1
|
Sawada K, Kikuya S, Shiga Y, Kawaguchi T, Tani S. A Component of the Septation Initiation Network Complex, SepL, Participates in the Cellobiose-Responsive Expression of Cellulolytic Enzyme Genes in Aspergillus aculeatus. J Basic Microbiol 2025; 65:e2400266. [PMID: 39618037 DOI: 10.1002/jobm.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 05/04/2025]
Abstract
The production of cellulolytic enzymes in Aspergillus aculeatus is regulated at transcriptional levels in response to inducers and various physiological signals. In this study, we identified that a component of the septation initiation network complex, SepL, a putative protein kinase, was involved in the expression of carbohydrate-active enzyme (CAZyme) encoding genes. The deletion of sepL (ΔsepL) in A. aculeatus resulted in a deficiency in both septation and conidiation and sensitivity to Congo red. These phenotypes of ΔsepL are conserved in Aspergillus. In addition to the conserved function of SepL in Aspergillus, we found that SepL in A. aculeatus was necessary for the inducible expression of the CAZyme genes in response to cellobiose, whereas the inducible expression of these genes in response to 1,4-β-mannobiose was significantly reduced but not abolished. Combining the results of the present functional analysis of SepL with previous evidence that the expression of the CAZyme genes, which is responsive to both cellobiose and 1,4-β-mannobiose, is regulated by a transcription factor ManR in A. aculeatus, indicates that SepL in A. aculeatus is involved in the selective expression of the cellobiose-responsive CAZyme genes under the control of ManR.
Collapse
Affiliation(s)
- Kazumi Sawada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
| | - Saki Kikuya
- Department of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
| | - Yui Shiga
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho, Sakai, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho, Sakai, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho, Sakai, Japan
| |
Collapse
|
2
|
Zvyagina JY, Safiullin RR, Boginskaya IA, Slipchenko EA, Afanas‘ev KN, Sedova MV, Krylov VB, Yashunsky DV, Argunov DA, Nifantiev NE, Ryzhikov IA, Merzlikin AM, Lagarkov AN. Selective Detection of Fungal and Bacterial Glycans with Galactofuranose (Galf) Residues by Surface-Enhanced Raman Scattering and Machine Learning Methods. Int J Mol Sci 2025; 26:4218. [PMID: 40362455 PMCID: PMC12071545 DOI: 10.3390/ijms26094218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Specific monosaccharide residue, β-D-galactofuranose (Galf) featuring a five-membered ring structure, is found in the glycans of fungi and bacteria, but is normally absent in healthy mammals and humans. In this study, synthetic oligosaccharides mimicking bacterial and fungal glycans were investigated by SERS (Surface-Enhanced Raman Scattering) techniques for the first time to distinguish between different types of glycan chains. SERS spectra of oligosaccharides related to fungal α-(1→2)-mannan, β-(1→3)-glucan, β-(1→6)-glucan, galactomannan of Aspergillus, galactan I of Klebsiella pneumoniae, and diheteroglycan of Enterococcus faecalis were measured. To analyze the spectra, a number of machine learning methods were used that complemented each other: principal component analysis (PCA), confidence interval estimation (CIE), and logistic regression with L1 regularization. Each of the methods has shown own effectiveness in analyzing spectra. Namely, PCA allows the visualization of the divergence of spectra in the principal component space, CIE visualizes the degree of overlap of spectra through confidence interval analysis, and logistic regression allows researchers to build a model for determining the belonging of the analyte to a given class of carbohydrate structures. Additionally, the methods complement each other, allowing the determination of important features representing the main differences in the spectra containing and not containing Galf residue. The developed mathematical models enabled the reliable identification of Galf residues within glycan compositions. Given the high sensitivity of SERS, this spectroscopic technique serves as a promising basis for developing diagnostic test systems aimed at detecting biomarkers of fungal and bacterial infections.
Collapse
Affiliation(s)
- Julia Yu. Zvyagina
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Robert R. Safiullin
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Irina A. Boginskaya
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Ekaterina A. Slipchenko
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Konstantin N. Afanas‘ev
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Marina V. Sedova
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Vadim B. Krylov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Yashunsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry A. Argunov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ilya A. Ryzhikov
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Alexander M. Merzlikin
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| | - Andrey N. Lagarkov
- Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, 125412 Moscow, Russia; (J.Y.Z.); (R.R.S.); (E.A.S.); (K.N.A.); (M.V.S.); (I.A.R.); (A.M.M.); (A.N.L.)
| |
Collapse
|
3
|
Kadooka C, Yakabe S, Hira D, Futagami T, Goto M, Oka T. Functional redundancy and divergence of UDP-glucose 4-epimerases in galactose metabolism and cell wall biosynthesis in Aspergillus nidulans. Fungal Genet Biol 2025; 177:103972. [PMID: 39988081 DOI: 10.1016/j.fgb.2025.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Galactose-containing polysaccharides in the cell walls of filamentous fungi are vital for hyphal formation, mycelial aggregation, and adhesion. Uridine diphosphate (UDP)-glucose 4-epimerase, an enzyme capable of reversibly converting UDP-glucose to UDP-galactose, plays a key role in galactose metabolism. This study investigates the functional specialization and overlapping roles of UDP-glucose 4-epimerases, UgeA and UgeB, in Aspergillus nidulans. Enzyme activity assays revealed that UgeA catalyzes the interconversion of UDP-glucose and UDP-galactose, while UgeB facilitates both UDP-glucose/UDP-galactose and UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine interconversions. Both UgeA and UgeB successfully restored growth in a yeast gal10 disruptant, indicating their involvement in galactose metabolism in vivo. Additionally, the ugeB disruptant of A. nidulans exhibited growth retardation during galactose metabolism, a defect that was alleviated by complementation with ugeB or multiple-copy expression of ugeA. These findings elucidate the complex interplay between sugar metabolism and cell wall synthesis in filamentous fungi and offer insights for the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Shun Yakabe
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
4
|
Rastrepaeva DA, Argunov DA, Puchkin IA, Yashunsky DV, Krylov VB, Nifantiev NE. Synthesis of branched heterooligosaccharides related to Aspergillus galactomannan containing short Galf side chains. Carbohydr Res 2025; 549:109360. [PMID: 39718273 DOI: 10.1016/j.carres.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The members of a widespread Aspergillus fungi genus cause various diseases including the invasive aspergillosis with high morbidity and mortality rates, especially for immunosuppressed patients. One of the main carbohydrate structures on the surface of their cell wall is the galactomannan (GM) which is used in diagnostic kits for the detection of specific types of aspergillosis. However, limited specificity of currently available test systems urges the need for their further improvement. Herein we report the first synthesis of branched heterosaccharides related to GM and containing α-(1→2)-/α-(1→6)-linked tetramannoside backbone chain bearing one galactofuranoside unit or its β-(1→5)-linked dimer. The preparation of conjugates of the obtained spacered oligosaccharides with BSA is also performed to produce tools for the assessment the specificity of anti-Aspergillus immune response and to select antibodies suitable for the development of novel diagnostic kits that may discriminate distinct types of aspergillosis.
Collapse
Affiliation(s)
- Darya A Rastrepaeva
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry A Argunov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Ilya A Puchkin
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation
| | - Vadim B Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991, Moscow, Russian Federation.
| |
Collapse
|
5
|
O'Donnell C, Lynch B, O'Sullivan L, Killarney A, Murray M, Riddell P, Hannan MM. A 2-year Review of the Diagnostic Performance of Serum and Bronchoalveolar Lavage Galactomannan Testing in Lung Transplant Recipients in a National Heart and Lung Transplant Centre. Transpl Infect Dis 2025; 27:e14404. [PMID: 39526759 DOI: 10.1111/tid.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The 2015 International Society for Heart and Lung Transplant (ISHLT) fungal guidelines recommend the use of bronchoalveolar lavage (BAL) galactomannan over serum galactomannan for the diagnosis of invasive aspergillosis (IA) in lung transplant (LTx) recipients, based on limited evidence. Galactomannan testing is costly. METHODS A single-center, retrospective cohort study reviewing all 814 serum and BAL galactomannan samples received from 184 LTx recipients in our center between 2021 and 2022 and assessing their diagnostic performance in the diagnosis of IA. RESULTS Over the study period, 394 serum galactomannan samples were received from 144 patients and 420 BAL galactomannan samples from 143 patients. Using a cut-off of ≥ 1.0 for BAL galactomannan, the sensitivity and specificity were 65.9% and 98.4%, respectively. In total, 30 patients had positive BAL galactomannan. Antifungal therapy was commenced or continued in 29 of these patients either as targeted or pre-emptive treatment. Using a cut-off of ≥ 0.5 for serum galactomannan, the sensitivity and specificity were 9.7% and 99.7%, respectively. In total, four patients had a positive serum galactomannan. All four patients were either already on antifungal treatment for IA or were started before the serum galactomannan result was available, supported by laboratory, clinical, and radiological findings. A positive serum galactomannan was used to monitor treatment response in one patient. CONCLUSION Serum galactomannan is not a valuable test in the diagnosis of IA in our LTx recipients, is costly, and does not remove the need for bronchoscopy and BAL galactomannan. This supports the ISHLT recommendation.
Collapse
Affiliation(s)
- Clare O'Donnell
- Department of Microbiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Louise O'Sullivan
- Department of Microbiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Assumpta Killarney
- Department of Microbiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michelle Murray
- Department of Lung Transplantation, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter Riddell
- Department of Lung Transplantation, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Margaret M Hannan
- Department of Microbiology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Lin X, Zhang X, Wang Y, Chen W, Zhu Z, Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int J Biol Macromol 2025; 285:138098. [PMID: 39608543 DOI: 10.1016/j.ijbiomac.2024.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Refractory wounds represent a significant health concern that presents considerable challenges within clinical practice. The healing process of refractory wounds, which involves various cell types and biologically active molecules, is dynamically influenced by multiple factors, including diabetes, infections, and inflammation. Owing to their hydrophilicity, biocompatibility, and capacity for drug loading, hydrogels have emerged as promising and innovative biomaterials for enhancing wound healing. In recent decades, hydrogels with inherent therapeutic properties have been identified. Moreover, advanced hydrogel-based drug delivery systems have been developed to facilitate the sustained and controlled release of therapeutic agents at the site of refractory wounds. This review aims to summarize recent advancements and applications of hydrogels, including those with intrinsic therapeutic properties and hydrogel-based drug delivery systems, in the treatment of refractory wounds. Additionally, we discuss the limitations associated with hydrogel applications and propose future perspectives, which will lead to ongoing efforts to optimize hydrogels as ideal biomaterials for refractory wound healing.
Collapse
Affiliation(s)
- Xuran Lin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xinge Zhang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yuechen Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Zhikang Zhu
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China; Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Montesinos I, Albichr IS, Collinge E, Delaere B, Huang TD, Bogaerts P, Deckers C, Hamouda M, Honoré PM, Bulpa P, Sonet A. Diagnostic Value of Serum Biomarkers for Invasive Aspergillosis in Haematologic Patients. J Fungi (Basel) 2024; 10:661. [PMID: 39330420 PMCID: PMC11433095 DOI: 10.3390/jof10090661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a significant cause of morbidity and mortality in patients with haematological malignancies. Accurate diagnosis of IA is challenging due to non-specific symptoms and the impact of antifungal prophylaxis on biomarker sensitivity. METHODS This retrospective study evaluated the diagnostic performance of three serum biomarkers: Aspergillus Galactomannan Ag VirClia Monotest® (VirClia), Wako β-D-Glucan Test® (Wako BDG), and MycoGENIE Real-Time PCR® (MycoGENIE PCR). True positives were defined as patients with proven or probable IA (n = 14), with a positive Platelia Aspergillus Antigen® (Platelia) serving as a mycological criterion. True negatives were identified as patients with a positive Platelia assay but classified as non-probable IA (n = 10) and outpatients who consistently tested negative with the Platelia test throughout the study period (n = 20). RESULTS Most patients diagnosed with proven or probable IA were acute myeloid leukaemia or myelodysplastic syndrome patients receiving mould-active antifungal prophylaxis or treatment (71%). VirClia demonstrated high sensitivity (100%) for detecting IA, with a specificity of 83%. Wako BDG and MycoGENIE PCR showed lower sensitivities for IA (57% and 64%, respectively). MycoGENIE PCR detected Aspergillus spp. and Mucorales in two patients. CONCLUSIONS Accurate diagnosis of IA remains challenging, especially in patients who have received mould-active antifungal treatment. VirClia showed comparable performance to Platelia, suggesting its potential for routine use. However, Wako BDG and MycoGENIE PCR results were less favourable in our study cohort. Nevertheless, MycoGENIE PCR detected two probable co-infections with Aspergillus spp. and Mucorales.
Collapse
Affiliation(s)
- Isabel Montesinos
- Laboratory Medicine-Microbiology, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Imane Saad Albichr
- Laboratory Medicine-Microbiology, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Elodie Collinge
- Haematological Department, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Bénédicte Delaere
- Infectiology Department, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Te-Din Huang
- Laboratory Medicine-Microbiology, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Pierre Bogaerts
- Laboratory Medicine-Microbiology, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Corentin Deckers
- Laboratory Medicine-Microbiology, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Mai Hamouda
- Pharmacy Faculty, Namur University, 5000 Namur, Belgium
| | - Patrick M Honoré
- Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Pierre Bulpa
- Intensive Care Unit, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| | - Anne Sonet
- Haematological Department, Centre Hospitalier Universitaire (CHU) Université Catholique de Louvain (UCL) Namur Site Godinne, 5530 Yvoir, Belgium
| |
Collapse
|
9
|
Dellière S, Chauvin C, Wong SSW, Gressler M, Possetti V, Parente R, Fontaine T, Krüger T, Kniemeyer O, Bayry J, Carvalho A, Brakhage AA, Inforzato A, Latgé JP, Aimanianda V. Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus. Nat Commun 2024; 15:6966. [PMID: 39138196 PMCID: PMC11322389 DOI: 10.1038/s41467-024-51047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Laboratoire de Parasitologie-Mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France
| | - Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
| | - Sarah Sze Wah Wong
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France
- Institut Pasteur, Unité des Aspergillus, Paris, France
| | - Markus Gressler
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany; Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, Jena, Germany
| | - Valentina Possetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Thierry Fontaine
- Institut Pasteur, Unité des Aspergillus, Paris, France
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris-Cité, Paris, France
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | - Agostinho Carvalho
- Life & Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research, and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité Mycologie Moléculaire, Paris, France.
- Institut Pasteur, Université Paris Cité, Immunobiology of Aspergillus, Paris, France.
- Institut Pasteur, Unité des Aspergillus, Paris, France.
| |
Collapse
|
10
|
Gerard R, Gabriel F, Accoceberry I, Imbert S, Ducassou S, Angoso M, Jubert C. Is there still a place for serum galactomannan in the diagnosis of invasive aspergillosis in children at high risk and under antifungal prophylaxis? Mycoses 2024; 67:e13764. [PMID: 38970226 DOI: 10.1111/myc.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The performance of serum galactomannan (GM) for the diagnosis of invasive aspergillosis (IA) has been studied mainly in adults. Paediatric data are scarce and based on small and heterogeneous cohorts. OBJECTIVE To evaluate the performance of serum GM for the diagnosis of IA in a paediatric oncologic population at high risk of IA and to clarify the impact of antifungal prophylaxis on this test. METHODS We performed a retrospective study from January 2014 to December 2020 in the paediatric oncologic haematologic department of the University Hospital of Bordeaux. The diagnosis of IA was made using the recommendations of the EORTC and the MSGERC. RESULTS Among the 329 periods at high risk of IA in 222 patients, the prevalence of IA was 1.8% (3 proven and 3 probable IA). In the total population, the sensitivity, and the positive predictive value (PPV) were respectively 50% and 17.6%. Under antifungal prophylaxis, the sensitivity and PPV dropped, respectively, to 33.3% and 14.3%. In this group, the post-test probability of IA was 2% for a negative serum GM and only 14%. CONCLUSION In this large cohort of children at high risk of IA, the incidence of IA is low and the diagnostic performance of GM is poor, especially in the case of mould-active prophylaxis. Screening should be targeted rather than systematic and should be reserved for patients at highest risk for IA without mould-active prophylaxis. Combination with other tests such as Aspergillus PCR would increase the accuracy of GM in screening setting.
Collapse
Affiliation(s)
- Rémy Gerard
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Frédéric Gabriel
- Laboratory of Parasitology-Mycology, Pellegrin Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Isabelle Accoceberry
- Laboratory of Parasitology-Mycology, Pellegrin Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Sébastien Imbert
- Laboratory of Parasitology-Mycology, Pellegrin Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Stéphane Ducassou
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Marie Angoso
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Charlotte Jubert
- Pediatric Hematology Oncology Unit, Children Hospital, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
11
|
Seničar M, Roubinet B, Lafite P, Legentil L, Ferrières V, Landemarre L, Daniellou R. Gal f-Specific Neolectins: Towards Promising Diagnostic Tools. Int J Mol Sci 2024; 25:4826. [PMID: 38732045 PMCID: PMC11084152 DOI: 10.3390/ijms25094826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of GalfNeoLect, from the first cloned wild-type galactofuranosidase (Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the GalfNeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Galf, to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (GalfNGP), carrying the multivalent Galf units, as a suitable ligand and high-avidity system for the recognition of GalfNeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that GalfNeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.
Collapse
Affiliation(s)
- Mateja Seničar
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
- GLYcoDiag, 2 Rue du Cristal, 45100 Orléans, France; (B.R.); (L.L.)
| | - Benoît Roubinet
- GLYcoDiag, 2 Rue du Cristal, 45100 Orléans, France; (B.R.); (L.L.)
| | - Pierre Lafite
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
| | - Laurent Legentil
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France; (L.L.); (V.F.)
| | - Vincent Ferrières
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, 35000 Rennes, France; (L.L.); (V.F.)
| | | | - Richard Daniellou
- ICOA UMR CRNS 7311, Universite d’Orléans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France; (M.S.); (P.L.)
- Chaire de Cosmétologie, AgroParisTech, 10 Rue Léonard de Vinci, 45100 Orléans, France
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Micalis, 78350 Jouy-en-Josas, France
| |
Collapse
|
12
|
Yoo IY, Park YJ. Culture-independent diagnostic approaches for invasive aspergillosis in solid organ transplant recipients. KOREAN JOURNAL OF TRANSPLANTATION 2023; 37:155-164. [PMID: 37751964 PMCID: PMC10583980 DOI: 10.4285/kjt.23.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Prompt and accurate diagnosis of invasive aspergillosis (IA) is crucial for immunocompromised patients, including those who have received a solid organ transplant (SOT). Despite their low sensitivity, microscopic detection and conventional culture are considered the 'gold standard' methods. In conjunction with conventional culture, culture-independent assays such as serum galactomannan testing and Aspergillus polymerase chain reaction (PCR) have been incorporated into the diagnostic process for IA. The recently revised consensus definitions from the European Organization for Research and Treatment of Cancer and the Mycosis Study Group have adjusted the threshold for positive galactomannan testing based on the sample type, and have excluded 1,3-β-D-glucan testing as a mycological criterion. Following extensive standardization efforts, positive Aspergillus PCR tests using serum, plasma, or bronchoalveolar lavage fluid have been added. However, there are limited studies evaluating the clinical utility of these culture-independent assays for the early diagnosis of IA in SOT recipients. Therefore, further research is required to determine whether these assays could aid in the early diagnosis of IA in SOT recipients, particularly in relation to the organ transplanted. In this review, we examine the culture-independent diagnostic methods for IA in SOT recipients, as well as the clinical utility of these assays.
Collapse
Affiliation(s)
- In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Tyeb S, Verma V, Kumar N. Polysaccharide based transdermal patches for chronic wound healing: Recent advances and clinical perspective. Carbohydr Polym 2023; 316:121038. [PMID: 37321732 DOI: 10.1016/j.carbpol.2023.121038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Polysaccharides form a major class of natural polymers with diverse applications in biomedical science and tissue engineering. One of the key thrust areas for polysaccharide materials is skin tissue engineering and regeneration, whose market is estimated to reach around 31 billion USD globally by 2030, with a compounded annual growth rate of 10.46 %. Out of this, chronic wound healing and management is a major concern, especially for underdeveloped and developing nations, mainly due to poor access to medical interventions for such societies. Polysaccharide materials have shown promising results and clinical potential in recent decades with regard to chronic wound healing. Their low cost, ease of fabrication, biodegradability, and ability to form hydrogels make them ideal candidates for managing and healing such difficult-to-heal wounds. The present review presents a summary of the recently explored polysaccharide-based transdermal patches for managing and healing chronic wounds. Their efficacy and potency of healing both as active and passive wound dressings are evaluated in several in-vitro and in-vivo models. Finally, their clinical performances and future challenges are summarized to draw a road map towards their role in advanced wound care.
Collapse
Affiliation(s)
- Suhela Tyeb
- Department of Materials Engineering, Indian Institute of Science Bangalore, Bengaluru 560012, India
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur 208016, India; National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nitesh Kumar
- Department of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, India.
| |
Collapse
|
14
|
Kuo CW, Lin CY, Wei SH, Chou YT, Chen CW, Tsai JS, Su PL, Lin CC. Navigating the challenges of invasive pulmonary aspergillosis in lung cancer treatment: a propensity score study. Ther Adv Med Oncol 2023; 15:17588359231198454. [PMID: 37720497 PMCID: PMC10503299 DOI: 10.1177/17588359231198454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Invasive pulmonary aspergillosis (IPA) can negatively impact cancer patients' survival. It remains uncertain whether IPA's impact on patient outcomes varies by treatment approach in advanced lung cancer. Objectives To explore the association between IPA and outcomes in patients with advanced lung cancer receiving different treatments. Design A retrospective cohort study. Methods We enrolled patients with advanced-stage lung cancer between 2013 and 2021 at a college hospital in Taiwan and used the 2021 European Organization for Research and Treatment of Cancer/Mycoses Study Group Education and Research Consortium consensus for IPA diagnosis. Multivariable logistic regression was used to identify the IPA risk factors. We compared overall survival (OS) and postgalactomannan (GM) test survival between the IPA and control groups using multivariable Cox proportional hazards regression and the Kaplan-Meier method with propensity score matching (PSM). Results Among 2543 patients with advanced-stage lung cancer, 290 underwent a GM test, of which 34 (11.7%) were diagnosed with IPA. Patients undergoing chemotherapy (HR = 4.02, p = 0.027) and immunotherapy [hazard ratio (HR) = 3.41, p = 0.076] tended to have IPA. Compared to the control group, the IPA group had shorter median OS (14.4 versus 9.9 months, p = 0.030) and post-GM test survival (4.5 versus 1.9 months, p = 0.003). IPA was associated with shorter OS (log-rank p = 0.014 and 0.018 before and after PSM, respectively) and shorter 1-year and 2-year survival post-GM test (HR = 1.65 and 1.66, respectively). Patients receiving chemotherapy or immunotherapy had a shorter post-GM test survival if they had IPA. Conclusions IPA tended to be diagnosed more frequently in patients receiving chemotherapy or immune checkpoint inhibitors. Patients diagnosed with IPA are associated with shorter survival. Larger cohort studies are needed to verify the observations.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Chien-Yu Lin
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Sheng-Huan Wei
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Yun-Tse Chou
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Chian-Wei Chen
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Jeng-Shiuan Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Po-Lan Su
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Chien-Chung Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan
| |
Collapse
|
15
|
Latgé JP. Cell wall of Aspergillus fumigatus: Variability and response to stress. Fungal Biol 2023; 127:1259-1266. [PMID: 37495316 DOI: 10.1016/j.funbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/28/2023]
Abstract
The fungal cell is surrounded by a thick cell wall which obviously play an essential role in the protection of the fungus against external aggressive environments. In spite of 50 years of studies, the cell wall remains poorly known and especially its constant modifications during growth as well as environmental changes is not well appreciated. This review focus on the cell wall changes seen between different fungal stages and cell populations with a specific view to explain the resistance to stresses.
Collapse
|
16
|
Bukkems LMP, van Dommelen L, Regis M, van den Heuvel E, Nieuwenhuizen L. The Use of Galactomannan Antigen Assays for the Diagnosis of Invasive Pulmonary Aspergillosis in the Hematological Patient: A Systematic Review and Meta-Analysis. J Fungi (Basel) 2023; 9:674. [PMID: 37367610 DOI: 10.3390/jof9060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
The optimal cut-off value of the optical density index of the galactomannan antigen assays (GM) for diagnosing invasive pulmonary aspergillosis in hematological patients is a disputed topic. This article conducts a systematic review with a meta-analysis to establish which optical density index (ODI) cut-off value should be implemented into clinical practice. Pubmed, Embase and Cochrane databases were searched (N = 27). The pooled data, using a generalized linear mixed model with binomial distribution, resulted in an overall serum sensitivity of 0.76 and a specificity of 0.92. For serum ODI 0.5 there was a pooled sensitivity of 0.92 and a specificity of 0.84. The pooled data of all broncho-alveolar lavage (BAL) studies resulted in an overall sensitivity of 0.80 and a specificity of 0.95. For BAL ODI 0.5, there was a pooled sensitivity of 0.75 and a specificity of 0.88. For the BAL ODI 1.0 pooling, the studies resulted in a sensitivity of 0.75 and a specificity of 0.96. Serum ODI of 0.5 and BAL ODI of 1.0 are the most suitable cut-offs for clinical practice. However, our study affirms that the evidence for the use of GM in clinical practice for the hematological malignancy patient is currently insufficient and more research is needed to determine the diagnostic value of GM.
Collapse
Affiliation(s)
- Lydia M P Bukkems
- Maxima Medical Centre, De Run 46000, 5504 DB Veldhoven, The Netherlands
| | - Laura van Dommelen
- Ziekenhuis Gelderse Vallei, Willy Brandtlaan 10, 6716 RP Ede, The Netherlands
| | - Marta Regis
- Mathematics and Computer Science, Eindhoven University of Technology, Building Helix, Postbus 513, 5600 MB Eindhoven, The Netherlands
| | - Edwin van den Heuvel
- Mathematics and Computer Science, Eindhoven University of Technology, Building Helix, Postbus 513, 5600 MB Eindhoven, The Netherlands
| | | |
Collapse
|
17
|
Bulmer GS, Yuen FW, Begum N, Jones BS, Flitsch SL, van Munster JM. Biochemical characterization of a glycoside hydrolase family 43 β-D-galactofuranosidase from the fungus Aspergillus niger. Enzyme Microb Technol 2023; 164:110170. [PMID: 36521309 DOI: 10.1016/j.enzmictec.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022]
Abstract
β-D-Galactofuranose (Galf) and its polysaccharides are found in bacteria, fungi and protozoa but do not occur in mammalian tissues, and thus represent a specific target for anti-pathogenic drugs. Understanding the enzymatic degradation of these polysaccharides is therefore of great interest, but the identity of fungal enzymes with exclusively galactofuranosidase activity has so far remained elusive. Here we describe the identification and characterization of a galactofuranosidase from the industrially important fungus Aspergillus niger. Analysis of glycoside hydrolase family 43 subfamily 34 (GH43_34) members via conserved unique peptide patterns and phylogeny, revealed the occurrence of distinct clusters and, by comparison with specificities of characterized bacterial members, suggested a basis for prediction of enzyme specificity. Using this rationale, in tandem with molecular docking, we identified a putative β-D-galactofuranosidase from A. niger which was recombinantly produced in Escherichia coli. The Galf-specific hydrolase, encoded by xynD demonstrates maximum activity at pH 5, 25 °C towards 4-nitrophenyl-β-galactofuranoside (pNP-β-Galf), with a Km of 17.9 ± 1.9 mM and Vmax of 70.6 ± 5.3 µM min-1. The characterization of this first fungal GH43 galactofuranosidase offers further molecular insight into the degradation of Galf-containing structures.
Collapse
Affiliation(s)
- Gregory S Bulmer
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Fang Wei Yuen
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Naimah Begum
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bethan S Jones
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jolanda M van Munster
- Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Scotland's Rural College, West Mains Road, King's Buildings, Edinburgh EH9 3JG, United Kingdom.
| |
Collapse
|
18
|
Reedy JL, Crossen AJ, Negoro PE, Harding HB, Ward RA, Vargas-Blanco DA, Timmer KD, Reardon CM, Basham KJ, Mansour MK, Wüthrich M, Fontaine T, Latgé JP, Vyas JM. The C-Type Lectin Receptor Dectin-2 Is a Receptor for Aspergillus fumigatus Galactomannan. mBio 2023; 14:e0318422. [PMID: 36598192 PMCID: PMC9973300 DOI: 10.1128/mbio.03184-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous environmental mold that causes significant mortality particularly among immunocompromised patients. The detection of the Aspergillus-derived carbohydrate galactomannan in patient serum and bronchoalveolar lavage fluid is the major biomarker used to detect A. fumigatus infection in clinical medicine. Despite the clinical relevance of this carbohydrate, we lack a fundamental understanding of how galactomannan is recognized by the immune system and its consequences. Galactomannan is composed of a linear mannan backbone with galactofuranose sidechains and is found both attached to the cell surface of Aspergillus and as a soluble carbohydrate in the extracellular milieu. In this study, we utilized fungal-like particles composed of highly purified Aspergillus galactomannan to identify a C-type lectin host receptor for this fungal carbohydrate. We identified a novel and specific interaction between Aspergillus galactomannan and the C-type lectin receptor Dectin-2. We demonstrate that galactomannan bound to Dectin-2 and induced Dectin-2-dependent signaling, including activation of spleen tyrosine kinase, gene transcription, and tumor necrosis factor alpha (TNF-α) production. Deficiency of Dectin-2 increased immune cell recruitment to the lungs but was dispensable for survival in a mouse model of pulmonary aspergillosis. Our results identify a novel interaction between galactomannan and Dectin-2 and demonstrate that Dectin-2 is a receptor for galactomannan, which leads to a proinflammatory immune response in the lung. IMPORTANCE Aspergillus fumigatus is a fungal pathogen that causes serious and often fatal disease in humans. The surface of Aspergillus is composed of complex sugar molecules. Recognition of these carbohydrates by immune cells by carbohydrate lectin receptors can lead to clearance of the infection or, in some cases, benefit the fungus by dampening the host response. Galactomannan is a carbohydrate that is part of the cell surface of Aspergillus but is also released during infection and is found in patient lungs as well as their bloodstreams. The significance of our research is that we have identified Dectin-2 as a mammalian immune cell receptor that recognizes, binds, and signals in response to galactomannan. These results enhance our understanding of how this carbohydrate interacts with the immune system at the site of infection and will lead to broader understanding of how release of galactomannan by Aspergillus effects the immune response in infected patients.
Collapse
Affiliation(s)
- Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, USA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paige E. Negoro
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diego A. Vargas-Blanco
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kyle D. Timmer
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher M. Reardon
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, USA
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin Medical School, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology (IMBBFORTH), University of Crete, Heraklion, Greece
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Solid-state NMR molecular snapshots of Aspergillus fumigatus cell wall architecture during a conidial morphotype transition. Proc Natl Acad Sci U S A 2023; 120:e2212003120. [PMID: 36719915 PMCID: PMC9963690 DOI: 10.1073/pnas.2212003120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides β-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.
Collapse
|
20
|
Kadooka C, Tanaka Y, Hira D, Maruyama JI, Goto M, Oka T. Identification of galactofuranose antigens such as galactomannoproteins and fungal-type galactomannan from the yellow koji fungus ( Aspergillus oryzae). Front Microbiol 2023; 14:1110996. [PMID: 36814571 PMCID: PMC9939772 DOI: 10.3389/fmicb.2023.1110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Filamentous fungi belonging to the genus Aspergillus are known to possess galactomannan in their cell walls. Galactomannan is highly antigenic to humans and has been reported to be involved in the pathogenicity of pathogenic filamentous fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to confirm the presence of D-galactofuranose-containing glycans and to clarify the biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, suppressed mycelial elongation, suggesting that D-galactofuranose-containing glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear magnetic resonance spectrometry revealed that the galactofuranose-containing sugar chain was deficient and that core mannan backbone structures were present in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the cell wall fraction of A. oryzae. The findings of this study provide new insights into the cell wall structure of A. oryzae, which is essential for the production of fermented foods in Japan.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan,*Correspondence: Takuji Oka,
| |
Collapse
|
21
|
A new function of a putative UDP-glucose 4-epimerase on the expression of glycoside hydrolase genes in Aspergillus aculeatus. Appl Microbiol Biotechnol 2023; 107:785-795. [PMID: 36625911 DOI: 10.1007/s00253-022-12337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
In order to figure out the induction mechanisms of glycoside hydrolase genes in Aspergillus aculeatus, we screened approximately 9,000 transfer DNA (T-DNA)-inserted mutants for positive regulators involved in the induction. Since the mutants possess the orotidine 5'-monophosphate decarboxylase gene as a reporter gene to monitor the cellulose-responsive expression of the cellobiohydrolase I gene (cbhI), candidate strains were isolated by counterselection against 5-fluoroorotic acid (5-FOA). One 5-FOA-resistant mutant harboring the T-DNA at the uge5 locus showed reduced cellulose utilization and cbhI expression. A. aculeatus Uge5 is homologous to Aspergillus fumigatus uge5 (Afu5g10780; E-value, 0.0; identities, 93%), which catalyzes the conversion of uridine diphosphate (UDP)-glucose to UDP-galactopyranose. The uge5 deletion mutant in A. aculeatus (Δuge5) showed reduced conidium formation on minimal media supplemented with galactose, locust bean gum (LBG), and guar gum as a carbon source. β-1,4-Endoglucanase and β-1,4-mannanase production in submerged culture containing LBG was reduced to 10% and 6% of the control strain at day 5, respectively, but no difference was observed in cultures containing wheat bran. The expression of major cellulolytic and mannolytic genes in the presence of mannobiose in Δuge5 was reduced to less than 15% of the control strain, while cellobiose-responsive expression was only modestly reduced at early inducing time points. Since all test genes were controlled by a transcription factor ManR, these data demonstrate that Uge5 is involved in inducer-dependent selective expression of genes controlled via ManR. KEY POINTS: • UDP-glucose 4-epimerase (Uge5) regulates expression of glycosyl hydrolase genes. • ManR regulates both cellobiose- and mannobiose-responsive expression. • Uge5 plays a key role in mannobiose-responsive expression.
Collapse
|
22
|
Long-Term Kinetics of Serum Galactomannan during Treatment of Complicated Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:jof9020157. [PMID: 36836274 PMCID: PMC9965572 DOI: 10.3390/jof9020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Several studies have evaluated the serum galactomannan (GM) antigen assay in pediatric patients, and there is convincing evidence for its usefulness as a diagnostic tool for invasive Aspergillus infections in patients with acute leukemias or post allogeneic hematopoietic cell transplantation (HCT). Less is known about the utility of the assay in monitoring responses to treatment in patients with established invasive aspergillosis (IA). Here, we present the long-term kinetics of serum galactomannan in two severely immunocompromised adolescents with invasive pulmonary aspergillosis (IPA) who were cured after complicated clinical courses. We also review the utility of the GM antigen assay in serum as a prognostic tool around the time of diagnosis of IA and as a biomarker to monitor disease activity in patients with established IA and assess responses to systemic antifungal therapy.
Collapse
|
23
|
Liu Z, Valsecchi I, Le Meur RA, Simenel C, Guijarro JI, Comte C, Muszkieta L, Mouyna I, Henrissat B, Aimanianda V, Latgé JP, Fontaine T. Conidium Specific Polysaccharides in Aspergillus fumigatus. J Fungi (Basel) 2023; 9:jof9020155. [PMID: 36836270 PMCID: PMC9964227 DOI: 10.3390/jof9020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Earlier studies have shown that the outer layers of the conidial and mycelial cell walls of Aspergillus fumigatus are different. In this work, we analyzed the polysaccharidome of the resting conidial cell wall and observed major differences within the mycelium cell wall. Mainly, the conidia cell wall was characterized by (i) a smaller amount of α-(1,3)-glucan and chitin; (ii) a larger amount of β-(1,3)-glucan, which was divided into alkali-insoluble and water-soluble fractions, and (iii) the existence of a specific mannan with side chains containing galactopyranose, glucose, and N-acetylglucosamine residues. An analysis of A. fumigatus cell wall gene mutants suggested that members of the fungal GH-72 transglycosylase family play a crucial role in the conidia cell wall β-(1,3)-glucan organization and that α-(1,6)-mannosyltransferases of GT-32 and GT-62 families are essential to the polymerization of the conidium-associated cell wall mannan. This specific mannan and the well-known galactomannan follow two independent biosynthetic pathways.
Collapse
Affiliation(s)
- Zhonghua Liu
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Isabel Valsecchi
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France
| | - Rémy A. Le Meur
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Catherine Simenel
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - J. Iñaki Guijarro
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique (CNRS) UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Catherine Comte
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | | | - Isabelle Mouyna
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Unité de Biologie des ARN des Pathogènes Fongiques, 75015 Paris, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université Marseille, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Unité de Mycologie Moléculaire, 75015 Paris, France
| | - Jean-Paul Latgé
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Unité des Aspergillus, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, 75015 Paris, France
- Correspondence:
| |
Collapse
|
24
|
Lecointe K, Coulon P, Krzewinski F, Charlet R, Bortolus C, Sendid B, Cornu M. Parietal composition of Lichtheimia corymbifera: Differences between spore and germ tube stages and host-pathogen interactions. Med Mycol 2022; 61:6960681. [PMID: 36565722 DOI: 10.1093/mmy/myac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
The molecular composition and structural organization of the cell wall of filamentous fungi underlie the ability of the host to identify them as pathogens. Although the organization of the fungal cell wall, composed of 90% polysaccharides, is similar from one fungus to another, small variations condition their ability to trigger pattern recognition receptors. Because the incidence of mucormycosis, an emerging life-threatening infection caused by the species of the order Mucorales is increasing worldwide, the precise composition of the cell wall of two strains of Lichtheimia corymbifera was investigated in the early growth stages of germination (spores and germ-tubes) using trimethylsilylation and confocal microscopy. This study also characterizes the response of THP-1 cells to Mucorales. The study identified the presence of uncommon monosaccharides (fucose, galactose, and glucuronic acid) whose respective proportions vary according to the germination stage, revealing early parietal reorganization. Immunofluorescence studies confirmed the exposure of β-glucan on the surface of swollen spores and germ-tubes. Both spores and germ-tubes of L. corymbifera promoted an early and strong pro-inflammatory response, through TLR-2. Our results show the singularity of the cell wall of the order Mucorales, opening perspectives for the development of specific diagnostic biomarkers.
Collapse
Affiliation(s)
- Karine Lecointe
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Pauline Coulon
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Frédéric Krzewinski
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France
| | - Rogatien Charlet
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Clovis Bortolus
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Marjorie Cornu
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, F-59000 Lille, France.,Inserm U1285 ; Univ. Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| |
Collapse
|
25
|
Identification of an α-(1 →6)-Mannosyltransferase Contributing To Biosynthesis of the Fungal-Type Galactomannan α-Core-Mannan Structure in Aspergillus fumigatus. mSphere 2022; 7:e0048422. [PMID: 36445154 PMCID: PMC9769593 DOI: 10.1128/msphere.00484-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Fungal-type galactomannan, a cell wall component of Aspergillus fumigatus, is composed of α-(1→2)-/α-(1→6)-linked mannan and β-(1→5)-/β-(1→6)-linked galactofuran side chains. Recently, CmsA and CmsB were identified as the α-(1→2)-mannosyltransferases involved in the biosynthesis of the α-core-mannan. However, the α-(1→6)-mannosyltransferase involved in the biosynthesis of the α-core-mannan has not been identified yet. In this study, we analyzed 9 putative α-(1→6)-mannosyltransferase gene disruption strains of A. fumigatus. The ΔanpA strain resulted in decreased mycelial elongation and reduced conidia formation. Proton nuclear magnetic resonance analysis revealed that the ΔanpA strain failed to produce the α-core-mannan of fungal-type galactomannan. We also found that recombinant AnpA exhibited much stronger α-(1→6)-mannosyltransferase activity toward α-(1→2)-mannobiose than α-(1→6)-mannobiose in vitro. Molecular simulations corroborated the fact that AnpA has a structure that can recognize the donor and acceptor substrates suitable for α-(1→6)-mannoside bond formation and that its catalytic activity would be specific for the elongation of the α-core-mannan structure in vivo. The identified AnpA is similar to Anp1p, which is involved in the elongation of the N-glycan outer chain in budding yeast, but the building sugar chain structure is different. The difference was attributed to the difference in substrate recognition of AnpA, which was clarified by simulations based on protein conformation. Thus, even proteins that seem to be functionally identical due to amino acid sequence similarity may be glycosyltransferase enzymes that make different glycans upon detailed analysis. This study describes an example of such a case. IMPORTANCE Fungal-type galactomannan is a polysaccharide incorporated into the cell wall of filamentous fungi belonging to the subphylum Pezizomycotina. Biosynthetic enzymes of fungal-type galactomannan are potential targets for antifungal drugs and agrochemicals. In this study, we identified an α-(1→6)-mannosyltransferase responsible for the biosynthesis of the α-core-mannan of fungal-type galactomannan, which has not been known for a long time. The findings of this study shed light on processes that shape this cellular structure while identifying a key enzyme essential for the biosynthesis of fungal-type galactomannan.
Collapse
|
26
|
Kadooka C, Hira D, Tanaka Y, Chihara Y, Goto M, Oka T. Mnt1, an α-(1 → 2)-mannosyltransferase responsible for the elongation of N-glycans and O-glycans in Aspergillus fumigatus. Glycobiology 2022; 32:1137-1152. [PMID: 35871410 DOI: 10.1093/glycob/cwac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/30/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023] Open
Abstract
The fungal cell wall is necessary for survival as it serves a barrier for physical protection. Therefore, glycosyltransferases responsible for the synthesis of cell wall polysaccharides may be suitable targets for drug development. Mannose is a monosaccharide that is commonly found in sugar chains in the walls of fungi. Mannose residues are present in fungal-type galactomannan, O-glycans, N-glycans, glycosylphosphatidylinositol anchors, and glycosyl inositol phosphorylceramides in Aspergillus fumigatus. Three genes that are homologous to α-(1 → 2)-mannosyltransferase genes and belong to the glycosyltransferase family 15 were found in the A. fumigatus strain, Af293/A1163, genome: cmsA/ktr4, cmsB/ktr7, and mnt1. It is reported that the mutant ∆mnt1 strain exhibited a wide range of properties that included high temperature and drug sensitivity, reduced conidia formation, leakage at the hyphal tips, and attenuation of virulence. However, it is unclear whether Mnt1 is a bona fide α-(1 → 2)-mannosyltransferase and which mannose residues are synthesized by Mnt1 in vivo. In this study, we elucidated the structure of the Mnt1 reaction product, the structure of O-glycan in the Δmnt1 strain. In addition, the length of N-glycans attached to invertase was evaluated in the Δmnt1 strain. The results indicated that Mnt1 functioned as an α-(1 → 2)-mannosyltransferase involved in the elongation of N-glycans and synthesis of the second mannose residue of O-glycans. The widespread abnormal phenotype caused by the disruption of the mnt1 gene is the combined result of the loss of mannose residues from O-glycans and N-glycans. We also clarified the enzymatic properties and substrate specificity of Mnt1 based on its predicted protein structure.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yuria Chihara
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| |
Collapse
|
27
|
Zhang S, Lin Z, Wang D, Xu X, Song C, Sun L, Mayo KH, Zhao Z, Zhou Y. Galactofuranose side chains in galactomannans from Penicillium spp. modulate galectin-8-mediated bioactivity. Carbohydr Polym 2022; 292:119677. [PMID: 35725172 DOI: 10.1016/j.carbpol.2022.119677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Polysaccharides from fungi have many bioactivities. Previous studies showed that galactomannans from Penicillium oxalicum antagonize galectin-8-mediated activity. Here, two intracellular and two extracellular galactomannans were purified and their structures were comparatively characterized by NMR, partial acid hydrolysis and methylation. All four of them were identified to be galactomannans with similar mannan backbones having 1,2-/1,6-linkages (~3:1) and various amounts of galactofuranan side chains. The interaction of those polysaccharides with galectin-8 was assessed by hemagglutination and biolayer interferometry. These results show that side chains are important for the interaction, and the more the side chains, the stronger the interaction. But the side chains alone did not show act on galectin-8, which indicated that the cooperation between backbone and side chains is another necessary factor for this interaction. Our findings provide important information about structure-activity relationships and the galactofuranose-containing galactomannans might be as potential therapeutic of galectin-8 related diseases.
Collapse
Affiliation(s)
- Siying Zhang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhiying Lin
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Dongmei Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Lin Sun
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA.
| | - Zihan Zhao
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
28
|
Penicillium digitatum, First Clinical Report in Chile: Fungal Co-Infection in COVID-19 Patient. J Fungi (Basel) 2022; 8:jof8090961. [PMID: 36135686 PMCID: PMC9503875 DOI: 10.3390/jof8090961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/04/2022] Open
Abstract
Penicillium digitatum is one of the most important phytopathogens. It causes deterioration and rotting of citrus fruits, generating significant economic losses worldwide. As a human pathogen, it is extremely rare. We present a case of pulmonary co-infection in a patient diagnosed with pneumonia due to SARS-CoV-2. A 20-year-old female patient, primigravid, 36 weeks of gestation, without comorbidities, and diagnosed with severe pneumonia due to the SARS-CoV-2, showed rapid lung deterioration for which their pregnancy was interrupted by surgery. The patient was hospitalized in the Intensive Care Unit (ICU), connected to mechanical ventilation and receiving corticosteroids and antibiotics. The diagnosis of pulmonary fungal infection was made through bronchoalveolar lavage (BAL) culture, and the species identification was performed by sequencing of β-tubulin. Phylogenetic analysis with related species was performed for the confirmation of species identification. Antifungal susceptibility tests were performed for itraconazole (4 µg/mL), voriconazole (2 µg/mL), and amphotericin B (2 µg/mL). The patient was successfully treated with itraconazole. This is the second worldwide report of pulmonary infection by P. digitatum and the first in Chile. Although it is a fungus that rarely infects humans, it could represent an emerging opportunistic fungal pathogen, with associated risk factors that should be considered in the differential diagnosis of Penicillium species isolated from infections in humans.
Collapse
|
29
|
Kozel TR, Kvam AJ, Burnham-Marusich AR, Mash M. Rapid oxidative release of fungal mannan for detection by immunoassay. Med Mycol 2022; 60:6692870. [PMID: 36066604 PMCID: PMC9491839 DOI: 10.1093/mmy/myac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Detection of fungal cells in infected tissue by procedures such as KOH microscopy and histopathology are well-established methods in medical mycology. However, microscopy requires skilled personnel, specialized equipment, and may take considerable time to a result. An alternative approach is immunoassay for detection of fungal mannans in tissue as a biomarker for the presence of fungal cells. However, mannan is a component of the fungal cell wall, and detection of mannan would require a facile means for mannan extraction prior to detection by immunoassay. In this study we evaluated a broad spectrum of extraction reagents using Trichophyton rubrum mycelia and Saccharomyces cerevisiae Mnn2 blastoconidia as model fungi. Oxidative release by treatment with dilute bleach proved to be a novel and highly effective procedure. Complete extraction occurred in as little as 2-4 min. Detergents, chaotropes and acid were ineffective. Strong base released mannan but was less efficient than oxidative release and required the use of highly corrosive reagents. Oxidative release of cell wall mannans from fungal mycelia and blastoconidia may be an effective first step in immunodetection of fungi in tissues from infected humans, animals or plants that could be done at or near the diagnostic point of need.
Collapse
Affiliation(s)
- Thomas R Kozel
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.,DxDiscovery, Inc., Reno, NV, 89557, USA
| | - Alexander J Kvam
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | | | | |
Collapse
|
30
|
The Evolving Landscape of Diagnostics for Invasive Fungal Infections in Lung Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Sandwich-type homogeneous chemiluminescence immunoassay based on nanoparticle toward detection of Aspergillus galactomannan antigen. Talanta 2022; 243:123392. [DOI: 10.1016/j.talanta.2022.123392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
|
32
|
Yan K, Stanley M, Kowalski B, Raimi OG, Ferenbach AT, Wei P, Fang W, van Aalten DMF. Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. J Biol Chem 2022; 298:102003. [PMID: 35504355 PMCID: PMC9168620 DOI: 10.1016/j.jbc.2022.102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/09/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.
Collapse
Affiliation(s)
- Kaizhou Yan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mathew Stanley
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bartosz Kowalski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pingzhen Wei
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
33
|
Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022; 11:pathogens11050569. [PMID: 35631090 PMCID: PMC9143782 DOI: 10.3390/pathogens11050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic mycoses have been viewed as neglected diseases and they are responsible for deaths and disabilities around the world. Rapid, low-cost, simple, highly-specific and sensitive diagnostic tests are critical components of patient care, disease control and active surveillance. However, the diagnosis of fungal infections represents a great challenge because of the decline in the expertise needed for identifying fungi, and a reduced number of instruments and assays specific to fungal identification. Unfortunately, time of diagnosis is one of the most important risk factors for mortality rates from many of the systemic mycoses. In addition, phenotypic and biochemical identification methods are often time-consuming, which has created an increasing demand for new methods of fungal identification. In this review, we discuss the current context of the diagnosis of the main systemic mycoses and propose alternative approaches for the identification of new targets for fungal pathogens, which can help in the development of new diagnostic tests.
Collapse
|
34
|
Extracellular targeting of Neurospora crassa cell wall and secreted glycoproteins by DFG-5. Fungal Genet Biol 2022; 160:103686. [DOI: 10.1016/j.fgb.2022.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
|
35
|
Lian X, Chambers S, Lewis JG, Scott-Thomas A, Bhatia M. Two Monoclonal Antibodies That Specifically Recognize Aspergillus Cell Wall Antigens and Can Detect Circulating Antigens in Infected Mice. Int J Mol Sci 2021; 23:252. [PMID: 35008678 PMCID: PMC8745570 DOI: 10.3390/ijms23010252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/25/2023] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening disease mainly caused by Aspergillus fumigatus and Aspergillus flavus. Early diagnosis of this condition is crucial for patient treatment and survival. As current diagnostic techniques for IA lack sufficient accuracy, we have raised two monoclonal antibodies (1D2 and 4E4) against A. fumigatus cell wall fragments that may provide a platform for a new diagnostic approach. The immunoreactivity of these antibodies was tested by immunofluorescence and ELISA against various Aspergillus and Candida species in vitro and by immunohistochemistry in A. fumigatus infected mouse tissues. Both monoclonal antibodies (mAbs) showed intensive fluorescence with the hyphae wall of A. fumigatus and A. flavus, but there was no staining with other Aspergillus species or Candida species. Both mAbs also showed strong immunoreactivity to the cell wall of A. fumigatus hyphae in the infected liver, spleen and kidney of mice with IA. The antigens identified by 1D2 and 4E4 might be glycoproteins and the epitopes are most likely a protein or peptide rather than a carbohydrate. An antibody-based antigen capture ELISA detected the extracellular antigens released by A. fumigatus, A. flavus, A. niger and A. terreus, but not in Candida species. The antigen could be detected in the plasma of mice after 48 h of infection by double-sandwich ELISA. In conclusion, both 1D2 and 4E4 mAbs are potentially promising diagnostic tools to investigate invasive aspergillosis.
Collapse
Affiliation(s)
- Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| | - John G. Lewis
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
- Canterbury Health Laboratories, Christchurch 8011, New Zealand
| | - Amy Scott-Thomas
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| |
Collapse
|
36
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
37
|
Chakraborty A, Fernando LD, Fang W, Dickwella Widanage MC, Wei P, Jin C, Fontaine T, Latgé JP, Wang T. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat Commun 2021; 12:6346. [PMID: 34732740 PMCID: PMC8566572 DOI: 10.1038/s41467-021-26749-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vast efforts have been devoted to the development of antifungal drugs targeting the cell wall, but the supramolecular architecture of this carbohydrate-rich composite remains insufficiently understood. Here we compare the cell wall structure of a fungal pathogen Aspergillus fumigatus and four mutants depleted of major structural polysaccharides. High-resolution solid-state NMR spectroscopy of intact cells reveals a rigid core formed by chitin, β-1,3-glucan, and α-1,3-glucan, with galactosaminogalactan and galactomannan present in the mobile phase. Gene deletion reshuffles the composition and spatial organization of polysaccharides, with significant changes in their dynamics and water accessibility. The distribution of α-1,3-glucan in chemically isolated and dynamically distinct domains supports its functional diversity. Identification of valines in the alkali-insoluble carbohydrate core suggests a putative function in stabilizing macromolecular complexes. We propose a revised model of cell wall architecture which will improve our understanding of the structural response of fungal pathogens to stresses. The fungal cell wall is a complex structure composed mainly of glucans, chitin and glycoproteins. Here, the authors use solid-state NMR spectroscopy to assess the cell wall architecture of Aspergillus fumigatus, comparing wild-type cells and mutants lacking major structural polysaccharides, with insights into the distinct functions of these components.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | | | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | | | - Pingzhen Wei
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Thierry Fontaine
- Unité de Biologie et pathogénicité fongiques, INRAE, USC2019, Institut Pasteur, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular biology and Biotechnology (IMBBFORTH), University of Crete, Heraklion, Greece.
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
38
|
Al-Janabi AAHS, Ali RN. Early diagnosis of aspergillosis in asthmatic and rheumatoid arthritis patients by Aspergillus galactomannan antigen assay: a case-control study in Karbala providence. J Asthma 2021; 59:2276-2282. [PMID: 34669546 DOI: 10.1080/02770903.2021.1996601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Aspergillosis is an opportunistic systemic infection caused by members of Aspergillus spp. in various parts of the human body. Chronic diseases such as rheumatoid arthritis (RA) and asthma may encourage the development of aspergillosis under specific conditions. Thus, aspergillosis was investigated in patients with RA and asthma based on detection of galactomannan antigen. METHODS A case-control study was performed to involve 184 subjects, distributing in four groups: 55 patients with RA, 54 with asthma, 27 with both RA and asthma, and 48 healthy individuals. Serum was collected from involved subjects for detection of human Aspergillus galactomannan by ELISA. The optical density index (ODI) at cutoff <0.5 was used to determine the infection. RESULTS Aspergillosis was more frequently diagnosed in females with RA and both RA and asthma in opposite to the males. It also was found in most common in middle-aged subjects. There was no significant difference in measurement of GM between all patient groups and healthy individuals. CONCLUSION Aspergillosis can develop in either immunocompetent or immunocompromised individuals. Patients with either RA or RA and asthma are more susceptible to acquired aspergillosis than those with only one disease. Application of GM for diagnosis of aspergillosis may show a nonsignificant results when it uses alone and needs other investigation tests.
Collapse
Affiliation(s)
| | - Roaa Noori Ali
- Department of Microbiology, College of Medicine, University of Karbala, Karbala, Iraq
| |
Collapse
|
39
|
Transcriptomics Reveals the Putative Mycoparasitic Strategy of the Mushroom Entoloma abortivum on Species of the Mushroom Genus Armillaria. mSystems 2021; 6:e0054421. [PMID: 34636668 PMCID: PMC8510539 DOI: 10.1128/msystems.00544-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During mycoparasitism, a fungus—the host—is parasitized by another fungus—the mycoparasite. The genetic underpinnings of these relationships have been best characterized in ascomycete fungi. However, within basidiomycete fungi, there are rare instances of mushroom-forming species parasitizing the reproductive structures, or sporocarps, of other mushroom-forming species, which have been rarely investigated on a genetic level. One of the most enigmatic of these occurs between Entoloma abortivum and species of Armillaria, where hyphae of E. abortivum are hypothesized to disrupt the development of Armillaria sporocarps, resulting in the formation of carpophoroids. However, it remains unknown whether carpophoroids are the direct result of a mycoparasitic relationship. To address the nature of this unique interaction, we analyzed gene expression of field-collected Armillaria and E. abortivum sporocarps and carpophoroids. Transcripts in the carpophoroids are primarily from E. abortivum, supporting the hypothesis that this species is parasitizing Armillaria. Most notably, we identified differentially upregulated E. abortivum β-trefoil-type lectins in the carpophoroid, which we hypothesize bind to Armillaria cell wall galactomannoproteins, thereby mediating recognition between the mycoparasite and the host. The most differentially upregulated E. abortivum transcripts in the carpophoroid code for oxalate decarboxylases—enzymes that degrade oxalic acid. Oxalic acid is a virulence factor in many plant pathogens, including Armillaria species; however, E. abortivum has evolved a sophisticated strategy to overcome this defense mechanism. The number of gene models and genes that code for carbohydrate-active enzymes in the E. abortivum transcriptome was reduced compared to other closely related species, perhaps as a result of the specialized nature of this interaction. IMPORTANCE By studying fungi that parasitize other fungi, we can understand the basic biology of these unique interactions. Studies focused on the genetic mechanisms regulating mycoparasitism between host and parasite have thus far concentrated on a single fungal lineage within the Ascomycota. The work presented here expands our understanding of mycoparasitic relationships to the Basidiomycota and represents the first transcriptomic study to our knowledge that examines fungal-fungal relationships in their natural setting. The results presented here suggest that even distantly related mycoparasites utilize similar mechanisms to parasitize their host. Given that species of the mushroom-forming pathogen Armillaria cause plant root-rot diseases in many agroecosystems, an enhanced understanding of this interaction may contribute to better control of these diseases through biocontrol applications.
Collapse
|
40
|
Haran A, Temper V, Assous M, Bergel M, Chahanian N, Elinav H, Korem M. False-positive galactomannan antigen testing in pulmonary nocardiosis. Med Mycol 2021; 59:206-209. [PMID: 32944777 DOI: 10.1093/mmy/myaa084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Early diagnosis of invasive aspergillosis (IA) is facilitated by detection of galactomannan (GM) in serum and bronchoalveolar lavage fluid (BALF) using an enzyme-linked immunosorbent assay (ELISA). Although accurate, false positive results have been reported with these tests in numerous contexts. We report for the first time the occurrence of false positive GM ELISA due to nocardiosis, initially in a clinical sample of BALF from a patient with pulmonary nocardiosis, and subsequently corroborated by in vitro reactivity of 26% of tested isolates. Since patients at risk for IA are also at risk for nocardiosis, this finding has important clinical implications. LAY SUMMARY Early diagnosis of aspergillosis has been facilitated by the routine use of antibody-based detection of galactomannan in various bodily fluids. We report for the first time the occurrence of false positive results of this assay in the context of nocardiosis.
Collapse
Affiliation(s)
- Arnon Haran
- Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Violeta Temper
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marc Assous
- Clinical Microbiology Laboratory, Shaare Zedek Medical Center, affiliated with the
| | | | - Noga Chahanian
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hila Elinav
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maya Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
41
|
Tsang CC, Teng JLL, Lau SKP, Woo PCY. Rapid Genomic Diagnosis of Fungal Infections in the Age of Next-Generation Sequencing. J Fungi (Basel) 2021; 7:jof7080636. [PMID: 34436175 PMCID: PMC8398552 DOI: 10.3390/jof7080636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have recently developed beyond the research realm and started to mature into clinical applications. Here, we review the current use of NGS for laboratory diagnosis of fungal infections. Since the first reported case in 2014, >300 cases of fungal infections diagnosed by NGS were described. Pneumocystis jirovecii is the predominant fungus reported, constituting ~25% of the fungi detected. In ~12.5% of the cases, more than one fungus was detected by NGS. For P. jirovecii infections diagnosed by NGS, all 91 patients suffered from pneumonia and only 1 was HIV-positive. This is very different from the general epidemiology of P. jirovecii infections, of which HIV infection is the most important risk factor. The epidemiology of Talaromyces marneffei infection diagnosed by NGS is also different from its general epidemiology, in that only 3/11 patients were HIV-positive. The major advantage of using NGS for laboratory diagnosis is that it can pick up all pathogens, particularly when initial microbiological investigations are unfruitful. When the cost of NGS is further reduced, expertise more widely available and other obstacles overcome, NGS would be a useful tool for laboratory diagnosis of fungal infections, particularly for difficult-to-grow fungi and cases with low fungal loads.
Collapse
|
42
|
He X, Howard BA, Liu Y, Neumann AK, Li L, Menon N, Roach T, Kale SD, Samuels DC, Li H, Kite T, Kita H, Hu TY, Luo M, Jones CN, Okaa UJ, Squillace DL, Klein BS, Lawrence CB. LYSMD3: A mammalian pattern recognition receptor for chitin. Cell Rep 2021; 36:109392. [PMID: 34289364 PMCID: PMC8344708 DOI: 10.1016/j.celrep.2021.109392] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chitin, a major component of fungal cell walls, has been associated with allergic disorders such as asthma. However, it is unclear how mammals recognize chitin and the principal receptor(s) on epithelial cells that sense chitin remain to be determined. In this study, we show that LYSMD3 is expressed on the surface of human airway epithelial cells and demonstrate that LYSMD3 is able to bind chitin, as well as β-glucan, on the cell walls of fungi. Knockdown or knockout of LYSMD3 also sharply blunts the production of inflammatory cytokines by epithelial cells in response to chitin and fungal spores. Competitive inhibition of the LYSMD3 ectodomain by soluble LYSMD3 protein, multiple ligands, or antibody against LYSMD3 also blocks chitin signaling. Our study reveals LYSMD3 as a mammalian pattern recognition receptor (PRR) for chitin and establishes its role in epithelial cell inflammatory responses to chitin and fungi.
Collapse
Affiliation(s)
- Xin He
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Brad A Howard
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Aaron K Neumann
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nidhi Menon
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tiffany Roach
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shiv D Kale
- Nutritional Immunology and Molecular Medicine Institute, Blacksburg, VA 24060, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Hongyan Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Trenton Kite
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Tony Y Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mengyao Luo
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caroline N Jones
- Department of Bioengineering, University of Texas, Dallas, TX 75080, USA
| | - Uju Joy Okaa
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diane L Squillace
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Bruce S Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
43
|
Foppiano Palacios C, Spichler Moffarah A. Diagnosis of Pneumonia Due to Invasive Molds. Diagnostics (Basel) 2021; 11:diagnostics11071226. [PMID: 34359309 PMCID: PMC8304515 DOI: 10.3390/diagnostics11071226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Pneumonia is the most common presentation of invasive mold infections (IMIs), and is pathogenetically characterized as angioinvasion by hyphae, resulting in tissue infarction and necrosis. Aspergillus species are the typical etiologic cause of mold pneumonia, with A. fumigatus in most cases, followed by the Mucorales species. Typical populations at risk include hematologic cancer patients on chemotherapy, bone marrow and solid organ transplant patients, and patients on immunosuppressive medications. Invasive lung disease due to molds is challenging to definitively diagnose based on clinical features and imaging findings alone, as these methods are nonspecific. Etiologic laboratory testing is limited to insensitive culture techniques, non-specific and not readily available PCR, and tissue biopsies, which are often difficult to obtain and impact on the clinical fragility of patients. Microbiologic/mycologic analysis has limited sensitivity and may not be sufficiently timely to be actionable. Due to the inadequacy of current diagnostics, clinicians should consider a combination of diagnostic modalities to prevent morbidity in patients with mold pneumonia. Diagnosis of IMIs requires improvement, and the availability of noninvasive methods such as fungal biomarkers, microbial cell-free DNA sequencing, and metabolomics-breath testing could represent a new era of timely diagnosis and early treatment of mold pneumonia.
Collapse
|
44
|
Abronina PI, Zinin AI, Malysheva NN, Karpenko MY, Kolotyrkina NG, Kononov LO. The Influence of Anomeric Configuration and Aglycone Structure on the Outcome of Acid‐Promoted Ring Contraction in 2,3‐Di‐
O
‐Silylated S‐Galactopyranosides. ChemistrySelect 2021. [DOI: 10.1002/slct.202101441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Polina I. Abronina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander I. Zinin
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Nelly N. Malysheva
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Maxim Y. Karpenko
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Natalya G. Kolotyrkina
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Leonid O. Kononov
- N.K. Kochetkov Laboratory of Carbohydrate Chemistry N.D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
45
|
Mercier T, Castagnola E, Marr KA, Wheat LJ, Verweij PE, Maertens JA. Defining Galactomannan Positivity in the Updated EORTC/MSGERC Consensus Definitions of Invasive Fungal Diseases. Clin Infect Dis 2021; 72:S89-S94. [PMID: 33709125 DOI: 10.1093/cid/ciaa1786] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consensus definitions of invasive fungal diseases from the EORTC/MSGERC were recently revised and updated. They now include consensus cutoff values for the galactomannan test that support the diagnosis of probable invasive aspergillosis. In this supplement article, we provide a rationale for these proposed thresholds based on the test's characteristics and performance in different patient populations and in different specimen types.
Collapse
Affiliation(s)
- Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Elio Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan A Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
46
|
de Oliveira EB, Xisto MIDDS, Rollin-Pinheiro R, Rochetti VP, Barreto-Bergter E. Peptidorhamnomannans From Scedosporium and Lomentospora Species Display Microbicidal Activity Against Bacteria Commonly Present in Cystic Fibrosis Patients. Front Cell Infect Microbiol 2020; 10:598823. [PMID: 33251161 PMCID: PMC7673444 DOI: 10.3389/fcimb.2020.598823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Scedosporium and Lomentospora species are filamentous fungi that cause a wide range of infections in humans. They are usually found in the lungs of cystic fibrosis (CF) patients and are the second most frequent fungal genus after Aspergillus species. Several studies have been recently performed in order to understand how fungi and bacteria interact in CF lungs, since both can be isolated simultaneously from patients. In this context, many bacterial molecules were shown to inhibit fungal growth, but little is known about how fungi could interfere in bacterial development in CF lungs. Scedosporium and Lomentospora species present peptidorhamnomannans (PRMs) in their cell wall that play crucial roles in fungal adhesion and interaction with host epithelial cells and the immune system. The present study aimed to analyze whether PRMs extracted from Lomentospora prolificans, Scedosporium apiospermum, Scedosporium boydii, and Scedosporium aurantiacum block bacterial growth and biofilm formation in vitro. PRM from L. prolificans and S. boydii displayed the best bactericidal effect against methicillin resistant Staphylococcus aureus (MRSA), Burkholderia cepacia, and Escherichia coli, but not Pseudomonas aeruginosa, all of which are the most frequently found bacteria in CF lungs. In addition, biofilm formation was inhibited in all bacteria tested using PRMs at minimal inhibitory concentration (MIC). These results suggest that PRMs from the Scedosporium and Lomentospora surface seem to play an important role in Scedosporium colonization in CF patients, helping to clarify how these pathogens interact to each other in CF lungs.
Collapse
Affiliation(s)
- Evely Bertulino de Oliveira
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker. J Fungi (Basel) 2020; 6:jof6040283. [PMID: 33198419 PMCID: PMC7712326 DOI: 10.3390/jof6040283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The galactomannan (GM) that is produced by the human fungal pathogen Aspergillus fumigatus is an emblematic biomarker in medical mycology. The GM is composed of two monosaccharides: mannose and galactofuranose. The furanic configuration of galactose residues, absent in mammals, is responsible for the antigenicity of the GM and has favoured the development of ELISA tests to diagnose aspergillosis in immunocompromised patients. The GM that is produced by A. fumigatus is a unique fungal polysaccharide containing a tetramannoside repeat unit and having three different forms: (i) membrane bound through a glycosylphosphatidylinositol (GPI)-anchor, (ii) covalently linked to β-1,3-glucans in the cell wall, or (iii) released in the culture medium as a free polymer. Recent studies have revealed the crucial role of the GM during vegetative and polarized fungal growth. This review highlights these recent data on its biosynthetic pathway and its biological functions during the saprophytic and pathogenic life of this opportunistic human fungal pathogen.
Collapse
|
48
|
Hira D, Onoue T, Oka T. Structural basis for the core-mannan biosynthesis of cell wall fungal-type galactomannan in Aspergillus fumigatus. J Biol Chem 2020; 295:15407-15417. [PMID: 32873705 DOI: 10.1074/jbc.ra120.013742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/17/2020] [Indexed: 11/06/2022] Open
Abstract
Fungal cell walls and their biosynthetic enzymes are potential targets for novel antifungal agents. Recently, two mannosyltransferases, namely core-mannan synthases A (CmsA/Ktr4) and B (CmsB/Ktr7), were found to play roles in the core-mannan biosynthesis of fungal-type galactomannan. CmsA/Ktr4 is an α-(1→2)-mannosyltransferase responsible for α-(1→2)-mannan biosynthesis in fungal-type galactomannan, which covers the cell surface of Aspergillus fumigatus Strains with disrupted cmsA/ktr4 have been shown to exhibit strongly suppressed hyphal elongation and conidiation alongside reduced virulence in a mouse model of invasive aspergillosis, indicating that CmsA/Ktr4 is a potential novel antifungal candidate. In this study we present the 3D structures of the soluble catalytic domain of CmsA/Ktr4, as determined by X-ray crystallography at a resolution of 1.95 Å, as well as the enzyme and Mn2+/GDP complex to 1.90 Å resolution. The CmsA/Ktr4 protein not only contains a highly conserved binding pocket for the donor substrate, GDP-mannose, but also has a unique broad cleft structure formed by its N- and C-terminal regions and is expected to recognize the acceptor substrate, a mannan chain. Based on these crystal structures, we also present a 3D structural model of the enzyme-substrate complex generated using docking and molecular dynamics simulations with α-Man-(1→6)-α-Man-(1→2)-α-Man-OMe as the model structure for the acceptor substrate. This predicted enzyme-substrate complex structure is also supported by findings from single amino acid substitution CmsA/Ktr4 mutants expressed in ΔcmsA/ktr4 A. fumigatus cells. Taken together, these results provide basic information for developing specific α-mannan biosynthesis inhibitors for use as pharmaceuticals and/or pesticides.
Collapse
Affiliation(s)
- Daisuke Hira
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.
| | - Takuya Onoue
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Kumamoto, Japan.
| |
Collapse
|
49
|
Li X, Zheng Y, Wu F, Mo D, Liang G, Yan R, Khader JA, Wu N, Cao C. Evaluation of quantitative real-time PCR and Platelia galactomannan assays for the diagnosis of disseminated Talaromyces marneffei infection. Med Mycol 2020; 58:181-186. [PMID: 31131856 DOI: 10.1093/mmy/myz052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 11/12/2022] Open
Abstract
Talaromyces (Penicillium) marneffei is an emerging pathogen that causes significant morbidity and mortality in immunocompromised patients in endemic regions such as southeast Asia. The diagnosis of disseminated T. marneffei infection remains challenging in clinical practice. In the study, a well-validated real-time quantitative polymerase chain reaction (qPCR) target region of ITS1-5.8S-ITS2 and a Platelia galactomannan (GM) assay were compared for their diagnostic performance using serum samples from patients with or without human immunodeficiency virus (HIV). The results showed that this novel qPCR method is highly sensitive and specific for T. marneffei DNA detection in serum samples, and the limit of detection and species-specificity of qPCR were five copies of DNA and 100%, respectively. For detection in serum samples from 36 talaromycosis patients, the sensitivity of qPCR was 86.11% (31/36), including 20/20 (100%) patients with fungemia and 11/16 (68.75%) patients without fungemia. For the GM assay, the sensitivity was 80.56% (29/36) when the GM optical density cutoff index was ≥0.5, including 19/20 (95%) patients with fungemia and 10/16 (62.5%) patients without fungemia. These results indicate that the novel qPCR and GM assays can be used as a valuable tool in the diagnosis of T. marneffei infection. Serum samples are convenient hematological specimens for T. marneffei DNA quantification. Combining the GM assay and qPCR is more scientific and appropriate for diagnosing T. marneffei infection in endemic areas.
Collapse
Affiliation(s)
- Xinlei Li
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,Department of Mycology, Yulin Hospital of Dermatology, Yulin, P. R. China
| | - Yanqing Zheng
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,HIV/AIDS Clinical Treatment Center of Guangxi, The Fourth People's Hospital of Nanning, Nanning, P. R. China
| | - Fengyao Wu
- HIV/AIDS Clinical Treatment Center of Guangxi, The Fourth People's Hospital of Nanning, Nanning, P. R. China
| | - Dongdong Mo
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gang Liang
- School of Preclinical Medicine of Guangxi Medical University, Nanning, P. R. China
| | - Rufan Yan
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Jazeer Abdul Khader
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China.,Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Nianning Wu
- HIV/AIDS Clinical Treatment Center of Guangxi, The Fourth People's Hospital of Nanning, Nanning, P. R. China
| | - Cunwei Cao
- Department of Dermatology and Venereology, the First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
50
|
Krylov VB, Petruk MI, Karimova MP, Mukhametova LI, Matveev AL, Tikunova NV, Eremin SA, Nifantiev NE. Potential of fluorescence polarization immunoassay for the detection of Aspergillus fumigatus galactomannan. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|