1
|
Song P, Guo Y, Zuo S, Li L, Liu F, Zhang T, Dai H, Dong H. Prevalence of Pentatrichomonas hominis in foxes and raccoon dogs and changes in the gut microbiota of infected female foxes in the Hebei and Henan Provinces in China. Parasitol Res 2023; 123:74. [PMID: 38155301 DOI: 10.1007/s00436-023-08099-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Pentatrichomonas hominis (P. hominis) is a zoonotic parasite that affects a wide range of hosts, causing gastrointestinal diseases. The present study aimed to evaluate the prevalence of P. hominis among caged foxes and raccoon dogs and the effect of P. hominis on the gut microbiota in female foxes. A total of 893 fresh fecal samples were collected from the Hebei and Henan Provinces in China. P. hominis was screened based on 18S rRNA gene expression via nested PCR. The difference in the gut microbiota between nine P. hominis-positive and nine P. hominis-negative samples was investigated by 16S rRNA gene sequencing. The total prevalence of P. hominis infection in foxes and raccoon dogs was 31.7% (283/893). The prevalence rates of P. hominis infection were 28.2% (88/312) and 33.6% (195/581) in foxes and raccoon dogs, respectively. Phylogenetic analysis revealed that all P. hominis strains detected in foxes and raccoon dogs in the present study were the zoonotic genotype CC1. Moreover, compared with those in the P. hominis-negative group, the diversity of the gut microbiota in the P. hominis-positive group was lower, and the abundance of Firmicutes and the ratio of Firmicutes/Bacteroidetes (F/B) in the P. hominis-positive group were lower than those in the P. hominis-negative group. We speculate that these differences may be due to indigestion and diarrhea in infected female foxes. Overall, the present study evaluated the prevalence of P. hominis in foxes and raccoon dogs in the Henan and Hebei Provinces and revealed that P. hominis infection interrupted the diversity of the gut microbiota in female foxes.
Collapse
Affiliation(s)
- Pengtao Song
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Yunan Guo
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Shoujun Zuo
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Liangliang Li
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Tao Zhang
- Beijing University of Agriculture, Beijing, China
| | - Hongyu Dai
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| | - Haiju Dong
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
2
|
Mead JR. Early immune and host cell responses to Cryptosporidium infection. FRONTIERS IN PARASITOLOGY 2023; 2:1113950. [PMID: 37325809 PMCID: PMC10269812 DOI: 10.3389/fpara.2023.1113950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Cryptosporidium spp. are opportunistic protozoan parasites that infect epithelial cells of the small intestine and cause diarrheal illness in both immunocompetent and immunodeficient individuals. These infections may be more severe in immunocompromised individuals and young children, especially in children under 2 in developing countries. The parasite has a global distribution and is an important cause of childhood diarrhea where it may result in cognitive impairment and growth deficits. Current therapies are limited with nitazoxanide being the only FDA-approved drug. However, it is not efficacious in immunocompromised patients. Additionally, there are no vaccines for cryptosporidiosis available. While acquired immunity is needed to clear Cryptosporidium parasites completely, innate immunity and early responses to infection are important in keeping the infection in check so that adaptive responses have time to develop. Infection is localized to the epithelial cells of the gut. Therefore, host cell defenses are important in the early response to infection and may be triggered through toll receptors or inflammasomes which induce a number of signal pathways, interferons, cytokines, and other immune mediators. Chemokines and chemokine receptors are upregulated which recruit immune cells such neutrophils, NK cells, and macrophages to the infection site to help in host cell defense as well as dendritic cells that are an important bridge between innate and adaptive responses. This review will focus on the host cell responses and the immune responses that are important in the early stages of infection.
Collapse
Affiliation(s)
- Jan R. Mead
- Department of Pediatrics, Children’s Healthcare Organization of Atlanta, Emory University, Atlanta, GA, United States
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| |
Collapse
|
3
|
Antibiotic Changes Host Susceptibility to Eimeria falciformis Infection Associated with Alteration of Gut Microbiota. Infect Immun 2022; 90:e0022922. [PMID: 36040156 PMCID: PMC9584326 DOI: 10.1128/iai.00229-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eimeria falciformis is a murine-infecting coccidium that mainly infects the cecum and colon where it coexists with a large number of endogenous bacteria. Here, we found that mice treated with a broad-spectrum antibiotic cocktail including ampicillin, neomycin, metronidazole, and vancomycin had less oocyst production and milder pathological consequences after E. falciformis infection than mice without antibiotics, regardless of the inoculation doses. Furthermore, we showed that antibiotic treatment reduced parasitic invasion and prolonged asexual stage during E. falciformis infection, which may result in alleviating the infection. Interestingly, when further defining different antibiotic combinations for E. falciformis infection, it was shown that mice treated with ampicillin plus vancomycin had substantially attenuated E. falciformis infections as measured by cecal parasite counts and histopathological features. In contrast, treatment with metronidazole plus neomycin was beneficial to E. falciformis infection. Analyses of gut microbiota revealed various changes in bacterial composition and diversity following antibiotic treatments that were associated with host susceptibility to E. falciformis infection. Together, these findings suggest that gut microbiota may regulate the course and pathogenicity of E. falciformis infection, while the mechanisms need to be further investigated, especially for the development of coccidial vaccines for use in farm animals.
Collapse
|
4
|
The Effect of Short-Chain Fatty Acids on Growth of Cryptosporidium parvum In Vitro. Microorganisms 2022; 10:microorganisms10091822. [PMID: 36144424 PMCID: PMC9505670 DOI: 10.3390/microorganisms10091822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
In a previous study, we observed an increase in the severity of cryptosporidial infection corresponding to decreased levels of short-chain fatty acids (SCFAs). Therefore, we decided to examine the effect of SCFAs on Cryptosporidium growth in human ileocecal adenocarcinoma (HTC-8) cells. HTC-8 cells were infected with 1 × 105 C. parvum oocysts. After 48 h of incubation with selected SCFAs, cells were fixed and labeled with monoclonal antibody directed to all intracellular stages, and the number of parasites was quantitated using a fluorescent microscope. Acetate, butyrate, propionate and valproate significantly inhibited growth, with an EC50 between 4 and 10 mM. Additionally, when combined, butyrate, acetate and propionate showed increased efficacy. Butyrate also inhibited growth when incubated with sporozoites prior to infection of host cell monolayers. In addition, we looked at possible mechanisms of action of inhibition. A combination of C. parvum infection and butyrate treatment led to increases in apoptosis and certain inflammatory cytokines. We conclude that acetate, propionate and butyrate have direct inhibitory activities in host cells against C. parvum, and butyrate can also affect sporozoite infectivity directly. While not preventing infection, SCFAs may help in keeping the infection low or in check.
Collapse
|
5
|
Creasey HN, Zhang W, Widmer G. Effect of Caging on Cryptosporidium parvum Proliferation in Mice. Microorganisms 2022; 10:1242. [PMID: 35744762 PMCID: PMC9230662 DOI: 10.3390/microorganisms10061242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cryptosporidiosis is an enteric infection caused by several protozoan species in the genus Cryptosporidium (phylum Apicomplexa). Immunosuppressed mice are commonly used to model this infection. Surprisingly, for a pathogen like Cryptosporidium parvum, which is readily transmitted fecal-orally, mice housed in the same cage can develop vastly different levels of infection, ranging from undetectable to lethal. The motivation for this study was to investigate this phenomenon and assess the association between the severity of cryptosporidiosis and the fecal microbiota. To this aim, the association between severity of cryptosporidiosis and caging (group caged vs. individually caged) and between the microbiota taxonomy and the course of the infection was examined. In contrast to mice caged in groups of four, a majority of mice caged individually did not excrete a detectable level of oocysts. Microbiota α diversity in samples collected between three days prior to infection and one day post-infection was negatively correlated with the severity of cryptosporidiosis, suggesting a causal negative relationship between microbiota diversity and susceptibility to C. parvum.
Collapse
Affiliation(s)
- Hannah N. Creasey
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| | - Wen Zhang
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
- Gerald J. and Dorothy R. Friedman School of Nutrition, Tufts University, Boston, MA 02111, USA
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| |
Collapse
|
6
|
Advances in therapeutic and vaccine targets for Cryptosporidium: Challenges and possible mitigation strategies. Acta Trop 2022; 226:106273. [PMID: 34906550 DOI: 10.1016/j.actatropica.2021.106273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022]
Abstract
Cryptosporidium is known to be the second most common diarrheal pathogen in children, causing potentially fatal diarrhea and associated with long-term growth stunting and cognitive deficits. The only Food and Drug Administration-approved treatment for cryptosporidiosis is nitazoxanide, but this drug has not shown potentially effective results in susceptible hosts. Therefore, a safe and effective drug for cryptosporidiosis is urgently needed. Cryptosporidium genome sequencing analysis may help develop an effective drug, but both in vitro and in vivo approaches to drug evaluation are not fully standardized. On the other hand, the development of partial immunity after exposure suggests the possibility of a successful and effective vaccine, but protective surrogates are not precise. In this review, we present our current perspectives on novel cryptosporidiosis therapies, vaccine targets and efficacies, as well as potential mitigation plans, recommendations and perceived challenges.
Collapse
|
7
|
First Metabolic Insights into Ex Vivo Cryptosporidium parvum-Infected Bovine Small Intestinal Explants Studied under Physioxic Conditions. BIOLOGY 2021; 10:biology10100963. [PMID: 34681062 PMCID: PMC8533177 DOI: 10.3390/biology10100963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary As the most relevant zoonotic cause of cryptosporidiosis, C. parvum infects cattle worldwide. In vitro studies on C. parvum are absent on the most important animal host under physiological oxygen conditions of the intestine. The aim of this study was to rectify this lack of knowledge, and to deliver a practical model to study C. parvum–host cell–intestinal microbiome interactions in the metabolic context. The present metabolic analyses of C. parvum-infected bovine small intestinal (BSI)-explants revealed a parasite-dependent reduction in important metabolic activities (e.g., glycolysis, glutaminolysis) at 3 hpi (hours post-infection) followed by striking increases in the same metabolic functions at 6 hpi, thus paralleling previously reported metabolic impacts of C. parvum on humans. In addition, PCA analysis confirmed physiological oxygen concentrations as a driving factor of metabolic responses in infected BSI explants. The present model allows the study of C. parvum-triggered metabolic modulation of intestinal cells. Moreover, this realistic platform offers the possibility to address pending questions regarding C. parvum–host cell–intestinal microbiome interactions. Thus, the present approach may deliver important insights into how to promote the innate immune system–intestinal microbiome alliances, which maintain the epithelial integrity of the gut thereby supporting human and animal health. Abstract The apicomplexan Cryptosporidium parvum causes thousands of human deaths yearly. Since bovines represent the most important reservoir of C. parvum, the analysis of infected bovine small intestinal (BSI) explants cultured under physioxia offers a realistic model to study C. parvum–host cell–microbiome interactions. Here, C. parvum-infected BSI explants and primary bovine small intestinal epithelial cells were analysed for parasite development and metabolic reactions. Metabolic conversion rates in supernatants of BSI explants were measured after infection, documenting an immediate parasite-driven metabolic interference. Given that oxygen concentrations affect cellular metabolism, measurements were performed at both 5% O2 (physiological intestinal conditions) and 21% O2 (commonly used, hyperoxic lab conditions). Overall, analyses of C. parvum-infected BSI explants revealed a downregulation of conversion rates of key metabolites—such as glucose, lactate, pyruvate, alanine, and aspartate—at 3 hpi, followed by a rapid increase in the same conversion rates at 6 hpi. Moreover, PCA revealed physioxia as a driving factor of metabolic responses in C. parvum-infected BSI explants. Overall, the ex vivo model described here may allow scientists to address pending questions as to how host cell–microbiome alliances influence intestinal epithelial integrity and support the development of protective intestinal immune reactions against C. parvum infections in a realistic scenario under physioxic conditions.
Collapse
|
8
|
Carey MA, Medlock GL, Alam M, Kabir M, Uddin MJ, Nayak U, Papin J, Faruque ASG, Haque R, Petri WA, Gilchrist CA. Megasphaera in the Stool Microbiota Is Negatively Associated With Diarrheal Cryptosporidiosis. Clin Infect Dis 2021; 73:e1242-e1251. [PMID: 33684930 PMCID: PMC8442784 DOI: 10.1093/cid/ciab207] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The protozoan parasites in the Cryptosporidium genus cause both acute diarrheal disease and subclinical (ie, nondiarrheal) disease. It is unclear if the microbiota can influence the manifestation of diarrhea during a Cryptosporidium infection. METHODS To characterize the role of the gut microbiota in diarrheal cryptosporidiosis, the microbiome composition of both diarrheal and surveillance Cryptosporidium-positive fecal samples from 72 infants was evaluated using 16S ribosomal RNA gene sequencing. Additionally, the microbiome composition prior to infection was examined to test whether a preexisting microbiome profile could influence the Cryptosporidium infection phenotype. RESULTS Fecal microbiome composition was associated with diarrheal symptoms at 2 timepoints. Megasphaera was significantly less abundant in diarrheal samples compared with subclinical samples at the time of Cryptosporidium detection (log2 [fold change] = -4.3; P = 10-10) and prior to infection (log2 [fold change] = -2.0; P = 10-4); this assigned sequence variant was detected in 8 children who had diarrhea and 30 children without diarrhea. Random forest classification also identified Megasphaera abundance in the pre- and postexposure microbiota as predictive of a subclinical infection. CONCLUSIONS Microbiome composition broadly, and specifically low Megasphaera abundance, was associated with diarrheal symptoms prior to and at the time of Cryptosporidium detection. This observation suggests that the gut microenvironment may play a role in determining the severity of a Cryptosporidium infection. Clinical Trials Registration. NCT02764918.
Collapse
Affiliation(s)
- Maureen A Carey
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Uma Nayak
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Jason Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - A S G Faruque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Carol A Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Hares MF, Tiffney EA, Johnston LJ, Luu L, Stewart CJ, Flynn RJ, Coombes JL. Stem cell-derived enteroid cultures as a tool for dissecting host-parasite interactions in the small intestinal epithelium. Parasite Immunol 2020; 43:e12765. [PMID: 32564379 DOI: 10.1111/pim.12765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii and Cryptosporidium spp. can cause devastating pathological effects in humans and livestock, and in particular to young or immunocompromised individuals. The current treatment plans for these enteric parasites are limited due to long drug courses, severe side effects or simply a lack of efficacy. The study of the early interactions between the parasites and the site of infection in the small intestinal epithelium has been thwarted by the lack of accessible, physiologically relevant and species-specific models. Increasingly, 3D stem cell-derived enteroid models are being refined and developed into sophisticated models of infectious disease. In this review, we shall illustrate the use of enteroids to spearhead research into enteric parasitic infections, bridging the gap between cell line cultures and in vivo experiments.
Collapse
Affiliation(s)
- Miriam F Hares
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ellen-Alana Tiffney
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Luke J Johnston
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Lisa Luu
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Robin J Flynn
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Janine L Coombes
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Elokil AA, Abouelezz KF, Ahmad HI, Pan Y, Li S. Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals (Basel) 2020; 10:ani10050896. [PMID: 32455745 PMCID: PMC7278382 DOI: 10.3390/ani10050896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Broad-spectrum antibiotics have been a cornerstone in the treatment of bacterial diseases. However, growing evidence suggests that antibiotics have effects on host-associated gut microbiota communities. In this study, we report persistent significant changes in the abundance of gut microbiota and their functional metabolite pathways in chickens due to enrofloxacin and diclazuril exposure. These changes may affect the taxonomic, genomic, and functional capacity of the chicken gut microbiota, reducing bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Understanding the biology of competitive exclusion of adaptive functions during antibiotic exposure in the gut may inform the design of new strategies to treat infections, while preserving the ecology of chicken-beneficial constituents. Abstract The dynamic microbiota in chickens can be affected by exposure to antibiotics, which may alter the composition and substrate availability of functional pathways. Here, 120 Jing Hong chicks at 30 days of age were randomly divided into four treatments totaling seven experimental groups: control chicks not exposed to antibiotics; and chicks exposed to enrofloxacin, diclazuril, and their mixture at 1:1 for 14 days and then not exposed for a withdrawal period of 15 days. Fecal samples were collected from the 7 groups at 8 time-points (exposure to 4 antibiotics and 4 withdrawal periods) to perform in-depth 16S rRNA sequencing of the gut microbiota. Taxon-independent analysis showed that the groups had significantly distinct microbial compositions (p < 0.01). Based on the microbial composition, as compared with the control group, the abundances of the phyla Firmicutes, Actinobacteria, Thermi, and Verrucomicrobia, as well as the families Lactobacillus, Lactococcus, S24-7, and Corynebacterium, were decreased in the antibiotic-exposed chicks (p < 0.01). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses revealed significant differences in microbiota metabolite pathways due to the genera of the antibiotic-responsive microbes (p < 0.01), especially the pathways relating to cell growth and death, immune system diseases, carbohydrate metabolism, and nucleotide metabolism. Oral treatment with enrofloxacin, diclazuril, and their mixture modified the gut microbiota composition and the microbial metabolic profiles in chickens, with persistent effects (during the withdrawal period) that prevented the return to the original community and led to the formation of a new community.
Collapse
Affiliation(s)
- Abdelmotaleb A. Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Khaled F.M. Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt;
| | - Hafiz I. Ahmad
- Department of Livestock Production, University of Veterinary and Animal sciences, Ravi Campus, Pattoki 55300, Pakistan;
| | - Yuanhu Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Correspondence: ; Tel.: +86-27-8738-7480; Fax: +86-27-8728-0408
| |
Collapse
|
11
|
Lechner S, Yee M, Limketkai BN, Pham EA. Fecal Microbiota Transplantation for Chronic Liver Diseases: Current Understanding and Future Direction. Dig Dis Sci 2020; 65:897-905. [PMID: 32020359 DOI: 10.1007/s10620-020-06100-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Even though effective treatments are now available for most chronic viral hepatitis, treatment options for other causes of chronic liver disease remain inadequate. Recent research has revealed a previously unappreciated role that the human intestinal microbiome plays in mediating the development and progression of chronic liver diseases. The recent remarkable success of fecal microbiota transplantation (FMT) in treating Clostridioides difficile demonstrates that the intestinal microbiota can be manipulated to obtain favorable therapeutic benefits and that FMT may become an important component of a total therapeutic approach to effectively treat hepatic disorders.
Collapse
Affiliation(s)
- Sarah Lechner
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Yee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Berkeley N Limketkai
- Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | - Edward A Pham
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Gastroenterology & Hepatology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Shao DY, Bai X, Tong MW, Zhang YY, Liu XL, Zhou YH, Li C, Cai W, Gao X, Liu M, Yang Y. Changes to the gut microbiota in mice induced by infection with Toxoplasma gondii. Acta Trop 2020; 203:105301. [PMID: 31843385 DOI: 10.1016/j.actatropica.2019.105301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Toxoplasma gondii (T. gondii) is a common parasite worldwide, which can cause encephalitis, enteritis and miscarriage in abortion women. This study examined the cecal microbiome of mice infected with T. gondii through analysis of 16S rRNA genes determined by Illumina sequencing. BALB/c mice were orally infected with sporulated T. gondii oocysts. Mice were killed after 13-days- and 21-days- post infection, respectively, then their cecal contents were extracted and examined to determine the composition of gut microflora by illumina sequencing of the V3 +V4 region of the 16S rRNA genes. Our results showed the alterations in the gut microbes of BALB/c mice infected with T. gondii infection, where we observed a significant shift in the relative abundance of cecal bacteria. In mice at 13 days post-infection, the relative abundance of Proteobacteria increased, along with that of harmful bacteria, such as Bilopha and Desulfovibrio. However, the abundance of Lactobacillus decreased. At 21 days post-infection, the abundance of Lactobacillus was more than that observed for the uninfected control, with harmful bacteria, such as Bilopha and Desulfovibrio being reduced. The mice at 21-days post-infection had more beneficial intestinal bacteria than the control group. Our results suggested that the gut microbiota play an important role in disease progression from acute infection to chronic infection.
Collapse
Affiliation(s)
- Dong Yan Shao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ming Wei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuan Yuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Hua Zhou
- Jiang Su Institute of Parasitic Disease, Wuxi, China
| | - Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Cai
- Affiliated Hospital of Jiangnan University, The Forth People's Hospital of Wuxi City, Wuxi, China
| | - Xin Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China; Wu Xi Medical School, Jiangnan University, Wuxi, China.
| |
Collapse
|
13
|
Oliveira BCM, Bresciani KDS, Widmer G. Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis. PLoS Negl Trop Dis 2019; 13:e0007411. [PMID: 31560681 PMCID: PMC6785118 DOI: 10.1371/journal.pntd.0007411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/09/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Based on our initial observations showing that mice consuming a probiotic product develop more severe cryptosporidiosis, we investigated the impact of other dietary interventions on the intracellular proliferation of Cryptosporidium parvum and C. tyzzeri in the mouse. Mice were orally infected with oocysts and parasite multiplication measured by quantifying fecal oocyst output. High-throughput sequencing of 16S ribosomal RNA amplicons was used to correlate oocyst output with diet and with the composition of the intestinal microbiota. On average, mice fed a diet without fiber (cellulose, pectin and inulin) developed more severe infections. As expected, a diet without fibers also significantly altered the fecal microbiota. Consistent with these observations, mice fed a prebiotic product sold for human consumption excreted significantly fewer oocysts. The fecal microbiota of mice consuming no plant polysaccharides was characterized by a lower relative abundance of Bacteroidetes bacteria. Since bacterial metabolites play an important role in the physiology of intestinal enterocytes, we hypothesize based on these observations that the impact of diet on parasite proliferation is mediated primarily by the metabolic activity of the anaerobic microbiota, specifically by the effect of certain metabolites on the host. This model is consistent with the metabolic dependence of intracellular stages of the parasite on the host cell. These observations underscore the potential of dietary interventions to alleviate the impact of cryptosporidiosis, particularly in infants at risk of recurrent enteric infections. The infection with Cryptosporidium parasite, a condition known as cryptosporidiosis, is a common cause of infant diarrhea in developing countries. We have previously shown that mice infected with C. parvum, one of the main cause of human cryptosporidiosis, develop a more severe infection if given probiotics. To investigate the mechanism of this effect, we fed mice prebiotics and diet lacking plant fiber. We found that fermentable fiber, whether administered as a prebiotic supplement or as part of the diet, has a protective effect against cryptosporidiosis in mice. We also observed a significant association between the severity of infection and the composition of the gut microbiota. A significant inverse correlation was found between severity of cryptosporidiosis and the ratio between the abundance of bacteria belonging to the phylum Bacteroidetes and the abundance of Firmicutes bacteria. This ratio is frequently viewed as a marker of a healthy microbiota. These results raise the possibility that dietary interventions could be used to alleviate the impact of cryptosporidiosis.
Collapse
Affiliation(s)
- Bruno César Miranda Oliveira
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
- Universidade Estadual Paulista (Unesp), Faculdade de Medicina Veterinária, Araçatuba, Brasil
| | | | - Giovanni Widmer
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
14
|
Ichikawa-Seki M, Motooka D, Kinami A, Murakoshi F, Takahashi Y, Aita J, Hayashi K, Tashibu A, Nakamura S, Iida T, Horii T, Nishikawa Y. Specific increase of Fusobacterium in the faecal microbiota of neonatal calves infected with Cryptosporidium parvum. Sci Rep 2019; 9:12517. [PMID: 31467354 PMCID: PMC6715637 DOI: 10.1038/s41598-019-48969-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
The faecal microbiota plays a critical role in host health, with alterations in the human faecal microbial composition associated with various conditions, particularly diarrhoeal diseases. However, little is known about microbial changes during cryptosporidiosis, one of the most important diarrhoeal diseases caused by protozoa in cattle. In this study, alterations in the faecal microbiota of neonatal calves as a result of Cryptosporidium parvum infection were investigated on a C. parvum-positive farm. Comparisons were made among groups of C. parvum-infected, rotavirus-infected, and the pathogen-negative calves. A specific increase in the abundance of Fusobacterium was observed in the faecal microbiota of C. parvum-infected animals. Diarrhoea severity increased in accordance with the abundance of C. parvum and Fusobacterium. Moreover, the specific increase of Fusobacterium appeared to be a universal feature of C. parvum infection, since neonatal calves from geographically separated areas showed the same result. These observations indicated that the growth of Fusobacterium may be an important aggravating factor of cryptosporidiosis.
Collapse
Affiliation(s)
- Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Aiko Kinami
- Famille202, 110-16, Ogama-todate, Takizawa, Iwate, 020-0762, Japan
| | - Fumi Murakoshi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro, 080-8555, Japan.,Department of Infectious Diseases, Kyoto Prefectural School of Medicine, 465, Kajiicho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoko Takahashi
- Tyubu Area Center Veterinary Clinic, Iwate Agricultural Mutual Aid Association, 821 Shimoneko, Hanamaki, Iwate, 025-0025, Japan
| | - Junya Aita
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Kei Hayashi
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.,Laboratory of Veterinary Parasitology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, 794-8555, Japan
| | - Atsushi Tashibu
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Tetsuya Iida
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Toshihiro Horii
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13 Inada-cho, Obihiro, 080-8555, Japan.
| |
Collapse
|
15
|
Abstract
Except for the important role coccidia have as predisposing factors of necrotic enteritis, the role parasites play in the dynamics of a healthy microbiota of chickens is not well explored. This review describes the interactions of relevant intestinal parasites of chickens with bacteria. Infection with Eimeria spp. favor the growth of Clostridium perfringens and suppress the growth of many other bacteria by increasing viscosity and passage time of the ingesta, and by causing lesions to the intestinal mucosa that improve the availability of nutrients for C. perfringens. Conversely, there are indications that bacteria influence the course of disease after infections with Eimeria spp. Not much is known about intestinal cryptosporidiosis in chickens, but results in mice show that the intestinal microbiota induces some resistance against infection with Cryptosporidium parvum and that the innate immune response triggered by infections with cryptosporidia might have an effect on other intestinal microbes. Histomonas meleagridis depend on bacteria in vitro, and in vivo it will cause lesions in chickens only in the presence of bacteria. Blastocystis spp. are very common in chickens, but there is no information about interactions with bacteria. In humans, there is evidence of the correlation of the detection of Blastocystis and changes in the intestinal microbiota. There are indications of interactions between Ascaridia galli and various bacteria in chickens and Ascaridia spp. of mammals are known to produce various types of antimicrobial molecules. However, often the underlying mechanisms of these interactions between parasites and bacteria remain unknown and only correlations but not causation can be established.
Collapse
Affiliation(s)
- Rüdiger Hauck
- A Department of Pathobiology and Department of Poultry Science, Auburn University, Auburn, AL 36849
| |
Collapse
|
16
|
Ali Mubaraki M, Ahmad M, Hafiz TA, Marie MA. The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiol Ecol 2019; 94:4966977. [PMID: 29796663 DOI: 10.1093/femsec/fiy065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
The peaceful phenomenon of the co-evolution between the prokaryotes (microbiota) and the eukaryotes (parasites including protozoa and helminths) in the animal gut has drawn the researchers' attention. Importantly, exploring the potential of helminths for therapeutic uses was one of the reasons behind understanding the physiological and immunological crosstalk existing between them. Here we discuss the interactive immunological associations of helminths and microbial responses individually and in combination with their hosts. Considering that there is probably crosstalk between eukaryotic organisms like helminths and protozoa with their host's gut microbiota, in this review we searched the literature identifying the privileged and favourable relationship generated between them in the host. Understanding the possibilities of the role of helminths along with gut microbiota as a black box would certainly help decode the therapeutic intrusion with helminths in experimental clinical trials, and a successful trial could be used to consider possible future and safe treatments for various immune-inflammatory diseases in humans.
Collapse
Affiliation(s)
- Murad Ali Mubaraki
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammad Ahmad
- Medical Surgical Nursing Department, College of Nursing, King Saud University, Saudi Arabia
| | - Taghreed A Hafiz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed A Marie
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
17
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
18
|
Probiotic Product Enhances Susceptibility of Mice to Cryptosporidiosis. Appl Environ Microbiol 2018; 84:AEM.01408-18. [PMID: 30171003 DOI: 10.1128/aem.01408-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Cryptosporidiosis, a leading cause of diarrhea among infants, is caused by apicomplexan parasites classified in the genus Cryptosporidium The lack of effective drugs is motivating research to develop alternative treatments. With this aim, the impact of probiotics on the course of cryptosporidiosis was investigated. The native intestinal microbiota of specific pathogen-free immunosuppressed mice was initially depleted with orally administered antibiotics. A commercially available probiotic product intended for human consumption was subsequently added to the drinking water. Mice were infected with Cryptosporidium parvum oocysts. On average, mice treated with the probiotic product developed more severe infections. The probiotics significantly altered the fecal microbiota, but no direct association between ingestion of probiotic bacteria and their abundance in fecal microbiota was observed. These results suggest that probiotics indirectly altered the intestinal microenvironment or the intestinal epithelium in a way that favored proliferation of C. parvum IMPORTANCE The results of our study show that C. parvum responded to changes in the intestinal microenvironment induced by a nutritional supplement. This outcome paves the way for research to identify nutritional interventions aimed at limiting the impact of cryptosporidiosis.
Collapse
|
19
|
Medlock GL, Carey MA, McDuffie DG, Mundy MB, Giallourou N, Swann JR, Kolling GL, Papin JA. Inferring Metabolic Mechanisms of Interaction within a Defined Gut Microbiota. Cell Syst 2018; 7:245-257.e7. [PMID: 30195437 PMCID: PMC6166237 DOI: 10.1016/j.cels.2018.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/15/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
The diversity and number of species present within microbial communities create the potential for a multitude of interspecies metabolic interactions. Here, we develop, apply, and experimentally test a framework for inferring metabolic mechanisms associated with interspecies interactions. We perform pairwise growth and metabolome profiling of co-cultures of strains from a model mouse microbiota. We then apply our framework to dissect emergent metabolic behaviors that occur in co-culture. Based on one of the inferences from this framework, we identify and interrogate an amino acid cross-feeding interaction and validate that the proposed interaction leads to a growth benefit in vitro. Our results reveal the type and extent of emergent metabolic behavior in microbial communities composed of gut microbes. We focus on growth-modulating interactions, but the framework can be applied to interspecies interactions that modulate any phenotype of interest within microbial communities.
Collapse
Affiliation(s)
- Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Maureen A Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Dennis G McDuffie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Michael B Mundy
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Natasa Giallourou
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Diseases, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Jonathan R Swann
- Department of Surgery and Cancer, Division of Integrative Systems Medicine and Digestive Diseases, Faculty of Medicine, Imperial College London, South Kensington, London, UK
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
20
|
Influence of Eimeria falciformis Infection on Gut Microbiota and Metabolic Pathways in Mice. Infect Immun 2018; 86:IAI.00073-18. [PMID: 29440368 DOI: 10.1128/iai.00073-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Coccidiosis, caused by different species of Eimeria parasites, is an economically important disease of poultry and livestock worldwide. Here we report previously unknown alterations in the gut microbes and metabolism of BALB/c mice infected with Eimeria falciformis Specifically, we observed a significant shift in the abundance of cecal bacteria and disrupted metabolism in parasitized animals. The relative abundances of Lachnospiraceae bacterium NK4A136, Ruminiclostridium, Alistipes, and Lactobacillus declined in response to E. falciformis infection, whereas Escherichia, Shigella, Helicobacter, Klebsiella, and Bacteroides were increased. Carbohydrate and amino acid metabolites in the serum samples of infected mice were significantly altered compared to naïve controls. Levels of amino acids, including asparagine, histidine, l-cysteine, tryptophan, lysine, glycine, serine, alanine, proline, ornithine, methionine, and valine, decreased on day 7 postinfection before returning to baseline on day 14. In addition, increased levels of indolelactate and mannitol and a reduced amount of oxalic acid indicated impaired carbon metabolism upon parasitic infection. These data demonstrate that intestinal coccidial infection perturbs the microbiota and disrupts carbon and nitrogen metabolism.
Collapse
|
21
|
Gałęcki R, Sokół R. Treatment of cryptosporidiosis in captive green iguanas (Iguana iguana). Vet Parasitol 2018; 252:17-21. [PMID: 29559143 DOI: 10.1016/j.vetpar.2018.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 11/30/2022]
Abstract
There are no standard guidelines for the treatment of cryptosporidiosis in reptiles. The aim of this study was to evaluate the efficacy of two cryptosporidiosis therapies in captive green iguanas. Eight green iguanas aged 2-6 years, including 6 (1 ♂ and 5 ♀) animals with chronic diarrhea, received treatment for cryptosporidiosis. The presence of Cryptosporidium sp. oocysts was determined in 8 iguanas (100%), Isospora sp. oocysts were detected in 3 animals (37.5%), and Oxyuridae eggs were observed in 5 iguanas (62.5%). The animals were divided into two therapeutic groups (A and B). Group A iguanas were administered halofuginone (Halocur, 0,50 mg/ml Intervet Productions S.A., France) at a dose of 110 mg/kg body weight (BW) every 7 days for 5 weeks. Group B animals were administered sulfadiazine and trimethoprim (Norodine Vet Oral Paste sulfadiazine 288,3 mg/g, trimethoprim 58 mg/g, ScanVet Animal Health A/S, Denmark) at 75 mg/kg BW per os every 5 days for 5 weeks and spiramycin and metronidazole (Stomorgyl, spiramycin 1500000 IU, metronidazole 250 mg, Merial, France) at 200 mg/kg BW every 5 days for 5 weeks. Both groups received hyperimmune bovine colostrum and subcutaneous fluids. Before treatment, the average number of Cryptosporidium sp. oocysts in 1 g of feces was determined at 1.71 * 105 (±313,262.44) in group A and 1.56 * 105 (±262,908.53) in group B; the average number of Isospora sp. oocysts was determined at 3.53 * 103 (±1747.38), and the average number of Oxyuridae eggs was determined at 810 (±496.74). Blood tests were performed once before treatment. The results of blood morphology and biochemistry tests before treatment revealed leukocytosis with a significant increase in heterophile and monocyte counts in all animals. Dehydration, elevated hematocrit values and low levels of Na+, Ca2+, PO4- and Cl- ions were observed in 6 iguanas. Two iguanas died during treatment. The gross necropsy revealed acute inflammation of gastric and duodenal mucosa, mucosal ecchymoses in the gastrointestinal tract, hepatomegaly and liver congestion, cholecystitis, enlarged kidneys and renal edema and congestion, cystitis, and an absence of fat bodies. Parasites were not detected in any developmental form after 40 days of therapy and during an monthly 18-month follow-up period. Effective treatment of cryptosporidiosis in reptiles minimizes the adverse consequences of disease, improves the animals' well-being and decreases euthanasia rates.
Collapse
Affiliation(s)
- Remigiusz Gałęcki
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Oczapowskiego 13, Poland.
| | - Rajmund Sokół
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Oczapowskiego 13, Poland
| |
Collapse
|
22
|
Laurent F, Lacroix-Lamandé S. Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium. Int J Parasitol 2017; 47:711-721. [PMID: 28893638 DOI: 10.1016/j.ijpara.2017.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
Cryptosporidium infection leads to acute diarrhea worldwide. The development of cryptosporidiosis is closely related to the immune status of its host, affecting primarily young ruminants, infants, and immunocompromised individuals. In recent years, several studies have improved our knowledge on the immune mechanisms responsible for the control of the acute phase of the infection and have highlighted the importance of innate immunity. The parasite develops in the apical side of intestinal epithelial cells, giving these cells a central role, as they are both the exclusive host cell for replication of the parasite and participate in the protective immune response. Epithelial cells signal the infection by producing chemokines, attracting immune cells to the infected area. They also actively participate in host defense by inducing apoptosis and releasing antimicrobial peptides, free or incorporated into luminal exosomes, with parasiticidal activity. The parasite has developed several escape mechanisms to slow down these protective mechanisms. Recent development of several three-dimensional culture models and the ability to genetically manipulate Cryptosporidium will greatly help to further investigate host-pathogen interactions and identify virulence factors. Intestinal epithelial cells require the help of immune cells to clear the infection. Intestinal dendritic cells, well known for their ability to induce and orchestrate adaptive immunity, play a key role in controlling the very early steps of Cryptosporidium parvum infection by acting as immunological sentinels and active effectors. However, inflammatory monocytes, which are quickly and massively recruited to the infected mucosa, seem to participate in the loss of epithelial integrity. In addition to new promising chemotherapies, we must consider stimulating the innate immunity of neonates to strengthen their ability to control Cryptosporidium development. The microbiota plays a fundamental role in the development of intestinal immunity and may be considered to be a third actor in host-pathogen interactions. There is an urgent need to reduce the incidence of this yet poorly controlled disease in the populations of developing countries, and decrease economic losses due to infected livestock.
Collapse
Affiliation(s)
- Fabrice Laurent
- UMR1282 Infectiologie et Santé Publique, INRA Centre Val de Loire, Université François Rabelais de Tours, 37380 Nouzilly, France.
| | - Sonia Lacroix-Lamandé
- UMR1282 Infectiologie et Santé Publique, INRA Centre Val de Loire, Université François Rabelais de Tours, 37380 Nouzilly, France.
| |
Collapse
|
23
|
Bolick DT, Mayneris-Perxachs J, Medlock GL, Kolling GL, Papin JA, Swann JR, Guerrant RL. Increased Urinary Trimethylamine N-Oxide Following Cryptosporidium Infection and Protein Malnutrition Independent of Microbiome Effects. J Infect Dis 2017; 216:64-71. [PMID: 28520899 PMCID: PMC5905612 DOI: 10.1093/infdis/jix234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Cryptosporidium infections have been associated with growth stunting, even in the absence of diarrhea. Having previously detailed the effects of protein deficiency on both microbiome and metabolome in this model, we now describe the specific gut microbial and biochemical effects of Cryptosporidium infection. Protein-deficient mice were infected with Cryptosporidium parvum oocysts for 6-13 days and compared with uninfected controls. Following infection, there was an increase in the urinary excretion of choline- and amino-acid-derived metabolites. Conversely, infection reduced the excretion of the microbial-host cometabolite (3-hydroxyphenyl)propionate-sulfate and disrupted metabolites involved in the tricarboxylic acid (TCA) cycle. Correlation analysis of microbial and biochemical profiles resulted in associations between various microbiota members and TCA cycle metabolites, as well as some microbial-specific degradation products. However, no correlation was observed between the majority of the infection-associated metabolites and the fecal bacteria, suggesting that these biochemical perturbations are independent of concurrent changes in the relative abundance of members of the microbiota. We conclude that cryptosporidial infection in protein-deficient mice can mimic some metabolic changes seen in malnourished children and may help elucidate our understanding of long-term metabolic consequences of early childhood enteric infections.
Collapse
Affiliation(s)
- David T Bolick
- Division of Infectious Diseases and International Health, UVA Center for Global Health, University of Virginia, Charlottesville
| | - Jordi Mayneris-Perxachs
- Technological Unit of Nutrition and Health, EURECAT-Technological Center of Catalonia, Reus, Spain
| | - Greg L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville
| | - Jon R Swann
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, UVA Center for Global Health, University of Virginia, Charlottesville
| |
Collapse
|
24
|
McKenney EA, Greene LK, Drea CM, Yoder AD. Down for the count: Cryptosporidium infection depletes the gut microbiome in Coquerel's sifakas. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2017; 28:1335165. [PMID: 28740461 PMCID: PMC5508644 DOI: 10.1080/16512235.2017.1335165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Background: The gut microbiome (GMB) is the first line of defense against enteric pathogens, which are a leading cause of disease and mortality worldwide. One such pathogen, the protozoan Cryptosporidium, causes a variety of digestive disorders that can be devastating and even lethal. The Coquerel’s sifaka (Propithecus coquereli) – an endangered, folivorous primate endemic to Madagascar – is precariously susceptible to cryptosporidiosis under captive conditions. If left untreated, infection can rapidly advance to morbidity and death. Objective: To gain a richer understanding of the pathophysiology of this pathogen while also improving captive management of endangered species, we examine the impact of cryptosporidiosis on the GMB of a flagship species known to experience a debilitating disease state upon infection. Design: Using 16S sequencing of DNA extracted from sifaka fecal samples, we compared the microbial communities of healthy sifakas to those of infected individuals, across infection and recovery periods. Results: Over the course of infection, we found that the sifaka GMB responds with decreased microbial diversity and increased community dissimilarity. Compared to the GMB of unaffected individuals, as well as during pre-infection and recovery periods, the GMB during active infection was enriched for microbial taxa associated with dysbiosis and rapid transit time. Time to recovery was inversely related to age, with young animals being slowest to recover GMB diversity and full community membership. Antimicrobial treatment during infection caused a significant depletion in GMB diversity. Conclusions: Although individual sifakas show unique trajectories of microbial loss and recolonization in response to infection, recovering sifakas exhibit remarkably consistent patterns, similar to initial community assembly of the GMB in infants. This observation, in particular, provides biological insight into the rules by which the GMB recovers from the disease state. Fecal transfaunation may prove effective in restoring a healthy GMB in animals with specialized diets.
Collapse
Affiliation(s)
| | - Lydia K Greene
- University Program in Ecology, Duke University, Durham, NC, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC
| | - Christine M Drea
- Department of Biology, Duke University, Durham, NC, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA.,University Program in Ecology, Duke University, Durham, NC, USA.,Duke Lemur Center, Durham, NC, USA
| |
Collapse
|
25
|
Yousof HAS, Khater MM, El-Sayed SH, El-Badry AA. Diagnostic biomarkers in murine Cryptosporidiosis: dose- and age-related infection. J Parasit Dis 2017; 41:831-836. [PMID: 28848287 DOI: 10.1007/s12639-017-0898-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/11/2017] [Indexed: 01/20/2023] Open
Abstract
Increasing prevalence of Cryptosporidium raises the importance to explore different aspects of its infection. In the absence of reproducible in vitro culturing, animal model is the only experimental method to study Cryptosporidium. Our study evaluated Cryptosporidium infection using coproscopy, copro-antigen and copro-DNA for early detection of murine cryptosporidiosis. Hundred and forty albino mice (neonates and adult) were divided into two groups, control group received sterile PBS solution, and infected groups were inoculated with molecularly characterized Cryptosporidium parvum oocysts and further subdivided into three subgroups for infectious dose response detection. Mice fecal samples were collected every 4 h on the first day and then daily and examined for fecal oocysts, copro-antigen and copro-DNA. Four mice from each subgroup were killed at 12, 24 and 48 h post-infection (P-I), and their intestines were examined for cryptosporidial mucosal DNA. Cryptosporidium copro-antigen and copro-DNA were detected 4 and 8 h P-I in infected neonatal and adult mice, respectively, and intestinal mucosal DNA was detected after 12 h in both. Microscopy was able to detect oocysts 48 h P-I. Inoculated C. parvum oocysts were recovered in feces of infected mice without genotypic changes. Neonate mice showed higher susceptibility for cryptosporidial infection than adults without statistical differences for the given infectious doses. Both copro-immunoassay and copro-nPCR assays can early detect Cryptosporidium infection; however, nPCR was able to identify Cryptosporidium species, making nPCR a reliable biomarker for early detection in murine model.
Collapse
Affiliation(s)
- Hebat-Allah S Yousof
- Medical Parasitology Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, 1156 Elmanial Egypt
| | - Mona M Khater
- Medical Parasitology Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, 1156 Elmanial Egypt
| | - Shaimaa H El-Sayed
- Department of Medical Parasitology, Theodor Bilharz Research Institute, Imbaba, Giza Egypt
| | - Ayman A El-Badry
- Medical Parasitology Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, 1156 Elmanial Egypt
| |
Collapse
|
26
|
|
27
|
Vitetta L, Saltzman ET, Nikov T, Ibrahim I, Hall S. Modulating the Gut Micro-Environment in the Treatment of Intestinal Parasites. J Clin Med 2016; 5:jcm5110102. [PMID: 27854317 PMCID: PMC5126799 DOI: 10.3390/jcm5110102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
The interactions of micro-organisms cohabitating with Homo sapiens spans millennia, with microbial communities living in a symbiotic relationship with the host. Interacting to regulate and maintain physiological functions and immunological tolerance, the microbial community is able to exert an influence on host health. An example of micro-organisms contributing to an intestinal disease state is exhibited by a biodiverse range of protozoan and bacterial species that damage the intestinal epithelia and are therefore implicated in the symptoms of diarrhea. As a contentious exemplar, Blastocystis hominis is a ubiquitous enteric protist that can adversely affect the intestines. The symptoms experienced are a consequence of the responses of the innate immune system triggered by the disruption of the intestinal barrier. The infiltration of the intestinal epithelial barrier involves a host of immune receptors, including toll like receptors and IgM/IgG/IgA antibodies as well as CD8+ T cells, macrophages, and neutrophils. Whilst the mechanisms of interactions between the intestinal microbiome and protozoan parasites remain incompletely understood, it is acknowledged that the intestinal microbiota is a key factor in the pathophysiology of parasitic infections. Modulating the intestinal environment through the administration of probiotics has been postulated as a possible therapeutic agent to control the proliferation of intestinal microbes through their capacity to induce competition for occupation of a common biotype. The ultimate goal of this mechanism is to prevent infections of the like of giardiasis and eliminate its symptoms. The differing types of probiotics (i.e., bacteria and yeast) modulate immunity by stimulating the host immune system. Early animal studies support the potential benefits of probiotic administration to prevent intestinal infections, with human clinical studies showing probiotics can reduce the number of parasites and the severity of symptoms. The early clinical indications endorse probiotics as adjuncts in the pharmaceutical treatment of protozoan infections. Currently, the bar is set low for the conduct of well-designed clinical studies that will translate the use of probiotics to ameliorate protozoan infections, therefore the requisite is for further clinical research.
Collapse
Affiliation(s)
- Luis Vitetta
- Sydney Medical School, The University of Sydney, Sydney 2006, NSW, Australia.
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | - Emma Tali Saltzman
- Sydney Medical School, The University of Sydney, Sydney 2006, NSW, Australia.
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | - Tessa Nikov
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | | | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| |
Collapse
|
28
|
Manjunatha UH, Chao AT, Leong FJ, Diagana TT. Cryptosporidiosis Drug Discovery: Opportunities and Challenges. ACS Infect Dis 2016; 2:530-7. [PMID: 27626293 DOI: 10.1021/acsinfecdis.6b00094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The apicomplexan parasite Cryptosporidium is the second most important diarrheal pathogen causing life-threatening diarrhea in children, which is also associated with long-term growth faltering and cognitive deficiency. Cryptosporidiosis is a parasitic disease of public health concern caused by Cryptosporidium parvum and Cryptosporidium hominis. Currently, nitazoxanide is the only approved treatment for cryptosporidium infections. Unfortunately, it has limited efficacy in the most vulnerable patients, thus there is an urgent need for a safe and efficacious cryptosporidiosis drug. In this work, we present our current perspectives on the target product profile for novel cryptosporidiosis therapies and the perceived challenges and possible mitigation plans at different stages in the cryptosporidiosis drug discovery process.
Collapse
Affiliation(s)
- Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - F. Joel Leong
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01, Singapore 138670
| |
Collapse
|
29
|
Fecal Indole as a Biomarker of Susceptibility to Cryptosporidium Infection. Infect Immun 2016; 84:2299-306. [PMID: 27245413 DOI: 10.1128/iai.00336-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/22/2016] [Indexed: 01/16/2023] Open
Abstract
Cryptosporidium causes significant diarrhea worldwide, especially among children and immunocompromised individuals, and no effective drug treatment is currently available for those who need it most. In this report, previous volunteer infectivity studies have been extended to examine the association between fecal indole and indole-producing (IP) gut microbiota on the outcome of a Cryptosporidium infection. Fecal indole concentrations (FICs) of 50 subjects and 19 taxa of common gut microbiota, including six IP taxa (11 subjects) were determined in stool samples collected before and after a challenge with Cryptosporidium oocysts. At the baseline, the mean FIC (± the standard deviation) was 1.66 ± 0.80 mM in those who became infected after a challenge versus 3.20 ± 1.23 mM in those who remained uninfected (P = 0.0001). Only 11.1% of the subjects with a FIC of >2.5 mM became infected after a challenge versus 65.2% of the subjects with a FIC of <2.5 mM. In contrast, the FICs of infected subjects at the baseline or during diarrhea were not correlated with infection intensity or disease severity. The relative abundances (percent) of Escherichia coli, Bacillus spp., and Clostridium spp. were greater ≥2.5-fold in volunteers with a baseline FIC of >2.5 mM, while those of Bacteroides pyogenes, B. fragilis, and Akkermansia muciniphila were greater in those with a baseline FIC of <2.5 mM. These data indicate that some IP bacteria, or perhaps indole alone, can influence the ability of Cryptosporidium to establish an infection. Thus, preexisting indole levels in the gut join the oocyst dose and immune status as important factors that determine the outcome of Cryptosporidium exposure.
Collapse
|
30
|
Bär AK, Phukan N, Pinheiro J, Simoes-Barbosa A. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases. PLoS Negl Trop Dis 2015; 9:e0004176. [PMID: 26658061 PMCID: PMC4684208 DOI: 10.1371/journal.pntd.0004176] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infections by parasitic protozoans are largely neglected, despite threatening millions of people, particularly in developing countries. With descriptions of the microbiota in humans, a new frontier of investigation is developing to decipher the complexity of host-parasite-microbiota relationships, instead of the classic reductionist approach, which considers host-parasite in isolation. Here, we review with specific examples the potential roles that the resident microbiota can play at mucosal interfaces in the transmission of parasitic protozoans and in the progress of infection and disease. Although the mechanisms underlying these relationships remain poorly understood, some examples provide compelling evidence that specific components of the microbiota can potentially alter the outcomes of parasitic infections and diseases in humans. Most findings suggest a protective role of the microbiota, which might lead to exploratory research comprising microbiota-based interventions to prevent and treat protozoal infections in the future. However, these infections are often accompanied by an unbalanced microbiota and, in some specific cases, apparently, these bacteria may contribute synergistically to disease progression. Taken together, these findings provide a different perspective on the ecological nature of protozoal infections. This review focuses attention on the importance of considering polymicrobial associations, i.e., parasitic protozoans and the host microbiota, for understanding these human infections in their natural microbial context.
Collapse
Affiliation(s)
- Ann-Katrein Bär
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Niha Phukan
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jully Pinheiro
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Augusto Simoes-Barbosa
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Microbial Innovation, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Ras R, Huynh K, Desoky E, Badawy A, Widmer G. Perturbation of the intestinal microbiota of mice infected with Cryptosporidium parvum. Int J Parasitol 2015; 45:567-73. [PMID: 25913477 DOI: 10.1016/j.ijpara.2015.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/29/2023]
Abstract
Understanding the interaction between the intestinal microbiota (microbiome) and enteric pathogens is of interest in the development of alternative treatments that do not rely on chemotherapy and do not lead to drug resistance. We undertook research in a rodent model of cryptosporidiosis to assess whether the bacterial gut microbiota is impacted by infection with the protozoan pathogen Cryptosporidium parvum. The profile of the faecal bacterial microbiota in infected and uninfected animals was compared using 16S amplicon sequencing. In four independent experiments, the intestinal microbiota of infected mice differed from that of uninfected animals, regardless of the C. parvum isolate used to infect mice. The use of replicated treatment groups demonstrated that microbiota divergence between treatments was driven by the infection and did not result from spontaneous changes in the intestinal ecosystem unrelated to the infection. Microbiota perturbation induced by C. parvum appeared to be reversible, as we observed a tendency for the phylogenetic distance between infected and uninfected mice to diminish after mice cleared the infection. As mice infected with C. parvum do not develop diarrhoea, these observations indicate that microbiota perturbation results from other mechanisms than an accelerated movement of gut content.
Collapse
Affiliation(s)
- Refaat Ras
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA; Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Kevin Huynh
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Enas Desoky
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Badawy
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|
32
|
Validation of IMP dehydrogenase inhibitors in a mouse model of cryptosporidiosis. Antimicrob Agents Chemother 2013; 58:1603-14. [PMID: 24366728 DOI: 10.1128/aac.02075-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cryptosporidium parasites are a major cause of diarrhea and malnutrition in the developing world, a frequent cause of waterborne disease in the developed world, and a potential bioterrorism agent. Currently, available treatment is limited, and Cryptosporidium drug discovery remains largely unsuccessful. As a result, the pharmacokinetic properties required for in vivo efficacy have not been established. We have been engaged in a Cryptosporidium drug discovery program targeting IMP dehydrogenase (CpIMPDH). Here, we report the activity of eight potent and selective inhibitors of CpIMPDH in the interleukin-12 (IL-12) knockout mouse model, which mimics acute human cryptosporidiosis. Two compounds displayed significant antiparasitic activity, validating CpIMPDH as a drug target. The best compound, P131 (250 mg/kg of body weight/day), performed equivalently to paromomycin (2,000 mg/kg/day) when administered in a single dose and better than paromomycin when administered in three daily doses. One compound, A110, appeared to promote Cryptosporidium infection. The pharmacokinetic, uptake, and permeability properties of the eight compounds were measured. P131 had the lowest systemic distribution but accumulated to high concentrations within intestinal cells. A110 had the highest systemic distribution. These observations suggest that systemic distribution is not required, and may be a liability, for in vivo antiparasitic activity. Intriguingly, A110 caused specific alterations in fecal microbiota that were not observed with P131 or vehicle alone. Such changes may explain how A110 promotes parasitemia. Collectively, these observations suggest a blueprint for the development of anticryptosporidial therapy.
Collapse
|
33
|
Ponton F, Wilson K, Holmes AJ, Cotter SC, Raubenheimer D, Simpson SJ. Integrating nutrition and immunology: a new frontier. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:130-7. [PMID: 23159523 DOI: 10.1016/j.jinsphys.2012.10.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 05/20/2023]
Abstract
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Berrilli F, Di Cave D, Cavallero S, D'Amelio S. Interactions between parasites and microbial communities in the human gut. Front Cell Infect Microbiol 2012; 2:141. [PMID: 23162802 PMCID: PMC3499702 DOI: 10.3389/fcimb.2012.00141] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/29/2012] [Indexed: 12/15/2022] Open
Abstract
The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites.
Collapse
Affiliation(s)
- Federica Berrilli
- Department of Experimental Medicine and Surgery, Tor Vergata University Rome, Italy.
| | | | | | | |
Collapse
|
35
|
Abstract
The host organism is a complex mosaic of cell populations that requires adequate supplies of nutrients for maintenance, growth and proliferation. Because many nutrient requirements may be shared by host cells, pathogens and indigenous microflora, all these cells may potentially compete for growth-limiting resources. Ecological theory can explain some of the dynamics commonly seen in host-pathogen interactions; and mechanistic resource-consumer theory provides an instructive framework for viewing the disease process.
Collapse
Affiliation(s)
- V H Smith
- Val Smith is at the Dept of Systematics and Ecology, and Environmental Studies Program, University of Kansas, Lawrence, KS 66045, USA; Robert Holt is at the Dept of Systematics and Ecology, and the Natural History Museum, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
36
|
Travers MA, Florent I, Kohl L, Grellier P. Probiotics for the control of parasites: an overview. J Parasitol Res 2011; 2011:610769. [PMID: 21966589 PMCID: PMC3182331 DOI: 10.1155/2011/610769] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 12/29/2022] Open
Abstract
Probiotics are defined as live organisms, which confer benefits to the host. Their efficiency was demonstrated for the treatment of gastrointestinal disorders, respiratory infections, and allergic symptoms, but their use is mostly limited to bacterial and viral diseases. During the last decade, probiotics as means for the control of parasite infections were reported covering mainly intestinal diseases but also some nongut infections, that are all of human and veterinary importance. In most cases, evidence for a beneficial effect was obtained by studies using animal models. In a few cases, cellular interactions between probiotics and pathogens or relevant host cells were also investigated using in vitro culture systems. However, molecular mechanisms mediating the beneficial effects are as yet poorly understood. These studies indicate that probiotics might indeed provide a strain-specific protection against parasites, probably through multiple mechanisms. But more unravelling studies are needed to justify probiotic utilisation in therapeutics.
Collapse
Affiliation(s)
- Marie-Agnès Travers
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Isabelle Florent
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Linda Kohl
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| | - Philippe Grellier
- Team Adaptation of Protozoa to their Environment, UMR 7245 CNRS, National Museum of Natural History, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France
| |
Collapse
|
37
|
Robinson P, Martin P, Garza A, D'Souza M, Mastrangelo MA, Tweardy D. Substance P receptor antagonism for treatment of cryptosporidiosis in immunosuppressed mice. J Parasitol 2009; 94:1150-4. [PMID: 18576802 DOI: 10.1645/ge-1458.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 01/28/2008] [Indexed: 11/10/2022] Open
Abstract
Cryptosporidiosis, caused by the protozoan parasite Cryptosporidium parvum, causes self-limited diarrhea in normal hosts but can cause life-threatening diarrhea for immunosuppressed patients. There is an urgent need for new drugs to treat this chronic disease. Cryptosporidium parvum infection is associated with intestinal structural and pathophysiologic changes, including villi blunting and glucose malabsorption. Substance P (SP), a neuropeptide and pain transmitter, is associated with the gastrointestinal tract and is elevated in humans and macaques after experimental C. parvum challenge. To examine the relevance of SP in the pathogenesis of cryptosporidiosis, and to determine if SP receptor antagonism can be employed for treatment of cryptosporidiosis in immunosuppressed hosts, we used an immunosuppressed murine model (dexamethasone-immunosuppressed mice) that is frequently utilized for examining chemotherapeutic potential of drugs. Quantitative ELISA was used to measure intestinal SP levels in immunosuppressed mice with, and without, C. parvum infection. Intestinal physiological alterations, as studied by the Ussing chamber technique, plus weight change, fecal oocyst shedding, and villi measurements, were compared in infected mice with, and without, SP receptor antagonist (aprepitant) treatment. Immunosuppressed mice infected with C. parvum demonstrated increased SP levels as well as physiological alterations (glucose malabsorption), weight loss, fecal oocyst shedding, and structural alterations (increased intestinal villi blunting) compared to uninfected mice. Each of these defects was significantly inhibited by aprepitant treatment. These studies demonstrate the potential of SP receptor antagonism for treatment of pathogenesis of cryptosporidiosis in immunosuppressed hosts.
Collapse
Affiliation(s)
- Prema Robinson
- Department of Medicine, Section of Infectious Disease, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Garza A, Lackner A, Aye P, D’Souza M, Martin P, Borda J, Tweardy D, Weinstock J, Griffiths J, Robinson P. Substance P receptor antagonist reverses intestinal pathophysiological alterations occurring in a novel ex-vivo model of Cryptosporidium parvum infection of intestinal tissues derived from SIV-infected macaques. J Med Primatol 2008; 37:109-15. [DOI: 10.1111/j.1600-0684.2007.00251.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Hernandez J, Lackner A, Aye P, Mukherjee K, Tweardy DJ, Mastrangelo MA, Weinstock J, Griffiths J, D'Souza M, Dixit S, Robinson P. Substance P is responsible for physiological alterations such as increased chloride ion secretion and glucose malabsorption in cryptosporidiosis. Infect Immun 2006; 75:1137-43. [PMID: 17158891 PMCID: PMC1828596 DOI: 10.1128/iai.01738-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cryptosporidiosis, caused by the protozoan parasite Cryptosporidium, causes self-limited diarrhea in immunocompetent hosts and severe life-threatening diarrhea in AIDS patients. Highly active antiretroviral therapy has been used to effectively treat cryptosporiosis in some but not all AIDS patients. Therefore, there is an urgent need for innovative drugs to treat this disease. Cryptosporidium infection results in intestinal pathophysiological changes such as glucose malabsorption, increased chloride ion (Cl(-)) secretion, and epithelial barrier disruption, leading to disease pathogenesis. In order to develop tools to combat this opportunistic pathogen, it is vital to understand mediators involved in disease pathogenesis. Substance P (SP), a neuropeptide and pain transmitter, is located in the gastrointestinal tract. SP can cause Cl(-) secretion in human gastrointestinal explants. However, its role in cryptosporidiosis has not been fully studied. Jejunal samples from macaques before and after Cryptosporidium parvum infection were assayed for SP and SP receptor mRNA and protein levels by reverse transcription-PCR and by immunohistochemistry and enzyme-linked immunosorbent assay, respectively. The role of SP in pathophysiological alterations, such as Cl(-) secretion and glucose malabsorption, was studied using tissues derived from macaques infected with C. parvum by the Ussing chamber technique. SP and SP receptor mRNA and protein expression levels were increased in jejunal samples following C. parvum infection and were accompanied by increased basal ion secretion and glucose malabsorption. In vitro treatment of samples obtained from infected macaques with the SP receptor antagonist aprepitant (Emend; Merck, Whitehouse Station, NJ) completely reversed the increase in basal ion secretion and corrected the glucose malabsorption. Our findings raise the possibility of using SP receptor antagonists for the treatment of symptoms associated with cryptosporidiosis.
Collapse
Affiliation(s)
- Julio Hernandez
- Baylor College of Medicine, Department of Medicine, Section of Infectious Diseases, One Baylor Plaza, Rm. 535EB, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In the present study we investigated whether the pathological changes induced by Cryptosporidium in the lungs are mediated through the activation of COX-2, and whether the pathway employed for this activation involves NF-kB. 70 albino rats were submitted for this work. They were categorized into 3 groups: 30 immunocompetent (IC) rats infected with Cryptosporidium oocysts, 30 immunosuppressed (IS) rats infected with Cryptosporidium oocysts, and 10 IC, non-infected rats. Immunohistochemical expression of COX2 and NF-kB in lung tissues of the rats was examined. 43.3% of IC rats showed chronic pneumonia and fibrosis, 40% COX2 positivity, and 36.67% NF-kB positivity. 96.7% of IS rats showed chronic pneumonia and fibrosis, 56.7% non-caseating granuloma with Cryptosporidium oocysts, and 66.7% positivity for both COX2 and NF-kB. Density of inflammatory infiltration was statistically correlated with quickscore of both COX2 and NF-kB in both IC and IS groups. An association between quickscores of COX2 and NF-kB was found in our studied material. These data could demonstrate that Cryptosporidium infection induces upregulation of COX2 possibly through the NF-kB pathway, which suggests the events that contribute to the pathogenesis of Cryptosporidium. These findings could indicate potential therapeutic pharmacological target-mediating treatment of lesions caused by Cryptosporidium.
Collapse
Affiliation(s)
- Nancy Y Asaad
- Department of Pathology, Faculty of Medicine, Menoufiya University, Shebin El-kom, Egypt.
| | | |
Collapse
|
41
|
Guitard J, Menotti J, Desveaux A, Alimardani P, Porcher R, Derouin F, Kapel N. Experimental study of the effects of probiotics on Cryptosporidium parvum infection in neonatal rats. Parasitol Res 2006; 99:522-7. [PMID: 16612627 DOI: 10.1007/s00436-006-0181-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
To date, there is no efficient treatment for cryptosporidiosis and parasite eradication relies on innate and acquired immunity. In this study, we investigated the effect of administration of probiotic bacteria on the development and progression of the experimental infection in suckling rats. Rats were fed daily with 2.10(7) CFU of Lactobacillus casei-containing mixture, starting 2 days before the infection until the spontaneous clearance of the parasite. Effects on weight gain, parasite burden, mucosal histology and production of mucosal cytokines (IFNgamma, IL10 and TNFalpha) were studied. Although a trend to a more rapid clearance of parasites was noted in rats treated with probiotics, no significant effect of probiotics administration was observed in terms of weight gain, parasite burden, mucosal damage, or kinetics of mucosal cytokines during the course of infection. Overall, our results showed that the daily administration of L. casei-containing mixtures was unable to eradicate the parasite in our model.
Collapse
Affiliation(s)
- Juliette Guitard
- Laboratoire de Parasitologie-Mycologie, Faculté de Médecine Paris 7, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Immune exclusion and immune inclusion: a new model of host-bacterial interactions in the gut. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.cair.2004.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Lemke H, Coutinho A, Lange H. Lamarckian inheritance by somatically acquired maternal IgG phenotypes. Trends Immunol 2004; 25:180-6. [PMID: 15039044 DOI: 10.1016/j.it.2004.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hilmar Lemke
- Biochemical Institute, Medical Faculty of the Christian-Albrechts-University, Kiel, Germany.
| | | | | |
Collapse
|
44
|
Bollinger RR, Everett ML, Palestrant D, Love SD, Lin SS, Parker W. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 2003; 109:580-7. [PMID: 12871226 PMCID: PMC1782994 DOI: 10.1046/j.1365-2567.2003.01700.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is critical, both for the host and for the long-term benefit of the bacteria that colonize the gut, that bacterial overgrowth with subsequent bacterial translocation, which may lead to sepsis and death of the host, be avoided. Secretory IgA (sIgA) is known to be a key factor in this process, agglutinating bacteria and preventing their translocation in a process termed 'immune exclusion'. To determine whether human sIgA might facilitate the growth of normal enteric bacteria under some conditions, the growth of human enteric bacteria on cultured, fixed human epithelial cells was evaluated in the presence of sIgA or various other proteins. Human sIgA was found to facilitate biofilm formation by normal human gut flora and by Escherichia coli on cultured human epithelial cell surfaces under conditions in which non-adherent bacteria were repeatedly washed away. In addition, the presence of sIgA resulted in a 64% increase in adherence of E. coli to live cultured epithelial cells over a 45-min period. Mucin, another defence factor thought to play a key role in immune exclusion, was found to facilitate biofilm formation by E. coli. Our findings suggest that sIgA may contribute to biofilm formation in the gut.
Collapse
Affiliation(s)
- R Randal Bollinger
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
- Department of Immunology, Duke University Medical CenterDurham, NC, USA
| | - Mary Lou Everett
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Daniel Palestrant
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Stephanie D Love
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Shu S Lin
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - William Parker
- Department of Surgery, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
45
|
Harp JA. Cryptosporidium and host resistance: historical perspective and some novel approaches. Anim Health Res Rev 2003; 4:53-62. [PMID: 12885209 DOI: 10.1079/ahrr200352] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cryptosporidium parvum is recognized as a major cause of diarrheal disease in neonatal bovine calves. In addition, this protozoan parasite has emerged as an important cause of disease in both immunocompromised and immunocompetent humans. Despite years of research, no consistently effective means of prevention or treatment are readily available for cryptosporidiosis in any species. Infection through ingestion of contaminated water has been widely documented; C. parvum was reported to be responsible for the largest waterborne outbreak of infectious disease in US history. In addition to its role as a primary disease agent, C. parvum has potential to initiate or exacerbate other gastrointestinal disorders, such as inflammatory bowel disease. Thus, control of C. parvum infection in both animals and humans remains an important objective. Research in our laboratory has focused on understanding mechanisms of resistance to C. parvum. We have demonstrated that acquisition of intestinal flora increases resistance to C. parvum. Substances present in the intestinal mucosa of adult animals can transfer resistance when fed to susceptible infants. Both expression of intestinal enzymes and rate of proliferation of epithelial cells may be altered following C. parvum infection. These and other changes may have profound effects on host resistance to C. parvum.
Collapse
Affiliation(s)
- James A Harp
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Avenue, Ames, IA 50010, USA.
| |
Collapse
|
46
|
Abstract
The importance of B cells in host resistance to, and recovery from, Cryptosporidium parvum infection was examined in gene-targeted B cell-deficient (muMT-/-) mice. Neonatal muMT-/- mice infected with C. parvum at 5 days of age completely cleared the infection by day 20 PI. The kinetics of infection and clearance were similar to those seen with age-matched C57BL/6 control mice. Furthermore, B cells were not required to clear existing C. parvum infection in adult mice. Reconstitution of persistently infected Rag-1-/- adult mice with spleen cells from muMT-/- donor mice resulted in significant reduction of infection, as in the results seen with spleen cells from C57BL6 donors. These findings indicate clearly that B cells are not essential for host resistance to, and recovery from, C. parvum infection in mice.
Collapse
Affiliation(s)
- Wangxue Chen
- Institute for Biological Sciences, National Research Council, 100 Sussex Drive, Ottawa, Canada K1A 0R6.
| | | | | |
Collapse
|
47
|
Sonea IM, Palmer MV, Akili D, Harp JA. Treatment with neurokinin-1 receptor antagonist reduces severity of inflammatory bowel disease induced by Cryptosporidium parvum. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:333-40. [PMID: 11874873 PMCID: PMC119952 DOI: 10.1128/cdli.9.2.333-340.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, debilitating disorder of uncertain and perhaps multiple etiologies. It is believed to be due in part to disregulation of the immune system. Neuroimmune interactions may be involved in induction or maintenance of IBD. In the present study, we examined the potential role of a neurotransmitter, substance P, in a mouse model of IBD. We found that binding sites for substance P, and more specifically, neurokinin-1 receptors, were upregulated in intestinal tissue of mice with IBD-like syndrome. Dosing of mice with LY303870, a neurokinin-1 receptor antagonist, reduced the severity of IBD, and treatment of mice with preexisting IBD allowed partial healing of lesions. We hypothesize that blocking the binding of substance P to the neurokinin-1 receptor interrupts the inflammatory cascade that triggers and maintains intestinal lesions of IBD.
Collapse
Affiliation(s)
- Ioana M Sonea
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
48
|
Teunis PFM, Chappell CL, Okhuysen PC. Cryptosporidium dose response studies: variation between isolates. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2002; 22:175-183. [PMID: 12017359 DOI: 10.1111/0272-4332.00014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The infectivity of three different isolates of the waterborne protozoan parasite Cryptosporidium parvum has been tested in human feeding studies. These three isolates (Iowa, TAMU, and UCP) have different ID50s, indicating substantial variation in their infectivity for humans. This finding is of great importance for quantitative risk assessment as it provides strong evidence for heterogeneity in infectivity among isolates of the same species.
Collapse
Affiliation(s)
- Peter F M Teunis
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| | | | | |
Collapse
|
49
|
Abstract
During the last 30 years, our concept of cryptosporidiosis has changed from that of a rare, largely asymptomatic disease, to an important cause of diarrhea in animals and humans worldwide. Significant disease first appeared in cattle. Subsequently, the zoonotic danger of the organism was recognized in HIV-infected persons and young children. Cryptosporidium are now ubiquitous and disease has been described in over 79 host species. Cryptosporidiosis has become a major cause of calfhood diarrhea worldwide. In humans it accounts for up to 20% of all cases of childhood diarrhea in developing countries and is a potentially fatal complication of AIDS. Waterborne contamination is a growing concern as a source of widespread outbreaks of disease. Factors that have contributed to the emergence of cryptosporidiosis in animals include biological features of the organism, the lack of an effective treatment or preventative, increased environmental contamination, and trends in livestock production. In humans the zoonotic nature of infection and an increased at-risk population have contributed to disease. Genetic characterization of Cryptosporidium, improved detection methods, and a better understanding of the factors that predispose to disease are important contributions to understanding the epidemiology of cryptosporidiosis.
Collapse
Affiliation(s)
- D A Mosier
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas 66506, USA.
| | | |
Collapse
|
50
|
Kayser O. A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: research and applications. Int J Pharm 2001; 214:83-5. [PMID: 11282242 DOI: 10.1016/s0378-5173(00)00640-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new strategy to deliver antibiotics to the Cryptosporidium-infected gastrointestinal tract is presented. In an effort to augment the anticryptosporidial effect of clinically used drugs, mucoadhesive nanosuspensions were prepared. They have the ability to reside in the gastrointestinal tract for an extended period. The hydrogel contained bupravaquone nanosuspensions and an adhesive polymer (chitosan) powder dispersed in water. By the development of mucoadhesive nanosuspensions, a potential drug delivery system for poorly soluble drugs has been investigated to overcome bioavailability problems caused by the pathophysiological diarrhoeic situation in patients suffering from cryptosporidiosis. Adapting drug delivery systems to the situation of Cryptosporidium parvum infections in man allows increased retention times with a prolonged action at reduced elimination in the gastrointestinal tract. In this communication, in vivo data are presented to document the efficiency of bupravaquone formulated as mucoadhesive polymers to improve its activity against C. parvum.
Collapse
Affiliation(s)
- O Kayser
- Freie Universität Berlin, Institut für Pharmazie, Pharmazeutische Technologie, Biopharmazie and Biotechnologie, Kelchstrasse 31, 12169 Berlin, Germany.
| |
Collapse
|