1
|
Vilela da Silva CA, Costa Dos Santos CE, de Paula Cortezzi MF, Moura CDSS, Cruz RE, Almeida Lopes CD, Costa K, Souza LTD, Silva PCLD, Neumann E, Nunes ÁC, Gomes MA, Silva Oliveira FM, Caliari MV. Enteropathogenic Escherichia coli modulates the virulence and pathogenicity of Entamoeba dispar. Exp Parasitol 2024; 261:108750. [PMID: 38614222 DOI: 10.1016/j.exppara.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Amoebiasis is a disease caused by Entamoeba histolytica, affecting the large intestine of humans and occasionally leading to extra-intestinal lesions. Entamoeba dispar is another amoeba species considered commensal, although it has been identified in patients presenting with dysenteric and nondysenteric colitis, as well as amoebic liver abscess. Amoebic virulence factors are essential for the invasion and development of lesions. There is evidence showing that the association of enterobacteria with trophozoites contributes to increased gene expression of amoebic virulence factors. Enteropathogenic Escherichia coli is an important bacterium causing diarrhea, with high incidence rates in the world population, allowing it to interact with Entamoeba sp. in the same host. In this context, this study aims to evaluate the influence of enteropathogenic Escherichia coli on ACFN and ADO Entamoeba dispar strains by quantifying the gene expression of virulence factors, including galactose/N-acetyl-D-galactosamine-binding lectin, cysteine proteinase 2, and amoebapores A and C. Additionally, the study assesses the progression and morphological aspect of amoebic liver abscess and the profile of inflammatory cells. Our results demonstrated that the interaction between EPEC and ACFN Entamoeba dispar strains was able to increase the gene expression of virulence factors, as well as the lesion area and the activity of the inflammatory infiltrate. However, the association with the ADO strain did not influence the gene expression of virulence factors. Together, our findings indicate that the interaction between EPEC, ACFN, and ADO Entamoeba dispar strains resulted in differences in vitro and in vivo gene expression of Gal/GalNAc-binding lectin and CP2, in enzymatic activities of MPO, NAG, and EPO, and consequently, in the ability to cause lesions.
Collapse
Affiliation(s)
| | | | | | - César da Silva Santana Moura
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Ruth Elizabeth Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Camila de Almeida Lopes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Karen Costa
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Lucas Teixeira de Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Patrícia Costa Lima da Silva
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Álvaro Cantini Nunes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | | | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| |
Collapse
|
2
|
Nagode A, Vanbeselaere J, Duchêne M. Revisiting the isolation and characterisation of Entamoeba histolytica lipopeptidophosphoglycan. Parasitol Res 2024; 123:138. [PMID: 38378851 PMCID: PMC10879251 DOI: 10.1007/s00436-024-08149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The parasite Entamoeba histolytica is the cause of amoebic dysentery and liver abscess in humans. On the protozoan cell surface, a variety of glycosylated molecules are involved in the interaction with the environment, such as attachment to the colonic mucus. One of these molecules is the lipopeptidophosphoglycan (LPPG), a complex surface component with antigenic properties. Its structure is only partly known, it is a glycosylphosphatidylinositol (GPI)-linked glycoprotein with a large amount of O-glycosylation. To date, the sequence of a core protein has not been identified. In this study, we further investigated this complex surface molecule aided by the availability of the monoclonal antibody EH5, which had been raised in our laboratory. We studied the extraction of LPPG in various solvent mixtures and discovered that 2-butanol saturated water was simple and superior to other solvents used in the past. The isolated LPPG was subjected to treatment with several proteases and the Ser/Thr specific cleavage agent scandium (III) trifluoromethanesulfonate (scandium triflate). The products were probed with antibody EH5 and the blots showed that the LPPG preparation was largely resistant to standard proteases, but could be cleaved by the scandium compound. These observations could point to the existence of a Ser- or Thr-rich core protein structure.
Collapse
Affiliation(s)
- Anna Nagode
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Duchêne
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Niculescu VF. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes Dis 2022; 9:1234-1247. [PMID: 35873035 PMCID: PMC9293697 DOI: 10.1016/j.gendis.2022.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 12/18/2022] Open
|
4
|
Silva Oliveira FM, Claúdia de Carvalho Fernandes A, Henrique de Cicco Sandes S, Prata LO, Junior MA, Vilela da Silva CA, Campolina-Silva GH, Lorenzo de Jesus Oliveira M, Oliveira CA, Neumann E, Nunes ÁC, Gomes MA, Caliari MV. Co-infection by Salmonella enterica subsp. Enterica serovar typhimurium and Entamoeba dispar pathogenic strains enhances colitis and the expression of amoebic virulence factors. Microb Pathog 2021; 158:105010. [PMID: 34126224 DOI: 10.1016/j.micpath.2021.105010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
Amebiasis is the most severe protozoan infection affecting the human intestine, and the second leading cause of death among parasitic diseases. The mechanisms of amoebic virulence factors acquisition are poorly understood, and there are few studies showing the interaction between Entamoeba dispar and bacteria. Salmonella enterica subsp. enterica serovar typhimurium is also a common cause of gastroenteritis in humans. Considering the high rates of amebiasis and salmonellosis, it is possible that these diseases may co-exist in the human intestine, leading to co-infection. Due to the scarcity of studies showing the influence of enteropathogenic bacteria on amoebic virulence, our research group proposed to evaluate the impact of S. typhimurium on E. dispar trophozoites. We assessed whether co-infection of S. typhimurium and E. dispar can change the progression of amoebic colitis, and the inflammatory response profile in the caecum mucosa, using a co-infection experimental model in rats. In vitro assays was used to investigate whether S. typhimurium induces changes in amoebic virulence phenotype. In the present work, we found that S. typhimurium co-infection exacerbates amoebic colitis and intestinal inflammation. The in vitro association of S. typhimurium and E. dispar trophozoites contributed to increase the expression of amoebic virulence factors. Also, we demonstrated, for the first time, the cysteine proteinase 5 expression in E. dispar MCR, VEJ and ADO strains, isolated in Brazil. Together, our results show that S. typhimurium and E. dispar co-infection worsens amoebic colitis, possibly by increasing the expression of amoebic virulence factors.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Brazil; Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | | | - Sávio Henrique de Cicco Sandes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Luana Oliveira Prata
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Mario Abatemarco Junior
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | | | | | | | | | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Álvaro Cantini Nunes
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
5
|
Ankri S. Entamoeba histolytica-Gut Microbiota Interaction: More Than Meets the Eye. Microorganisms 2021; 9:microorganisms9030581. [PMID: 33809056 PMCID: PMC7998739 DOI: 10.3390/microorganisms9030581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
Amebiasis is a disease caused by the unicellular parasite Entamoeba histolytica. In most cases, the infection is asymptomatic but when symptomatic, the infection can cause dysentery and invasive extraintestinal complications. In the gut, E. histolytica feeds on bacteria. Increasing evidences support the role of the gut microbiota in the development of the disease. In this review we will discuss the consequences of E. histolytica infection on the gut microbiota. We will also discuss new evidences about the role of gut microbiota in regulating the resistance of the parasite to oxidative stress and its virulence.
Collapse
Affiliation(s)
- Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
6
|
Queuine Is a Nutritional Regulator of Entamoeba histolytica Response to Oxidative Stress and a Virulence Attenuator. mBio 2021; 12:mBio.03549-20. [PMID: 33688012 PMCID: PMC8092309 DOI: 10.1128/mbio.03549-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entamoeba histolytica is a unicellular parasite that causes amebiasis. The parasite resides in the colon and feeds on the colonic microbiota. Queuosine is a naturally occurring modified ribonucleoside found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His, and Tyr. Eukaryotes lack pathways to synthesize queuine, the nucleobase precursor to queuosine, and must obtain it from diet or gut microbiota. Here, we describe the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica, the causative agent of amebic dysentery. Queuine is efficiently incorporated into E. histolytica tRNAs by a tRNA-guanine transglycosylase (EhTGT) and this incorporation stimulates the methylation of C38 in
tRNAGUCAsp. Queuine protects the parasite against oxidative stress (OS) and antagonizes the negative effect that oxidation has on translation by inducing the expression of genes involved in the OS response, such as heat shock protein 70 (Hsp70), antioxidant enzymes, and enzymes involved in DNA repair. On the other hand, queuine impairs E. histolytica virulence by downregulating the expression of genes previously associated with virulence, including cysteine proteases, cytoskeletal proteins, and small GTPases. Silencing of EhTGT prevents incorporation of queuine into tRNAs and strongly impairs methylation of C38 in
tRNAGUCAsp, parasite growth, resistance to OS, and cytopathic activity. Overall, our data reveal that queuine plays a dual role in promoting OS resistance and reducing parasite virulence.
Collapse
|
7
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat 2019; 44:1-14. [PMID: 31112766 DOI: 10.1016/j.drup.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Khomkhum N, Leetachewa S, Pawestri AR, Moonsom S. Host-antibody inductivity of virulent Entamoeba histolytica and non-virulent Entamoeba moshkovskii in a mouse model. Parasit Vectors 2019; 12:101. [PMID: 30867040 PMCID: PMC6416977 DOI: 10.1186/s13071-019-3363-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 12/04/2022] Open
Abstract
Background Despite similarities in morphology, gene and protein profiles, Entamoeba histolytica and E. moshkovskii show profound differences in pathogenicity. Entamoeba histolytica infection might result in amoebic dysentery and liver abscess, while E. moshkovskii causes only mild diarrhea. Extensive studies focus on roles of host immune responses to the pathogenic E. histolytica; however, evidence for E. moshkovskii remains scarce. Methods To study differences in host-antibody response profiles between E. histolytica and E. moshkovskii, mice were immunized intraperitoneally with different sets of Entamoeba trophozoites as single species, mixed species and combinations. Results Mice prime-immunized with E. histolytica and E. moshkovskii combination, followed by individual species, exhibited higher IgG level than the single species immunization. Mice immunized with E. moshkovskii induced significantly higher levels and long-lasting antibody responses than those challenged with E. histolytica alone. Interestingly, E. histolytica-specific anti-sera promoted the cytopathic ability of E. histolytica toward Chinese hamster ovarian (CHO) cells, but showed no effect on cell adhesion. There was no significant effect of immunized sera on cytopathic activity and adhesion of E. moshkovskii toward both CHO and human epithelial human colonic (Caco-2) cell lines. Monoclonal-antibody (mAb) characterization demonstrated that 89% of E. histolytica-specific mAbs produced from mice targeted cytoplasmic and cytoskeletal proteins, whereas 73% of E. moshkovskii-specific mAbs targeted plasma membrane proteins. Conclusions The present findings suggest that infection with mixed Entamoeba species or E. moshkovskii effectively induces an antibody response in mice. It also sheds light on roles of host antibody response in the pathogenic difference of E. histolytica and E. moshkovskii trophozoites, and cell surface protein modifications of the amoebic parasites to escape from host immune system.
Collapse
Affiliation(s)
- Narumol Khomkhum
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi, Bangkok, 10400, Thailand
| | - Somphob Leetachewa
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhorn-Pathom, 73170, Thailand
| | - Aulia Rahmi Pawestri
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi, Bangkok, 10400, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi, Bangkok, 10400, Thailand.
| |
Collapse
|
10
|
Nagaraja S, Ankri S. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:19. [PMID: 29473019 PMCID: PMC5809450 DOI: 10.3389/fcimb.2018.00019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences). These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
11
|
|
12
|
Oliveira FMS, Neumann E, Gomes MA, Caliari MV. Entamoeba dispar: Could it be pathogenic. Trop Parasitol 2015; 5:9-14. [PMID: 25709947 PMCID: PMC4327003 DOI: 10.4103/2229-5070.149887] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/22/2015] [Indexed: 12/30/2022] Open
Abstract
Amebiasis is a disease caused by the protozoan parasite Entamoeba histolytica. This ameba can colonize the human intestine and persist as a commensal parasite, similar to Entamoeba dispar, an ameba considered to be non-pathogenic. The similarities between E. histolytica and E. dispar make the latter an attractive model for studies aimed at clarifying the pathogenesis of amebiasis. However, in addition to being an interesting experimental model, this relative of E. histolytica remains poorly understood. In the 1990, it was believed that E. dispar was unable to produce significant experimental lesions. This scenario began to change in 1996, when E. dispar strains were isolated from symptomatic patients in Brazil. These strains were able to produce liver and intestinal lesions that were occasionally indistinguishable from those produced by E. histolytica. These and other findings, such as the detection of E. dispar DNA sequences in samples from patients with amebic liver abscess, have revived the possibility that this species can produce lesions in humans. The present paper presents a series of studies on E. dispar that begin to reveal a new facet of this protozoan.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elisabeth Neumann
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Aparecida Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Verkerke HP, Petri WA, Marie CS. The dynamic interdependence of amebiasis, innate immunity, and undernutrition. Semin Immunopathol 2012; 34:771-85. [PMID: 23114864 PMCID: PMC3510265 DOI: 10.1007/s00281-012-0349-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/21/2012] [Indexed: 01/27/2023]
Abstract
Entamoeba histolytica, the protozoan parasite that causes amebic dysentery, greatly contributes to disease burden in the developing world. Efforts to exhaustively characterize the pathogenesis of amebiasis have increased our understanding of the dynamic host-parasite interaction and the process by which E. histolytica trophozoites transition from gut commensals to invaders of the intestinal epithelium. Mouse models of disease continue to be instrumental in this area. At the same time, large-scale studies in human populations have identified genetic and environmental factors that influence susceptibility to amebiasis. Nutritional status has long been known to globally influence immune function. So it is not surprising that undernutrition has emerged as a critical risk factor. A better understanding of how nutritional status affects immunity to E. histolytica will have dramatic implications in the development of novel treatments. Future work should continue to characterize the fascinating host-parasite arms race that occurs at each stage of infection.
Collapse
Affiliation(s)
- Hans P. Verkerke
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Chelsea S. Marie
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia, United States of America
| |
Collapse
|
14
|
Clark CG, Gillin FD, Bhattacharya A, Bhattacharya S, Mirelman D. In memoriam: Louis S. "Buddy" Diamond (1920-2009). J Eukaryot Microbiol 2010; 57:449-51. [PMID: 20662997 DOI: 10.1111/j.1550-7408.2010.00493.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C Graham Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Mendoza-Macías CL, Barrios-Ceballos MP, de la Peña LPC, Rangel-Serrano A, Anaya-Velázquez F, Mirelman D, Padilla-Vaca F. Entamoeba histolytica: effect on virulence, growth and gene expression in response to monoxenic culture with Escherichia coli 055. Exp Parasitol 2008; 121:167-74. [PMID: 19014938 DOI: 10.1016/j.exppara.2008.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Monoxenic cultivation of pathogenic Entamoeba histolytica trophozoites with Escherichia coli serotype 055 which binds strongly to the Gal/GalNAc amoebic lectin, markedly improved the growth of E. histolytica and produced a significant decrease in cysteine proteinase activity and a lower cytopathic activity on monolayer cells after 3 months of monoxenic culture. However, after long term monoxenic culture (12 months) the proteolytic and cytopathic activities were recovered and the amoebic growth reached the maximum yield. Employing the GeneFishing(R) technology and DNA macroarrays we detected differentially gene expression related to the amoebic interaction with bacteria. A number of differentially expressed genes encoding metabolic enzymes, ribosomal proteins, virulence factors and proteins related with cytoskeletal and vesicle trafficking were found. These results suggest that E. coli 055 has a nutritional role that strongly supports the amoebic growth, and is also able to modulate some biological activities related with amoebic virulence.
Collapse
|
16
|
Guo X, Houpt E, Petri WA. Crosstalk at the initial encounter: interplay between host defense and ameba survival strategies. Curr Opin Immunol 2007; 19:376-84. [PMID: 17702556 PMCID: PMC2679172 DOI: 10.1016/j.coi.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/14/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
The host-parasite relationship is based on a series of interplays between host defense mechanisms and parasite survival strategies. Progress has been made in understanding the role of host immune response in amebiasis. While host cells elaborate diverse mechanisms for pathogen expulsion, amebae have also developed complex strategies to modulate host immune response and facilitate their own survival. This paper will give an overview of current research on the mutual interactions between host and Entamoeba histolytica in human and experimental amebiasis. Understanding this crosstalk is crucial for the effective design and implementation of new vaccines and drugs for this leading parasitic disease.
Collapse
Affiliation(s)
- Xiaoti Guo
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908-1340
| | - Eric Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908-1340
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908-1340
| |
Collapse
|
17
|
Padilla-Vaca F, Ankri S, Bracha R, Koole LA, Mirelman D. Down regulation of Entamoeba histolytica virulence by monoxenic cultivation with Escherichia coli O55 is related to a decrease in expression of the light (35-kilodalton) subunit of the Gal/GalNAc lectin. Infect Immun 1999; 67:2096-102. [PMID: 10225860 PMCID: PMC115943 DOI: 10.1128/iai.67.5.2096-2102.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica virulence is related to a number of amebic components (lectins, cysteine proteinases, and amebapore) and host factors, such as intestinal bacterial flora. Trophozoites are selective in their interactions with bacteria, and the parasite recognition of glycoconjugates plays an important role in amebic virulence. Long-term monoxenic cultivation of pathogenic E. histolytica trophozoites, strains HK-9 or HM-1:IMSS, with Escherichia coli serotype O55, which binds strongly to the Gal/GalNAc amebic lectin, markedly reduced the trophozoites' adherence and cytopathic activity on cell monolayers of baby hamster kidney (BHK) cells. Specific probes prepared from E. histolytica lectin genes as well as antibodies directed against the light (35-kDa) and heavy (170-kDa) subunits of the Gal/GalNAc lectin revealed a decrease in the transcription and expression of the light subunit in trophozoites grown monoxenically with E. coli O55. This effect was not observed when E. histolytica was grown with E. coli 346, a mannose-binding type I pilated bacteria. Our results suggest that the light subunit of the amebic lectin is involved in the modulation of parasite adherence and cytopathic activity.
Collapse
Affiliation(s)
- F Padilla-Vaca
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
18
|
Bhattacharya A, Anand MT, Paul J, Yadav N, Bhattacharya S. Molecular changes in Entamoeba histolytica in response to bacteria. J Eukaryot Microbiol 1998; 45:28S-33S. [PMID: 9561781 DOI: 10.1111/j.1550-7408.1998.tb04521.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Entamoeba histolytica, the protozoan parasite, is the causative agent of amoebiasis. The degree of virulence, as inferred from invasiveness, of potentially pathogenic strains may be regulated by both host and parasite factors that determine the gut environment. One such factor that plays an important role is the bacterial flora in the gut. Previous studies have clearly shown that bacterial flora is an important determinant of virulence in E. histolytica. However, the exact nature of changes induced in E. histolytica in response to bacteria and their role in virulence is not clear. In this study the levels of a number of molecules potentially important in virulence mechanisms were determined in E. histolytica cells grown with and without normal human bacterial flora, using enzyme-linked immunosorbent assay. Significant changes were observed only after the E. histolytica cells had been adapted to grow with bacterial flora for a number of generations, and not in short term culture.
Collapse
Affiliation(s)
- A Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | | | | | | | |
Collapse
|
19
|
Marinets A, Zhang T, Guillén N, Gounon P, Bohle B, Vollmann U, Scheiner O, Wiedermann G, Stanley SL, Duchêne M. Protection against invasive amebiasis by a single monoclonal antibody directed against a lipophosphoglycan antigen localized on the surface of Entamoeba histolytica. J Exp Med 1997; 186:1557-65. [PMID: 9348313 PMCID: PMC2199119 DOI: 10.1084/jem.186.9.1557] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1997] [Revised: 08/25/1997] [Indexed: 02/05/2023] Open
Abstract
A panel of monoclonal antibodies was raised from mice immunized with a membrane preparation from Entamoeba histolytica, the pathogenic species causing invasive amebiasis in humans. Antibody EH5 gave a polydisperse band in immunoblots from membrane preparations from different E. histolytica strains, and a much weaker signal from two strains of the nonpathogenic species Entamoeba dispar. Although the exact chemical structure of the EH5 antigen is not yet known, the ability of the antigen to be metabolically radiolabeled with [32P]phosphate or [3H]glucose, its sensitivity to digestion by mild acid and phosphatidylinositol-specific phospholipase C, and its specific extraction from E. histolytica trophozoites by a method used to prepare lipophosphoglycans from Leishmania showed that it could be classified as an amebal lipophosphoglycan. Confocal immunofluorescence and immunogold labeling of trophozoites localized the antigen on the outer face of the plasma membrane and on the inner face of internal vesicle membranes. Antibody EH5 strongly agglutinated amebas in a similar way to concanavalin A (Con A), and Con A bound to immunoaffinity-purified EH5 antigen. Therefore, surface lipophosphoglycans may play an important role in the preferential agglutination of pathogenic amebas by Con A. The protective ability of antibody EH5 was tested in a passive immunization experiment in a severe combined immunodeficient (SCID) mouse model. Intrahepatic challenge of animals after administration of an isotype-matched control antibody or without treatment led to the development of a liver abscess in all cases, whereas 11 out of 12 animals immunized with the EH5 antibody developed no liver abscess. Our results demonstrate the importance and, for the first time, the protective capacity of glycan antigens on the surface of the amebas.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/metabolism
- Antibodies, Protozoan/therapeutic use
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Antigens, Protozoan/ultrastructure
- Binding Sites, Antibody
- Concanavalin A/metabolism
- Entamoeba histolytica/immunology
- Entamoeba histolytica/ultrastructure
- Entamoebiasis/immunology
- Entamoebiasis/parasitology
- Entamoebiasis/prevention & control
- Female
- Fluorescent Antibody Technique, Indirect
- Glycosphingolipids/chemistry
- Glycosphingolipids/immunology
- Immunization, Passive
- Immunoblotting
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Microscopy, Confocal
- Microscopy, Electron
- Protein Binding/immunology
- Protozoan Proteins/immunology
Collapse
Affiliation(s)
- A Marinets
- Institute for Specific Prophylaxis and Tropical Medicine, A-1095 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Variyam EP. Luminal bacteria and proteases together decrease adherence of Entamoeba histolytica trophozoites to Chinese hamster ovary epithelial cells: a novel host defence against an enteric pathogen. Gut 1996; 39:521-7. [PMID: 8944559 PMCID: PMC1383263 DOI: 10.1136/gut.39.4.521] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Factors that prevent colonic mucosal invasion by pathogenic Entamoeba histolytica are not understood. A key initial step in pathogenesis of injury induced by amoeba is adherence to target cells mediated by a surface glycoprotein lectin on E histolytica. Mucin degrading bacteria normally present in the colon lumen produce glycosidases that degrade soluble or cell surface glycoconjugates. AIM To determine whether glycosidases produced by mucin degrading bacteria, alone or in combination with proteases present in colon lumen, can decrease E histolytica adherence to target epithelial cells by degrading E histolytica adherence lectin. METHODS The effects of exposure of E histolytica trophozoites strains HM1:IMSS and 200:NIH to faecal culture supernatant fluids, culture supernatant preparations of mucin degrading bacteria, and luminal proteases on their adherence to Chinese hamster ovary (CHO) cells were determined. The amount of surface adherence lectin on E histolytica trophozoites before and after treatment with glycosidases and proteases was determined by immunofluorescence. The effect of glycosidases and proteases on purified E histolytica lectin was determined by gel electrophoresis. RESULTS Incubation of E histolytica with culture supernatant preparations or proteases alone did not modify their CHO cell adherence. However, 24 hour incubation of trophozoites with culture supernatant preparations together with pancreatic proteases decreased CHO cell adherence of HM1:IMSS strain by 71.1% (p < 0.001) and of 200: NIH strain by 95% (p < 0.05). Incubation of trophozoites for 24 hours with faecal extracts which contain bacterial and host hydrolases decreased the adherence of the HM1:IMSS strain by 69.2% (p < 0.01) and of the 200: NIH strain by 83.0%. Reduction of trophozoite adherence to CHO cells by hydrolases was promoted by 7.5 mM cycloheximide, and was reversible on incubation in an enzyme free medium. Decrease in CHO cell adherence of trophozoites was associated with decreased lectin on trophozoites as determined by immunofluorescence using a monoclonal antibody to the lectin. Purified lectin was degraded by the mixture of faecal culture supernant preparations and proteases, but not by either alone. CONCLUSIONS Mucin degrading bacterial glycosidases and colonic luminal proteases together, but not alone, degrade the key adherence lectin on E histolytica trophozoites resulting in decreased epithelial cell adherence. These in vitro findings suggest a potential novel host defence mechanism in the human colon wherein the invasiveness of a pathogen could be curtailed by the combined actions of bacterial and host hydrolases. This mechanism may be responsible for preventing mucosal invasion by pathogenic E histolytica.
Collapse
Affiliation(s)
- E P Variyam
- Department of Medicine, Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
21
|
Sehgal D, Bhattacharya A, Bhattacharya S. Pathogenesis of infection byEntamoeba histolytica. J Biosci 1996. [DOI: 10.1007/bf02703099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Bracha R, Nuchamowitz Y, Mirelman D. Molecular cloning of a 30-kilodalton lysine-rich surface antigen from a nonpathogenic Entamoeba histolytica strain and its expression in a pathogenic strain. Infect Immun 1995; 63:917-25. [PMID: 7868264 PMCID: PMC173090 DOI: 10.1128/iai.63.3.917-925.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A monoclonal antibody (MAb), 318-28, that specifically reacts with a 30-kDa antigen present on membrane surfaces of all nonpathogenic (NP) Entamoeba histolytica strains tested and which did not react with pathogenic (P) strains was used for the isolation of the cDNA coding for this antigen from an expression library of an NP E. histolytica strain. The deduced amino acid composition was rich in lysine residues (14.5%), with some sequence similarity to a polyadenylate-binding protein. Southern and Northern (RNA) blot analyses, as well as amplifications of DNA segments by PCR, indicate that a very similar gene (identity of 96.5%) exists in P strains of E. histolytica. Unexpectedly, the NP-specific antigen was also identified by MAb 318-28 on the surfaces of a cloned, xenically cultivated and well-characterized P strain (BNI:0591) that was recently isolated from a human liver abscess. Binding of the MAb, both to the cell surfaces and to Western blots (immunoblots), was abolished, however, upon axenization of the BNI:0591 cultures. Oligonucleotide primers, designed to anneal only to specific DNA sequences of the NP 30-kDa protein gene copy, amplified a DNA segment from P strain BNI:0591 which was identical in sequence to that of the NP 30-kDa protein gene. Our findings indicate that a P strain of E. histolytica can possess and express, under certain growth conditions, an antigen that is usually detected only in NP strains.
Collapse
Affiliation(s)
- R Bracha
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
23
|
Prasad R, Tola M, Bhattacharya S, Sharma MP, Bhattacharya A. Recognition of Entamoeba histolytica lipophosphoglycan by a strain-specific monoclonal antibody and human immune sera. Mol Biochem Parasitol 1992; 56:279-87. [PMID: 1283004 DOI: 10.1016/0166-6851(92)90177-l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Western blot analysis showed that the monoclonal antibody 2D7.10 recognized lipophosphoglycan (LPG) from Entamoeba histolytica HM-1:IMSS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) pattern of [3H]galactose-labeled LPG and Western blot analysis of total lysate of E. histolytica with 2D7.10 revealed patterns similar to that of LPG with 2D7.10. This antibody could also immunoprecipitate purified LPG from the strain HM-1:IMSS after biosynthetically labeling with [3H]galactose and [32P]orthophosphate. However, no immunoprecipitation was observed when 2D7.10 was incubated with [32P]orthophosphate-labeled purified LPG from strain 200:NIH. Sera from patients suffering from invasive amoebiasis also immunoprecipitated 32P-labeled, purified LPG and could immunostain this molecule in Western blots. The human immune sera recognized carbohydrate epitopes but not the associated polypeptides of LPG, as evidenced by sensitivity to periodate digestion, mild acid hydrolysis but not to pronase treatment. It was earlier shown that 2D7.10 binds a carbohydrate epitope in a subset of axenized pathogenic strains of E. histolytica and that this epitope undergoes changes when cultured along with bacteria. These observations suggest that the E. histolytica LPG contains a strain-specific, variable epitope and that LPG is immunogenic in human.
Collapse
Affiliation(s)
- R Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | |
Collapse
|
24
|
Abstract
Entamoeba histolytica, the causative agent of amebiasis, was first described in 1875. Although a large number of people throughout the world are infected with this organism, only a small percentage will develop clinical symptoms. Morbidity and mortality due to E. histolytica vary from area to area and person to person. Recent findings have suggested that there are pathogenic and nonpathogenic strains of E. histolytica that can be differentiated by isoenzyme (zymodeme) analysis, monoclonal antibodies, and DNA probes. Whether pathogenicity is a genotypic trait or can be changed by environmental influences has not been resolved. Exchange of genetic material between strains of amebae can influence zymodeme patterns. Currently, detection of E. histolytica infections depends on examinations for ova and parasites and on serologic tests; however, the development of monoclonal antibodies and DNA probes specific for pathogenic zymodemes may be beneficial for clinical laboratory testing and therapeutic decisions when approved tests become available. A better understanding of the mechanisms of pathogenicity at the molecular level is evolving and should promote the development of vaccines and better target selection for therapeutic agents.
Collapse
Affiliation(s)
- D A Bruckner
- Department of Pathology and Laboratory Medicine, UCLA Medical Center 90024-1713
| |
Collapse
|