bacterial Strategies for Evasion. Microbiol Mol Biol Rev 2021; 85:85/1/e00177-20. [PMID: 33504655 DOI: 10.1128/mmbr.00177-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The complement system is an evolutionarily ancient defense mechanism against foreign substances. Consisting of three proteolytic activation pathways, complement converges on a common effector cascade terminating in the formation of a lytic pore on the target surface. The classical and lectin pathways are initiated by pattern recognition molecules binding to specific ligands, while the alternative pathway is constitutively active at low levels in circulation. Complement-mediated killing is essential for defense against many Gram-negative bacterial pathogens, and genetic deficiencies in complement can render individuals highly susceptible to infection, for example, invasive meningococcal disease. In contrast, Gram-positive bacteria are inherently resistant to the direct bactericidal activity of complement due to their thick layer of cell wall peptidoglycan. However, complement also serves diverse roles in immune defense against all bacteria by flagging them for opsonization and killing by professional phagocytes, synergizing with neutrophils, modulating inflammatory responses, regulating T cell development, and cross talk with coagulation cascades. In this review, we discuss newly appreciated roles for complement beyond direct membrane lysis, incorporate nonlytic roles of complement into immunological paradigms of host-pathogen interactions, and identify bacterial strategies for complement evasion.
Collapse
|
6
|
Control of Francisella tularensis Virulence at Gene Level: Network of Transcription Factors. Microorganisms 2020; 8:microorganisms8101622. [PMID: 33096715 PMCID: PMC7588896 DOI: 10.3390/microorganisms8101622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene transcription is the initial step in the complex process that controls gene expression within bacteria. Transcriptional control involves the joint effort of RNA polymerases and numerous other regulatory factors. Whether global or local, positive or negative, regulators play an essential role in the bacterial cell. For instance, some regulators specifically modify the transcription of virulence genes, thereby being indispensable to pathogenic bacteria. Here, we provide a comprehensive overview of important transcription factors and DNA-binding proteins described for the virulent bacterium Francisella tularensis, the causative agent of tularemia. This is an unexplored research area, and the poorly described networks of transcription factors merit additional experimental studies to help elucidate the molecular mechanisms of pathogenesis in this bacterium, and how they contribute to disease.
Collapse
|
7
|
Freudenberger Catanzaro KC, Inzana TJ. The Francisella tularensis Polysaccharides: What Is the Real Capsule? Microbiol Mol Biol Rev 2020; 84:e00065-19. [PMID: 32051235 PMCID: PMC7018499 DOI: 10.1128/mmbr.00065-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a tier 1 select agent responsible for tularemia in humans and a wide variety of animal species. Extensive research into understanding the virulence factors of the bacterium has been ongoing to develop an efficacious vaccine. At least two such virulence factors are described as capsules of F. tularensis: the O-antigen capsule and the capsule-like complex (CLC). These two separate entities aid in avoiding host immune defenses but have not been clearly differentiated. These components are distinct and differ in composition and genetic basis. The O-antigen capsule consists of a polysaccharide nearly identical to the lipopolysaccharide (LPS) O antigen, whereas the CLC is a heterogeneous complex of glycoproteins, proteins, and possibly outer membrane vesicles and tubes (OMV/Ts). In this review, the current understanding of these two capsules is summarized, and the historical references to "capsules" of F. tularensis are clarified. A significant amount of research has been invested into the composition of each capsule and the genes involved in synthesis of the polysaccharide portion of each capsule. Areas of future research include further exploration into the molecular regulation and pathways responsible for expression of each capsule and further elucidating the role that each capsule plays in virulence.
Collapse
Affiliation(s)
- Kelly C Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Thomas J Inzana
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| |
Collapse
|
8
|
Ali AM, Noor ul Amin M, Arif S. First case report of post-operative infection due to Francisella tularensis after cardiac surgery. Access Microbiol 2019; 1:e000035. [PMID: 32974547 PMCID: PMC7470410 DOI: 10.1099/acmi.0.000035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Francisella tularensis is a rare zoonotic bacterium that spreads sporadically by various routes, including infected arthropod bites, ingestion of contaminated water and inhalation of contaminated dust. However, its occurrence in postoperative chest infection has never been reported. Pathogen isolation, serology and molecular detection methods are commonly used for the diagnosis of tularaemia. CASE PRESENTATION We present the first case report of the isolation of F. tularensis from a patient with a chest infection (a boy in his teens) following cardiac surgery for closure of a ventral septal defect. It was isolated on blood and chocolate agar on the third day after the subculture of drain fluid collected in a blood culture bottle incubated in Bact T/Alert 3-D (bioMerieux, France). The organism was identified as F. tularensis by Vitek GN ID Cards (Vitek 2 Compact, bioMerieux, France). The patient made a smooth recovery with antibiotic therapy. CONCLUSION F. tularensis can cause post-operative infection, especially in patients with a rural background.
Collapse
Affiliation(s)
- Arif Maqsood Ali
- Department of Pathology and Blood Bank, Rawalpindi Institute of Cardiology, Rawalpindi, Punjab, Pakistan
| | - Muhammad Noor ul Amin
- Department of Pathology and Blood Bank, Rawalpindi Institute of Cardiology, Rawalpindi, Punjab, Pakistan
| | | |
Collapse
|
9
|
Stojkova P, Spidlova P, Lenco J, Rehulkova H, Kratka L, Stulik J. HU protein is involved in intracellular growth and full virulence of Francisella tularensis. Virulence 2018; 9:754-770. [PMID: 29473442 PMCID: PMC5955460 DOI: 10.1080/21505594.2018.1441588] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/18/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The nucleoid-associated HU proteins are small abundant DNA-binding proteins in bacterial cell which play an important role in the initiation of DNA replication, cell division, SOS response, control of gene expression and recombination. HU proteins bind to double stranded DNA non-specifically, but they exhibit high affinity to abnormal DNA structures as four-way junctions, gaps or nicks, which are generated during DNA damage. In many pathogens HU proteins regulate expression of genes involved in metabolism and virulence. Here, we show that the Francisella tularensis subsp. holarctica gene locus FTS_0886 codes for functional HU protein which is essential for full Francisella virulence and its resistance to oxidative stress. Further, our results demonstrate that the recombinant FtHU protein binds to double stranded DNA and protects it against free hydroxyl radicals generated via Fenton's reaction. Eventually, using an iTRAQ approach we identified proteins levels of which are affected by the deletion of hupB, among them for example Francisella pathogenicity island (FPI) proteins. The pleiotropic role of HU protein classifies it as a potential target for the development of therapeutics against tularemia.
Collapse
Affiliation(s)
- Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Juraj Lenco
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Lucie Kratka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Kurtz SL, Voskanian-Kordi A, Simonyan V, Elkins KL. Sequence comparison of Francisella tularensis LVS, LVS-G and LVS-R. Pathog Dis 2018; 76:5078346. [PMID: 30137434 DOI: 10.1093/femspd/fty067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/20/2018] [Indexed: 11/14/2022] Open
Abstract
Francisella tularensis is a gram-negative organism found in many regions of the world. F. tularensis can cause a fatal, febrile illness, although these natural tularemia infections are rare in the United States. However, the development of F. tularensis as a potential weapon of bioterrorism during the Cold War spurred the development of a live attenuated vaccine, LVS, from F. tularensis subsp. holarctica in the 1960s. Two colony morphology variants, LVS-G and LVS-R, were generated from parental LVS by plate passage and by acridine orange mutagenesis, respectively. In vaccinated mice, LVS-G and LVS-R exhibit altered immunogenicity and protective capacities. While the exact nature of the mutations in these strains was unknown, previous studies indicated that both had altered lipopolysaccharide structures. To better understand the impact of these mutations on LVS' immunogenicity, we sequenced the genomes of LVS-G and LVS-R as well as our parental laboratory stock of LVS, originally obtained from ATCC, and compared these to the F. tularensis subsp. holarctica LVS genome currently deposited in GenBank. The results indicate that the genomic sequence of ATCC LVS is nearly identical to that of the human LVS vaccine. Furthermore, a limited number of genomic mutations likely account for the phenotypes of LVS-G and LVS-R.
Collapse
Affiliation(s)
- Sherry L Kurtz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration
| | - Alin Voskanian-Kordi
- High Performance Integrated Virtual Environment (HIVE), Center for Biologics Evaluation and Research, Food and Drug Administration
| | - Vahan Simonyan
- High Performance Integrated Virtual Environment (HIVE), Center for Biologics Evaluation and Research, Food and Drug Administration
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration
| |
Collapse
|
11
|
Brock SR, Parmely MJ. Francisella tularensis Confronts the Complement System. Front Cell Infect Microbiol 2017; 7:523. [PMID: 29312899 PMCID: PMC5742141 DOI: 10.3389/fcimb.2017.00523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
Francisella tularensis has developed a number of effective evasion strategies to counteract host immune defenses, not the least of which is its ability to interact with the complement system to its own advantage. Following exposure of the bacterium to fresh human serum, complement is activated and C3b and iC3b can be found covalently attached to the bacterial surface. However, the lipopolysaccharide and capsule of the F. tularensis cell wall prevent complement-mediated lysis and endow the bacterium with serum resistance. Opsonization of F. tularensis with C3 greatly increases its uptake by human neutrophils, dendritic cells and macrophages. Uptake occurs by an unusual looping morphology in human macrophages. Complement receptor 3 is thought to play an important role in opsonophagocytosis by human macrophages, and signaling through this receptor can antagonize Toll-like receptor 2-initiated macrophage activation. Complement C3 also determines the survival of infected human macrophages and perhaps other cell types. C3-opsonization of F. tularensis subsp. tularensis strain SCHU S4 results in greatly increased death of infected human macrophages, which requires more than complement receptor engagement and is independent of the intracellular replication by the pathogen. Given its entry into the cytosol of host cells, F. tularensis has the potential for a number of other complement-mediated interactions. Studies on the uptake C3-opsonized adenovirus have suggested the existence of a C3 sensing system that initiates cellular responses to cytosolic C3b present on invading microbes. Here we propose that C3 peptides enter the cytosol of human macrophages following phagosome escape of F. tularensis and are recognized as intruding molecular patterns that signal host cell death. With the discovery of new roles for intracellular C3, a better understanding of tularemia pathogenesis is likely to emerge.
Collapse
Affiliation(s)
- Susan R Brock
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael J Parmely
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
12
|
Freudenberger Catanzaro KC, Champion AE, Mohapatra N, Cecere T, Inzana TJ. Glycosylation of a Capsule-Like Complex (CLC) by Francisella novicida Is Required for Virulence and Partial Protective Immunity in Mice. Front Microbiol 2017; 8:935. [PMID: 28611741 PMCID: PMC5447757 DOI: 10.3389/fmicb.2017.00935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium and the etiologic agent of tularemia. F. tularensis may appear encapsulated when examined by transmission electron microscopy (TEM), which is due to production of an extracellular capsule-like complex (CLC) when the bacterium is grown under specific environmental conditions. Deletion of two glycosylation genes in the live vaccine strain (LVS) results in loss of apparent CLC and attenuation of LVS in mice. In contrast, F. novicida, which is also highly virulent for mice, is reported to be non-encapsulated. However, the F. novicida genome contains a putative polysaccharide locus with homology to the CLC glycosylation locus in F. tularensis. Following daily subculture of F. novicida in Chamberlain's defined medium, an electron dense material surrounding F. novicida, similar to the F. tularensis CLC, was evident. Extraction with urea effectively removed the CLC, and compositional analysis indicated the extract contained galactose, glucose, mannose, and multiple proteins, similar to those found in the F. tularensis CLC. The same glycosylation genes deleted in LVS were targeted for deletion in F. novicida by allelic exchange using the same mutagenesis vector used for mutagenesis of LVS. In contrast, this mutation also resulted in the loss of five additional genes immediately upstream of the targeted mutation (all within the glycosylation locus), resulting in strain F. novicida Δ1212-1218. The subcultured mutant F. novicida Δ1212-1218 was CLC-deficient and the CLC contained significantly less carbohydrate than the subcultured parent strain. The mutant was severely attenuated in BALB/c mice inoculated intranasally, as determined by the lower number of F. novicida Δ1212-1218 recovered in tissues compared to the parent, and by clearance of the mutant by 10-14 days post-challenge. Mice immunized intranasally with F. novicida Δ1212-1218 were partially protected against challenge with the parent, produced significantly reduced levels of inflammatory cytokines, and their spleens contained only areas of lymphoid hyperplasia, whereas control mice challenged with the parent exhibited hypercytokinemia and splenic necrosis. Therefore, F. novicida is capable of producing a CLC similar to that of F. tularensis, and glycosylation of the CLC contributed to F. novicida virulence and immunoprotection.
Collapse
Affiliation(s)
- Kelly C Freudenberger Catanzaro
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Anna E Champion
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Nrusingh Mohapatra
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas Cecere
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States
| | - Thomas J Inzana
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland College of Veterinary Medicine, Virginia TechBlacksburg, VA, United States.,Department of Biomedical Sciences, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
13
|
Kinkead LC, Allen LAH. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev 2016; 273:266-81. [PMID: 27558340 PMCID: PMC5000853 DOI: 10.1111/imr.12445] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Francisella tularensis in an intracellular bacterial pathogen that causes a potentially lethal disease called tularemia. Studies performed nearly 100 years ago revealed that neutrophil accumulation in infected tissues correlates directly with the extent of necrotic damage during F. tularensis infection. However, the dynamics and details of bacteria-neutrophil interactions have only recently been studied in detail. Herein, we review current understanding regarding the mechanisms that recruit neutrophils to F. tularensis-infected lungs, opsonization and phagocytosis, evasion and inhibition of neutrophil defense mechanisms, as well as the ability of F. tularensis to prolong neutrophil lifespan. In addition, we discuss distinctive features of the bacterium, including its ability to act at a distance to alter overall neutrophil responsiveness to exogenous stimuli, and the evidence which suggests that macrophages and neutrophils play distinct roles in tularemia pathogenesis, such that macrophages are major vehicles for intracellular growth and dissemination, whereas neutrophils drive tissue destruction by dysregulation of the inflammatory response.
Collapse
Affiliation(s)
- Lauren C. Kinkead
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa Iowa City, IA 52242
- Department of Microbiology, University of Iowa Iowa City, IA 52242
- Department of Internal Medicine, University of Iowa Iowa City, IA 52242
- VA Medical Center, Iowa City, IA 52242
| |
Collapse
|
14
|
Barker JH, Kaufman JW, Apicella MA, Weiss JP. Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A. PLoS One 2016; 11:e0157842. [PMID: 27326857 PMCID: PMC4915664 DOI: 10.1371/journal.pone.0157842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023] Open
Abstract
Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS) has a structurally unique lipid anchor, we have metabolically labeled Francisella with [14C]acetate to facilitate highly sensitive compositional analysis of capsule-associated lipids. Capsule was purified by two independent methods and yielded similar results. Autoradiographic and immunologic analysis confirmed that this purified material was largely devoid of low molecular weight LPS and of the copious amounts of free lipid A that the Francisellae accumulate. Chemical hydrolysis yielded [14C]-labeled free fatty acids characteristic of Francisella lipid A but with a different molar ratio of 3-OH C18:0 to 3-OH C16:0 and different composition of non-hydroxylated fatty acids (mainly C14:0 rather than C16:0) than that of free Francisella lipid A. Mild acid hydrolysis to induce selective cleavage of KDO-lipid A linkage yielded a [14C]-labeled product that partitioned during Bligh/Dyer extraction and migrated during thin-layer chromatography like lipid A. These findings suggest that the O-antigen capsule of Francisella contains a covalently linked and structurally distinct lipid A species. The presence of a discrete lipid A-like molecule associated with capsule raises the possibility that Francisella selectively exploits lipid A structural heterogeneity to regulate synthesis, transport, and stable bacterial surface association of the O-antigen capsular layer.
Collapse
Affiliation(s)
- Jason H. Barker
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
- * E-mail:
| | - Justin W. Kaufman
- Inflammation Program and Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Michael A. Apicella
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| | - Jerrold P. Weiss
- Inflammation Program and Department of Microbiology, University of Iowa, Iowa City, IA, United States of America, and Veterans Affairs Medical Center, Iowa City, IA, United States of America
| |
Collapse
|
15
|
Elkins KL, Kurtz SL, De Pascalis R. Progress, challenges, and opportunities in Francisella vaccine development. Expert Rev Vaccines 2016; 15:1183-96. [PMID: 27010448 DOI: 10.1586/14760584.2016.1170601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Renewed interest in Francisella tularensis has resulted in substantial new information about its pathogenesis and immunology, along with development of useful animal models. While understanding of protective immunity against Francisella remains incomplete, data in both animals and humans suggest that inducing T cell-mediated immunity is crucial for successful vaccination with current candidates such as the Live Vaccine Strain (LVS), with specific antibodies and immune B cells playing supporting roles. Consistent with this idea, recent results indicate that measurements of T cell functions and relative gene expression by immune T cells predict vaccine-induced protection in animal models. Because field trials of new vaccines will be difficult to design, using such measurements to derive potential correlates of protection may be important to bridge between animal efficacy studies and people.
Collapse
Affiliation(s)
- Karen L Elkins
- a Division of Bacterial, Parasitic, and Allergenic Products, CBER/FDA , Silver Spring , MD , USA
| | - Sherry L Kurtz
- a Division of Bacterial, Parasitic, and Allergenic Products, CBER/FDA , Silver Spring , MD , USA
| | - Roberto De Pascalis
- a Division of Bacterial, Parasitic, and Allergenic Products, CBER/FDA , Silver Spring , MD , USA
| |
Collapse
|
16
|
Activities of Murine Peripheral Blood Lymphocytes Provide Immune Correlates That Predict Francisella tularensis Vaccine Efficacy. Infect Immun 2016; 84:1054-1061. [PMID: 26810039 DOI: 10.1128/iai.01348-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/15/2016] [Indexed: 12/16/2022] Open
Abstract
We previously identified potential correlates of vaccine-induced protection against Francisella tularensis using murine splenocytes and further demonstrated that the relative levels of gene expression varied significantly between tissues. In contrast to splenocytes, peripheral blood leukocytes (PBLs) represent a means to bridge vaccine efficacy in animal models to that in humans. Here we take advantage of this easily accessible source of immune cells to investigate cell-mediated immune responses against tularemia, whose sporadic incidence makes clinical trials of vaccines difficult. Using PBLs from mice vaccinated with F. tularensis Live Vaccine Strain (LVS) and related attenuated strains, we combined the control of in vitro Francisella replication within macrophages with gene expression analyses. The in vitro functions of PBLs, particularly the control of intramacrophage LVS replication, reflected the hierarchy of in vivo protection conferred by LVS-derived vaccines. Moreover, several genes previously identified by the evaluation of splenocytes were also found to be differentially expressed in immune PBLs. In addition, more extensive screening identified additional potential correlates of protection. Finally, expression of selected genes in mouse PBLs obtained shortly after vaccination, without ex vivo restimulation, was different among vaccine groups, suggesting a potential tool to monitor efficacious vaccine-induced immune responses against F. tularensis. Our studies demonstrate that murine PBLs can be used productively to identify potential correlates of protection against F. tularensis and to expand and refine a comprehensive set of protective correlates.
Collapse
|
17
|
Madar M, Bencurova E, Mlynarcik P, Almeida AM, Soares R, Bhide K, Pulzova L, Kovac A, Coelho AV, Bhide M. Exploitation of complement regulatory proteins by Borrelia and Francisella. MOLECULAR BIOSYSTEMS 2016; 11:1684-95. [PMID: 25912816 DOI: 10.1039/c5mb00027k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pathogens have developed sophisticated mechanisms of complement evasion such as binding to the host complement regulatory proteins (CRPs) on their surface or expression of CRP mimicking molecules. The ability of pathogens to evade the complement system has been correlated with pathogenesis and host selectivity. Hitherto, little work has been undertaken to determine whether Borrelia and Francisella exploit various CRPs to block complement attack. Seventeen Borrelia (twelve species) and six Francisella (three subspecies) strains were used to assess their ability to bind human, sheep and cattle CRPs or mimic membrane associated complement regulators. A series of experiments including affinity ligand binding experiments, pull-down assays and mass spectrometry based protein identification, revealed an array of CRP binding proteins of Borrelia and Francisella. Unlike Francisella, Borrelia strains were able to bind multiple human CRPs. Three strains of Borrelia (SKT-4, SKT-2 and HO14) showed the presence of a human CD46-homologous motif, indicating their ability to possess putative human CD46 mimicking molecules. Similarly, five strains of Borrelia and two strains of Francisella may have surface proteins with human CD59-homologous motifs. Among ovine and bovine CRPs, the only CRP bound by Francisella (LVS, Tul4 strain) was vitronectin, while ovine C4BP, ovine factor H and bovine factor H were bound to Borrelia strains SKT-2, DN127 and Co53. This study presents an array of proteins of Borrelia and Francisella that bind CRPs or may mimic membrane-CRPs, thus enabling multiphasic complement evasion strategies of these pathogens.
Collapse
Affiliation(s)
- Marian Madar
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181, Košice, Slovakia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
19
|
Rasmussen JA, Fletcher JR, Long ME, Allen LAH, Jones BD. Characterization of Francisella tularensis Schu S4 mutants identified from a transposon library screened for O-antigen and capsule deficiencies. Front Microbiol 2015; 6:338. [PMID: 25999917 PMCID: PMC4419852 DOI: 10.3389/fmicb.2015.00338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 02/02/2023] Open
Abstract
The lipopolysaccharide (LPS) and O-antigen polysaccharide capsule structures of Francisella tularensis play significant roles in helping these highly virulent bacteria avoid detection within a host. We previously created pools of F. tularensis mutants that we screened to identify strains that were not reactive to a monoclonal antibody to the O-antigen capsule. To follow up previously published work, we characterize further seven of the F. tularensis Schu S4 mutant strains identified by our screen. These F. tularensis strains carry the following transposon mutations: FTT0846::Tn5, hemH::Tn5, wbtA::Tn5, wzy::Tn5, FTT0673p/prsA::Tn5, manB::Tn5, or dnaJ::Tn5. Each of these strains displayed sensitivity to human serum, to varying degrees, when compared to wild-type F. tularensis Schu S4. By Western blot, only FTT0846::Tn5, wbtA::Tn5, wzy::Tn5, and manB::Tn5 strains did not react to the capsule and LPS O-antigen antibody 11B7, although the wzy::Tn5 strain did have a single O-antigen reactive band that was detected by the FB11 monoclonal antibody. Of these strains, manB::Tn5 and FTT0846 appear to have LPS core truncations, whereas wbtA::Tn5 and wzy::Tn5 had LPS core structures that are similar to the parent F. tularensis Schu S4. These strains were also shown to have poor growth within human monocyte derived macrophages (MDMs) and bone marrow derived macrophages (BMDMs). We examined the virulence of these strains in mice, following intranasal challenge, and found that each was attenuated compared to wild type Schu S4. Our results provide additional strong evidence that LPS and/or capsule are F. tularensis virulence factors that most likely function by providing a stealth shield that prevents the host immune system from detecting this potent pathogen.
Collapse
Affiliation(s)
- Jed A Rasmussen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Matthew E Long
- Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Lee-Ann H Allen
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Molecular and Cellular Biology Program, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Department of Internal Medicine, University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine Iowa City, IA, USA ; Genetics Program, University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
20
|
D'Elia RV, Laws TR, Núñez A, Clark GC. "FoxP3 Hunting" during infection with Francisella tularensis. Int J Immunopathol Pharmacol 2015; 27:585-95. [PMID: 25572738 DOI: 10.1177/039463201402700414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a Gram-negative intracellular bacterium that can cause acute disease in mouse models of infection when administered via the inhalational route. The immune response to a pulmonary infection is typified by an initial lack of pro-inflammatory cytokines, followed by hypercytokinemia prior to host death. It remains unclear what causes this delay in the host immune response. In this study we determine the presence of FoxP3 regulatory T cells in the lung, liver and spleen following intranasal infection with F. tularensis SCHU S4. In the lung, the site of initial infection, there is an increase in FoxP3+ cells during the first few days of infection and a notable absence of these cells at the point of cytokine storm and death (day 4 post-infection). This coincides with a decrease in the anti-inflammatory cytokine TGF-β and increases of chemokines MIP-1α, MIP-1β and RANTES. In our model, we also observed an overall decrease in the number of regulatory T cells in the spleen, which was not as evident in the liver. Overall, this data suggests that early on in an acute F. tularensis SCHUS4 infection regulatory T cells contribute to a dampening of the pro-inflammatory response, allowing for bacterial replication and spread.
Collapse
Affiliation(s)
- R V D'Elia
- Biomedical Sciences Department, Dstl Porton Down, Salisbury, UK
| | - T R Laws
- Biomedical Sciences Department, Dstl Porton Down, Salisbury, UK
| | - A Núñez
- Pathology Department, Animal Health and Veterinary Laboratories Agency, Weybridge, UK
| | - G C Clark
- Biomedical Sciences Department, Dstl Porton Down, Salisbury, UK
| |
Collapse
|
21
|
Rose LJ, Rice EW. Inactivation of bacterial biothreat agents in water, a review. JOURNAL OF WATER AND HEALTH 2014; 12:618-33. [PMID: 25473971 PMCID: PMC4819249 DOI: 10.2166/wh.2014.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed.
Collapse
Affiliation(s)
- L J Rose
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA E-mail:
| | - E W Rice
- National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
| |
Collapse
|
22
|
Martin-Garcia JM, Hansen DT, Zook J, Loskutov AV, Robida MD, Craciunescu FM, Sykes KF, Wachter RM, Fromme P, Allen JP. Purification and biophysical characterization of the CapA membrane protein FTT0807 from Francisella tularensis. Biochemistry 2014; 53:1958-70. [PMID: 24593131 PMCID: PMC3985703 DOI: 10.1021/bi401644s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The capA gene (FTT0807)
from Francisella
tularensis subsp. tularensis SCHU S4 encodes a 44.4
kDa integral membrane protein composed of 403 amino acid residues
that is part of an apparent operon that encodes at least two other
membrane proteins, CapB, and CapC, which together play a critical
role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia
coli as a C-terminal His6-tagged fusion
with a folding reporter green fluorescent protein (frGFP). Purification
procedures using several detergents were developed for the fluorescing
and membrane-bound product, yielding approximately 30 mg of pure protein
per liter of bacterial culture. Dynamic light scattering indicated
that CapA-frGFP was highly monodisperse, with a size that was dependent
upon both the concentration and choice of detergent. Circular dichroism
showed that CapA-frGFP was stable over the range of 3–9 for
the pH, with approximately half of the protein having well-defined
α-helical and β-sheet secondary structure. The addition
of either sodium chloride or calcium chloride at concentrations producing
ionic strengths above 0.1 M resulted in a small increase of the α-helical
content and a corresponding decrease in the random-coil content. Secondary-structure
predictions on the basis of the analysis of the sequence indicate
that the CapA membrane protein has two transmembrane helices with
a substantial hydrophilic domain. The hydrophilic domain is predicted
to contain a long disordered region of 50–60 residues, suggesting
that the increase of α-helical content at high ionic strength
could arise because of electrostatic interactions involving the disordered
region. CapA is shown to be an inner-membrane protein and is predicted
to play a key cellular role in the assembly of polysaccharides.
Collapse
Affiliation(s)
- Jose M Martin-Garcia
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
Affiliation(s)
- Bradley D Jones
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, Washington University St. Louis, MO, USA
| | - Matthew Faron
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Jed A Rasmussen
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
24
|
Francisella tularensis Schu S4 lipopolysaccharide core sugar and O-antigen mutants are attenuated in a mouse model of tularemia. Infect Immun 2014; 82:1523-39. [PMID: 24452684 DOI: 10.1128/iai.01640-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The virulence factors mediating Francisella pathogenesis are being investigated, with an emphasis on understanding how the organism evades innate immunity mechanisms. Francisella tularensis produces a lipopolysaccharide (LPS) that is essentially inert and a polysaccharide capsule that helps the organism to evade detection by components of innate immunity. Using an F. tularensis Schu S4 mutant library, we identified strains that are disrupted for capsule and O-antigen production. These serum-sensitive strains lack both capsule production and O-antigen laddering. Analysis of the predicted protein sequences for the disrupted genes (FTT1236 and FTT1238c) revealed similarity to those for waa (rfa) biosynthetic genes in other bacteria. Mass spectrometry further revealed that these proteins are involved in LPS core sugar biosynthesis and the ligation of O antigen to the LPS core sugars. The 50% lethal dose (LD50) values of these strains are increased 100- to 1,000-fold for mice. Histopathology revealed that the immune response to the F. tularensis mutant strains was significantly different from that observed with wild-type-infected mice. The lung tissue from mutant-infected mice had widespread necrotic debris, but the spleens lacked necrosis and displayed neutrophilia. In contrast, the lungs of wild-type-infected mice had nominal necrosis, but the spleens had widespread necrosis. These data indicate that murine death caused by wild-type strains occurs by a mechanism different from that by which the mutant strains kill mice. Mice immunized with these mutant strains displayed >10-fold protective effects against virulent type A F. tularensis challenge.
Collapse
|
25
|
Abstract
Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology and National Center for Biodefense and Infectious Diseases; George Mason University; Manassas, VA USA
| |
Collapse
|
26
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
27
|
IKKβ in myeloid cells controls the host response to lethal and sublethal Francisella tularensis LVS infection. PLoS One 2013; 8:e54124. [PMID: 23349802 PMCID: PMC3551972 DOI: 10.1371/journal.pone.0054124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 12/10/2012] [Indexed: 11/26/2022] Open
Abstract
Background The NF-κB activating kinases, IKKα and IKKβ, are key regulators of inflammation and immunity in response to infection by a variety of pathogens. Both IKKα and IKKβ have been reported to modulate either pro- or anti- inflammatory programs, which may be specific to the infectious organism or the target tissue. Here, we analyzed the requirements for the IKKs in myeloid cells in vivo in response to Francisella tularensis Live Vaccine Strain (Ft. LVS) infection. Methods and Principal Findings In contrast to prior reports in which conditional deletion of IKKβ in the myeloid lineage promoted survival and conferred resistance to an in vivo group B streptococcus infection, we show that mice with a comparable conditional deletion (IKKβ cKO) succumb more rapidly to lethal Ft. LVS infection and are unable to control bacterial growth at sublethal doses. Flow cytometry analysis of hepatic non-parenchymal cells from infected mice reveals that IKKβ inhibits M1 classical macrophage activation two days post infection, which has the collateral effect of suppressing IFN-γ+ CD8+ T cells. Despite this early enhanced inflammation, IKKβ cKO mice are unable to control infection; and this coincides with a shift toward M2a polarized macrophages. In comparison, we find that myeloid IKKα is dispensable for survival and bacterial control. However, both IKKα and IKKβ have effects on hepatic granuloma development. IKKα cKO mice develop fewer, but well-contained granulomas that accumulate excess necrotic cells after 9 days of infection; while IKKβ cKO mice develop numerous micro-granulomas that are less well contained. Conclusions Taken together our findings reveal that unlike IKKα, IKKβ has multiple, contrasting roles in this bacterial infection model by acting in an anti-inflammatory capacity at early times towards sublethal Ft. LVS infection; but in spite of this, macrophage IKKβ is also a critical effector for host survival and efficient pathogen clearance.
Collapse
|
28
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
29
|
Llewellyn AC, Zhao J, Song F, Parvathareddy J, Xu Q, Napier BA, Laroui H, Merlin D, Bina JE, Cotter PA, Miller MA, Raetz CRH, Weiss DS. NaxD is a deacetylase required for lipid A modification and Francisella pathogenesis. Mol Microbiol 2012; 86:611-27. [PMID: 22966934 DOI: 10.1111/mmi.12004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 11/30/2022]
Abstract
Modification of specific Gram-negative bacterial cell envelope components, such as capsule, O-antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella. Mass spectrometry analysis revealed that NaxD is essential for the modification of a lipid A phosphate with galactosamine in Francisella novicida, a model organism for the study of highly virulent Francisella tularensis. Significantly, enzymatic assays confirmed that this protein is necessary for deacetylation of its substrate. In addition, NaxD was involved in resistance to the antimicrobial peptide polymyxin B and critical for replication in macrophages and in vivo virulence. Importantly, this protein is also required for lipid A modification in F. tularensis as well as Bordetella bronchiseptica. Since NaxD homologues are conserved among many Gram-negative pathogens, this work has broad implications for our understanding of host subversion mechanisms of other virulent bacteria.
Collapse
Affiliation(s)
- Anna C Llewellyn
- Department of Microbiology and Immunology, Microbiology and Molecular Genetics Program, Emory University, Atlanta, GA, USA; Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Twine SM, Vinogradov E, Lindgren H, Sjostedt A, Conlan JW. Roles for wbtC, wbtI, and kdtA Genes in Lipopolysaccharide Biosynthesis, Protein Glycosylation, Virulence, and Immunogenicity in Francisella tularensis2 Strain SCHU S4. Pathogens 2012; 1:12-29. [PMID: 25152813 PMCID: PMC4141488 DOI: 10.3390/pathogens1010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using a strategy of gene deletion mutagenesis, we have examined the roles of genes putatively involved in lipopolysaccharide biosynthesis in the virulent facultative intracellular bacterial pathogen, Francisella tularensis subspecies tularensis, strain SCHU S4 in LPS biosynthesis, protein glycosylation, virulence and immunogenicity. One mutant, ΔwbtI, did not elaborate a long chain O-polysaccharide (OPS), was completely avirulent for mice, and failed to induce a protective immune response against challenge with wild type bacteria. Another mutant, ΔwbtC, produced a long chain OPS with altered chemical and electrophoretic characteristics. This mutant showed markedly reduced glycosylation of several known glycoproteins. Additionally this mutant was highly attenuated, and elicited a protective immune response against systemic, but not respiratory challenge with wild type SCHU S4. A third mutant, ΔkdtA, produced an unconjugated long chain OPS, lacking a detectable core structure, and which was not obviously expressed at the surface. It was avirulent and elicited partial protection against systemic challenge only.
Collapse
Affiliation(s)
- Susan. M. Twine
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-613-993-8829; Fax: +1-613-952-9092
| | - Evguenii Vinogradov
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
| | - Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå SE-90185, Sweden; E-Mails: (H.L.); (A.S.)
| | - Anders Sjostedt
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå SE-90185, Sweden; E-Mails: (H.L.); (A.S.)
| | - J. Wayne Conlan
- National Research Council Canada, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON K1A 1L1, Canada; E-Mails: (E.V.); (J.W.C.)
| |
Collapse
|
31
|
Schwartz JT, Barker JH, Long ME, Kaufman J, McCracken J, Allen LAH. Natural IgM mediates complement-dependent uptake of Francisella tularensis by human neutrophils via complement receptors 1 and 3 in nonimmune serum. THE JOURNAL OF IMMUNOLOGY 2012; 189:3064-77. [PMID: 22888138 DOI: 10.4049/jimmunol.1200816] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A fundamental step in the life cycle of Francisella tularensis is bacterial entry into host cells. F. tularensis activates complement, and recent data suggest that the classical pathway is required for complement factor C3 deposition on the bacterial surface. Nevertheless, C3 deposition is inefficient and neither the specific serum components necessary for classical pathway activation by F. tularensis in nonimmune human serum nor the receptors that mediate infection of neutrophils have been defined. In this study, human neutrophil uptake of GFP-expressing F. tularensis strains live vaccine strain and Schu S4 was quantified with high efficiency by flow cytometry. Using depleted sera and purified complement components, we demonstrated first that C1q and C3 were essential for F. tularensis phagocytosis, whereas C5 was not. Second, we used purification and immunodepletion approaches to identify a critical role for natural IgM in this process, and then used a wbtA2 mutant to identify LPS O-Ag and capsule as prominent targets of these Abs on the bacterial surface. Finally, we demonstrate using receptor-blocking Abs that CR1 (CD35) and CR3 (CD11b/CD18) acted in concert for phagocytosis of opsonized F. tularensis by human neutrophils, whereas CR3 and CR4 (CD11c/CD18) mediated infection of human monocyte-derived macrophages. Altogether, our data provide fundamental insight into mechanisms of F. tularensis phagocytosis and support a model whereby natural IgM binds to surface capsular and O-Ag polysaccharides of F. tularensis and initiates the classical complement cascade via C1q to promote C3 opsonization of the bacterium and phagocytosis via CR3 and either CR1 or CR4 in a phagocyte-specific manner.
Collapse
Affiliation(s)
- Justin T Schwartz
- Inflammation Program, University of Iowa and Veterans Administration Medical Center, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
32
|
Schwartz JT, Barker JH, Kaufman J, Fayram DC, McCracken JM, Allen LAH. Francisella tularensis inhibits the intrinsic and extrinsic pathways to delay constitutive apoptosis and prolong human neutrophil lifespan. THE JOURNAL OF IMMUNOLOGY 2012; 188:3351-63. [PMID: 22357630 DOI: 10.4049/jimmunol.1102863] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Francisella tularensis is a facultative intracellular bacterium that infects many cell types, including neutrophils. We demonstrated previously that F. tularensis inhibits NADPH oxidase assembly and activity and then escapes the phagosome to the cytosol, but effects on other aspects of neutrophil function are unknown. Neutrophils are short-lived cells that undergo constitutive apoptosis, and phagocytosis typically accelerates this process. We now demonstrate that F. tularensis significantly inhibited neutrophil apoptosis as indicated by morphologic analysis as well as annexin V and TUNEL staining. Thus, ∼80% of infected neutrophils remained viable at 48 h compared with ∼50% of control cells, and ∼40% of neutrophils that ingested opsonized zymosan. In keeping with this finding, processing and activation of procaspases-8, -9, and -3 were markedly diminished and delayed. F. tularensis also significantly impaired apoptosis triggered by Fas crosslinking. Of note, these effects were dose dependent and could be conferred by either intracellular or extracellular live bacteria, but not by formalin-killed organisms or isolated LPS and capsule, and were not affected by disruption of wbtA2 or FTT1236/FTL0708-genes required for LPS O-antigen and capsule biosynthesis. In summary, we demonstrate that F. tularensis profoundly impairs constitutive neutrophil apoptosis via effects on the intrinsic and extrinsic pathways, and thereby define a new aspect of innate immune evasion by this organism. As defects in neutrophil turnover prevent resolution of inflammation, our findings also suggest a mechanism that may in part account for the neutrophil accumulation, granuloma formation, and severe tissue damage that characterizes lethal pneumonic tularemia.
Collapse
Affiliation(s)
- Justin T Schwartz
- Inflammation Program, University of Iowa and the Veterans Administration Medical Center, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
33
|
Dresler J, Klimentova J, Stulik J. Francisella tularensis membrane complexome by blue native/SDS-PAGE. J Proteomics 2011; 75:257-69. [DOI: 10.1016/j.jprot.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 05/03/2011] [Indexed: 12/11/2022]
|
34
|
Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 2011; 6:e24201. [PMID: 21915295 PMCID: PMC3167825 DOI: 10.1371/journal.pone.0024201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022] Open
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.
Collapse
|
35
|
Zarrella TM, Singh A, Bitsaktsis C, Rahman T, Sahay B, Feustel PJ, Gosselin EJ, Sellati TJ, Hazlett KRO. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 2011; 6:e22335. [PMID: 21799828 PMCID: PMC3142145 DOI: 10.1371/journal.pone.0022335] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. METHODS/FINDINGS SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. CONCLUSION F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anju Singh
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tabassum Rahman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Bikash Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Edmund J. Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Karsten R. O. Hazlett
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
36
|
Bandara AB, Champion AE, Wang X, Berg G, Apicella MA, McLendon M, Azadi P, Snyder DS, Inzana TJ. Isolation and mutagenesis of a capsule-like complex (CLC) from Francisella tularensis, and contribution of the CLC to F. tularensis virulence in mice. PLoS One 2011; 6:e19003. [PMID: 21544194 PMCID: PMC3081320 DOI: 10.1371/journal.pone.0019003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/24/2011] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Francisella tularensis is a category-A select agent and is responsible for tularemia in humans and animals. The surface components of F. tularensis that contribute to virulence are not well characterized. An electron-dense capsule has been postulated to be present around F. tularensis based primarily on electron microscopy, but this specific antigen has not been isolated or characterized. METHODS AND FINDINGS A capsule-like complex (CLC) was effectively extracted from the cell surface of an F. tularensis live vaccine strain (LVS) lacking O-antigen with 0.5% phenol after 10 passages in defined medium broth and growth on defined medium agar for 5 days at 32°C in 7% CO₂. The large molecular size CLC was extracted by enzyme digestion, ethanol precipitation, and ultracentrifugation, and consisted of glucose, galactose, mannose, and Proteinase K-resistant protein. Quantitative reverse transcriptase PCR showed that expression of genes in a putative polysaccharide locus in the LVS genome (FTL_1432 through FTL_1421) was upregulated when CLC expression was enhanced. Open reading frames FTL_1423 and FLT_1422, which have homology to genes encoding for glycosyl transferases, were deleted by allelic exchange, and the resulting mutant after passage in broth (LVSΔ1423/1422_P10) lacked most or all of the CLC, as determined by electron microscopy, and CLC isolation and analysis. Complementation of LVSΔ1423/1422 and subsequent passage in broth restored CLC expression. LVSΔ1423/1422_P10 was attenuated in BALB/c mice inoculated intranasally (IN) and intraperitoneally with greater than 80 times and 270 times the LVS LD₅₀, respectively. Following immunization, mice challenged IN with over 700 times the LD₅₀ of LVS remained healthy and asymptomatic. CONCLUSIONS Our results indicated that the CLC may be a glycoprotein, FTL_1422 and -FTL_1423 were involved in CLC biosynthesis, the CLC contributed to the virulence of F. tularensis LVS, and a CLC-deficient mutant of LVS can protect mice against challenge with the parent strain.
Collapse
Affiliation(s)
- Aloka B. Bandara
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Anna E. Champion
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Xiaoshan Wang
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Gretchen Berg
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Michael A. Apicella
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Molly McLendon
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - D. Scott Snyder
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Thomas J. Inzana
- Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 2011; 90:271-84. [PMID: 21504950 DOI: 10.1189/jlb.0810457] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neutrophil is a key player in immunity, and its activities are essential for the resolution of infections. Neutrophil-pathogen interactions usually trigger a large arsenal of antimicrobial measures that leads to the highly efficient killing of pathogens. In neutrophils, the phagocytic process, including the formation and maturation of the phagosome, is in many respects very different from that in other phagocytes. Although the complex mechanisms that coordinate the membrane traffic, oxidative burst, and release of granule contents required for the microbicidal activities of neutrophils are not completely understood, it is evident that they are unique and differ from those in macrophages. Neutrophils exhibit more rapid rates of phagocytosis and higher intensity of oxidative respiratory response than do macrophages. The phagosome maturation pathway in macrophages, which is linked to the endocytic pathway, is replaced in neutrophils by the rapid delivery of preformed granules to nonacidic phagosomes. This review describes the plasticity and dynamics of the phagocytic process with a special focus on neutrophil phagosome maturation.
Collapse
Affiliation(s)
- Pontus Nordenfelt
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden.
| | | |
Collapse
|
38
|
Tryptophan prototrophy contributes to Francisella tularensis evasion of gamma interferon-mediated host defense. Infect Immun 2011; 79:2356-61. [PMID: 21464086 DOI: 10.1128/iai.01349-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is able to survive and replicate within host macrophages, a trait that is associated with the high virulence of this bacterium. The trpAB genes encode the enzymes required for the final two steps in tryptophan biosynthesis, with TrpB being responsible for the conversion of indole to tryptophan. Consistent with this function, an F. tularensis subsp. novicida trpB mutant is unable to grow in defined medium in the absence of tryptophan. The trpB mutant is also attenuated for virulence in a mouse pulmonary model of tularemia. However, the trpB mutant remains virulent in gamma interferon receptor-deficient (IFN-γR(-/-)) mice, demonstrating that IFN-γ-mediated signaling contributes to clearance of the trpB mutant. IFN-γ limits intracellular survival of the trpB mutant within bone marrow-derived macrophages from wild-type but not IFN-γR(-/-) mice. An F. tularensis subsp. tularensis trpB mutant is also attenuated for virulence in mice and survival within IFN-γ-treated macrophages, indicating that tryptophan prototrophy is also important in a human-virulent F. tularensis subspecies. These results demonstrate that trpB contributes to F. tularensis virulence by enabling intracellular growth under IFN-γ-mediated tryptophan limitation.
Collapse
|
39
|
Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis. Infect Immun 2011; 79:2204-14. [PMID: 21422184 DOI: 10.1128/iai.01382-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis, the causative agent of tularemia, survives and proliferates within macrophages of the infected host as part of its pathogenic strategy, through an intracellular life cycle that includes phagosomal escape and extensive proliferation within the macrophage cytosol. Various in vitro models of Francisella-macrophage interactions have been developed, using either opsonic or nonopsonic phagocytosis, and have generated discrepant results on the timing and extent of Francisella phagosomal escape. Here we have investigated whether either complement or antibody opsonization of the virulent prototypical type A strain Francisella tularensis subsp. tularensis Schu S4 affects its intracellular cycle within primary murine bone marrow-derived macrophages. Opsonization of Schu S4 with either human serum or purified IgG enhanced phagocytosis but restricted phagosomal escape and intracellular proliferation. Opsonization of Schu S4 with either fresh serum or purified antibodies redirected bacteria from the mannose receptor (MR) to the complement receptor CR3, the scavenger receptor A (SRA), and the Fcγ receptor (FcγR), respectively. CR3-mediated uptake delayed maturation of the early Francisella-containing phagosome (FCP) and restricted phagosomal escape, while FcγR-dependent phagocytosis was associated with superoxide production in the early FCP and restricted phagosomal escape and intracellular growth in an NADPH oxidase-dependent manner. Taken together, these results demonstrate that opsonophagocytic receptors alter the intracellular fate of Francisella by delivering bacteria through phagocytic pathways that restrict phagosomal escape and intracellular proliferation.
Collapse
|
40
|
Bosio CM. The subversion of the immune system by francisella tularensis. Front Microbiol 2011; 2:9. [PMID: 21687406 PMCID: PMC3109352 DOI: 10.3389/fmicb.2011.00009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/17/2011] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly virulent bacterial pathogen and the causative agent of tularemia. Perhaps the most impressive feature of this bacterium is its ability to cause lethal disease following inoculation of as few as 15 organisms. This remarkable virulence is, in part, attributed to the ability of this microorganism to evade, disrupt, and modulate host immune responses. The objective of this review is to discuss the mechanisms utilized by F. tularensis to evade and inhibit innate and adaptive immune responses. The capability of F. tularensis to interfere with developing immunity in the host was appreciated decades ago. Early studies in humans were the first to demonstrate the ability of F. tularensis to suppress innate immunity. This work noted that humans suffering from tularemia failed to respond to a secondary challenge of endotoxin isolated from unrelated bacteria. Further, anecdotal observations of individuals becoming repeatedly infected with virulent strains of F. tularensis suggests that this bacterium also interferes with the generation of adequate adaptive immunity. Recent advances utilizing the mouse model for in vivo studies and human cells for in vitro work have identified specific bacterial and host compounds that play a role in mediating ubiquitous suppression of the host immune response. Compilation of this work will undoubtedly aid in enhancing our understanding of the myriad of mechanisms utilized by virulent F. tularensis for successful infection, colonization, and pathogenesis in the mammalian host.
Collapse
Affiliation(s)
- Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| |
Collapse
|
41
|
Furevik A, Pettersen EF, Colquhoun D, Wergeland HI. The intracellular lifestyle of Francisella noatunensis in Atlantic cod (Gadus morhua L.) leucocytes. FISH & SHELLFISH IMMUNOLOGY 2011; 30:488-494. [PMID: 21129488 DOI: 10.1016/j.fsi.2010.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 05/30/2023]
Abstract
Francisella noatunensis causes the systemic granulomatous inflammatory disease, francisellosis in cod. Little is known about the lifestyle of this facultative intracellular bacterium within cod leucocytes. We have examined the interaction of this bacterium with phagocytic cells isolated from cod with emphasis on monocytes, macrophages, neutrophils and phagocytic B-cells. It is clear from confocal microscopy sections through adherent cell preparations that numerous bacteria were located intracellularly following in vitro infection in monocytes and macrophages. In these sections bacteria were immunostained and cell actin was stained using Alexa Fluor® 488 phalloidin. Bacteria were observed in close association with neutrophils and intracellularly (low numbers) in B-cells. Bacteria were observed more frequently in head kidney- than in peripheral blood- and spleen- leucocytes. Following infection, bacteria were initially observed grouped together and located close to the nucleus. Later they were found spread within the cytoplasm. This indicates regression of F. noatunensis from the phagosome to the cytoplasm where replication possibly takes place. It may be hypothesised that the bacteria may alter maturation of the phagosome and thus, avoid the potent intracellular killing mechanisms of phagocytic cells. The intracellular lifestyle involving escape to cytoplasm prior to fusion with the lysosome may have consequences for vaccine development as well as antibiotic treatment of infected cod.
Collapse
Affiliation(s)
- Anette Furevik
- Department of Biology, University of Bergen, Bergen High-Technology Center, PO box 7803, NO-5020 Bergen, Norway
| | | | | | | |
Collapse
|
42
|
Francisella tularensis Schu S4 O-antigen and capsule biosynthesis gene mutants induce early cell death in human macrophages. Infect Immun 2010; 79:581-94. [PMID: 21078861 DOI: 10.1128/iai.00863-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis is capable of rampant intracellular growth and causes a potentially fatal disease in humans. Whereas many mutational studies have been performed with avirulent strains of Francisella, relatively little has been done with strains that cause human disease. We generated a near-saturating transposon library in the virulent strain Schu S4, which was subjected to high-throughput screening by transposon site hybridization through primary human macrophages, negatively selecting 202 genes. Of special note were genes in a locus of the Francisella chromosome, FTT1236, FTT1237, and FTT1238. Mutants with mutations in these genes demonstrated significant sensitivity to complement-mediated lysis compared with wild-type Schu S4 and exhibited marked defects in O-antigen and capsular polysaccharide biosynthesis. In the absence of complement, these mutants were phagocytosed more efficiently by macrophages than wild-type Schu S4 and were capable of phagosomal escape but exhibited reduced intracellular growth. Microscopic and quantitative analyses of macrophages infected with mutant bacteria revealed that these macrophages exhibited signs of cell death much earlier than those infected with Schu S4. These data suggest that FTT1236, FTT1237, and FTT1238 are important for polysaccharide biosynthesis and that the Francisella O antigen, capsule, or both are important for avoiding the early induction of macrophage death and the destruction of the replicative niche.
Collapse
|
43
|
Michell SL, Dean RE, Eyles JE, Hartley MG, Waters E, Prior JL, Titball RW, Oyston PCF. Deletion of the Bacillus anthracis capB homologue in Francisella tularensis subspecies tularensis generates an attenuated strain that protects mice against virulent tularaemia. J Med Microbiol 2010; 59:1275-1284. [PMID: 20651039 DOI: 10.1099/jmm.0.018911-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
As there is currently no licensed vaccine against Francisella tularensis, the causative agent of tularaemia, the bacterium is an agent of concern as a potential bioweapon. Although F. tularensis has a low infectious dose and high associated mortality, it possesses few classical virulence factors. An analysis of the F. tularensis subspecies tularensis genome sequence has revealed the presence of a region containing genes with low sequence homology to part of the capBCADE operon of Bacillus anthracis. We have generated an isogenic capB mutant of F. tularensis subspecies tularensis SchuS4 and shown it to be attenuated. Furthermore, using BALB/c mice, we have demonstrated that this capB strain affords protection against significant homologous challenge with the wild-type strain. These data have important implications for the development of a defined and efficacious tularaemia vaccine.
Collapse
Affiliation(s)
- Stephen L Michell
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Rachel E Dean
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Jim E Eyles
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Margaret Gill Hartley
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Emma Waters
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Joann L Prior
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W Titball
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Petra C F Oyston
- Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
44
|
A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect Immun 2010; 78:4341-55. [PMID: 20643859 DOI: 10.1128/iai.00192-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is in the top category (category A) of potential agents of bioterrorism. The F. tularensis live vaccine strain (LVS) is the only vaccine currently available to protect against tularemia; however, this unlicensed vaccine is relatively toxic and provides incomplete protection against aerosolized F. tularensis, the most dangerous mode of transmission. Hence, a safer and more potent vaccine is needed. As a first step toward addressing this need, we have constructed and characterized an attenuated version of LVS, LVS ΔcapB, both as a safer vaccine and as a vector for the expression of recombinant F. tularensis proteins. LVS ΔcapB, with a targeted deletion in a putative capsule synthesis gene (capB), is antibiotic resistance marker free. LVS ΔcapB retains the immunoprotective O antigen, is serum resistant, and is outgrown by parental LVS in human macrophage-like THP-1 cells in a competition assay. LVS ΔcapB is significantly attenuated in mice; the 50% lethal dose (LD(50)) intranasally (i.n.) is >10,000-fold that of LVS. Providing CapB in trans to LVS ΔcapB partially restores its virulence in mice. Mice immunized with LVS ΔcapB i.n. or intradermally (i.d.) developed humoral and cellular immune responses comparable to those of mice immunized with LVS, and when challenged 4 or 8 weeks later with a lethal dose of LVS i.n., they were 100% protected from illness and death and had significantly lower levels (3 to 5 logs) of LVS in the lung, liver, and spleen than sham-immunized mice. Most importantly, mice immunized with LVS ΔcapB i.n. or i.d. and then challenged 6 weeks later by aerosol with 10× the LD(50) of the highly virulent type A F. tularensis strain SchuS4 were significantly protected (100% survival after i.n. immunization). These results show that LVS ΔcapB is significantly safer than LVS and yet provides potent protective immunity against virulent F. tularensis SchuS4 challenge.
Collapse
|
45
|
Apicella MA, Post DMB, Fowler AC, Jones BD, Rasmussen JA, Hunt JR, Imagawa S, Choudhury B, Inzana TJ, Maier TM, Frank DW, Zahrt TC, Chaloner K, Jennings MP, McLendon MK, Gibson BW. Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One 2010; 5:e11060. [PMID: 20625403 PMCID: PMC2897883 DOI: 10.1371/journal.pone.0011060] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/14/2010] [Indexed: 11/18/2022] Open
Abstract
Capsular polysaccharides are important factors in bacterial pathogenesis and have been the target of a number of successful vaccines. Francisella tularensis has been considered to express a capsular antigen but none has been isolated or characterized. We have developed a monoclonal antibody, 11B7, which recognizes the capsular polysaccharide of F. tularensis migrating on Western blot as a diffuse band between 100 kDa and 250 kDa. The capsule stains poorly on SDS-PAGE with silver stain but can be visualized using ProQ Emerald glycoprotein stain. The capsule appears to be highly conserved among strains of F. tularensis as antibody 11B7 bound to the capsule of 14 of 14 F. tularensis type A and B strains on Western blot. The capsular material can be isolated essentially free of LPS, is phenol and proteinase K resistant, ethanol precipitable and does not dissociate in sodium dodecyl sulfate. Immunoelectron microscopy with colloidal gold demonstrates 11B7 circumferentially staining the surface of F. tularensis which is typical of a polysaccharide capsule. Mass spectrometry, compositional analysis and NMR indicate that the capsule is composed of a polymer of the tetrasaccharide repeat, 4)-alpha-D-GalNAcAN-(1->4)-alpha-D-GalNAcAN-(1->3)-beta-D-QuiNAc-(1->2)-beta-D-Qui4NFm-(1-, which is identical to the previously described F. tularensis O-antigen subunit. This indicates that the F. tularensis capsule can be classified as an O-antigen capsular polysaccharide. Our studies indicate that F. tularensis O-antigen glycosyltransferase mutants do not make a capsule. An F. tularensis acyltransferase and an O-antigen polymerase mutant had no evidence of an O-antigen but expressed a capsular antigen. Passive immunization of BALB/c mice with 75 microg of 11B7 protected against a 150 fold lethal challenge of F. tularensis LVS. Active immunization of BALB/c mice with 10 microg of capsule showed a similar level of protection. These studies demonstrate that F. tularensis produces an O-antigen capsule that may be the basis of a future vaccine.
Collapse
Affiliation(s)
- Michael A Apicella
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Durham-Colleran MW, Verhoeven AB, van Hoek ML. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. MICROBIAL ECOLOGY 2010; 59:457-465. [PMID: 19763680 DOI: 10.1007/s00248-009-9586-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/19/2009] [Indexed: 05/28/2023]
Abstract
Francisella tularensis is associated with water and waterways and infects many species of animals, insects, and protists. The mechanism Francisella utilizes to persist in the environment and in tick vectors is currently unknown. We have demonstrated for the first time that Francisella novicida, a model organism of F. tularensis, forms a biofilm in vitro. Selected F. novicida transposon mutants were tested for their ability to form biofilm compared to the wildtype F. novicida strain. Mutation of the putative qseB gene led to an impairment in the ability to form biofilm with no impairment in bacterial growth. A qseC mutant had impaired growth but demonstrated a marked impairment in biofilm production. Mutation in capC affected both bacterial growth and biofilm formation, but no biofilm production impairment was seen with capB or pilE mutants. A deletion mutant in the orphan response regulator FTN_1465, which we propose is the putative QseB, formed significantly less biofilm than the wildtype. When FTN_1465 was complemented back into the deletion mutant, biofilm formation was restored. Thus, the orphan response regulator FTN_1465 is an important factor in biofilm production in vitro in F. novicida. These results demonstrate that Francisella species are able to form biofilms in vitro, suggesting that biofilm formation may be important for the lifecycle of this organism.
Collapse
Affiliation(s)
- Meghan W Durham-Colleran
- MS 1HS Department of Molecular and Microbiology, National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | | | | |
Collapse
|
47
|
Clinton SR, Bina JE, Hatch TP, Whitt MA, Miller MA. Binding and activation of host plasminogen on the surface of Francisella tularensis. BMC Microbiol 2010; 10:76. [PMID: 20226053 PMCID: PMC2848021 DOI: 10.1186/1471-2180-10-76] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 03/12/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Francisella tularensis (FT) is a gram-negative facultative intracellular coccobacillus and is the causal agent of a life-threatening zoonotic disease known as tularemia. Although FT preferentially infects phagocytic cells of the host, recent evidence suggests that a significant number of bacteria can be found extracellularly in the plasma fraction of the blood during active infection. This observation suggests that the interaction between FT and host plasma components may play an important role in survival and dissemination of the bacterium during the course of infection. Plasminogen (PLG) is a protein zymogen that is found in abundance in the blood of mammalian hosts. A number of both gram-positive and gram-negative bacterial pathogens have the ability to bind to PLG, giving them a survival advantage by increasing their ability to penetrate extracellular matrices and cross tissue barriers. RESULTS We show that PLG binds to the surface of FT and that surface-bound PLG can be activated to plasmin in the presence of tissue PLG activator in vitro. In addition, using Far-Western blotting assays coupled with proteomic analyses of FT outer membrane preparations, we have identified several putative PLG-binding proteins of FT. CONCLUSIONS The ability of FT to acquire surface bound PLG that can be activated on its surface may be an important virulence mechanism that results in an increase in initial infectivity, survival, and/or dissemination of this bacterium in vivo.
Collapse
Affiliation(s)
- Shawn R Clinton
- Department of Molecular Sciences, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, Tennessee 38163, USA
| | - James E Bina
- Department of Molecular Sciences, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, Tennessee 38163, USA
| | - Thomas P Hatch
- Department of Molecular Sciences, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, Tennessee 38163, USA
| | - Michael A Whitt
- Department of Molecular Sciences, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, Tennessee 38163, USA
| | - Mark A Miller
- Department of Molecular Sciences, The University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, Tennessee 38163, USA
| |
Collapse
|
48
|
Pechous RD, McCarthy TR, Zahrt TC. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 2009; 73:684-711. [PMID: 19946137 PMCID: PMC2786580 DOI: 10.1128/mmbr.00028-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a facultative intracellular gram-negative pathogen and the etiological agent of the zoonotic disease tularemia. Recent advances in the field of Francisella genetics have led to a rapid increase in both the generation and subsequent characterization of mutant strains exhibiting altered growth and/or virulence characteristics within various model systems of infection. In this review, we summarize the major properties of several Francisella species, including F. tularensis and F. novicida, and provide an up-to-date synopsis of the genes necessary for pathogenesis by these organisms and the determinants that are currently being targeted for vaccine development.
Collapse
Affiliation(s)
- Roger D. Pechous
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Travis R. McCarthy
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Thomas C. Zahrt
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
49
|
Barker JH, McCaffrey RL, Baman NK, Allen LAH, Weiss JP, Nauseef WM. The role of complement opsonization in interactions between F. tularensis subsp. novicida and human neutrophils. Microbes Infect 2009; 11:762-9. [PMID: 19409509 PMCID: PMC2715441 DOI: 10.1016/j.micinf.2009.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/22/2022]
Abstract
The remarkable infectiousness of Francisella tularensis suggests that the bacterium efficiently evades innate immune responses that typically protect the host during its continuous exposure to environmental and commensal microbes. In our studies of the innate immune response to F. tularensis, we have observed that, unlike the live vaccine strain (LVS) of F. tularensis subsp. holarctica, F. tularensis subsp. novicida U112 opsonized in pooled human serum activated the NADPH oxidase when incubated with human neutrophils. Given previous observations that F. tularensis fixes relatively small quantities of complement component C3 during incubation in human serum and the importance of C3 to neutrophil phagocytosis, we hypothesized that F. tularensis subsp. novicida may fix C3 in human serum more readily than would LVS. We now report that F. tularensis subsp. novicida fixed approximately six-fold more C3 than did LVS when incubated in 50% pooled human serum and that this complement opsonization was antibody-mediated. Furthermore, antibody-mediated C3 deposition enhanced bacterial uptake and was indispensable for the neutrophil oxidative response to F. tularensis subsp. novicida. Taken together, our results reveal important differences between these two strains of F. tularensis and may, in part, explain the low virulence of F. tularensis subsp. novicida for humans.
Collapse
Affiliation(s)
- Jason H Barker
- Inflammation Program and Department of Medicine, Veterans Affairs Medical Center and the University of Iowa, Coralville, IA 52241, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Tularemia is a rare zoonotic infection caused by the bacterium Francisella tularensis. The disease is endemic in North America and parts of Europe and Asia. Arthropods (ticks and deer flies) are the main transmission vector, and small animals (rabbits, hares, and muskrats) serve as reservoir hosts. The clinical presentation depends on the bacterial subspecies and the route of infection. Recent world events have led to a new recognition of F tularensis as a viable agent of bioterrorism, which has sparked a renewed focus on this pathogen.
Collapse
Affiliation(s)
- Lise E Nigrovic
- Division of Emergency Medicine, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|