1
|
Park HY, Kim CE, Lee SM, Ahn JM, Yoon EH, Yoo M, Kim JM, Back J, Park DH, Jang WH, Kwon B, Seo SK. Priming Mesenchymal Stem/Stromal Cells with a Combination of a Low Dose of IFN-γ and Bortezomib Results in Potent Suppression of Pathogenic Th17 Immunity Through the IDO1-AHR Axis. Stem Cells 2023; 41:64-76. [PMID: 36242771 DOI: 10.1093/stmcls/sxac075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Preconditioning of mesenchymal stem/stromal cells (MSCs) with the inflammatory cytokine IFN-γ enhances not only their immunosuppressive activity but also their expression of HLA and proinflammatory genes. We hypothesized that prevention of the upregulation of inflammatory cytokines and HLA molecules in IFN-γ-primed MSCs would render these cells more immunosuppressive and less immunogenic. In this study, we discovered the following findings supporting this hypothesis: (1) activated human T cells induced the expression of IDO1 in MSCs via IFN-γ secretion and those MSCs in turn inhibited T-cell proliferation in an AHR-dependent fashion; (2) there was no difference in the expression of IDO1 and HLA-DR in MSCs after priming with a low dose (25 IU/mL) versus a high dose (100 IU/mL) of IFN-γ; (3) the transient addition of bortezomib, a proteasome inhibitor, to culture MSCs after IFN-γ priming decreased the expression of HLA-DR, inflammatory cytokine genes and Vcam1 while increasing the expression of IDO1 and the production of L-kynurenine; finally, MSCs primed with a combination of a low dose of IFN-γ and bortezomib were more effective in inhibiting Th17-mediated idiopathic pneumonia syndrome (IPS) and chronic colitis than unprimed MSCs. Our results suggest that bortezomib significantly eliminates the unfavorable effects of IFN-γ priming of MSCs (increased expression of MHC molecules and inflammatory cytokines and cell aggregation genes) and simultaneously increases their immunosuppressive activity by upregulating IDO1. Taken together, our newly established MSC priming method may contribute to MSC-based cell therapy for inflammatory diseases.
Collapse
Affiliation(s)
- Ha Young Park
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Chae Eun Kim
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Soung-Min Lee
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Joo Mi Ahn
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Eun Hye Yoon
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Minjoo Yoo
- Cell Therapy Research Center, GC Cell, Gyeonggi-do, Republic of Korea
| | - Jung-Mi Kim
- Cell Therapy Research Center, GC Cell, Gyeonggi-do, Republic of Korea
| | - Jiyeon Back
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Dae Hwi Park
- Cell Therapy Research Center, GC Cell, Gyeonggi-do, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, College of Medicine Inje University, Busan, Republic of Korea
| | - Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| |
Collapse
|
2
|
Nordgreen J, Edwards SA, Boyle LA, Bolhuis JE, Veit C, Sayyari A, Marin DE, Dimitrov I, Janczak AM, Valros A. A Proposed Role for Pro-Inflammatory Cytokines in Damaging Behavior in Pigs. Front Vet Sci 2020; 7:646. [PMID: 33134341 PMCID: PMC7562715 DOI: 10.3389/fvets.2020.00646] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Sickness can change our mood for the worse, leaving us sad, lethargic, grumpy and less socially inclined. This mood change is part of a set of behavioral symptoms called sickness behavior and has features in common with core symptoms of depression. Therefore, the physiological changes induced by immune activation, for example following infection, are in the spotlight for explaining mechanisms behind mental health challenges such as depression. While humans may take a day off and isolate themselves until they feel better, farm animals housed in groups have only limited possibilities for social withdrawal. We suggest that immune activation could be a major factor influencing social interactions in pigs, with outbreaks of damaging behavior such as tail biting as a possible result. The hypothesis presented here is that the effects of several known risk factors for tail biting are mediated by pro-inflammatory cytokines, proteins produced by the immune system, and their effect on neurotransmitter systems. We describe the background for and implications of this hypothesis.
Collapse
Affiliation(s)
- Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Sandra A. Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Ann Boyle
- Teagasc Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Christina Veit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Amin Sayyari
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Daniela E. Marin
- National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | | | - Andrew M. Janczak
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Lactobacillus fermentum PS150 showed psychotropic properties by altering serotonergic pathway during stress. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
4
|
Nitz K, Lacy M, Atzler D. Amino Acids and Their Metabolism in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:319-330. [DOI: 10.1161/atvbaha.118.311572] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a leading cause of death worldwide, cardiovascular disease is a global health concern. The development and progression of atherosclerosis, which ultimately gives rise to cardiovascular disease, has been causally linked to hypercholesterolemia. Mechanistically, the interplay between lipids and the immune system during plaque progression significantly contributes to the chronic inflammation seen in the arterial wall during atherosclerosis. Localized inflammation and increased cell-to-cell interactions may influence polarization and proliferation of immune cells via changes in amino acid metabolism. Specifically, the amino acids
l
-arginine (Arg),
l
-homoarginine (hArg) and
l
-tryptophan (Trp) have been widely studied in the context of cardiovascular disease, and their metabolism has been established as key regulators of vascular homeostasis, as well as immune cell function. Cyclic effects between endothelial cells, innate, and adaptive immune cells exist during Arg and hArg, as well as Trp metabolism, that may have distinct effects on the development of atherosclerosis. In this review, we describe the current knowledge surrounding the metabolism, biological function, and clinical perspective of Arg, hArg, and Trp in the context of atherosclerosis.
Collapse
Affiliation(s)
- Katrin Nitz
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Michael Lacy
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Dorothee Atzler
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology (D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| |
Collapse
|
5
|
Melichar B, Spisarová M, Bartoušková M, Krčmová LK, Javorská L, Študentová H. Neopterin as a biomarker of immune response in cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:280. [PMID: 28758106 DOI: 10.21037/atm.2017.06.29] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the advent of immunotherapy the topic of biomarkers of immune response is of high interest. Along with the expression of programmed death ligand 1 (PD-L1) or tumor infiltrating lymphocytes (TIL), biomarkers of macrophage activation could be of interest. Neopterin is a biomarker of immune activation increased in different disorders associated with immune activation, including cancer. Neopterin synthesis is induced by interferon-γ that also induces indoleamine 2,3-dioxygenase (IDO), an enzyme catalyzing catabolism of tryptophan to kynurenine. Increased urinary or serum concentrations of neopterin have been associated with poor prognosis across a spectrum of malignant disorders of different primary location. Neopterin concentration in peripheral blood as well as in the tumor microenvironment correlates with phenotypic and functional changes of lymphocytes, indicating immune dysfunction. Increased neopterin concentrations are also accompanied by increased rate of conversion of tryptophan to kynurenine. Increasing neopterin concentrations also accompany side effects of anticancer treatment and could predict subsequent complications. Although almost four decades have elapsed since the discovery of increased neopterin concentrations in cancer patients, the full potential of neopterin as a biomarker in this setting has not been so far realized.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology, Palacký University Medical School and Teaching Hospital, Olomouc, Czech Republic.,Department of Oncology and Radiotherapy, Charles University Medical School & Teaching Hospital, Hradec Králové, Czech Republic.,Fourth Department of Medicine, Charles University Medical School & Teaching Hospital, Hradec Králové, Czech Republic
| | - Martina Spisarová
- Department of Oncology, Palacký University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - Marie Bartoušková
- Department of Oncology, Palacký University Medical School and Teaching Hospital, Olomouc, Czech Republic
| | - Lenka Kujovská Krčmová
- Third Department of Medicine (Gerontology and Metabolic Care), Charles University Medical School & Teaching Hospital, Hradec Králové, Czech Republic.,Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Third Department of Medicine (Gerontology and Metabolic Care), Charles University Medical School & Teaching Hospital, Hradec Králové, Czech Republic.,Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Hana Študentová
- Department of Oncology, Palacký University Medical School and Teaching Hospital, Olomouc, Czech Republic
| |
Collapse
|
6
|
Perhar G, Kelly NE, Ni FJ, Simpson MJ, Simpson AJ, Arhonditsis GB. Using Daphnia physiology to drive food web dynamics: A theoretical revisit of Lotka-Volterra models. ECOL INFORM 2016. [DOI: 10.1016/j.ecoinf.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Der p 1 suppresses indoleamine 2, 3-dioxygenase in dendritic cells from house dust mite-sensitive patients with asthma. J Allergy Clin Immunol 2008; 123:239-48. [PMID: 19058839 DOI: 10.1016/j.jaci.2008.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND Indoleamine 2, 3-dioxygenase (IDO), a tryptophan-degrading enzyme in dendritic cells (DCs), mediates an immunosuppressive effect on activated T lymphocytes. However, little is known about the effect of Der p 1 on IDO in human DCs. OBJECTIVE The aim was to investigate the effect of Der p 1 on the expression and activity of IDO in monocyte-derived DCs from house dust mite (HDM)-sensitive patients with asthma. METHODS Using real-time RT-PCR and HPLC, the expression and activity of IDO were assessed in TNF-alpha-induced mature DCs from HDM-sensitive and nonatopic patients with asthma in response to Der p 1 exposure ex vivo. We also monitored the alteration of IDO activity in Der p 1-pulsed DCs after the coincubation with autologous T cells. RESULTS With a reliance on its protease activity, Der p 1 suppressed functional IDO in DCs from HDM-sensitive patients with asthma but enhanced IDO activity in DCs from nonatopic patients with asthma. This suppression was maintained by the reciprocally induced IL-4 from the coculturing autologous HDM-sensitive T cells. Conversely, the upregulation of IDO activity in Der p 1-pulsed DCs was maintained by IFN-gamma released from autologous nonatopic T cells and the regulatory T-cell subset. Der p 1 pulsation to sensitive DCs failed to raise regulatory T cells but raised progenitor fractions from cloned HDM-sensitive CD4(+) cells through direct contact and soluble mediators. CONCLUSION House dust mite-sensitive DCs exposed to Der p 1 downregulated IDO activity and tipped the T(H)1/T(H)2 cytokine balance toward IL-4, resulting in sustainable IDO suppression.
Collapse
|
8
|
Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood 2007; 111:3257-65. [PMID: 18077788 DOI: 10.1182/blood-2007-06-096081] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Graft-versus-host disease (GVHD) is initiated after activation of donor T cells by host antigen-presenting cells (APCs). The immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO) is expressed by APCs and parenchymal cells and is further inducible by inflammation. We investigated whether lethal conditioning and GVHD induce IDO and if IDO prevents tissue injury by suppressing immune responses at the induction site. We determined that IDO is a critical regulator of GVHD, most strikingly in the colon, where epithelial cells dramatically up-regulated IDO expression during GVHD. IDO(-/-) mice died more quickly from GVHD, displaying increased colonic inflammation and T-cell infiltration. GVHD protection was not mediated by control of T-cell proliferation, apoptosis, or effector mechanisms in lymphoid organs, nor did it require donor T regulatory cells. Instead, T cells in IDO(-/-) colons underwent increased proliferation and decreased apoptosis compared with their wild-type counterparts. This evidence suggests that IDO can act at the site of expression to decrease T-cell proliferation and survival, diminishing colonic inflammation and reducing disease severity. These studies are the first to identify a function for IDO in GVHD lethality and indicate that modulation of the IDO pathway may be an effective strategy for treatment of this disease.
Collapse
|
9
|
Abstract
Cancer patients mount adaptive immune responses against their tumors. However, tumor develops many mechanisms to evade effective immunosurveillance. T-cell death caused by tumor plays a critical role in establishing tumor immunotolerance. Chronic stimulation of T cells by tumors leads to activation-induced cell death. Abortive stimulation of T cells by tolerogenic antigen-presenting cells loaded with tumor antigens leads to autonomous death of tumor-specific T cells. Therapeutic approaches that prevent T-cell death in the tumor microenvironment and tumor draining lymph nodes, therefore, should boost adaptive immune responses against cancer.
Collapse
Affiliation(s)
- B Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
10
|
Jung ID, Lee CM, Jeong YI, Lee JS, Park WS, Han J, Park YM. Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett 2007; 581:1449-56. [PMID: 17367785 DOI: 10.1016/j.febslet.2007.02.073] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/17/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a rate-limiting enzyme in the L-tryptophan-kynurenine pathway, which converts an essential amino acid, L-tryptophan, to N-formylkynurenine. The expression of IDO increases when inflammation is induced by wounding, infection or tumor growth. Although recent studies have suggested that IDO expression is up-regulated by IFN-gamma in various cell types and that the induction of IDO can also be mediated through an IFN-gamma-independent mechanism, these mechanisms still remain unknown. In this study, we investigated whether lipopolysaccharide (LPS) induces the expression of IDO through an IFN-gamma-mediated signaling pathway or not. IFN-gamma-induced expression of IDO expression was inhibited only by JAK inhibitor I. However, LPS-induced expression of IDO was inhibited by LY294002 and SP600125 but not by JAK inhibitor I, SB203580, or U0126. These findings clearly indicate that LPS can induce the IDO expression via an IFN-gamma-independent mechanism and PI3 kinase and JNK in the LPS-induced pathway leading to IDO expression.
Collapse
Affiliation(s)
- In Duk Jung
- Department of Microbiology and Immunology and National Research Laboratory of Dendritic, Cell Differentiation and Regulation, Medical Research Institute, Pusan National University, College of Medicine, Ami-dong 1-10, Seo-gu, Busan 602-739, South Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
López AS, Alegre E, Díaz A, Mugueta C, González A. Bimodal effect of nitric oxide in the enzymatic activity of indoleamine 2,3-dioxygenase in human monocytic cells. Immunol Lett 2006; 106:163-71. [PMID: 16797727 DOI: 10.1016/j.imlet.2006.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 05/05/2006] [Accepted: 05/14/2006] [Indexed: 02/08/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an enzyme that depletes l-tryptophan, which provokes a decreased T cell response. This enzyme is expressed in human placenta, and can be also induced in many cell types such as monocytes, where endothelial (eNOS) and inducible (iNOS) nitric oxide synthases are also expressed. Previous studies have shown that nitric oxide (NO) inhibits IDO activity, which could cause a suppression of the biological function of IDO when both enzymes are coexpressed. As NO can exert different effects depending on several factors such as its concentration, we studied the effect of low concentrations of NO in the IDO activity in the U-937 and THP-1 monocytic cell lines. Results demonstrated that NO caused a bimodal effect in IDO function in IFN-gamma-stimulated monocytic cells: while high micromolar concentrations of the NO donors SIN-1 and DETA-NO decreased IDO activity, low micromolar concentrations of these NO donors increased IDO activity. Related to this, the NOS inhibitors L-NMMA and aminoguanidine, and the calmodulin antagonist W7 also decreased IDO activity. The effect of NO in IDO activity was not through cGMP production. Immunoprecipitation analysis showed a nitration of the IDO protein in unstimulated and stimulated U-937 and THP-1 cells. However, in monocyte-derived macrophages, with a higher NO production, aminoguanidine increased IDO activity, but the NOS substrate arginine decreased IDO activity. Considering the role of IDO in suppression, these results suggest a function in tolerance of the NOS enzymes depending on the NO production.
Collapse
Affiliation(s)
- Ana S López
- Department of Clinical Biochemistry, Clínica Universitaria de Navarra, Av. Pío XII 36, 31008 Pamplona, Spain
| | | | | | | | | |
Collapse
|
12
|
Uenoyama S, Kobayashi T, Takeuchi Y, Yamashita K, Koide Y, Kazui T. Improvement of intestinal motility using S-methylisothiourea in postoperative ileus. Am J Surg 2004; 187:93-7. [PMID: 14706594 DOI: 10.1016/j.amjsurg.2002.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The inflammatory mediator nitric oxide (NO) plays an important role in postoperative gastrointestinal motility. METHODS Using S-methylisothiourea sulfate (SMT), a selective inducible nitric oxide synthase inhibitor, we studied the physiological role of the endogenous NO in the modulation of intestinal motility. The study was performed in vivo in a canine postoperative model. Ten mongrel dogs were treated with a continuous intravenous infusion of SMT after a surgical intestinal manipulation. Small intestine transit time was fluoroscopically measured using barium sulfate as it passed through a gastrostomy tube on postoperative days (POD) 1, 2, and 3. RESULTS Average transit times on POD 1 in the 4 mg/kg/h and 2 mg/kg/h SMT groups significantly decreased compared with that of the saline group. However, the transit times on POD 2 and 3 were not significantly different among the three groups. CONCLUSIONS S-methylisothiourea sulfate improves small intestine motility at an early postoperative stage.
Collapse
Affiliation(s)
- Shouiti Uenoyama
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Melichar B, Hu W, Patenia R, Melicharová K, Gallardo ST, Freedman R. rIFN-gamma-mediated growth suppression of platinum-sensitive and -resistant ovarian tumor cell lines not dependent upon arginase inhibition. J Transl Med 2003; 1:5. [PMID: 14572312 PMCID: PMC222988 DOI: 10.1186/1479-5876-1-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 09/19/2003] [Indexed: 11/15/2022] Open
Abstract
Background Arginine metabolism in tumor cell lines can be influenced by various cytokines, including recombinant human interferon-γ (rIFN-γ), a cytokine that shows promising clinical activity in epithelial ovarian cancer (EOC). Methods We examined EOC cell lines for the expression of arginase in an enzymatic assay and for transcripts of arginase I and II, inducible nitric oxide synthase (iNOS), and indoleamine 2,3-dioxygenase (IDO) by reverse transcription-polymerase chain reaction. The effects of rIFN-γ on arginase activity and on tumor cell growth inhibition were determined by measuring [3H]thymidine uptake. Results Elevated arginase activity was detected in 5 of 8 tumor cell lines, and analysis at the transcriptional level showed that arginase II was involved but arginase I was not. rIFN-γ reduced arginase activity in 3 EOC cell lines but increased activity in the 2008 cell line and its platinum-resistant subline, 2008.C13. iNOS transcripts were not detected in rIFN-γ-treated or untreated cell lines. In contrast, IDO activity was induced or increased by rIFN-γ. Suppression of arginase activity by rIFN-γ in certain cell lines suggested that such inhibition might contribute to its antiproliferative effects. However, supplementation of the medium with polyamine pathway products did not interfere with the growth-inhibitory effects of rIFN-γ EOC cells. Conclusions Increased arginase activity, specifically identified with arginase II, is present in most of the tested EOC cell lines. rIFN-γ inhibits or stimulates arginase activity in certain EOC cell lines, though the decrease in arginase activity does not appear to be associated with the in vitro antiproliferative activity of rIFN-γ. Since cells within the stroma of EOC tissues could also contribute to arginine metabolism following treatment with rIFN-γ or rIFN-γ-inducers, it would be helpful to examine these effects in vivo.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology and Radiotherapy, Charles University Medical School, Hradec Kralove, Czech Republic
| | - Wei Hu
- Department of Gynecologic Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Rebecca Patenia
- Department of Gynecologic Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Karolina Melicharová
- Department of Gerontology and Metabolic Care, Charles University Medical School, Hradec Kralove, Czech Republic
| | - Stacie T Gallardo
- Department of Gynecologic Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Ralph Freedman
- Department of Gynecologic Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, U.S.A
- Program in Immunology, The University of Texas Graduate School of Biomedical Sciences at Houston, U.S.A
| |
Collapse
|
14
|
Tozawa K, Hanai H, Sugimoto K, Baba S, Sugimura H, Aoshi T, Uchijima M, Nagata T, Koide Y. Evidence for the critical role of interleukin-12 but not interferon-gamma in the pathogenesis of experimental colitis in mice. J Gastroenterol Hepatol 2003; 18:578-587. [PMID: 12702051 DOI: 10.1046/j.1440-1746.2003.03024.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The imbalance between helper T (Th)1/Th2 cytokines has been observed in human inflammatory bowel disease and various animal models. Because interleukin (IL)-12 and interferon-gamma (IFN-gamma) productions are known to be a hallmark of Th1-dominant intestinal inflammation such as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, we strictly addressed the roles of IFN-gamma and IL-12 in the development of colitis, employing knockout mice with IFN-gamma receptor (IFN-gammaR) or IL-12 p40 gene disruptions and mice administered with neutralizing monoclonal antibodies (mAbs) against IFN-gamma or IL-12. METHODS To induce colitis, 2.5 mg of the hapten reagent TNBS in 50% ethanol was administered into the colon. Two milligrams of rat anti-mouse IFN-gamma mAb, rat anti-mouse IL-12 mAb, or control rat IgG were administered intraperitoneally into mice before TNBS administration. Change in the body weight of mice was evaluated and the degree of inflammation of the colon of these mice was investigated histologically. Immunohistochemical and immunofluorescence analyses were performed to detect CD4+ T cells, macrophages and IL-12 in TNBS-induced colitis lesions. The profile of Th1 and Th2 cytokine expressions in colonic tissues was examined by cytokine-specific semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Single rectal administration of TNBS developed significant colitis in IFN-R-/- mice and anti-IFN-gamma mAb-pretreated mice, as well as control wild-type mice. Conversely, administration of TNBS produced no signs of colitis in IL-12 p40-/- and anti-IL-12 mAb-pretreated mice. CONCLUSIONS IL-12, but not IFN-gamma, plays a pivotal role in the pathogenesis of TNBS-induced colitis.
Collapse
Affiliation(s)
- Kotaro Tozawa
- First Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pantoja LG, Miller RD, Ramirez JA, Molestina RE, Summersgill JT. Characterization of Chlamydia pneumoniae persistence in HEp-2 cells treated with gamma interferon. Infect Immun 2001; 69:7927-32. [PMID: 11705979 PMCID: PMC98893 DOI: 10.1128/iai.69.12.7927-7932.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Chlamydia pneumoniae has been implicated as a potential risk factor for atherosclerosis. This study demonstrated the effects of gamma interferon (IFN-gamma)-mediated indoleamine 2,3-dioxygenase activity on C. pneumoniae persistence in HEp-2 cells, inclusion morphology, and ultrastructure. C. pneumoniae replication showed a dose-dependent decrease when treated with increasing concentrations of IFN-gamma and a phenotypic switch resulting in a decrease in typical inclusions with an increase in smaller, less-dense atypical inclusions. Ultrastructural analysis of IFN-gamma-treated C. pneumoniae revealed atypical inclusions containing large reticulatate-like aberrant bodies with no evidence of redifferentiation into elementary bodies.
Collapse
Affiliation(s)
- L G Pantoja
- Division of Infectious Diseases, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
16
|
El-Etr SH, Yan L, Cirillo JD. Fish monocytes as a model for mycobacterial host-pathogen interactions. Infect Immun 2001; 69:7310-7. [PMID: 11705902 PMCID: PMC98816 DOI: 10.1128/iai.69.12.7310-7317.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 08/24/2001] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium marinum, a relatively rapid-growing fish and human pathogen, has become an important model for the investigation of mycobacterial pathogenesis. M. marinum is closely related to the Mycobacterium tuberculosis complex and causes a disease in fish and amphibians with pathology similar to tuberculosis. We have developed an in vitro model for the study of M. marinum virulence mechanisms using the carp monocytic cell line CLC (carp leukocyte culture). We found that fish monocytes can differentiate between pathogenic and nonpathogenic mycobacterial species. Interestingly, M. marinum enters fish monocytes at a 40- to 60-fold-higher rate than Mycobacterium smegmatis. In addition, M. marinum survives and replicates in fish monocytes while M. smegmatis is killed. We also found that M. marinum inhibits lysosomal fusion in fish monocytes, indicating that these cells may be used to dissect the mechanisms of intracellular trafficking in mycobacteria. We conclude from these observations that monocytic cells from fish, a natural host for M. marinum, provide an extremely valuable model for the identification and characterization of mycobacterial virulence determinants in the laboratory.
Collapse
Affiliation(s)
- S H El-Etr
- Department of Veterinary and Biomedical Sciences, University of Nebraska at Lincoln, 68583-0905, USA
| | | | | |
Collapse
|
17
|
Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 2000; 4:199-220. [PMID: 10731095 DOI: 10.1179/135100099101534927] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) oxidizes the pyrrole moiety of L-tryptophan (Trp) and other indoleamines and represents the initial and rate-limiting enzyme of the kynurenine (Kyn) pathway. IDO is a unique enzyme in that it can utilize superoxide anion radical (O2*- ) as both a substrate and a co-factor. The latter role is due to the ability of O2*- to reduce inactive ferric-IDO to the active ferrous form. Nitrogen monoxide (*NO) and H2O2 inhibit the dioxygenase and various inter-relationships between the nitric oxide synthase- and IDO-initiated amino acid degradative pathways exist. Induction of IDO and metabolism of Trp along the Kyn pathway is implicated in a variety of physiological and pathophysiological processes, including anti-microbial and anti-tumor defense, neuropathology, immunoregulation and antioxidant activity. Antioxidant activity may arise from O2*- scavenging by IDO and formation of the potent radical scavengers and Kyn pathway metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine. Under certain conditions, these aminophenols and other Kyn pathway metabolites may exhibit pro-oxidant activities. This article reviews findings indicating that redox reactions are involved in the regulation of IDO and Trp metabolism along the Kyn pathway and also participate in the biological activities exhibited by Kyn pathway metabolites.
Collapse
Affiliation(s)
- S R Thomas
- The Biochemistry Group, The Heart Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|
18
|
Guillemin GJ, Kerr SJ, Smythe GA, Armati PJ, Brew BJ. Kynurenine pathway metabolism in human astrocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 467:125-31. [PMID: 10721049 DOI: 10.1007/978-1-4615-4709-9_18] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The involvement of astrocytes in Kynurenine pathway (KP) metabolism is still poorly understood. In the present study, we investigated the ability of human fetal astrocytes in vitro to produce quinolinic and picolinic acids using mass spectrometry. In parallel, we estimated the level of expression of five major KP enzymes using RT-PCR. The results demonstrated that astrocytes express most KP enzymes, except for kynurenine-hydroxylase. This in vitro study provides novel informations regarding the ability of human fetal astrocytes to degrade L-tryptophan along the KP.
Collapse
Affiliation(s)
- G J Guillemin
- Centre for Immunology, St Vincent's Hospital, Sydney, Australia.
| | | | | | | | | |
Collapse
|
19
|
Currier AR, Ziegler MH, Riley MM, Babcock TA, Telbis VP, Carlin JM. Tumor necrosis factor-alpha and lipopolysaccharide enhance interferon-induced antichlamydial indoleamine dioxygenase activity independently. J Interferon Cytokine Res 2000; 20:369-76. [PMID: 10805371 DOI: 10.1089/107999000312306] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In macrophages, interleukin-1 (IL-1) and lipopolysaccharide (LPS) enhance the antichlamydial effect of interferon-gamma (IFN-gamma) by increasing indoleamine 2,3-dioxygenase (IDO) activity in a dose-dependent manner. Our objectives were to characterize the antichlamydial effect of tumor necrosis factor-alpha (TNF-alpha) on IFN-induced IDO activity and to establish the relationship between LPS and TNF-alpha in IDO potentiation. TNF-alpha inhibited chlamydial growth in a dose-dependent manner only in IFN-treated macrophages. Furthermore, excess tryptophan reversed the effect of combined cytokine treatment, indicating that IDO alone was responsible for chlamydial inhibition. The promonocyte THP-1 cell line, previously used to model the effect of IL-1 on IDO mRNA expression, was treated with IFN-gamma and increasing concentrations of LPS or TNF-alpha. IDO mRNA was quantified by RT-PCR, and IDO activity was measured by HPLC at 24 and 48 h after treatment, respectively. Both LPS and TNF-alpha enhanced IDO activity and IDO mRNA expression, with maximal IDO induction at 100 ng/ml LPS or 5 ng/ml TNF-alpha. Anti-TNF-alpha failed to neutralize the effects of LPS treatment, and insufficient TNF-alpha or IL-1 was produced by LPS-treated THP-1 cells to account for the enhancing effect of LPS, indicating that the effect of LPS on IDO was independent of TNF-alpha and IL-1.
Collapse
Affiliation(s)
- A R Currier
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | |
Collapse
|
20
|
Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 1999; 189:1363-72. [PMID: 10224276 PMCID: PMC2193062 DOI: 10.1084/jem.189.9.1363] [Citation(s) in RCA: 1244] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have recently shown that expression of the enzyme indoleamine 2, 3-dioxygenase (IDO) during murine pregnancy is required to prevent rejection of the allogeneic fetus by maternal T cells. In addition to their role in pregnancy, IDO-expressing cells are widely distributed in primary and secondary lymphoid organs. Here we show that monocytes that have differentiated under the influence of macrophage colony-stimulating factor acquire the ability to suppress T cell proliferation in vitro via rapid and selective degradation of tryptophan by IDO. IDO was induced in macrophages by a synergistic combination of the T cell-derived signals IFN-gamma and CD40-ligand. Inhibition of IDO with the 1-methyl analogue of tryptophan prevented macrophage-mediated suppression. Purified T cells activated under tryptophan-deficient conditions were able to synthesize protein, enter the cell cycle, and progress normally through the initial stages of G1, including upregulation of IL-2 receptor and synthesis of IL-2. However, in the absence of tryptophan, cell cycle progression halted at a mid-G1 arrest point. Restoration of tryptophan to arrested cells was not sufficient to allow further cell cycle progression nor was costimulation via CD28. T cells could exit the arrested state only if a second round of T cell receptor signaling was provided in the presence of tryptophan. These data reveal a novel mechanism by which antigen-presenting cells can regulate T cell activation via tryptophan catabolism. We speculate that expression of IDO by certain antigen presenting cells in vivo allows them to suppress unwanted T cell responses.
Collapse
Affiliation(s)
- D H Munn
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Holmes EW. Expression and regulation of interferon-gamma-induced tryptophan catabolism in cultured skin fibroblasts. J Interferon Cytokine Res 1998; 18:509-20. [PMID: 9712367 DOI: 10.1089/jir.1998.18.509] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma)-induced, indoleamine dioxygenase-catalyzed tryptophan catabolism was studied in cultured human foreskin fibroblasts using the increase in cellular kynurenine synthesis as an index of gene expression. The time courses of the inhibition of IFN-gamma-induced kynurenine synthesis by actinomycin D and cycloheximide showed that the indoleamine dioxygenase gene was transcribed as early as 2 h and translated as early as 5 h after initiation of IFN treatment. Expression was completely inhibited by the Ser/Thr kinase inhibitor, H-7 (66 microM), during the first 2 h after IFN-gamma treatment. Prolonged pretreatment of cells with high concentrations of staurosporine (380 nM) or genestein (610 microM) inhibited expression by 38% and 53%, respectively. Genestein also inhibited expression when it was added to cultures between 8 and 24 h after IFN-gamma treatment. The expression of kynurenine synthesis was inhibited by A23817 during the first 4 h after IFN treatment by mechanisms that were independent of cyclooxygenase, calmodulin, and calcineurin. Exogenous gangliosides (bovine brain gangliosides and purified GM1) inhibited IDO expression throughout the first 24 h after IFN-gamma treatment by mechanisms that did not involve effects on Ca2+ channels. Other biologic response modifiers, including phorbol myristic acetate, arachidonic acid, lipopolysaccharide, analogs of cAMP and cGMP, W-7, and sphingosine, did not induce IDO in the absence of IFN-gamma, nor did they modulate IFN-gamma-induced expression. These results indicate that the expression of kynurenine synthesis is modulated at the transcriptional and posttranscriptional levels by protein tyrosine kinase and by a Ser/Thr kinase with properties distinctly different from those of conventional protein kinase C. The capacity for attenuation of this IFN-gamma-induced response over its entire time course by many effectors and through multiple cellular signaling pathways may represent a mechanism for fine-tuning the level of oxidative tryptophan metabolism to meet the needs of a particular cytostatic or antiproliferative response.
Collapse
Affiliation(s)
- E W Holmes
- Department of Pathology, Loyola University Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
22
|
Hissong BD, Carlin JM. Potentiation of interferon-induced indoleamine 2,3-dioxygenase mRNA in human mononuclear phagocytes by lipopolysaccharide and interleukin-1. J Interferon Cytokine Res 1997; 17:387-93. [PMID: 9243370 DOI: 10.1089/jir.1997.17.387] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies have shown that interleukin-1 (IL-1) enhances interferon (IFN)-gamma-induced indoleamine 2,3-dioxygenase (IDO) enzymatic activity in human monocyte-derived macrophages by increasing expression of IDO mRNA. The objectives of this study were to see if IL-1 also enhances IFN-beta-induced IDO activity by increasing specific mRNA expression and to determine if lipopolysaccharide (LPS) enhances IFN-induced IDO activity in a similar manner. Macrophages were treated with combinations of IFN-beta or IFN-gamma as inducer and LPS or IL-1 as potentiator. After 48 h, IDO mRNA expression was assessed by RT-PCR, and IDO activity was determined by HPLC. LPS alone induced IDO mRNA expression and also increased IDO mRNA expression induced by either type of IFN. Furthermore, IL-1 enhanced IFN-beta-induced IDO mRNA expression. When IDO mRNA was assessed 6 h after treatment, mRNA was detected at concentrations of IFNs or potentiator or both in which enzymatic activity at 48 h was undetectable. Thus, although the mechanism of potentiation of IFN-induced IDO by LPS and by IL-1 involves increased expression of IDO mRNA, it appears that temporal differences in IDO mRNA expression are also important.
Collapse
Affiliation(s)
- B D Hissong
- Department of Microbiology, Miami University, Oxford, OH, USA
| | | |
Collapse
|
23
|
Hu B, Hissong BD, Carlin JM. Interleukin-1 enhances indoleamine 2,3-dioxygenase activity by increasing specific mRNA expression in human mononuclear phagocytes. J Interferon Cytokine Res 1995; 15:617-24. [PMID: 7553232 DOI: 10.1089/jir.1995.15.617] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The objective of this study was to determine the utility of the THP-1 monocytic leukemia cell line as a model for analyzing molecular mechanisms involved in enhancement of interferon (IFN)-gamma-induced indoleamine dioxygenase (IDO) activity by interleukin-1 (IL-1). Following treatment of THP-1 cells with combinations of IFN-gamma and IL-1, IDO activity and IDO mRNA were quantified by HPLC and radioanalytic imaging of RT-PCR products, respectively. IL-1 increased the amount of IDO activity and the expression of IDO mRNA in IFN-treated cells; IL-1 alone had no effect on untreated THP-1 cells. Because IDO gene regulation might differ between immature THP-1 cells and mature macrophages, experiments were repeated using primary macrophage cultures. IFN-gamma induced IDO activity, and IDO mRNA was expressed in a dose-dependent manner. In the presence of IL-1, 10 times less IFN was required to obtain the same amount of IDO mRNA and IDO activity. Furthermore, IL-1 alone increased IDO mRNA expression. It appears that unlike what was observed in THP-1 cells, IL-1 transcriptionally activates the IDO gene in primary macrophages. However, increases in IDO activity were not observed following treatment with IL-1 alone. Although the THP-1 cell may be used to model cytokine potentiation of IFN-induced IDO activity, some differences in regulation between THP-1 cells and primary macrophage cultures may exist.
Collapse
Affiliation(s)
- B Hu
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|