1
|
Armstrong ZR, Alonso J, Stanton V, Patel N, Zogaj X, Cocioba SS, Klose KE. Mobilizable shuttle vectors with fluorescent markers functional across different species of bacteria. Appl Environ Microbiol 2025:e0004525. [PMID: 40353662 DOI: 10.1128/aem.00045-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/13/2025] [Indexed: 05/14/2025] Open
Abstract
Chromophore-containing proteins (CCPs), including fluorescent and non-fluorescent (chromoproteins), have been widely used in microbiological research. However, several roadblocks often limit their use in non-model bacterial species, including efficient transformation, suitable plasmid origins of replication, and optimal promoter choice. Here, we have engineered a set of 32 shuttle plasmids designed to overcome these roadblocks in an effort to streamline this process for future research. We have selected eight different CCPs: eforCP, YukonOFP, DasherGFP, tinsel Purple, aeBlue, FuGFP, super-folder GFP, and super-folder Cherry2. To broaden the potential host range, we utilized two distinct backbones with p15a either fused to a Francisella origin (FnOri) or to the broad host origin RSF1010 and included a transfer origin (oriT) to facilitate transformation via conjugation. Moreover, we have created versions of each vector, which confer resistance to either kanamycin or chloramphenicol. Lastly, to enable promoter-swapping, we engineered the constitutive pJ23100 promoter element to be flanked by BsaI sites, thereby enabling promoter exchange by the Golden Gate assembly to evaluate CCP expression with different host promoters. To demonstrate the usability of the pKEK-Chrom plasmid series, we evaluated their expression in Escherichia coli, Shewanella oneidensis, and Vibrio alginolyticus. We further demonstrated the utility of promoter swapping in Francisella novicida and validated the functionality of the RSF1010 origin in Acinetobacter baumannii. In summary, the pKEK-Chrom plasmid series provides a palette of different CCPs that streamline their use in non-model gram-negative bacteria. IMPORTANCE Chromophore-containing proteins (CCPs), including both fluorescent proteins and pigment-producing (non-fluorescent) chromoproteins, have become invaluable tools for microbial research. However, their successful implementation in understudied bacterial species lacking established genetic tools often requires substantial time and resources. Our goal was to develop a set of plasmid-based vectors that could streamline CCP expression in gram-negative bacteria. To do so, we developed a set of 32 plasmid vectors, the pKEK-Chrom plasmid series, specifically designed to facilitate CCP expression across different bacteria, including Escherichia coli, Vibrio alginolyticus, Shewanella oneidensis, Francisella novicida, and Acinetobacter baumannii.
Collapse
Affiliation(s)
- Zackary R Armstrong
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Janie Alonso
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Venus Stanton
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Nikhil Patel
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | - Xhavit Zogaj
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| | | | - Karl E Klose
- South Texas Center for Emerging Infectious Diseases and Department of Molecular Microbiology and Immunology, University of Texas San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Marecic V, Shevchuk O, Link M, Viduka I, Ozanic M, Kostanjsek R, Mihelcic M, Antonic M, Jänsch L, Stulik J, Santic M. Francisella novicida-Containing Vacuole within Dictyostelium discoideum: Isolation and Proteomic Characterization. Microorganisms 2024; 12:1949. [PMID: 39458259 PMCID: PMC11509842 DOI: 10.3390/microorganisms12101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type. Shortly after the infection of mammalian cells, the bacterium escapes the phagosome into the cytosol, where it replicates. In contrast, in the amoebae Acanthamoeba castellanii and Hartmannella vermiformis, the bacterium replicates within the membrane-bound vacuole. In recent years, the amoeba Dictyostelium discoideum has emerged as a powerful model to study the intracellular cycle and virulence of many pathogenic bacteria. In this study, we used D. discoideum as a model for the infection and isolation of Francisella novicida-containing vacuoles (FCVs) formed after bacteria invade the amoeba. Our results showed that F. novicida localized in a vacuole after invading D. discoideum. Here, we developed a method to isolate FCV and determined its composition by proteomic analyses. Proteomic analyses revealed 689 proteins, including 13 small GTPases of the Rab family. This is the first evidence of F. novicida-containing vacuoles within amoeba, and this approach will contribute to our understanding of host-pathogen interactions and the process of pathogen vacuole formation, as vacuoles containing bacteria represent direct contact between pathogens and their hosts. Furthermore, this method can be translocated on other amoeba models.
Collapse
Affiliation(s)
- Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Olga Shevchuk
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, 45147 Essen, Germany;
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (M.L.); (J.S.)
| | - Ina Viduka
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Rok Kostanjsek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mirna Mihelcic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Masa Antonic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (M.L.); (J.S.)
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Sheshko V, Link M, Golovliov I, Balonova L, Stulik J. Utilization of a tetracycline-inducible system for high-level expression of recombinant proteins in Francisella tularensis LVS. Plasmid 2021; 115:102564. [PMID: 33610608 DOI: 10.1016/j.plasmid.2021.102564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Francisella tularensis is a Gram-negative intracellular pathogen causing tularemia. A number of its potential virulence factors have been identified, but their biology and functions are not precisely known. Understanding the biological and immunological functions of these proteins requires adequate genetic tools for homologous and heterologous expression of cloned genes, maintaining both original structure and post-translational modifications. Here, we report the construction of a new multipurpose shuttle plasmid - pEVbr - which can be used for high-level expression in F. tularensis. The pEVbr plasmid has been constructed by modifying the TetR-regulated expression vector pEDL17 (LoVullo, 2012) that includes (i) a strong F. tularensis bfr promoter, and (ii) two tet operator sequences cloned into the promoter. The cloned green fluorescent protein (GFP), used as a reporter, demonstrated almost undetectable basal expression level under uninduced conditions and a highly dynamic dose-dependent response to the inducer. The utility of the system was further confirmed by cloning the gapA and FTT_1676 genes into the pEVbr vector and quantifying proteins expression in F. tularensis LVS, as well as by studying post-translational modification of the cloned genes. This study demonstrates that high levels of recombinant native-like Francisella proteins can be produced in Francisella cells. Hence, this system may be beneficial for the analysis of protein function and the development of new treatments and vaccines.
Collapse
Affiliation(s)
- Valeria Sheshko
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Igor Golovliov
- Department of Clinical Microbiology, Umeå University, SE-901 85 Umeå, Sweden
| | - Lucie Balonova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Marakasova E, Ii A, Nelson KT, van Hoek ML. Proteome Wide Profiling of N-ε-Lysine Acetylation Reveals a Novel Mechanism of Regulation of the Chitinase Activity in Francisella novicida. J Proteome Res 2020; 19:1409-1422. [PMID: 32056440 DOI: 10.1021/acs.jproteome.9b00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Francisella tularensis is a Gram-negative bacterium that causes the zoonotic disease tularemia. The historical development of tularemia as a biological weapon has led to it being characterized by the CDC as a category A biothreat agent. Neither posttranslational modification (PTM) of proteins, in particular lysine acetylation, in Francisella nor its subsequent regulation of the protein activity has been well studied. In this work, we analyze N-ε-lysine acetylation of the F. tularensis ssp. novicida proteome by mass spectrometry for the first time. To create a comprehensive acetylation profile, we enriched protein acetylation using two approaches: (1) the addition of glucose or acetate into the culture medium and (2) direct chemical acetylation of N-ε-lysines with acetyl phosphate. We discovered 280 acetylated proteins with 1178 acetylation sites in the F. tularensis ssp. novicida strain U112. Lysine acetylation is an important PTM that regulates multiple cellular processes in bacteria, including metabolism, transcription, translation, stress response, and protein folding. We discovered that Francisella chitinases A and B are acetylated naturally and when chemically induced by acetyl phosphate. Moreover, chemical overacetylation of chitinases results in silencing of the enzymatic activity. Our findings suggest a novel mechanism of posttranslational regulation of the chitinase activity and that acetylation may play a role in Francisella's regulation of the protein activity.
Collapse
Affiliation(s)
- Ekaterina Marakasova
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| | - Alexandra Ii
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| | - Kristina T Nelson
- Chemical and Proteomic Mass Spectrometry Core Facility, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| |
Collapse
|
5
|
Tlapák H, Köppen K, Rydzewski K, Grunow R, Heuner K. Construction of a New Phage Integration Vector pFIV-Val for Use in Different Francisella Species. Front Cell Infect Microbiol 2018; 8:75. [PMID: 29594068 PMCID: PMC5861138 DOI: 10.3389/fcimb.2018.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
We recently identified and described a putative prophage on the genomic island FhaGI-1 located within the genome of Francisella hispaniensis AS02-814 (F. tularensis subsp. novicida-like 3523). In this study, we constructed two variants of a Francisella phage integration vector, called pFIV1-Val and pFIV2-Val (Francisella Integration Vector-tRNAVal-specific), using the attL/R-sites and the site-specific integrase (FN3523_1033) of FhaGI-1, a chloramphenicol resistance cassette and a sacB gene for counter selection of transformants against the vector backbone. We inserted the respective sites and genes into vector pUC57-Kana to allow for propagation in Escherichia coli. The constructs generated a circular episomal form in E. coli which could be used to transform Francisella spp. where FIV-Val stably integrated site specifically into the tRNAVal gene of the genome, whereas pUC57-Kana is lost due to counter selection. Functionality of the new vector was demonstrated by the successfully complementation of a Francisella mutant strain. The vectors were stable in vitro and during host-cell infection without selective pressure. Thus, the vectors can be applied as a further genetic tool in Francisella research, expanding the present genetic tools by an integrative element. This new element is suitable to perform long-term experiments with different Francisella species.
Collapse
Affiliation(s)
- Hana Tlapák
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kristin Köppen
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Kerstin Rydzewski
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Klaus Heuner
- Division 2 (ZBS 2), Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
6
|
Abstract
UNLABELLED The study of many important intracellular bacterial pathogens requires an understanding of how specific virulence factors contribute to pathogenesis during the infection of host cells. This requires tools to dissect gene function, but unfortunately, there is a lack of such tools for research on many difficult-to-study, or understudied, intracellular pathogens. Riboswitches are RNA-based genetic control elements that directly modulate gene expression upon ligand binding. Here we report the application of theophylline-sensitive synthetic riboswitches to induce protein expression in the intracellular pathogen Francisella. We show that this system can be used to activate the bacterial expression of the reporter β-galactosidase during growth in rich medium. Furthermore, we applied this system to control the expression of green fluorescent protein during intracellular infection by the addition of theophylline directly to infected macrophages. Importantly, we could control the expression of a novel endogenous protein required for growth under nutrient-limiting conditions and replication in macrophages, FTN_0818. Riboswitch-mediated control of FTN_0818 rescued the growth of an FTN_0818 mutant in minimal medium and during macrophage infection. This is the first demonstration of the use of a synthetic riboswitch to control an endogenous gene required for a virulence trait in an intracellular bacterium. Since this system can be adapted to diverse bacteria, the ability to use riboswitches to regulate intracellular bacterial gene expression will likely facilitate the in-depth study of the virulence mechanisms of numerous difficult-to-study intracellular pathogens such as Ehrlichia chaffeensis, Anaplasma phagocytophilum, and Orientia tsutsugamushi, as well as future emerging pathogens. IMPORTANCE Determining how specific bacterial genes contribute to virulence during the infection of host cells is critical to understanding how pathogens cause disease. This can be especially challenging with many difficult-to-study intracellular pathogens. Riboswitches are RNA-based genetic control elements that can be used to help dissect gene function, especially since they can be used in a broad range of bacteria. We demonstrate the utility of riboswitches, and for the first time show that riboswitches can be used to functionally control a bacterial gene that is critical to the ability of a pathogen to cause disease, during intracellular infection. Since this system can be adapted to diverse bacteria, riboswitches will likely facilitate the in-depth study of the virulence mechanisms of numerous difficult-to-study intracellular pathogens, as well as future emerging pathogens.
Collapse
|
7
|
Abstract
There are a number of genetic tools available for studying Francisella tularensis, the etiological agent of tularemia; however, there is no effective inducible or repressible gene expression system. Here, we describe inducible and repressible gene expression systems for F. tularensis based on the Tet repressor, TetR. For the inducible system, a tet operator sequence was cloned into a modified F. tularensis groESL promoter sequence and carried in a plasmid that constitutively expressed TetR. To monitor regulation the luminescence operon, luxCDABE, was cloned under the hybrid Francisella tetracycline-regulated promoter (FTRp), and transcription was initiated with addition of anhydrotetracycline (ATc), which binds TetR and alleviates TetR association with tetO. Expression levels measured by luminescence correlated with ATc inducer concentrations ranging from 20 to 250 ng ml(-1). In the absence of ATc, luminescence was below the level of detection. The inducible system was also functional during the infection of J774A.1 macrophages, as determined by both luminescence and rescue of a mutant strain with an intracellular growth defect. The repressible system consists of FTRp regulated by a reverse TetR mutant (revTetR), TetR r1.7. Using this system with the lux reporter, the addition of ATc resulted in decreased luminescence, while in the absence of ATc the level of luminescence was not significantly different from that of a construct lacking TetR r1.7. Utilizing both systems, the essentiality of SecA, the protein translocase ATPase, was confirmed, establishing that they can effectively regulate gene expression. These two systems will be invaluable in exploring F. tularensis protein function.
Collapse
|
8
|
Zogaj X, Klose KE. Genetic manipulation of francisella tularensis. Front Microbiol 2011; 1:142. [PMID: 21607086 PMCID: PMC3095392 DOI: 10.3389/fmicb.2010.00142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a Category A select agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.
Collapse
Affiliation(s)
- Xhavit Zogaj
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio San Antonio, TX, USA
| | | |
Collapse
|
9
|
Identification and characterization of novel and potent transcription promoters of Francisella tularensis. Appl Environ Microbiol 2010; 77:1608-18. [PMID: 21193666 DOI: 10.1128/aem.01862-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two alternative promoter trap libraries, based on the green fluorescence protein (gfp) reporter and on the chloramphenicol acetyltransferase (cat) cassette, were constructed for isolation of potent Francisella tularensis promoters. Of the 26,000 F. tularensis strain LVS gfp library clones, only 3 exhibited visible fluorescence following UV illumination and all appeared to carry the bacterioferritin promoter (Pbfr). Out of a total of 2,000 chloramphenicol-resistant LVS clones isolated from the cat promoter library, we arbitrarily selected 40 for further analysis. Over 80% of these clones carry unique F. tularensis DNA sequences which appear to drive a wide range of protein expression, as determined by specific chloramphenicol acetyltransferase (CAT) Western dot blot and enzymatic assays. The DNA sequence information for the 33 unique and novel F. tularensis promoters reported here, along with the results of in silico and primer extension analyses, suggest that F. tularensis possesses classical Escherichia coli σ(70)-related promoter motifs. These motifs include the -10 (TATAAT) and -35 [TTGA(C/T)A] domains and an AT-rich region upstream from -35, reminiscent of but distinct from the E. coli upstream region that is termed the UP element. The most efficient promoter identified (Pbfr) appears to be about 10 times more potent than the F. tularensis groEL promoter and is probably among the strongest promoters in F. tularensis. The battery of promoters identified in this work will be useful, among other things, for genetic manipulation in the background of F. tularensis intended to gain better understanding of the mechanisms involved in pathogenesis and virulence, as well as for vaccine development studies.
Collapse
|
10
|
Santiago AE, Cole LE, Franco A, Vogel SN, Levine MM, Barry EM. Characterization of rationally attenuated Francisella tularensis vaccine strains that harbor deletions in the guaA and guaB genes. Vaccine 2009; 27:2426-36. [PMID: 19368784 PMCID: PMC2716139 DOI: 10.1016/j.vaccine.2009.02.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 12/23/2022]
Abstract
Francisella tularensis, the etiologic agent of tularemia, can cause severe and fatal infection after inhalation of as few as 10 -- 100CFU. F. tularensis is a potential bioterrorism agent and, therefore, a priority for countermeasure development. Vaccination with the live vaccine strain (LVS), developed from a Type B strain, confers partial protection against aerosal exposure to the more virulent Type A strains and provides proof of principle that a live attenuated vaccine strain may be efficacious. However LVS suffers from several notable drawbacks that have prevented its licensure and widespread use. To address the specific deficiencies that render LVS a sub-optimal tularemia vaccine, we engineered F. tularensis LVS strains with targeted deletions in the guaA or guaB genes that encode critical enzymes in the guanine nucleotide biosynthetic pathway. F. tularensis LVSDeltaguaA and LVSDeltaguaB mutants were guanine auxotrophs and were highly attenuated in a mouse model of infection. While the mutants failed to replicate in macrophages, a robust proinflammatory cytokine response, equivalent to that of the parental LVS, was elicited. Mice vaccinated with a single dose of the F. tularensis LVSDeltaguaA or LVSDeltaguaB mutant were fully protected against subsequent lethal challenge with the LVS parental strain. These findings suggest the specific deletion of these target genes could generate a safe and efficacious live attenuated vaccine.
Collapse
Affiliation(s)
- Araceli E. Santiago
- Center for Vaccine Development, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Leah E. Cole
- Department of Microbiology and Immunology, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Augusto Franco
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, CRB2 Bldg. Suite 1M.04, 1550 Orleans Street, Baltimore, MD 21231
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| | - Eileen M. Barry
- Center for Vaccine Development, University of Maryland, Baltimore 685 West Baltimore Street, HSF1, 480 Baltimore, MD 21201
| |
Collapse
|
11
|
Horzempa J, Carlson PE, O'Dee DM, Shanks RMQ, Nau GJ. Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol 2008; 8:172. [PMID: 18842136 PMCID: PMC2576331 DOI: 10.1186/1471-2180-8-172] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 10/08/2008] [Indexed: 01/06/2023] Open
Abstract
Background After infecting a mammalian host, the facultative intracellular bacterium, Francisella tularensis, encounters an elevated environmental temperature. We hypothesized that this temperature change may regulate genes essential for infection. Results Microarray analysis of F. tularensis LVS shifted from 26°C (environmental) to 37°C (mammalian) showed ~11% of this bacterium's genes were differentially-regulated. Importantly, 40% of the protein-coding genes that were induced at 37°C have been previously implicated in virulence or intracellular growth of Francisella in other studies, associating the bacterial response to this temperature shift with pathogenesis. Forty-four percent of the genes induced at 37°C encode proteins of unknown function, suggesting novel Francisella virulence traits are regulated by mammalian temperature. To explore this possibility, we generated two mutants of loci induced at 37°C [FTL_1581 and FTL_1664 (deoB)]. The FTL_1581 mutant was attenuated in a chicken embryo infection model, which was likely attributable to a defect in survival within macrophages. FTL_1581 encodes a novel hypothetical protein that we suggest naming temperature-induced, virulence-associated locus A, tivA. Interestingly, the deoB mutant showed diminished entry into mammalian cells compared to wild-type LVS, including primary human macrophages and dendritic cells, the macrophage-like RAW 264.7 line, and non-phagocytic HEK-293 cells. This is the first study identifying a Francisella gene that contributes to uptake into both phagocytic and non-phagocytic host cells. Conclusion Our results provide new insight into mechanisms of Francisella virulence regulation and pathogenesis. F. tularensis LVS undergoes considerable gene expression changes in response to mammalian body temperature. This temperature shift is important for the regulation of genes that are critical for the pathogenesis of Francisella. Importantly, the compilation of temperature-regulated genes also defines a rich collection of novel candidate virulence determinants, including tivA (FTL_1581). An analysis of tivA and deoB (FTL_1664) revealed that these genes contribute to intracellular survival and entry into mammalian cells, respectively.
Collapse
Affiliation(s)
- Joseph Horzempa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
12
|
RipA, a cytoplasmic membrane protein conserved among Francisella species, is required for intracellular survival. Infect Immun 2008; 76:4934-43. [PMID: 18765722 DOI: 10.1128/iai.00475-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to replicate within alveolar epithelial cell lines. One such strain isolated from this screen contained an insertion in the gene FTL_1914, which is conserved among all sequenced Francisella species yet lacks significant homology to any gene with known function. A deletion strain lacking FTL_1914 was constructed. This strain did not replicate in either epithelial or macrophage-like cells, and intracellular replication was restored by the wild-type allele in trans. Based on the deletion mutant phenotype, FTL_1914 was termed ripA (required for intracellular proliferation, factor A). Following uptake by J774.A1 cells, F. tularensis LVS Delta ripA colocalized with LAMP-1 then escaped the phagosome at the same rate and frequency as wild-type LVS-infected cells. Electron micrographs of the F. tularensis LVS Delta ripA mutant demonstrated the reentry of the mutant bacteria into double membrane vacuoles characteristic of autophagosomes in a process that was not dependent on replication. The F. tularensis LVS Delta ripA mutant was significantly impaired in its ability to persist in the lung and in its capacity to disseminate and colonize the liver and spleen in a mouse model of pulmonary tularemia. The RipA protein was expressed during growth in laboratory media and localized to the cytoplasmic membrane. Thus, RipA is a cytoplasmic membrane protein conserved among Francisella species that is required for intracellular replication within the host cell cytoplasm as well as disease progression, dissemination, and virulence.
Collapse
|
13
|
Ashtekar AR, Zhang P, Katz J, Deivanayagam CCS, Rallabhandi P, Vogel SN, Michalek SM. TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J Leukoc Biol 2008; 84:1434-46. [PMID: 18708593 DOI: 10.1189/jlb.0308215] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia, a severe, debilitating disease of humans and other mammals. As this microorganism is also classified as a "category-A pathogen" and a potential biowarfare agent, there is a need for an effective vaccine. Several antigens of F. tularensis, including the heat shock protein DnaK, have been proposed for use in a potential subunit vaccine. In this study, we characterized the innate immune response of murine bone marrow-derived dendritic cells (DC) to F. tularensis DnaK. Recombinant DnaK was produced using a bacterial expression system and purified using affinity, ion-exchange, and size-exclusion chromatography. DnaK induced the activation of MAPKs and NF-kappaB in DC and the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12 p40, as well as low levels of IL-10. DnaK induced phenotypic maturation of DC, as demonstrated by an up-regulation of costimulatory molecules CD40, CD80, and CD86. DnaK stimulated DC through TLR4 and the adapters MyD88 and Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF) that mediated differential responses. DnaK induced activation of MAPKs and NF-kappaB in a MyD88- or TRIF-dependent manner. However, the presence of MyD88- and TRIF-dependent signaling pathways was essential for an optimal, DnaK-induced cytokine response in DC. In contrast, DnaK induced DC maturation in a TRIF-dependent, MyD88-independent manner. These results provide insight about the molecular interactions between an immunodominant antigen of F. tularensis and host immune cells, which is crucial for the rational design and development of a safe and efficacious vaccine against tularemia.
Collapse
Affiliation(s)
- Amit R Ashtekar
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, BBRB 258/5, Birmingham, AL 35294-2170, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Targeted inactivation of francisella tularensis genes by group II introns. Appl Environ Microbiol 2008; 74:2619-26. [PMID: 18310413 DOI: 10.1128/aem.02905-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.
Collapse
|
15
|
Meibom KL, Dubail I, Dupuis M, Barel M, Lenco J, Stulik J, Golovliov I, Sjöstedt A, Charbit A. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol 2008; 67:1384-401. [PMID: 18284578 DOI: 10.1111/j.1365-2958.2008.06139.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Intracellular bacterial pathogens generally express chaperones such as Hsp100s during multiplication in host cells, allowing them to survive potentially hostile conditions. Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularaemia. The ability of F. tularensis to multiply and survive in macrophages is considered essential for its virulence. Although previous mutant screens in Francisella have identified the Hsp100 chaperone ClpB as important for intracellular survival, no detailed study has been performed. We demonstrate here that ClpB of F. tularensis live vaccine strain (LVS) is important for resistance to cellular stress. Promoter analysis shows that the transcriptional start is preceded by a sigma32-like promoter sequence and we demonstrate that expression of clpB is induced by heat shock. This indicates that expression of clpB is dependent on the heat-shock response mediated by sigma32, the only alternative sigma-factor present in Francisella. Our studies demonstrate that ClpB contributes to intracellular multiplication in vitro, but is not essential. However, ClpB is absolutely required for Francisella to replicate in target organs and induce disease in mice. Proteomic analysis of membrane-enriched fractions shows that five proteins are recovered at lower levels in the mutant strain. The crucial role of ClpB for in vivo persistence of Francisella may be linked to its assumed function in reactivation of aggregated proteins under in vivo stress conditions.
Collapse
Affiliation(s)
- Karin L Meibom
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Characterization and application of a glucose-repressible promoter in Francisella tularensis. Appl Environ Microbiol 2008; 74:2161-70. [PMID: 18245238 DOI: 10.1128/aem.02360-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is a category A biodefense agent. The examination of gene function in this organism is limited due to the lack of available controllable promoters. Here, we identify a promoter element of F. tularensis LVS that is repressed by glucose (termed the Francisella glucose-repressible promoter, or FGRp), allowing the management of downstream gene expression. In bacteria cultured in medium lacking glucose, this promoter induced the expression of a red fluorescent protein allele, tdtomato. FGRp activity was used to produce antisense RNA of iglC, an important virulence factor, which severely reduced IglC protein levels. Cultivation in glucose-containing medium restored IglC levels, indicating the usefulness of this promoter for controlling both exogenous and chromosomal gene expression. Moreover, FGRp was shown to be active during the infection of human macrophages by using the fluorescence reporter. In this environment, the FGRp-mediated expression of antisense iglC by F. tularensis LVS resulted in reduced bacterial fitness, demonstrating the applicability of this promoter. An analysis of the genomic sequence indicated that this promoter region controls a gene, FTL_0580, encoding a hypothetical protein. A deletion analysis determined the critical sites essential for FGRp activity to be located within a 44-bp region. This is the first report of a conditional promoter and the use of antisense constructs in F. tularensis, valuable genetic tools for studying gene function both in vitro and in vivo.
Collapse
|
17
|
LoVullo ED, Sherrill LA, Perez LL, Pavelka MS. Genetic tools for highly pathogenic Francisella tularensis subsp. tularensis. MICROBIOLOGY-SGM 2007; 152:3425-3435. [PMID: 17074911 DOI: 10.1099/mic.0.29121-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper is the first detailed description of the development and use of new genetic tools specifically for the safe manipulation of highly pathogenic Francisella tularensis subsp. tularensis. Most of these tools are also demonstrated to work with other F. tularensis subspecies. Kanamycin and hygromycin resistance determinants that function as genetic markers in F. tularensis subsp. tularensis strain Schu and sets of episomal shuttle vectors that are either unstable or stably maintained in the absence of selection were developed. In addition, the hyg gene, expressed from the F. tularensis groESL promoter, was successfully used as a marker for transposon mutagenesis. This work also includes the development of sacB-based suicide plasmids expressing kanamycin resistance that can be used for electroporation-mediated allelic exchange of unmarked mutations in Schu and the F. tularensis live vaccine strain (LVS). Using these plasmids, the two predicted beta-lactamase genes, blaA and blaB, in Schu and LVS were deleted. Only the Delta blaB1 mutants had increased susceptibility to ampicillin, and this phenotype was complemented by a plasmid expressing blaB+. The results suggest that the beta-lactam antibiotic resistance phenotype of Schu and LVS is likely due to only one of the two beta-lactamase genes present and that ampicillin resistance can be used as an additional selectable marker in beta-lactamase deletion mutants. The collection of tools presented in this report will be helpful for the genetic analyses of F. tularensis subsp. tularensis pathogenesis.
Collapse
Affiliation(s)
- Eric D LoVullo
- University of Rochester Medical Center, 601 Elmwood Ave, Box 672, Rochester, NY 14642, USA
| | - Lani A Sherrill
- University of Rochester Medical Center, 601 Elmwood Ave, Box 672, Rochester, NY 14642, USA
| | - Lanyn L Perez
- University of Rochester Medical Center, 601 Elmwood Ave, Box 672, Rochester, NY 14642, USA
| | - Martin S Pavelka
- University of Rochester Medical Center, 601 Elmwood Ave, Box 672, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Twine SM, Petit MD, Shen H, Mykytczuk NCS, Kelly JF, Conlan JW. Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem Biophys Res Commun 2006; 346:999-1008. [PMID: 16781667 DOI: 10.1016/j.bbrc.2006.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/02/2006] [Indexed: 11/26/2022]
Abstract
Francisella tularensis subspecies tularensis is one of the most virulent of bacterial pathogens for humans. Protective immunity against the pathogen can be induced in humans and some, but not all, mouse strains by vaccination with live, but not killed, vaccines. In mice, this protection is mediated predominantly by CD4+ and CD8+ T cells. This is thought to be the case too for humans. Nevertheless, it is possible that successful vaccination elicits antigen-specific antibodies that can serve as correlates of protection. To test this hypothesis we examined the repertoire of antibodies induced following successful immunization of BALB/c and CH3/HeN mice versus unsuccessful vaccination of C57BL/6 and DBA\2 mice with F. tularensis Live Vaccine Strain or following unsuccessful vaccination of BALB/c mice with highly related subspecies, F. novicida. The results showed that successful vaccination elicited antibodies to at least six proteins that were not recognized by antisera from vaccinated but unprotected mice.
Collapse
Affiliation(s)
- Susan M Twine
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | | | |
Collapse
|
19
|
Maier TM, Pechous R, Casey M, Zahrt TC, Frank DW. In vivo Himar1-based transposon mutagenesis of Francisella tularensis. Appl Environ Microbiol 2006; 72:1878-85. [PMID: 16517634 PMCID: PMC1393221 DOI: 10.1128/aem.72.3.1878-1885.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the intracellular pathogen that causes human tularemia. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of entry. We report the development of a Himar1-based random mutagenesis system for F. tularensis (HimarFT). In vivo mutagenesis of F. tularensis live vaccine strain (LVS) with HimarFT occurs at high efficiency. Approximately 12 to 15% of cells transformed with the delivery plasmid result in transposon insertion into the genome. Results from Southern blot analysis of 33 random isolates suggest that single insertions occurred, accompanied by the loss of the plasmid vehicle in most cases. Nucleotide sequence analysis of rescued genomic DNA with HimarFT indicates that the orientation of integration was unbiased and that insertions occurred in open reading frames and intergenic and repetitive regions of the chromosome. To determine the utility of the system, transposon mutagenesis was performed, followed by a screen for growth on Chamberlain's chemically defined medium (CDM) to isolate auxotrophic mutants. Several mutants were isolated that grew on complex but not on the CDM. We genetically complemented two of the mutants for growth on CDM with a newly constructed plasmid containing a nourseothricin resistance marker. In addition, uracil or aromatic amino acid supplementation of CDM supported growth of isolates with insertions in pyrD, carA, or aroE1 supporting the functional assignment of genes within each biosynthetic pathway. A mutant containing an insertion in aroE1 demonstrated delayed replication in macrophages and was restored to the parental growth phenotype when provided with the appropriate plasmid in trans. Our results suggest that a comprehensive library of mutants can be generated in F. tularensis LVS, providing an additional genetic tool to identify virulence determinants required for survival within the host.
Collapse
Affiliation(s)
- Tamara M Maier
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
20
|
Havlasová J, Hernychová L, Brychta M, Hubálek M, Lenco J, Larsson P, Lundqvist M, Forsman M, Krocová Z, Stulík J, Macela A. Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 2005; 5:2090-103. [PMID: 15892173 DOI: 10.1002/pmic.200401123] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Francisella tularensis live vaccine strain infection of mice has been established as an experimental model of tularemia that is suitable for studies of immune mechanisms against the intracellular pathogen. In this study, the model was used to explore immunogenic repertoire of F. tularensis with the aim of identifying new molecules able to activate the host immune system, potential bacterial markers with vaccine, and diagnostic applications. Immunoproteomic approach based on the combination of two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry was applied. Globally, 36 different proteins were identified, which strongly reacted with sera from experimentally infected mice, including several putative virulence markers of intracellular pathogens as nucleoside diphosphate kinase, isocitrate dehydrogenase, RNA-binding protein Hfq, and molecular chaperone ClpB. Of them, 27 proteins are described for the first time as immunorelevant Francisella proteins. When comparing murine immunoproteome of F. tularensis with our previous data from human patients, 25 of the total of 50 identified murine sera immunoreactive spots were recognized by human sera collected from patients suffering from tularemia, as well. Immune sera from two Lps gene congenic strains of mice, C3H/HeN (Lpsn) and C3H/HeJ (Lpsd), represented murine immunoproteome in this study. The spectrum of immunoreactive spots detected by two-dimensional immunoblotting varied throughout the course of infection depending on murine strain. Nevertheless, the antibody patterns of the two strains showed significant homogeneity in being directed against almost identical subset of antigens.
Collapse
Affiliation(s)
- Jana Havlasová
- Proteome Center for the Study of Intracellular Parasitism of Bacteria, Purkyne Military Medical Academy, Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Maier TM, Havig A, Casey M, Nano FE, Frank DW, Zahrt TC. Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 2005; 70:7511-9. [PMID: 15574954 PMCID: PMC535190 DOI: 10.1128/aem.70.12.7511-7519.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.
Collapse
Affiliation(s)
- Tamara M Maier
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin, 8701 Watertown Plank Rd., P.O. Box 26509, Milwaukee, WI 53226-0509, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hartley MG, Green M, Choules G, Rogers D, Rees DGC, Newstead S, Sjostedt A, Titball RW. Protection afforded by heat shock protein 60 from Francisella tularensis is due to copurified lipopolysaccharide. Infect Immun 2004; 72:4109-13. [PMID: 15213156 PMCID: PMC427437 DOI: 10.1128/iai.72.7.4109-4113.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock proteins (Hsps) have attracted significant attention as protective antigens against a range of diseases caused by bacterial pathogens. However, more recently there have been suggestions that the protective response is due to the presence of peptide components other than Hsps. We have shown that mice that had been immunized with purified heat shock protein 60 (Hsp60) isolated from Francisella tularensis were protected against a subsequent challenge with some strains of the bacterium. However, this protection appeared to be due to trace amounts of lipopolysaccharide, which were too low to be detected by using the Limulus amoebocyte lysate assay. This finding raises the possibility that the protection afforded by other bacterial Hsp60 proteins may be due to trace quantities of polysaccharide antigens carried by and acting in conjunction with the Hsps.
Collapse
Affiliation(s)
- M G Hartley
- Bldg. 245, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wilts SP4 0NS, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Golovliov I, Baranov V, Krocova Z, Kovarova H, Sjöstedt A. An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 2003; 71:5940-50. [PMID: 14500514 PMCID: PMC201066 DOI: 10.1128/iai.71.10.5940-5950.2003] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Revised: 05/12/2003] [Accepted: 07/03/2003] [Indexed: 11/20/2022] Open
Abstract
The facultative intracellular bacterium Francisella tularensis is a highly virulent and contagious organism, and little is known about its intracellular survival mechanisms. We studied the intracellular localization of the attenuated human vaccine strain, F. tularensis LVS, in adherent mouse peritoneal cells, in mouse macrophage-like cell line J774A.1, and in human macrophage cell line THP-1. Confocal microscopy of infected J774A.1 cells indicated that during the first hour of infection the bacteria colocalized with the late endosomal-lysosomal glycoprotein LAMP-1, but within 3 h this colocalization decreased significantly from approximately 60% to 30%. Transmission electron microscopy revealed that >90% of bacteria were not enclosed by a phagosomal membrane after 2 h of infection, and some bacteria were in vacuoles that were only partially surrounded by a limiting membrane. Similar findings were obtained with all three host cell types. Immunoelectron microscopy performed with an F. tularensis LVS-specific polyclonal rabbit antiserum showed that the antiserum stained a thick, evenly distributed capsule-like material in bacteria grown in broth. In contrast, intracellular F. tularensis LVS cells were only marginally stained with this antiserum. Instead, most of the immunoreactive material was diffusely localized in the phagosomes or was associated with the phagosomal membrane. Our findings indicate that F. tularensis LVS is able to escape from the phagosomes of macrophages via a mechanism that may involve degradation of the phagosomal membrane.
Collapse
Affiliation(s)
- Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | |
Collapse
|
24
|
Hubálek M, Hernychová L, Havlasová J, Kasalová I, Neubauerová V, Stulík J, Macela A, Lundqvist M, Larsson P. Towards proteome database of Francisella tularensis. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 787:149-77. [PMID: 12659739 DOI: 10.1016/s1570-0232(02)00730-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The accessibility of the partial genome sequence of Francisella tularensis strain Schu 4 was the starting point for a comprehensive proteome analysis of the intracellular pathogen F. tularensis. The main goal of this study is identification of protein candidates of value for the development of diagnostics, therapeutics and vaccines. In this review, the current status of 2-DE F. tularensis database building, approaches used for identification of biologically important subsets of F. tularensis proteins, and functional and topological assignments of identified proteins using various prediction programs and database homology searches are presented.
Collapse
Affiliation(s)
- Martin Hubálek
- Proteome Center for the Study of Intracellular Parasitism of Bacteria, Purkyne Military Medical Academy, Trebesská 1575, 500 01 Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abd H, Johansson T, Golovliov I, Sandström G, Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol 2003; 69:600-6. [PMID: 12514047 PMCID: PMC152416 DOI: 10.1128/aem.69.1.600-606.2003] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Accepted: 10/15/2002] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a highly infectious, facultative intracellular bacterium which causes epidemics of tularemia in both humans and mammals at regular intervals. The natural reservoir of the bacterium is largely unknown, although it has been speculated that protozoa may harbor it. To test this hypothesis, Acanthamoeba castellanii was cocultured with a strain of F. tularensis engineered to produce green fluorescent protein (GFP) in a nutrient-rich medium. GFP fluorescence within A. castellanii was then monitored by flow cytometry and fluorescence microscopy. In addition, extracellular bacteria were distinguished from intracellular bacteria by targeting with monoclonal antibodies. Electron microscopy was used to determine the intracellular location of F. tularensis in A. castellanii, and viable counts were obtained for both extracellular and intracellular bacteria. The results showed that many F. tularensis cells were located intracellularly in A. castellanii cells. The bacteria multiplied within intracellular vacuoles and eventually killed many of the host cells. F. tularensis was found in intact trophozoites, excreted vesicles, and cysts. Furthermore, F. tularensis grew faster in cocultures with A. castellanii than it did when grown alone in the same medium. This increase in growth was accompanied by a decrease in the number of A. castellanii cells. The interaction between F. tularensis and amoebae demonstrated in this study indicates that ubiquitous protozoa might be an important environmental reservoir for F. tularensis.
Collapse
Affiliation(s)
- Hadi Abd
- Swedish Defence Research Agency, SE 901 82 Umeå, Sweden
| | | | | | | | | |
Collapse
|
26
|
Kovářová H, Halada P, Man P, Golovliov I, Kročová Z, Špaček J, Porkertová S, Nečasová R. Proteome study ofFrancisella tularensis live vaccine strain-containing phagosome inBcg/Nramp1 congenic macrophages: Resistant allele contributes to permissive environment and susceptibility to infection. Proteomics 2002. [DOI: 10.1002/1615-9861(200201)2:1<85::aid-prot85>3.0.co;2-s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Prior RG, Klasson L, Larsson P, Williams K, Lindler L, Sjöstedt A, Svensson T, Tamas I, Wren BW, Oyston PC, Andersson SG, Titball RW. Preliminary analysis and annotation of the partial genome sequence of Francisella tularensis strain Schu 4. J Appl Microbiol 2001; 91:614-20. [PMID: 11576297 DOI: 10.1046/j.1365-2672.2001.01499.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R G Prior
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wilts, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pomerantsev AP, Obuchi M, Ohara Y. Nucleotide sequence, structural organization, and functional characterization of the small recombinant plasmid pOM1 that is specific for Francisella tularensis. Plasmid 2001; 46:86-94. [PMID: 11591134 DOI: 10.1006/plas.2001.1538] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
pOM1 is a recombinant 4442-bp plasmid that includes the replicon of the Francisella novicida-like strain F6168 cryptic plasmid pFNL10 and the tetracycline resistance gene (tetC) of plasmid pBR328. pOM1 can stably replicate and is maintained in Francisella tularensis biovars tularensis, palaearctica, and palaearctica var. japonica. The replicon of pOM1 includes the ori region and the repA gene. The ori region, located upstream of the repA gene includes two sets of 31- and 13-bp direct repeats (DR), with AT-rich regions preceding each of the DRs. Two putative promoters of the repA gene were found connected with the DR regions. A 40-kDa protein was encoded by the repA gene and found essential for replication. Expression of the tetC gene is regulated by an Escherichia coli sigma(70)-like promoter and is dependent on the F. tularensis strain and its environment.
Collapse
Affiliation(s)
- A P Pomerantsev
- Department of Microbiology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | | | | |
Collapse
|
29
|
Elkins KL, Rhinehart-Jones TR, Stibitz S, Conover JS, Klinman DM. Bacterial DNA Containing CpG Motifs Stimulates Lymphocyte-Dependent Protection of Mice Against Lethal Infection with Intracellular Bacteria. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.4.2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Bacterial DNA containing unmethylated CpG motifs activates mammalian lymphocytes and macrophages to produce cytokines and polyclonal Ig. These include IFN-γ, IL-12, TNF-α, and IL-6, which are important in the control of intracellular bacterial infection. Here, we show that bacterial DNA, as well as synthetic oligonucleotides containing CpG motifs, induce protection against large lethal doses of Francisella tularensis live vaccine strain (LVS) and Listeria monocytogenes. Methylation of DNA at CpG dinucleotides or inversion of the motif abolished this protection. Surprisingly, DNA-mediated protection was highly dependent on lymphocytes, particularly B cells, as well as the production of IFN-γ. Optimal protection was elicited 2–3 days after inoculation with DNA and persisted for up to 2 wk. Further, animals surviving lethal challenge developed pathogen-specific secondary immunity. These findings indicate that host innate immune responses to bacterial DNA may contribute to the induction of protective immunity to bacteria and the subsequent development of memory.
Collapse
Affiliation(s)
- Karen L. Elkins
- *Laboratory of Mycobacteria, Division of Bacterial Products,
| | | | - Scott Stibitz
- †Laboratory of Enteric and Sexually Transmitted Diseases, Division of Bacterial Products, and
| | - Jacqueline S. Conover
- ‡Retroviral Immunology Section, Laboratory of Retrovirology, Division of Viral Products, Center for Biologics Evaluation and Research, Rockville, MD 20852
| | - Dennis M. Klinman
- ‡Retroviral Immunology Section, Laboratory of Retrovirology, Division of Viral Products, Center for Biologics Evaluation and Research, Rockville, MD 20852
| |
Collapse
|
30
|
Macellaro A, Tujulin E, Hjalmarsson K, Norlander L. Identification of a 71-kilodalton surface-associated Hsp70 homologue in Coxiella burnetii. Infect Immun 1998; 66:5882-8. [PMID: 9826369 PMCID: PMC108745 DOI: 10.1128/iai.66.12.5882-5888.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1998] [Accepted: 09/09/1998] [Indexed: 11/20/2022] Open
Abstract
A Coxiella burnetii Hsp70 homologue was identified by using an acid activation in vitro system in which protein synthesis has been followed by [35S]methionine labeling, autoradiography, and immunoblotting. The protein was one of those predominantly labeled, and the immunoblots revealed that it was recognized by anti-DnaK antibodies. The corresponding gene was isolated, and its nucleotide sequence was determined and analyzed. A single open reading frame (ORF) with a size of 1,968 bp was identified. The ORF encodes a protein containing 656 residues and having a molecular weight of 70, 800. The -10 promoter sequence was shown to be identical with the consensus heat shock sigma32 promoter sequence. The base composition at the presumed -35 region revealed an EcoRI site in the expected region, which is assumed to be located at the border of the cloned fragment. The gene was expressed in Escherichia coli as an intact protein. The C. burnetii 71-kDa protein sequence has a high degree of homology to sequences of the Hsp70 family. A comparison of sequences revealed that the similarity with Hsp70s from other intracellular bacteria, e.g., Legionella pneumophila and Francisella tularensis, as well as E. coli DnaK, is more than 80%. The homologous regions are found in the N-terminal and central parts of the protein sequence, and they include the signature patterns of the Hsp70 family of proteins. The presence of the 71-kDa protein in association with the cell wall as well as in the cytoplasm was demonstrated by the use of immunoelectron microscopy. The dual localization was verified by Western blot analysis of proteins in C. burnetii cell fractions, using purified antibodies directed to the 71-kDa protein.
Collapse
Affiliation(s)
- A Macellaro
- Department of Microbiology, Defence Research Establishment, S-901 82 Umeå, Sweden
| | | | | | | |
Collapse
|