1
|
Ordiales H, Olano C, Martín C, Blanco-Agudín N, Alcalde I, Merayo-Lloves J, Quirós LM. Phosphoglycerate mutase and methionine synthase act as adhesins of Candida albicans to the corneal epithelium, altering their expression during the tissue adhesion process. Exp Eye Res 2025; 254:110322. [PMID: 40057112 DOI: 10.1016/j.exer.2025.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 04/08/2025]
Abstract
The yeast form of Candida albicans uses glycosaminoglycans (GAGs), primarily heparan sulfate, as adhesion receptors for corneal epithelial cells. However, during the transition to the hyphal form, the fungus shifts to using alternative receptors. This study aims to identify fungal adhesins involved in GAG binding and examine their expression dynamics during tissue adhesion. Using chromatography, three proteins from the C. albicans cell wall with high affinity for heparin were identified: methionine synthase, phosphoglycerate mutase, and cytochrome c. These proteins were overexpressed in Escherichia coli and tested in adhesion assays. Methionine synthase and phosphoglycerate mutase partially inhibited yeast adhesion to corneal epithelial cells in a concentration-dependent manner, while cytochrome c enhanced adhesion. Transcriptional analysis of the genes encoding these proteins (MET6, GMP1, and CYC1), along with other genes related to adhesion and yeast-to-hypha transition (ALS3, HWP1, and INT1), revealed that exposure to exosomes or GAGs increased GMP1, CYC1, and ALS3 expression, while reducing HWP1 and INT1. In contrast, direct contact with epithelial cells decreased MET6 and GMP1 expression, but increased HWP1 expression. These results suggest that methionine synthase and phosphoglycerate mutase act as adhesins for GAGs, with their expression modulated by GAG or exosome interaction to promote adhesion. However, epithelial cell contact alters the expression of adhesins and molecules linked to hyphal formation, highlighting their dynamic role in corneal adhesion.
Collapse
Affiliation(s)
- Helena Ordiales
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Carlos Olano
- Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Carla Martín
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Noelia Blanco-Agudín
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain; Department of Surgery, University of Oviedo, 33006, Oviedo, Spain.
| | - Luis M Quirós
- Instituto Universitario Fernández-Vega (IUFV), Fundación de Investigación Oftalmológica, University of Oviedo, 33012, Oviedo, Spain; Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
2
|
Foltran BB, Teixeira AF, Romero EC, Fernandes LGV, Nascimento ALTO. Leucine-rich repeat proteins of Leptospira interrogans that interact to host glycosaminoglycans and integrins. Front Microbiol 2024; 15:1497712. [PMID: 39659425 PMCID: PMC11629876 DOI: 10.3389/fmicb.2024.1497712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Pathogenic spirochaetes of the genus Leptospira are the etiological agents of leptospirosis, a zoonotic infection worldwide. The disease is considered an emerging and re-emerging threat due to global warming, followed by heavy rainfall and flooding when outbreaks of leptospirosis occur. Adhesion to host tissues is mediated by surface/extracellular proteins expressed by pathogens during infection. Leucine-rich repeat (LRR) domain-containing proteins seem to be important for the virulence of pathogenic Leptospira and their role has been recently examined. Here, we report the characterization of two LRR-proteins encoded by LIC11051 and LIC11505. They present 7 and 17 LRR motifs, respectively. LIC11051 was found mainly in the P1 subclade, whereas LIC11505 was identified with higher identity in subclade P1, but was also found in subclades P2, S1, and S2. The recombinant proteins were recognized by antibodies in leptospirosis serum samples, suggesting their expression during infection. rLIC11505 contains a broad spectrum of ligands, including GAG and integrin receptors, whereas rLIC11051 showed limited binding activity. The attachment of proteins to ligands was specific, dose-dependent, and saturable. Compared to their role in adhesion, both proteins were shown to be secreted, with the ability to reassociate with the bacteria. Taken together, our data suggested that LIC11051 and LIC11505 participate in leptospiral pathogenesis. To the best of our knowledge, this is the first report showing leptospiral LRR-proteins exhibiting GAG and integrin receptor-binding properties.
Collapse
Affiliation(s)
- Bruno B. Foltran
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Luis G. V. Fernandes
- Infectious Bacterial Disease Research Unit, U.S. Department of Agriculture (USDA) Agricultural Research Service, National Animal Disease Center, Ames, IA, United States
| | | |
Collapse
|
3
|
Rohilla A, Kumar V, Ahire JJ. Unveiling the persistent threat: recent insights into Listeria monocytogenes adaptation, biofilm formation, and pathogenicity in foodborne infections. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1428-1438. [PMID: 38966782 PMCID: PMC11219595 DOI: 10.1007/s13197-023-05918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 07/06/2024]
Abstract
Listeriosis is a severe disease caused by the foodborne pathogen Listeria monocytogenes, posing a significant risk to vulnerable populations such as the elderly, pregnant women, and newborns. While relatively uncommon, it has a high global mortality rate of 20-30%. Recent research indicates that smaller outbreaks of the more severe, invasive form of the disease occur more frequently than previously thought, despite the overall stable infection rates of L. monocytogenes over the past 10 years. The ability of L. monocytogenes to form biofilm structures on various surfaces in food production environments contributes to its persistence and challenges in eradication, potentially leading to contamination of food and food production facilities. To address these concerns, this review focuses on recent developments in epidemiology, risk evaluations, and molecular mechanisms of L. monocytogenes survival in adverse conditions and environmental adaptation. Additionally, it covers new insights into strain variability, pathogenicity, mutations, and host vulnerability, emphasizing the important events framework that elucidates the biochemical pathways from ingestion to infection. Understanding the adaptation approaches of L. monocytogenes to environmental stress factors is crucial for the development of effective and affordable pathogen control techniques in the food industry, ensuring the safety of food production.
Collapse
Affiliation(s)
- Alka Rohilla
- Institute of Biology Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, 131028 India
| | - Jayesh J. Ahire
- Dr. Reddy’s Laboratories Limited, Ameerpet, Hyderabad, 500016 India
| |
Collapse
|
4
|
Zhang Y, Zhang C, Wang J, Wen Y, Li H, Liu X, Liu X. Can proteins, protein hydrolysates and peptides cooperate with probiotics to inhibit pathogens? Crit Rev Food Sci Nutr 2023; 65:1023-1036. [PMID: 38032153 DOI: 10.1080/10408398.2023.2287185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Studies have shown that probiotics can effectively inhibit pathogens in the presence of proteins, protein hydrolysates and peptides (protein derivates). However, it is still unclear the modes of probiotics to inhibit pathogens regulated by protein derivates. Therefore, we summarized the possible effects of protein derivates from different sources on probiotics and pathogens. There is abundant evidence that proteins and peptides from different sources can significantly promote the proliferation of probiotics and increase their secretion of antibacterial substances. Such proteins and peptides can also stimulate the adhesion of probiotics to intestinal epithelial cells and contribute to regulating intestinal immunity, but they seem to have the negative effects on pathogens. Moreover, a direct effect of proteins on intestinal cells is summarized. Whether or not they can cooperate with probiotics to inhibit pathogens using above possible mechanisms were discussed. Furthermore, there seems to be no consistent conclusions that protein derivates have synergistic effects with probiotics, and there is still limited evidence on the inhibiting patterns. Therefore, the existing problems and shortcomings are noted, and future research direction is proposed.
Collapse
Affiliation(s)
- Yinxiao Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chi Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jingyi Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Yanchao Wen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
5
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front Mol Biosci 2023; 10:1161486. [PMID: 37388250 PMCID: PMC10300472 DOI: 10.3389/fmolb.2023.1161486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Listeria monocytogenes causes listeriosis, a disease characterized by a high mortality rate (up to 30%). Since the pathogen is highly tolerant to changing conditions (high and low temperature, wide pH range, low availability of nutrients), it is widespread in the environment, e.g., water, soil, or food. L. monocytogenes possess a number of genes that determine its high virulence potential, i.e., genes involved in the intracellular cycle (e.g., prfA, hly, plcA, plcB, inlA, inlB), response to stress conditions (e.g., sigB, gadA, caspD, clpB, lmo1138), biofilm formation (e.g., agr, luxS), or resistance to disinfectants (e.g., emrELm, bcrABC, mdrL). Some genes are organized into genomic and pathogenicity islands. The islands LIPI-1 and LIPI-3 contain genes related to the infectious life cycle and survival in the food processing environment, while LGI-1 and LGI-2 potentially ensure survival and durability in the production environment. Researchers constantly have been searching for new genes determining the virulence of L. monocytogenes. Understanding the virulence potential of L. monocytogenes is an important element of public health protection, as highly pathogenic strains may be associated with outbreaks and the severity of listeriosis. This review summarizes the selected aspects of L. monocytogenes genomic and pathogenicity islands, and the importance of whole genome sequencing for epidemiological purposes.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Kines RC, Schiller JT. Harnessing Human Papillomavirus' Natural Tropism to Target Tumors. Viruses 2022; 14:1656. [PMID: 36016277 PMCID: PMC9413966 DOI: 10.3390/v14081656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are small non-enveloped DNA tumor viruses established as the primary etiological agent for the development of cervical cancer. Decades of research have elucidated HPV's primary attachment factor to be heparan sulfate proteoglycans (HSPG). Importantly, wounding and exposure of the epithelial basement membrane was found to be pivotal for efficient attachment and infection of HPV in vivo. Sulfation patterns on HSPG's become modified at the site of wounds as they serve an important role promoting tissue healing, cell proliferation and neovascularization and it is these modifications recognized by HPV. Analogous HSPG modification patterns can be found on tumor cells as they too require the aforementioned processes to grow and metastasize. Although targeting tumor associated HSPG is not a novel concept, the use of HPV to target and treat tumors has only been realized in recent years. The work herein describes how decades of basic HPV research has culminated in the rational design of an HPV-based virus-like infrared light activated dye conjugate for the treatment of choroidal melanoma.
Collapse
Affiliation(s)
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
8
|
Bauer S, Zhang F, Linhardt RJ. Implications of Glycosaminoglycans on Viral Zoonotic Diseases. Diseases 2021; 9:85. [PMID: 34842642 PMCID: PMC8628766 DOI: 10.3390/diseases9040085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Zoonotic diseases are infectious diseases that pass from animals to humans. These include diseases caused by viruses, bacteria, fungi, and parasites and can be transmitted through close contact or through an intermediate insect vector. Many of the world's most problematic zoonotic diseases are viral diseases originating from animal spillovers. The Spanish influenza pandemic, Ebola outbreaks in Africa, and the current SARS-CoV-2 pandemic are thought to have started with humans interacting closely with infected animals. As the human population grows and encroaches on more and more natural habitats, these incidents will only increase in frequency. Because of this trend, new treatments and prevention strategies are being explored. Glycosaminoglycans (GAGs) are complex linear polysaccharides that are ubiquitously present on the surfaces of most human and animal cells. In many infectious diseases, the interactions between GAGs and zoonotic pathogens correspond to the first contact that results in the infection of host cells. In recent years, researchers have made progress in understanding the extraordinary roles of GAGs in the pathogenesis of zoonotic diseases, suggesting potential therapeutic avenues for using GAGs in the treatment of these diseases. This review examines the role of GAGs in the progression, prevention, and treatment of different zoonotic diseases caused by viruses.
Collapse
Affiliation(s)
- Sarah Bauer
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Biological Science, Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
9
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
10
|
Chen L, Kraft BD, Roggli VL, Healy ZR, Woods CW, Tsalik EL, Ginsburg GS, Murdoch DM, Suliman HB, Piantadosi CA, Welty-Wolf KE. Heparin-based blood purification attenuates organ injury in baboons with Streptococcus pneumoniae pneumonia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L321-L335. [PMID: 34105359 DOI: 10.1152/ajplung.00337.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial pneumonia is a major cause of morbidity and mortality worldwide despite the use of antibiotics, and novel therapies are urgently needed. Building on previous work, we aimed to 1) develop a baboon model of severe pneumococcal pneumonia and sepsis with organ dysfunction and 2) test the safety and efficacy of a novel extracorporeal blood filter to remove proinflammatory molecules and improve organ function. After a dose-finding pilot study, 12 animals were inoculated with Streptococcus pneumoniae [5 × 109 colony-forming units (CFU)], given ceftriaxone at 24 h after inoculation, and randomized to extracorporeal blood purification using a filter coated with surface-immobilized heparin sulfate (n = 6) or sham treatment (n = 6) for 4 h at 30 h after inoculation. For safety analysis, four uninfected animals also underwent purification. At 48 h, necropsy was performed. Inoculated animals developed severe pneumonia and septic shock. Compared with sham-treated animals, septic animals treated with purification displayed significantly less kidney injury, metabolic acidosis, hypoglycemia, and shock (P < 0.05). Purification blocked the rise in peripheral blood S. pneumoniae DNA, attenuated bronchoalveolar lavage (BAL) CCL4, CCL2, and IL-18 levels, and reduced renal oxidative injury and classical NLRP3 inflammasome activation. Purification was safe in both uninfected and infected animals and produced no adverse effects. We demonstrate that heparin-based blood purification significantly attenuates levels of circulating S. pneumoniae DNA and BAL cytokines and is renal protective in baboons with severe pneumococcal pneumonia and septic shock. Purification was associated with less severe acute kidney injury, metabolic derangements, and shock. These results support future clinical studies in critically ill septic patients.
Collapse
Affiliation(s)
- Lingye Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| | - Bryan D Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Zachary R Healy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| | - Christopher W Woods
- Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Ephraim L Tsalik
- Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - David M Murdoch
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Claude A Piantadosi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Karen E Welty-Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
11
|
Barilleau E, Védrine M, Koczerka M, Burlaud-Gaillard J, Kempf F, Grépinet O, Virlogeux-Payant I, Velge P, Wiedemann A. Investigation of the invasion mechanism mediated by the outer membrane protein PagN of Salmonella Typhimurium. BMC Microbiol 2021; 21:153. [PMID: 34020586 PMCID: PMC8140442 DOI: 10.1186/s12866-021-02187-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Salmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck. However, the mechanism of PagN-dependent invasion pathway used by Salmonella enterica, subspecies enterica serovar Typhimurium remains unclear. RESULTS Here, we report that PagN is well conserved and widely distributed among the different species and subspecies of Salmonella. We showed that PagN of S. Typhimurium was sufficient and necessary to enable non-invasive E. coli over-expressing PagN and PagN-coated beads to bind to and invade different non-phagocytic cells. According to the literature, PagN is likely to interact with heparan sulfate proteoglycan (HSPG) as PagN-mediated invasion could be inhibited by heparin treatment in a dose-dependent manner. This report shows that this interaction is not sufficient to allow the internalization mechanism. Investigation of the role of β1 integrin as co-receptor showed that mouse embryo fibroblasts genetically deficient in β1 integrin were less permissive to PagN-mediated internalization. Moreover, PagN-mediated internalization was fully inhibited in glycosylation-deficient pgsA-745 cells treated with anti-β1 integrin antibody, supporting the hypothesis that β1 integrin and HSPG cooperate to induce the PagN-mediated internalization mechanism. In addition, use of specific inhibitors and expression of dominant-negative derivatives demonstrated that tyrosine phosphorylation and class I phosphatidylinositol 3-kinase were crucial to trigger PagN-dependent internalization, as for the Rck internalization mechanism. Finally, scanning electron microscopy with infected cells showed microvillus-like extensions characteristic of Zipper-like structure, engulfing PagN-coated beads and E. coli expressing PagN, as observed during Rck-mediated internalization. CONCLUSIONS Our results supply new comprehensions into T3SS-1-independent invasion mechanisms of S. Typhimurium and highly indicate that PagN induces a phosphatidylinositol 3-kinase signaling pathway, leading to a Zipper-like entry mechanism as the Salmonella outer membrane protein Rck.
Collapse
Affiliation(s)
| | - Mégane Védrine
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France.,Present Address: Service Biologie Vétérinaire et Santé Animale, Inovalys, Angers, France
| | | | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHRU de Tours, Tours, France
| | - Florent Kempf
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | | | | | - Philippe Velge
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France. .,Present Address: IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| |
Collapse
|
12
|
Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF, Trautner BW, Kaplan HB, Maresso AW. Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio 2021; 12:e03474-20. [PMID: 33563833 PMCID: PMC7885116 DOI: 10.1128/mbio.03474-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.
Collapse
Affiliation(s)
- Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley Gibson
- Department of Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wilhem Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. PLoS Pathog 2020; 16:e1008497. [PMID: 32453780 PMCID: PMC7274463 DOI: 10.1371/journal.ppat.1008497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/05/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Molecular and cell-based studies suggest that HSPG-pathogen interactions promote pathogenesis by facilitating microbial attachment and invasion of host cells. However, the specific identity of HSPGs, precise mechanisms by which HSPGs promote pathogenesis, and the in vivo relevance of HSPG-pathogen interactions remain to be determined. HSPGs also modulate host responses to tissue injury and inflammation, but functions of HSPGs other than facilitating microbial attachment and internalization are understudied in infectious disease. Here we examined the role of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, in mouse models of Listeria monocytogenes (Lm) infection. We show that Sdc1-/- mice are significantly less susceptible to both intragastric and intravenous Lm infection compared to wild type (Wt) mice. This phenotype is not seen in Sdc3-/- or Sdc4-/- mice, indicating that ablation of Sdc1 causes a specific gain of function that enables mice to resist listeriosis. However, Sdc1 does not support Lm attachment or invasion of host cells, indicating that Sdc1 does not promote pathogenesis as a cell surface Lm receptor. Instead, Sdc1 inhibits the clearance of Lm before the bacterium gains access to its intracellular niche. Large intravascular aggregates of neutrophils and neutrophil extracellular traps (NETs) embedded with antimicrobial compounds are formed in Sdc1-/- livers, which trap and kill Lm. Lm infection induces Sdc1 shedding from the surface of hepatocytes in Wt livers, which is directly associated with the decrease in size of intravascular aggregated NETs. Furthermore, administration of purified Sdc1 ectodomains or DNase inhibits the formation of intravascular aggregated neutrophils and NETs and significantly increases the liver bacterial burden in Sdc1-/- mice. These data indicate that Lm induces Sdc1 shedding to subvert the activity of Sdc1 ectodomains to inhibit its clearance by intravascular aggregated NETs.
Collapse
|
14
|
Kang JM, Rajangam T, Rhie JW, Kim SH. Characterization of cell signaling, morphology, and differentiation potential of human mesenchymal stem cells based on cell adhesion mechanism. J Cell Physiol 2020; 235:6915-6928. [PMID: 32017071 DOI: 10.1002/jcp.29587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022]
Abstract
It is essential to characterize the cellular properties of mesenchymal stem cell populations to maintain quality specifications and control in regenerative medicine. Biofunctional materials have been designed as artificial matrices for the stimulation of cell adhesion and specific cellular functions. We have developed recombinant maltose-binding protein (MBP)-fused proteins as artificial adhesion matrices to control human mesenchymal stem cell (hMSC) fate by using an integrin-independent heparin sulfate proteoglycans-mediated cell adhesion. In this study, we characterize cell adhesion-dependent cellular behaviors of human adipose-derived stem cells (hASCs) and human bone marrow stem cells (hBMSCs). We used an MBP-fused basic fibroblast growth factor (MF)-coated surface and fibronectin (FN)-coated surface to restrict and support, respectively, integrin-mediated adhesion. The cells adhered to MF exhibited restricted actin cytoskeleton organization and focal adhesion kinase phosphorylation. The hASCs and hBMSCs exhibited different cytoplasmic projection morphologies on MF. Both hASCs and hBMSCs differentiated more dominantly into osteogenic cells on FN than on MF. In contrast, hASCs differentiated more dominantly into adipogenic cells on MF than on FN, whereas hBMSCs differentiated predominantly into adipogenic cells on FN. The results indicate that hASCs exhibit a competitive differentiation potential (osteogenesis vs. adipogenesis) that depends on the cell adhesion matrix, whereas hBMSCs exhibit both adipogenesis and osteogenesis in integrin-mediated adhesion and thus hBMSCs have noncompetitive differentiation potential. We suggest that comparing differentiation behaviors of hMSCs with the diversity of cell adhesion is an important way to characterize hMSCs for regenerative medicine.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| | - Thanavel Rajangam
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jong-Won Rhie
- Department of Plastic Surgery, College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
15
|
Balasubramaniam K, Sharma K, Goyal A. Structure and dynamics analysis of a new member heparinase II/III of family 12 polysaccharide lyase from Pseudopedobacter saltans by computational modeling and small-angle X-ray scattering. J Biomol Struct Dyn 2019; 38:2007-2020. [DOI: 10.1080/07391102.2019.1622453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Karthika Balasubramaniam
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
16
|
|
17
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [PMID: 30905465 DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Pizarro-Cerdá J, Cossart P. Listeria monocytogenes: cell biology of invasion and intracellular growth. Microbiol Spectr 2018; 6:10.1128/microbiolspec.gpp3-0013-2018. [PMID: 30523778 PMCID: PMC11633638 DOI: 10.1128/microbiolspec.gpp3-0013-2018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
The Gram-positive pathogen Listeria monocytogenes is able to promote its entry into a diverse range of mammalian host cells by triggering plasma membrane remodeling, leading to bacterial engulfment. Upon cell invasion, L. monocytogenes disrupts its internalization vacuole and translocates to the cytoplasm, where bacterial replication takes place. Subsequently, L. monocytogenes uses an actin-based motility system that allows bacterial cytoplasmic movement and cell-to-cell spread. L. monocytogenes therefore subverts host cell receptors, organelles and the cytoskeleton at different infection steps, manipulating diverse cellular functions that include ion transport, membrane trafficking, post-translational modifications, phosphoinositide production, innate immune responses as well as gene expression and DNA stability.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, FRANCE
- INSERM U604, Paris F-75015, FRANCE
- INRA USC2020, Paris F-75015, FRANCE
| | - Pascale Cossart
- Unité Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, FRANCE
- INSERM U604, Paris F-75015, FRANCE
- INRA USC2020, Paris F-75015, FRANCE
| |
Collapse
|
19
|
The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat Commun 2018; 9:4269. [PMID: 30323282 PMCID: PMC6189187 DOI: 10.1038/s41467-018-06668-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial infections of the central nervous system (CNS) remain a major cause of mortality in the neonatal population. Commonly used parenteral infection models, however, do not reflect the early course of the disease leaving this critical step of the pathogenesis largely unexplored. Here, we analyzed nasal exposure of 1-day-old newborn mice to Listeria monocytogenes (Lm). We found that nasal, but not intragastric administration, led to early CNS infection in neonate mice. In particular, upon bacterial invasion of the olfactory epithelium, Lm subsequently spread along the sensory neurons entering the brain tissue at the cribriform plate and causing a significant influx of monocytes and neutrophils. CNS infection required listeriolysin for penetration of the olfactory epithelium and ActA, a mediator of intracellular mobility, for translocation into the brain tissue. Taken together, we propose an alternative port of entry and route of infection for neonatal neurolisteriosis and present a novel infection model to mimic the clinical features of late-onset disease in human neonates. Listeria monocytogenes causes meningitis in newborns. Here, Pägelow et al. present a mouse model of neonatal cerebral listeriosis, and show that nasal inoculation, but not intragastric administration, leads to early brain infection in the absence of bacteraemia during the neonatal period.
Collapse
|
20
|
Heparinase Is Essential for Pseudomonas aeruginosa Virulence during Thermal Injury and Infection. Infect Immun 2017; 86:IAI.00755-17. [PMID: 29061710 DOI: 10.1128/iai.00755-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a major cause of sepsis in severely burned patients. If it is not eradicated from the wound, it translocates to the bloodstream, causing sepsis, multiorgan failure, and death. We recently described the P. aeruginosa heparinase-encoding gene, hepP, whose expression was significantly enhanced when P. aeruginosa strain UCBPP_PA14 (PA14) was grown in whole blood from severely burned patients. Further analysis demonstrated that hepP contributed to the in vivo virulence of PA14 in the Caenorhabditis elegans model. In this study, we utilized the murine model of thermal injury to examine the contribution of hepP to the pathogenesis of P. aeruginosa during burn wound infection. Mutation of hepP reduced the rate of mortality from 100% for mice infected with PA14 to 7% for mice infected with PA14::hepP While comparable numbers of PA14 and PA14::hepP bacteria were recovered from infected skin, only PA14 was recovered from the livers and spleens of infected mice. Despite its inability to spread systemically, PA14::hepP formed perivascular cuffs around the blood vessels within the skin of the thermally injured/infected mice. Intraperitoneal inoculation of the thermally injured mice, bypassing the need for translocation, produced similar results. The rate of mortality for mice infected with PA14::hepP was 0%, whereas it was 66% for mice infected with PA14. As before, only PA14 was recovered from the livers and spleens of infected mice. These results suggest that hepP plays a crucial role in the pathogenesis of PA14 during burn wound infection, most likely by contributing to PA14 survival in the bloodstream of the thermally injured mouse during sepsis.
Collapse
|
21
|
Isolation and characterization of HepP: a virulence-related Pseudomonas aeruginosa heparinase. BMC Microbiol 2017; 17:233. [PMID: 29246112 PMCID: PMC5732420 DOI: 10.1186/s12866-017-1141-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. In burn patients, P. aeruginosa infection often leads to septic shock and death. Despite numerous studies, the influence of severe thermal injuries on the pathogenesis of P. aeruginosa during systemic infection is not known. Through RNA-seq analysis, we recently showed that the growth of P. aeruginosa strain UCBPP-PA14 (PA14) in whole blood obtained from severely burned patients significantly altered the expression of the PA14 transcriptome when compared with its growth in blood from healthy volunteers. The expression of PA14_23430 and the adjacent gene, PA14_23420, was enhanced by seven- to eightfold under these conditions. Results Quantitative real-time PCR analysis confirmed the enhancement of expression of both PA14_23420 and PA14_23430 by growth of PA14 in blood from severely burned patients. Computer analysis revealed that PA14_23430 (hepP) encodes a potential heparinase while PA14_23420 (zbdP) codes for a putative zinc-binding dehydrogenase. This analysis further suggested that the two genes form an operon with zbdP first. Presence of the operon was confirmed by RT-PCR experiments. We characterized hepP and its protein product HepP. hepP was cloned from PA14 by PCR and overexpressed in E. coli. The recombinant protein (rHepP) was purified using nickel column chromatography. Heparinase assays using commercially available heparinase as a positive control, revealed that rHepP exhibits heparinase activity. Mutation of hepP resulted in delay of pellicle formation at the air-liquid interface by PA14 under static growth conditions. Biofilm formation by PA14ΔhepP was also significantly reduced. In the Caenorhabditis elegans model of slow killing, mutation of hepP resulted in a significantly lower rate of killing than that of the parent strain PA14. Conclusions Changes within the blood of severely burned patients significantly induced expression of hepP in PA14. The heparinase encoded by hepP is a potential virulence factor for PA14 as HepP influences pellicle formation as well as biofilm development by PA14 and the protein is required for full virulence in the C. elegans model of slow killing. Electronic supplementary material The online version of this article (10.1186/s12866-017-1141-0) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.
Collapse
Affiliation(s)
- Ryan J Weiss
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0358, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
23
|
Arenas J, Tommassen J. Meningococcal Biofilm Formation: Let's Stick Together. Trends Microbiol 2017; 25:113-124. [DOI: 10.1016/j.tim.2016.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
|
24
|
D'Orazio G, Munizza L, Zampolli J, Forcella M, Zoia L, Fusi P, Di Gennaro P, La Ferla B. Cellulose nanocrystals are effective in inhibiting host cell bacterial adhesion. J Mater Chem B 2017; 5:7018-7020. [DOI: 10.1039/c7tb01923h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of cellulose nanocrystals (CNCs) as a biomaterial able to inhibit host cell bacterial adhesion is described. Pre-incubation ofE. coliwith a suspension of CNCs affords a significant reduction of bacterial adhesion to intestinal cell monolayer HT29, without exerting a bactericidal effect.
Collapse
Affiliation(s)
- G. D'Orazio
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- 20126 Milano
- Italy
| | - L. Munizza
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- 20126 Milano
- Italy
| | - J. Zampolli
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- 20126 Milano
- Italy
| | - M. Forcella
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- 20126 Milano
- Italy
| | - L. Zoia
- Department of Earth and Environmental Science
- University of Milano-Bicocca
- 20126 Milan
- Italy
| | - P. Fusi
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- 20126 Milano
- Italy
| | - P. Di Gennaro
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- 20126 Milano
- Italy
| | - B. La Ferla
- Department of Biotechnology and Biosciences
- University of Milano-Bicocca
- 20126 Milano
- Italy
| |
Collapse
|
25
|
Abstract
Glycosaminoglycans (GAGs) are complex linear polysaccharides expressed in intracellular compartments, at the cell surface, and in the extracellular environment where they interact with various molecules to regulate many cellular processes implicated in health and disease. Subversion of GAGs is a pathogenic strategy shared by a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi. Pathogens use GAGs at virtually every major portals of entry to promote their attachment and invasion of host cells, movement from one cell to another, and to protect themselves from immune attack. Pathogens co-opt fundamental activities of GAGs to accomplish these tasks. This ingenious strategy to subvert essential activities of GAGs likely prevented host organisms from deleting or inactivating these mechanisms during their evolution. The goal of this review is to provide a mechanistic overview of our current understanding of how microbes subvert GAGs at major steps of pathogenesis, using select GAG-pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Rafael S Aquino
- Division of Respiratory Diseases and 2Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pyong Woo Park
- Division of Respiratory Diseases Children's Hospital, Harvard Medical School, Boston, MA 02115, USA and Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA,
| |
Collapse
|
26
|
Upadhyay A, Upadhyaya I, Mooyottu S, Venkitanarayanan K. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella. J Med Microbiol 2016; 65:443-455. [DOI: 10.1099/jmm.0.000251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Indu Upadhyaya
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Shankumar Mooyottu
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
27
|
Upadhyay A, Venkitanarayanan K. In vivo efficacy of trans-cinnamaldehyde, carvacrol, and thymol in attenuating Listeria monocytogenes infection in a Galleria mellonella model. J Nat Med 2016; 70:667-72. [DOI: 10.1007/s11418-016-0990-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/25/2016] [Indexed: 11/28/2022]
|
28
|
Solari V, Rudd TR, Guimond SE, Powell AK, Turnbull JE, Yates EA. Heparan sulfate phage display antibodies recognise epitopes defined by a combination of sugar sequence and cation binding. Org Biomol Chem 2016; 13:6066-72. [PMID: 25952831 DOI: 10.1039/c5ob00564g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phage display antibodies are widely used to follow heparan sulfate (HS) expression in tissues and cells. We demonstrate by ELISA, that cations alter phage display antibody binding profiles to HS and this is mediated by changes in polysaccharide conformation, demonstrated by circular dichroism spectroscopy. Native HS structures, expressed on the cell surfaces of neuroblastoma and fibroblast cells, also exhibited altered antibody binding profiles following exposure to low mM concentrations of these cations. Phage display antibodies recognise conformationally-defined HS epitopes, rather than sequence alone, as has been assumed, and resemble proteins in being sensitive to changes in both charge distribution and conformation following binding of cations to HS polysaccharides.
Collapse
Affiliation(s)
- Valeria Solari
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Pillich H, Puri M, Chakraborty T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Curr Top Microbiol Immunol 2016; 399:113-132. [PMID: 27726006 DOI: 10.1007/82_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes is a ubiquitously occurring gram-positive bacterium in the environment that causes listeriosis, one of the deadliest foodborne infections known today. It is a versatile facultative intracellular pathogen capable of growth within the host's cytosolic compartment. Following entry into the host cell, L. monocytogenes escapes from vacuolar compartments to the cytosol, where the bacterium begins a remarkable journey within the host cytoplasm, culminating in bacterial spread from cell to cell, to deeper tissues and organs. This dissemination process depends on the ability of the bacterium to harness central components of the host cell actin cytoskeleton using the surface bound bacterial factor ActA (actin assembly inducing protein). Hence ActA plays a major role in listerial virulence, and its absence renders bacteria intracellularly immotile and essentially non-infectious. As the bacterium, moving by building a network of filamentous actin behind itself that is often referred to as its actin tail, encounters cell-cell contacts it forms double-vacuolar protrusions that allow it to enter the neighboring cell where the cycle then continues. Recent studies have now implicated ActA in other stages of the life cycle of L. monocytogenes. These include extracellular properties of aggregation and biofilm formation to mediate colonization of the gut lumen, promotion and enhancement of bacterial host cell entry, evasion of autophagy, vacuolar exit, as well as nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) activation. These novel properties provide a new view of ActA and help explain its role as an essential virulence factor of L. monocytogenes.
Collapse
Affiliation(s)
- Helena Pillich
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Madhu Puri
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
30
|
Inomata A, Murakoshi F, Ishiwa A, Takano R, Takemae H, Sugi T, Cagayat Recuenco F, Horimoto T, Kato K. Heparin interacts with elongation factor 1α of Cryptosporidium parvum and inhibits invasion. Sci Rep 2015; 5:11599. [PMID: 26129968 PMCID: PMC4486996 DOI: 10.1038/srep11599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/29/2015] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidium parvum is an apicomplexan parasite that can cause serious watery diarrhea, cryptosporidiosis, in human and other mammals. C. parvum invades gastrointestinal epithelial cells, which have abundant glycosaminoglycans on their cell surface. However, little is known about the interaction between C. parvum and glycosaminoglycans. In this study, we assessed the inhibitory effect of sulfated polysaccharides on C. parvum invasion of host cells and identified the parasite ligands that interact with sulfated polysaccharides. Among five sulfated polysaccharides tested, heparin had the highest, dose-dependent inhibitory effect on parasite invasion. Heparan sulfate-deficient cells were less susceptible to C. parvum infection. We further identified 31 parasite proteins that potentially interact with heparin. Of these, we confirmed that C. parvum elongation factor 1α (CpEF1α), which plays a role in C. parvum invasion, binds to heparin and to the surface of HCT-8 cells. Our results further our understanding of the molecular basis of C. parvum infection and will facilitate the development of anti-cryptosporidial agents.
Collapse
Affiliation(s)
- Atsuko Inomata
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumi Murakoshi
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Akiko Ishiwa
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ryo Takano
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hitoshi Takemae
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Frances Cagayat Recuenco
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Taisuke Horimoto
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
31
|
Interaction and assembly of two novel proteins in the spore wall of the microsporidian species Nosema bombycis and their roles in adherence to and infection of host cells. Infect Immun 2015; 83:1715-31. [PMID: 25605761 DOI: 10.1128/iai.03155-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microsporidia are obligate intracellular parasites with rigid spore walls that protect against various environmental pressures. Despite an extensive description of the spore wall, little is known regarding the mechanism by which it is deposited or the role it plays in cell adhesion and infection. In this study, we report the identification and characterization of two novel spore wall proteins, SWP7 and SWP9, in the microsporidian species Nosema bombycis. SWP7 and SWP9 are mainly localized to the exospore and endospore of mature spores and the cytoplasm of sporonts, respectively. In addition, a portion of SWP9 is targeted to the spore wall of sporoblasts earlier than SWP7 is. Both SWP7 and SWP9 are specifically colocalized to the spore wall in mature spores. Furthermore, immunoprecipitation, far-Western blotting, unreduced SDS-PAGE, and yeast two-hybrid data demonstrated that SWP7 interacted with SWP9. The chitin binding assay showed that, within the total spore protein, SWP9 and SWP7 can bind to the deproteinated chitin spore coats (DCSCs) of N. bombycis. However, binding of the recombinant protein rSWP7-His to the DCSCs is dependent on the combination of rSWP9-glutathione S-transferase (GST) with the DCSCs. Finally, rSWP9-GST, anti-SWP9, and anti-SWP7 antibodies decreased spore adhesion and infection of the host cell. In conclusion, SWP7 and SWP9 may have important structural capacities and play significant roles in modulating host cell adherence and infection in vitro. A possible major function of SWP9 is as a scaffolding protein that supports other proteins (such as SWP7) that form the integrated spore wall of N. bombycis.
Collapse
|
32
|
Abstract
Glycosaminoglycans (GAGs) have been shown to bind to a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi in vitro. GAGs are thought to promote pathogenesis by facilitating pathogen attachment, invasion, or evasion of host defense mechanisms. However, the role of GAGs in infectious disease has not been extensively studied in vivo and therefore their pathophysiological significance and functions are largely unknown. Here we describe methods to directly investigate the role of GAGs in infections in vivo using mouse models of bacterial lung and corneal infection. The overall experimental strategy is to establish the importance and specificity of GAGs, define the essential structural features of GAGs, and identify a biological activity of GAGs that promotes pathogenesis.
Collapse
Affiliation(s)
- Akiko Jinno
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Enders-461, Boston, MA, 02115, USA,
| | | |
Collapse
|
33
|
Zhang Y, Jiang N, Jia B, Chang Z, Zhang Y, Wei X, Zhou J, Wang H, Zhao X, Yu S, Song M, Tu Z, Lu H, Yin J, Wahlgren M, Chen Q. A comparative study on the heparin-binding proteomes of Toxoplasma gondii and Plasmodium falciparum. Proteomics 2014; 14:1737-45. [PMID: 24888565 DOI: 10.1002/pmic.201400003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 05/06/2014] [Accepted: 05/22/2014] [Indexed: 11/09/2022]
Abstract
Toxoplasma gondii is an obligatory intracellular apicomplexan parasite which exploits host cell surface components in cell invasion and intracellular parasitization. Sulfated glycans such as heparin and heparan sulfate have been reported to inhibit cell invasion by T. gondii and other apicomplexan parasites such as Plasmodium falciparum. The aim of this study was to investigate the heparin-binding proteome of T. gondii. The parasite-derived components were affinity-purified on the heparin moiety followed by MS fingerprinting of the proteins. The heparin-binding proteins of T. gondii and P. falciparum were compared based on functionality and affinity to heparin. Among the proteins identified, the invasion-related parasite ligands derived from tachyzoite/merozoite surface and the secretory organelles were prominent. However, the profiles of the proteins were different in terms of affinity to heparin. In T. gondii, the proteins with highest affinity to heparin were the intracellular components with functions of parasite development contrasted to that of P. falciparum, of which the rhoptry-derived proteins were prominently identified. The profiling of the heparin-binding proteins of the two apicomplexan parasites not only explained the mechanism of heparin-mediated host cell invasion inhibition, but also, to a certain extent, revealed that the action of heparin on the parasite extended after endocytosis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Zoonosis, Jilin University, Changchun, P. R. China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Travier L, Lecuit M. Listeria monocytogenes ActA: a new function for a 'classic' virulence factor. Curr Opin Microbiol 2013; 17:53-60. [PMID: 24581693 DOI: 10.1016/j.mib.2013.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
Listeria monocytogenes (Lm) is ubiquitous and widespread in the environment. It is responsible for one of the most severe human foodborne infection. Lm is a facultative intracellular bacterium that can cross the intestinal barrier, disseminate via the bloodstream and reach the liver, spleen, central nervous system and fetus. The bacterial surface protein ActA is one of the most critical and best characterized virulence factors of Lm. It fulfills many essential functions within host cells, allowing Lm escape from autophagy and recruiting an actin polymerization complex that promotes Lm actin-based motility, cell-to-cell spread and dissemination within host tissues. We have recently shown that ActA also acts extracellularly. It mediates Lm aggregation and biofilm formation in vitro and in vivo, and long-term colonization of the gut lumen. This new property of ActA favors Lm transmission and may participate in the selective pressure on Lm to maintain ActA.
Collapse
Affiliation(s)
- Laetitia Travier
- Institut Pasteur, Biology of Infection Unit, 75015 Paris, France; Inserm U1117, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, 75015 Paris, France; Inserm U1117, Paris, France; French National Reference Center and WHO Collaborating Centre Listeria, Institut Pasteur, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Necker-Pasteur for Infectiology, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France.
| |
Collapse
|
36
|
Laparra J, Hernandez-Hernandez O, Moreno F, Sanz Y. Neoglycoconjugates of caseinomacropeptide and galactooligosaccharides modify adhesion of intestinal pathogens and inflammatory response(s) of intestinal (Caco-2) cells. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.10.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Martín R, Martín C, Escobedo S, Suárez JE, Quirós LM. Surface glycosaminoglycans mediate adherence between HeLa cells and Lactobacillus salivarius Lv72. BMC Microbiol 2013; 13:210. [PMID: 24044741 PMCID: PMC3848620 DOI: 10.1186/1471-2180-13-210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 09/11/2013] [Indexed: 02/05/2023] Open
Abstract
Background The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Results Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single glycosaminoglycan was able to completely abolish cell binding, the sum of all having an additive effect that suggests cooperation between them and recognition of specific adhesins on the bacterial surface. In contrast, chondroitin sulfate B enhanced cell to cell attachment, showing the relevance of the stereochemistry of the uronic acid and the sulfation pattern on binding. Elimination of the HeLa surface glycosaminoglycans with lyases also resulted in severe adherence impairment. Advantage was taken of the Lactobacillus-glycosaminoglycans interaction to identify an adhesin from the bacterial surface. This protein, identify as a soluble binding protein of an ABC transporter system (OppA) by MALDI-TOF/(MS), was overproduced in Escherichia coli, purified and shown to interfere with L. salivarius Lv72 adhesion to HeLa cells. Conclusions These data suggest that glycosaminoglycans play a fundamental role in attachment of mutualistic bacteria to the epithelium that lines the cavities where the normal microbiota thrives, OppA being a bacterial adhesin involved in the process.
Collapse
Affiliation(s)
- Rebeca Martín
- Área de Microbiología, Universidad de Oviedo, Julián Clavería 6 33006 Oviedo, Spain.
| | | | | | | | | |
Collapse
|
38
|
Osanai A, Li SJ, Asano K, Sashinami H, Hu DL, Nakane A. Fibronectin-binding protein, FbpA, is the adhesin responsible for pathogenesis ofListeria monocytogenesinfection. Microbiol Immunol 2013; 57:253-62. [DOI: 10.1111/1348-0421.12030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Arihiro Osanai
- Department of Microbiology and Immunology; Hirosaki University Graduate School of Medicine; 5 Zaifu-cho, Hirosaki; Aomori; 036-8562; Japan
| | | | - Krisana Asano
- Department of Microbiology and Immunology; Hirosaki University Graduate School of Medicine; 5 Zaifu-cho, Hirosaki; Aomori; 036-8562; Japan
| | - Hiroshi Sashinami
- Department of Microbiology and Immunology; Hirosaki University Graduate School of Medicine; 5 Zaifu-cho, Hirosaki; Aomori; 036-8562; Japan
| | - Dong-Liang Hu
- Department of Microbiology and Immunology; Hirosaki University Graduate School of Medicine; 5 Zaifu-cho, Hirosaki; Aomori; 036-8562; Japan
| | - Akio Nakane
- Department of Microbiology and Immunology; Hirosaki University Graduate School of Medicine; 5 Zaifu-cho, Hirosaki; Aomori; 036-8562; Japan
| |
Collapse
|
39
|
Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease. Biol Rev Camb Philos Soc 2013; 88:928-43. [DOI: 10.1111/brv.12034] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Eyal Kamhi
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Drughoming Ltd; Rehovot Israel
| | - Eun Ji Joo
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| | - Jonathan S. Dordick
- Department of Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biomedical Engineering; Center for Biotechnology & Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biomedical Engineering; Center for Biotechnology & Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| |
Collapse
|
40
|
Pizarro-Cerdá J, Kühbacher A, Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2012; 2:2/11/a010009. [PMID: 23125201 DOI: 10.1101/cshperspect.a010009] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Listeria monocytogenes is a bacterial pathogen that promotes its internalization into host epithelial cells. Interaction between the bacterial surface molecules InlA and InlB and their cellular receptors E-cadherin and Met, respectively, triggers the recruitment of endocytic effectors, the subversion of the phosphoinositide metabolism, and the remodeling of the actin cytoskeleton that lead to bacterial engulfment. Additional bacterial surface and secreted virulence factors also contribute to entry, albeit to a lesser extent. Here we review the increasing number of signaling effectors that are reported as being subverted by L. monocytogenes during invasion of cultured cell lines. We also update the current knowledge of the early steps of in vivo cellular infection, which, as shown recently, challenges previous concepts generated from in vitro data.
Collapse
|
41
|
Ching ATC, Fávaro RD, Lima SS, Chaves ADAM, de Lima MA, Nader HB, Abreu PAE, Ho PL. Leptospira interrogans shotgun phage display identified LigB as a heparin-binding protein. Biochem Biophys Res Commun 2012; 427:774-9. [PMID: 23044419 DOI: 10.1016/j.bbrc.2012.09.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
LigB is an adhesin from pathogenic Leptospira that is able to bind to extracellular matrix and is considered a virulence factor. A shotgun phage display genomic library was constructed and used for panning against Heparan Sulfate Proteoglycan (HSPG). A phage clone encoding part of LigB protein was selected in panning experiments and showed specific binding to heparin. To validate the selected clone, fragments of LigB were produced as recombinant proteins and showed affinity to heparin and to mammalian cells. Heparin was also able to reduce the binding of rLB-Ct to mammalian cells. Our data suggests that the glycosaminoglycan moiety of the HSPG is responsible for its binding and could mediate the attachment of the recombinant protein rLB-Ct. Thus, heparin may act as a receptor for Leptospira to colonize and to invade the host tissue.
Collapse
Affiliation(s)
- Ana Tung Ching Ching
- Centro de Biotecnologia, Instituto Butantan, CEP 05503-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
García-Del Portillo F, Pucciarelli MG. Remodeling of the Listeria monocytogenes cell wall inside eukaryotic cells. Commun Integr Biol 2012; 5:160-2. [PMID: 22808321 PMCID: PMC3376052 DOI: 10.4161/cib.18678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Listeria monocytogenes is an intracellular Gram-positive bacterial pathogen that produces many types of surface proteins. To get insights into its intracellular lifestyle, we used high-resolution mass spectrometry to characterize the cell wall proteome of bacteria proliferating within the eukaryotic cell. The relative amount of a few surface proteins was found notoriously different in intracellular bacteria. Internalin A (InlA), which is covalently bound to the peptidoglycan and plays a central role in bacterial entry into non-phagocytic eukaryotic cells, was present in high amounts in the cell wall of intracellular bacteria. Our study also revealed that the actin assembly-inducing protein ActA co-purified with peptidoglycan isolated from intracellular bacteria. Growth of L. monocytogenes in minimal media reproduced the predominance of InlA in the cell wall and the association of ActA with peptidoglycan. Intriguingly, bacteria grown in this condition used ActA for efficient invasion of host cells. These findings suggest that the adaptation of L. monocytogenes to the intracellular lifestyle involves changes in the relative abundance of certain surface proteins and in their mode of association to the peptidoglycan. These alterations, probably promoted by yet-unknown changes in the cell wall architecture, may instruct these proteins to perform different functions outside and inside the host cell.
Collapse
|
43
|
Jahangiri A, Rasooli I, Reza Rahbar M, Khalili S, Amani J, Ahmadi Zanoos K. Precise detection of L. monocytogenes hitting its highly conserved region possessing several specific antibody binding sites. J Theor Biol 2012; 305:15-23. [DOI: 10.1016/j.jtbi.2012.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 04/07/2012] [Accepted: 04/09/2012] [Indexed: 12/23/2022]
|
44
|
Upadhyay A, Johny AK, Amalaradjou MAR, Ananda Baskaran S, Kim KS, Venkitanarayanan K. Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. Int J Food Microbiol 2012; 157:88-94. [DOI: 10.1016/j.ijfoodmicro.2012.04.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/28/2012] [Accepted: 04/21/2012] [Indexed: 11/26/2022]
|
45
|
Andrade GI, Brown PD. A comparative analysis of the attachment of Leptospira interrogans and L. borgpetersenii to mammalian cells. ACTA ACUST UNITED AC 2012; 65:105-15. [PMID: 22409511 DOI: 10.1111/j.1574-695x.2012.00953.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 03/02/2012] [Indexed: 11/28/2022]
Abstract
Leptospirosis, the world's most ubiquitous zoonosis, is caused by pathogenic Leptospira. As microbe-host interactions are specific in pathogenesis, it is likely that there are several molecules mediating the attachment of the Leptospira to mammalian cells. In this study, we analysed the attachment of Leptospira interrogans serovar Portlandvere and Leptospira borgpetersenii serovar Jules to untreated HEp-2 cells or HEp-2 cells treated with the various enzymes, lectins or sugars and to integrins αVβ3 and α5β1, relative to control wells. We found that both serovars bound equally well to HEp-2 cells; however, serovar Jules showed a higher level of attachment to integrins. Both serovars showed an increase in attachment to HEp-2 cells coated with lectins peanut agglutinin, Ulex europaeus agglutinin, soybean agglutinin and Erythrina cristagalli agglutinin (p < 0.05); in the case of Concanavalin A, Jules showed an increase, while Portlandvere showed a significant decrease in attachment. Trypsinizing monolayers resulted in a decrease in attachment for both serovars, while when chondroitinase, neuraminidase and heparinase were used an increase in attachment was recorded. Leptospires coated with sugars showed a decrease in attachment. These results show that serovar Jules' general greater affinity for the mediators examined may suggest a greater potential for virulence over serovar Portlandvere.
Collapse
Affiliation(s)
- Gabrielle I Andrade
- Basic Medical Sciences Department, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | | |
Collapse
|
46
|
Vadia S, Arnett E, Haghighat AC, Wilson-Kubalek EM, Tweten RK, Seveau S. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathog 2011; 7:e1002356. [PMID: 22072970 PMCID: PMC3207921 DOI: 10.1371/journal.ppat.1002356] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/20/2011] [Indexed: 01/18/2023] Open
Abstract
Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.
Collapse
Affiliation(s)
- Stephen Vadia
- Departments of Microbiology and Internal Medicine, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Eusondia Arnett
- Departments of Microbiology and Internal Medicine, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America
| | - Anne-Cécile Haghighat
- Departments of Microbiology and Internal Medicine, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America
| | | | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Stephanie Seveau
- Departments of Microbiology and Internal Medicine, Center for Microbial Interface Biology, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
47
|
Tsai YHL, Maron SB, McGann P, Nightingale KK, Wiedmann M, Orsi RH. Recombination and positive selection contributed to the evolution of Listeria monocytogenes lineages III and IV, two distinct and well supported uncommon L. monocytogenes lineages. INFECTION GENETICS AND EVOLUTION 2011; 11:1881-90. [PMID: 21854875 DOI: 10.1016/j.meegid.2011.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Listeriamonocytogenes lineages III and IV represent two uncommon lineages of the human and animal pathogen L. monocytogenes, characterized by occurrence of unusual phenotypic and genetic characteristics that differentiate them from the common lineages I and II. To gain further insights into the evolution of lineages III and IV, we amplified and sequenced housekeeping genes (i.e., gap, prs, purM, ribC, and sigB), internalin genes (i.e., inlA, inlB, inlC, inlG, inlC2, inlD, inlE, inlF, and inlH) and the virulence gene cluster containing prfA, plcA, hly, mpl, actA, and plcB for lineages III (n = 7) and IV (n = 4) isolates. Phylogenetic analyses of the sequences obtained along with previously reported sequence data for 40 isolates representing lineages I (n = 18), II (n = 21), and III (n = 1), showed that lineages III and IV represent divergent and monophyletic lineages. The virulence gene cluster as well as the inlAB operon were present in all isolates, with inlF absent from all lineages III and IV isolates. While all lineage IV isolates contained only inlC (in addition to inlAB), lineage III isolates showed considerable diversity with regard to internalin gene presence, including presence of (i) only inlC (n = 2), (ii) inlC and inlGC2DE (n = 3), (iii) only inlGC2DE (n = 2), and (iv) inlC and inlC2DE (n = 1). In addition to evidence for horizontal gene transfer events, among lineages III and IV isolates, in prs, actA, plcB, mpl, inlA, inlB, inlG, inlD, and inlE, we also found significant evidence for positive selection in the hly promoter region and, along the lineages III and IV branches, for actA (including in sites recognized for interactions with proteins involved in actin tail polymerization). In conclusion, lineages III and IV represent two distinct monophyletic groups with contributions of intragenic recombination to the evolution of their internalin genes as well as contributions of positive selection to evolution of the virulence genes island.
Collapse
|
48
|
Glycosaminoglycan binding facilitates entry of a bacterial pathogen into central nervous systems. PLoS Pathog 2011; 7:e1002082. [PMID: 21731486 PMCID: PMC3121876 DOI: 10.1371/journal.ppat.1002082] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 04/11/2011] [Indexed: 11/26/2022] Open
Abstract
Certain microbes invade brain microvascular endothelial cells (BMECs) to breach the blood-brain barrier (BBB) and establish central nervous system (CNS) infection. Here we use the leading meningitis pathogen group B Streptococcus (GBS) together with insect and mammalian infection models to probe a potential role of glycosaminoglycan (GAG) interactions in the pathogenesis of CNS entry. Site-directed mutagenesis of a GAG-binding domain of the surface GBS alpha C protein impeded GBS penetration of the Drosophila BBB in vivo and diminished GBS adherence to and invasion of human BMECs in vitro. Conversely, genetic impairment of GAG expression in flies or mice reduced GBS dissemination into the brain. These complementary approaches identify a role for bacterial-GAG interactions in the pathogenesis of CNS infection. Our results also highlight how the simpler yet genetically conserved Drosophila GAG pathways can provide a model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications. Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of meningitis in human newborn infants. The bacterial and host factors that allow this pathogen to cross the blood-brain barrier (BBB) and cause central nervous system (CNS) infection are not well understood. Here we demonstrate that GBS expresses a specific protein on its surface that can bind to sugar molecules known as glycosaminoglycans (GAGs) on the surface of brain capillary cells, initiating infection of the BBB. Fruit flies or mice genetically engineered to have reduced GAGs showed decreased dissemination of GBS into the brain tissues following experimental infection. Our results identify a role for bacterial-GAG interactions in the pathogenesis of newborn meningitis and highlight how the simpler yet genetically conserved fruit fly GAG biosynthetic pathways make the fruit fly a good model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications.
Collapse
|
49
|
Carrasco-Marín E, Fernández-Prieto L, Rodriguez-Del Rio E, Madrazo-Toca F, Reinheckel T, Saftig P, Alvarez-Dominguez C. LIMP-2 links late phagosomal trafficking with the onset of the innate immune response to Listeria monocytogenes: a role in macrophage activation. J Biol Chem 2011; 286:3332-41. [PMID: 21123180 PMCID: PMC3030339 DOI: 10.1074/jbc.m110.146761] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/21/2010] [Indexed: 11/06/2022] Open
Abstract
The innate immune response to Listeria monocytogenes depends on phagosomal bacterial degradation by macrophages. Here, we describe the role of LIMP-2, a lysosomal type III transmembrane glycoprotein and scavenger-like protein, in Listeria phagocytosis. LIMP-2-deficient mice display a macrophage-related defect in Listeria innate immunity. They produce less acute phase pro-inflammatory cytokines/chemokines, MCP-1, TNF-α, and IL-6 but normal levels of IL-12, IL-10, and IFN-γ and a 25-fold increase in susceptibility to Listeria infection. This macrophage defect results in a low listericidal potential, poor response to TNF-α activation signals, impaired phago-lysosome transformation into antigen-processing compartments, and uncontrolled LM cytosolic growth that fails to induce normal levels of acute phase pro-inflammatory cytokines. LIMP-2 transfection of CHO cells confirmed that LIMP-2 participates in the degradation of Listeria within phagosomes, controls the late endosomal/lysosomal fusion machinery, and is linked to the activation of Rab5a. Therefore, the role of LIMP-2 appears to be connected to the TNF-α-dependent and early activation of Listeria macrophages through internal signals linking the regulation of late trafficking events with the onset of the innate Listeria immune response.
Collapse
Affiliation(s)
- Eugenio Carrasco-Marín
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Lorena Fernández-Prieto
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Estela Rodriguez-Del Rio
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Fidel Madrazo-Toca
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| | - Thomas Reinheckel
- the Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Paul Saftig
- the Biochemical Institute, Christian-Albrechts University-Kiel, D-24098 Kiel, Germany, and
| | - Carmen Alvarez-Dominguez
- From the Servicio de Inmunología, Hospital Santa Cruz de Liencres y Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, 39120 Liencres, Spain
| |
Collapse
|
50
|
Abstract
To cause infections, microbial pathogens elaborate a multitude of factors that interact with host components. Using these host–pathogen interactions to their advantage, pathogens attach, invade, disseminate, and evade host defense mechanisms to promote their survival in the hostile host environment. Many viruses, bacteria, and parasites express adhesins that bind to cell surface heparan sulfate proteoglycans (HSPGs) to facilitate their initial attachment and subsequent cellular entry. Some pathogens also secrete virulence factors that modify HSPG expression. HSPGs are ubiquitously expressed on the cell surface of adherent cells and in the extracellular matrix. HSPGs are composed of one or several heparan sulfate (HS) glycosaminoglycan chains attached covalently to specific core proteins. For most intracellular pathogens, cell surface HSPGs serve as a scaffold that facilitates the interaction of microbes with secondary receptors that mediate host cell entry. Consistent with this mechanism, addition of HS or its pharmaceutical functional mimic, heparin, inhibits microbial attachment and entry into cultured host cells, and HS-binding pathogens can no longer attach or enter cultured host cells whose HS expression has been reduced by enzymatic treatment or chemical mutagenesis. In pathogens where the specific HS adhesin has been identified, mutant strains lacking HS adhesins are viable and show normal growth rates, suggesting that the capacity to interact with HSPGs is strictly a virulence activity. The goal of this chapter is to provide a mechanistic overview of our current understanding of how certain microbial pathogens subvert HSPGs to promote their infection, using specific HSPG–pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Mauro S.G. Pavão
- , Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco 255, Rio de Janeiro, 21941-913 Rio de Janeiro Brazil
| |
Collapse
|