1
|
Siddi G, Piras F, Meloni MP, Gymoese P, Torpdahl M, Fredriksson-Ahomaa M, Migoni M, Cabras D, Cuccu M, De Santis EPL, Scarano C. Hunted Wild Boars in Sardinia: Prevalence, Antimicrobial Resistance and Genomic Analysis of Salmonella and Yersinia enterocolitica. Foods 2023; 13:65. [PMID: 38201093 PMCID: PMC10778173 DOI: 10.3390/foods13010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this investigation was to evaluate Salmonella and Yersinia enterocolitica prevalence in wild boars hunted in Sardinia and further characterize the isolates and analyse antimicrobial resistance (AMR) patterns. In order to assess slaughtering hygiene, an evaluation of carcasses microbial contamination was also carried out. Between 2020 and 2022, samples were collected from 66 wild boars hunted during two hunting seasons from the area of two provinces in northern and central Sardinia (Italy). Samples collected included colon content samples, mesenteric lymph nodes samples and carcass surface samples. Salmonella and Y. enterocolitica detection was conducted on each sample; also, on carcass surface samples, total aerobic mesophilic count and Enterobacteriaceae count were evaluated. On Salmonella and Y. enterocolitica isolates, antimicrobial susceptibility was tested and whole genome sequencing was applied. Salmonella was identified in the colon content samples of 3/66 (4.5%) wild boars; isolates were S. enterica subs. salamae, S. ser. elomrane and S. enterica subs. enterica. Y. enterocolitica was detected from 20/66 (30.3%) wild boars: in 18/66 (27.3%) colon contents, in 3/66 (4.5%) mesenteric lymph nodes and in 3/49 (6.1%) carcass surface samples. In all, 24 Y. enterocolitica isolates were analysed and 20 different sequence types were detected, with the most common being ST860. Regarding AMR, no resistance was detected in Salmonella isolates, while expected resistance towards β-lactams (blaA gene) and streptogramin (vatF gene) was observed in Y. enterocolitica isolates (91.7% and 4.2%, respectively). The low presence of AMR is probably due to the low anthropic impact in the wild areas. Regarding the surface contamination of carcasses, values (mean ± standard deviation log10 CFU/cm2) were 2.46 ± 0.97 for ACC and 1.07 ± 1.18 for Enterobacteriaceae. The results of our study confirm that wild boars can serve as reservoirs and spreaders of Salmonella and Y. enterocolitica; the finding of Y. enterocolitica presence on carcass surface highlights how meat may become superficially contaminated, especially considering that contamination is linked to the conditions related to the hunting, handling and processing of game animals.
Collapse
Affiliation(s)
- Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Pernille Gymoese
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Mia Torpdahl
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Mattia Migoni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Daniela Cabras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Mario Cuccu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Enrico Pietro Luigi De Santis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| |
Collapse
|
2
|
Zhang D, Jiang Y, Dong Y, Fu L, Zhuang L, Wu K, Dou X, Xu B, Wang C, Gong J. siRNA targeting Atp5a1 gene encoding ATPase α, the ligand of Peg fimbriae, reduced Salmonella Enteritidis adhesion. Avian Pathol 2023; 52:412-419. [PMID: 37526573 DOI: 10.1080/03079457.2023.2243842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a zoonotic pathogen that can infect both humans and animals. Among the 13 types of fimbrial operons in S. Enteritidis, the highly conserved Peg fimbriae play a crucial role in the adhesion and invasion of S. Enteritidis into host cells but are not well studied. In this study, we identified the ATP synthase subunit alpha (ATPase α) as a ligand of Peg fimbriae using ligand blotting and mass spectrometry techniques. We confirmed the in vitro binding of ATPase α to the purified adhesion protein (PegD). Furthermore, we used siRNA to suppress the expression of ATPase α gene Atp5a1 in Leghorn male hepatoma (LMH) cells, which resulted in a significant reduction in the adhesion rate of S. Enteritidis to the cells (P < 0.05). The findings in this study provide insight into the mechanism of S. Enteritidis infection through Peg fimbriae and highlight the importance of ATPase α in the adhesion process.RESEARCH HIGHLIGHTS Ligand blotting was performed to screen the ligand of S. Enteritidis Peg fimbriae.Binding assay confirmed that ATPase α is the ligand of the Peg fimbriae.siRNA targeting ATPase α gene (Atp5a1) significantly reduced S. Enteritidis adhesion.
Collapse
Affiliation(s)
- Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Yi Jiang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Yongyi Dong
- Jiangsu Animal Disease Prevention and Control Center, Nanjing, People's Republic of China
| | - Lixia Fu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Republic of China
| | - Linlin Zhuang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Kun Wu
- Jiangsu Animal Disease Prevention and Control Center, Nanjing, People's Republic of China
| | - Xinhong Dou
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Bu Xu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Tan X, Pan Y, Yu J, Du Y, Liu X, Ding W. Mutation in phcA Enhanced the Adaptation of Ralstonia solanacearum to Long-Term Acid Stress. Front Microbiol 2022; 13:829719. [PMID: 35722283 PMCID: PMC9204249 DOI: 10.3389/fmicb.2022.829719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial wilt, caused by the plant pathogen Ralstonia solanacearum, occurs more severely in acidified soil according to previous reports. However, R. solanacearum cannot grow well in acidic environments under barren nutrient culture conditions, especially when the pH is lower than 5. With the worsening acidification of farmland, further determination of how R. solanacearum adapts to the long-term acidic environment is worthwhile. In this study, experimental evolution was applied to evaluate the adaptability and mechanism of the R. solanacearum experimental population responding to long-term acid stress. We chose the CQPS-1 strain as the ancestor, and minimal medium (MM medium) with different pH values as the culture environment to simulate poor soil. After 1500 generations of serial passage experiments in pH 4.9 MM, acid-adapted experimental strains (denoted as C49 strains) were obtained, showing significantly higher growth rates than the growth rates of control experimental strains (serial passage experiment in pH 6.5 MM, denoted as C65 strains). Competition experiments showed that the competitive indices (CIs) of all selected clones from C49 strains were superior to the ancestor in acidic environment competitiveness. Based on the genome variation analysis and functional verification, we confirmed that loss of function in the phcA gene was associated with the acid fitness gain of R. solanacearum, which meant that the inactivation of the PhcA regulator caused by gene mutation mediated the population expansion of R. solanacearum when growing in an acidic stress environment. Moreover, the swimming motility of acid evolution strains and the phcA deletion mutant was significantly enhanced compared to CQPS-1. This work provided evidence for understanding the adaptive strategy of R. solanacearum to the long-term acidic environment.
Collapse
Affiliation(s)
- Ying Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xi Tan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yanxin Pan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jiamin Yu
- Sichuan Company of China National Tobacco Corporation, Chengdu, China
| | - Yiran Du
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiaojiao Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Wei Ding,
| |
Collapse
|
4
|
Surface Glycans Regulate Salmonella Infection-Dependent Directional Switch in Macrophage Galvanotaxis Independent of NanH. Infect Immun 2022; 90:e0051621. [PMID: 34662214 PMCID: PMC8788700 DOI: 10.1128/iai.00516-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Salmonella invades and disrupts gut epithelium integrity, creating an infection-generated electric field that can drive directional migration of macrophages, a process called galvanotaxis. Phagocytosis of bacteria reverses the direction of macrophage galvanotaxis, implicating a bioelectrical mechanism to initiate life-threatening disseminations. The force that drives direction reversal of macrophage galvanotaxis is not understood. One hypothesis is that Salmonella can alter the electrical properties of the macrophages by modifying host cell surface glycan composition, which is supported by the fact that cleavage of surface-exposed sialic acids with a bacterial neuraminidase severely impairs macrophage galvanotaxis, as well as phagocytosis. Here, we utilize N-glycan profiling by nanoLC-chip QTOF mass cytometry to characterize the bacterial neuraminidase-associated compositional shift of the macrophage glycocalyx, which revealed a decrease in sialylated and an increase in fucosylated and high mannose structures. The Salmonella nanH gene, encoding a putative neuraminidase, is required for invasion and internalization in a human colonic epithelial cell infection model. To determine whether NanH is required for the Salmonella infection-dependent direction reversal, we constructed and characterized a nanH deletion mutant and found that NanH is partially required for Salmonella infection in primary murine macrophages. However, compared to wild type Salmonella, infection with the nanH mutant only marginally reduced the cathode-oriented macrophage galvonotaxis, without canceling direction reversal. Together, these findings strongly suggest that while neuraminidase-mediated N-glycan modification impaired both macrophage phagocytosis and galvanotaxis, yet to be defined mechanisms other than NanH may play a more important role in bioelectrical control of macrophage trafficking, which potentially triggers dissemination.
Collapse
|
5
|
Kim NH, Ha EJ, Ko DS, Lee CY, Kim JH, Kwon HJ. Molecular evolution of Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum in the field. Vet Microbiol 2019; 235:63-70. [PMID: 31282380 DOI: 10.1016/j.vetmic.2019.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 01/31/2023]
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid (FT) and substantial economic loss in Korea due to egg drop syndrome and mortality. Despite the extensive use of vaccines, FT still occurs in the field. Therefore, the emergence of more pathogenic SG or the recovered pathogenicity of a vaccine strain has been suspected. SpvB, an ADP-ribosyl transferase, is a major pathogenesis determinant, and the length of the polyproline linker (PPL) of SpvB affects pathogenic potency. SG strains accumulate pseudogenes in their genomes during host adaptation, and pseudogene profiling may provide evolutionary information. In this study, we found that the PPL length of Korean SG isolates varied from 11 to 21 prolines and was longer than that of a live vaccine strain, SG 9R (9 prolines). According to growth competition in chickens, the growth of an SG isolate with a PPL length of 17 prolines exceeded that of an SG isolate with a PPL length of 15 prolines. We investigated the pseudogenes of the field isolates, SG 9R and reference strains in GenBank by resequencing and comparative genomics. The pseudogene profiles of the field isolates were notably different from those of the foreign SG strains, and they were subdivided into 7 pseudogene subgroups. Collectively, the field isolates had gradually evolved by changing PPL length and acquiring additional pseudogenes. Thus, the characterization of PPL length and pseudogene profiling may be useful to understand the molecular evolution of SG and the epidemiology of FT.
Collapse
Affiliation(s)
- Nam-Hyung Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jin Ha
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Sung Ko
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung-Young Lee
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea
| | - Hyuk-Joon Kwon
- Department of Farm Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, BK21 for Veterinary Science, Seoul 08826, Republic of Korea; Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Kangwon-do 25354, Republic of Korea.
| |
Collapse
|
6
|
Sun Y, Reid B, Ferreira F, Luxardi G, Ma L, Lokken KL, Zhu K, Xu G, Sun Y, Ryzhuk V, Guo BP, Lebrilla CB, Maverakis E, Mogilner A, Zhao M. Infection-generated electric field in gut epithelium drives bidirectional migration of macrophages. PLoS Biol 2019; 17:e3000044. [PMID: 30964858 PMCID: PMC6456179 DOI: 10.1371/journal.pbio.3000044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Many bacterial pathogens hijack macrophages to egress from the port of entry to the lymphatic drainage and/or bloodstream, causing dissemination of life-threatening infections. However, the underlying mechanisms are not well understood. Here, we report that Salmonella infection generates directional electric fields (EFs) in the follicle-associated epithelium of mouse cecum. In vitro application of an EF, mimicking the infection-generated electric field (IGEF), induces directional migration of primary mouse macrophages to the anode, which is reversed to the cathode upon Salmonella infection. This infection-dependent directional switch is independent of the Salmonella pathogenicity island 1 (SPI-1) type III secretion system. The switch is accompanied by a reduction of sialic acids on glycosylated surface components during phagocytosis of bacteria, which is absent in macrophages challenged by microspheres. Moreover, enzymatic cleavage of terminally exposed sialic acids reduces macrophage surface negativity and severely impairs directional migration of macrophages in response to an EF. Based on these findings, we propose that macrophages are attracted to the site of infection by a combination of chemotaxis and galvanotaxis; after phagocytosis of bacteria, surface electrical properties of the macrophage change, and galvanotaxis directs the cells away from the site of infection.
Collapse
Affiliation(s)
- Yaohui Sun
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Courant Institute and Department of Biology, New York University, New York, New York, United States of America
| | - Brian Reid
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Fernando Ferreira
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Braga, Portugal
| | - Guillaume Luxardi
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Li Ma
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, China
| | - Kristen L. Lokken
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Kan Zhu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Gege Xu
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Yuxin Sun
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Volodymyr Ryzhuk
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Betty P. Guo
- Office of Research, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, New York, United States of America
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| |
Collapse
|
7
|
Meyer T, Renoud S, Vigouroux A, Miomandre A, Gaillard V, Kerzaon I, Prigent-Combaret C, Comte G, Moréra S, Vial L, Lavire C. Regulation of Hydroxycinnamic Acid Degradation Drives Agrobacterium fabrum Lifestyles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:814-822. [PMID: 29460677 DOI: 10.1094/mpmi-10-17-0236-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Regulatory factors are key components for the transition between different lifestyles to ensure rapid and appropriate gene expression upon perceiving environmental cues. Agrobacterium fabrum C58 (formerly called A. tumefaciens C58) has two contrasting lifestyles: it can interact with plants as either a rhizosphere inhabitant (rhizospheric lifestyle) or a pathogen that creates its own ecological niche in a plant tumor via its tumor-inducing plasmid (pathogenic lifestyle). Hydroxycinnamic acids are known to play an important role in the pathogenic lifestyle of Agrobacterium spp. but can be degraded in A. fabrum species. We investigated the molecular and ecological mechanisms involved in the regulation of A. fabrum species-specific genes responsible for hydroxycinnamic acid degradation. We characterized the effectors (feruloyl-CoA and p-coumaroyl-CoA) and the DNA targets of the MarR transcriptional repressor, which we named HcaR, which regulates hydroxycinnamic acid degradation. Using an hcaR-deleted strain, we further revealed that hydroxycinnamic acid degradation interfere with virulence gene expression. The HcaR deletion mutant shows a contrasting competitive colonization ability, being less abundant than the wild-type strain in tumors but more abundant in the rhizosphere. This supports the view that A. fabrum C58 HcaR regulation through ferulic and p-coumaric acid perception is important for the transition between lifestyles.
Collapse
Affiliation(s)
- Thibault Meyer
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Sébastien Renoud
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Armelle Vigouroux
- 2 Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Aurélie Miomandre
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Vincent Gaillard
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Isabelle Kerzaon
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Claire Prigent-Combaret
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Gilles Comte
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Solange Moréra
- 2 Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Ludovic Vial
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| | - Céline Lavire
- 1 Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France; and
| |
Collapse
|
8
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Lee YC, Chien CF, Lin NC. Knock-out or knock-in? Converting a SacB-based gene disruption system for site-specific chromosomal integration in Pseudomonas syringae pv. tomato DC3000. J Microbiol Methods 2018; 145:50-58. [DOI: 10.1016/j.mimet.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022]
|
10
|
Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar Typhimurium. Infect Immun 2016; 84:2639-52. [PMID: 27382022 PMCID: PMC4995890 DOI: 10.1128/iai.00132-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/24/2016] [Indexed: 02/07/2023] Open
Abstract
Sodium phenylbutyrate (PBA) is a derivative of the short-chain fatty acid butyrate and is approved for treatment of urea cycle disorders and progressive familial intrahepatic cholestasis type 2. Previously known functions include histone deacetylase inhibitor, endoplasmic reticulum stress inhibitor, ammonia sink, and chemical chaperone. Here, we show that PBA has a previously undiscovered protective role in host mucosal defense during infection. Administration of PBA to Taconic mice resulted in the increase of intestinal Lactobacillales and segmented filamentous bacteria (SFB), as well as an increase of interleukin 17 (IL-17) production by intestinal cells. This effect was not observed in Jackson Laboratory mice, which are not colonized with SFB. Because previous studies showed that IL-17 plays a protective role during infection with mucosal pathogens, we hypothesized that Taconic mice treated with PBA would be more resistant to infection with Salmonella enterica serovar Typhimurium (S Typhimurium). By using the streptomycin-treated mouse model, we found that Taconic mice treated with PBA exhibited significantly lower S Typhimurium intestinal colonization and dissemination to the reticuloendothelial system, as well as lower levels of inflammation. The lower levels of S Typhimurium gut colonization and intestinal inflammation were not observed in Jackson Laboratory mice. Although PBA had no direct effect on bacterial replication, its administration reduced S Typhimurium epithelial cell invasion and lowered the induction of the proinflammatory cytokine IL-23 in macrophage-like cells. These effects likely contributed to the better outcome of infection in PBA-treated mice. Overall, our results suggest that PBA induces changes in the microbiota and in the mucosal immune response that can be beneficial to the host during infection with S Typhimurium and possibly other enteric pathogens.
Collapse
|
11
|
Abstract
Amyloid formation has been most studied in the context of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, as well as in amyloidosis. However, it is becoming increasingly clear that amyloid is also present in the healthy setting; for example nontoxic amyloid formation is important for melanin synthesis and in innate immunity. Furthermore, bacteria have mechanisms to produce functional amyloid structures with important roles in bacterial physiology and interaction with host cells. Here, we will discuss some novel aspects of fibril-forming proteins in humans and bacteria. First, the amyloid-forming properties of the antimicrobial peptide human defensin 6 (HD6) will be considered. Intriguingly, unlike other antimicrobial peptides, HD6 does not kill bacteria. However, recent data show that HD6 can form amyloid structures at the gut mucosa with strong affinity for bacterial surfaces. These so-called nanonets block bacterial invasion by entangling the bacteria in net-like structures. Next, the role of functional amyloid fibrils in human semen will be discussed. These fibrils were discovered through their property to enhance HIV infection but they may also have other yet unknown functions. Finally, the role of amyloid formation in bacteria will be reviewed. The recent finding that bacteria can make amyloid in a controlled fashion without toxic effects is of particular interest and may have implications for human disease. The role of amyloid in health and disease is beginning to be unravelled, and here, we will review some of the most recent findings in this exciting area.
Collapse
Affiliation(s)
- P Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - N R Roan
- Department of Urology, University of California, San Francisco, CA, USA.,The J. David Gladstone Institutes, San Francisco, CA, USA
| | - U Römling
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institutet, Stockholm, Sweden
| | - C L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA, USA
| | - J Münch
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm, Germany.,Ulm Peptide Pharmaceuticals, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Energy Taxis toward Host-Derived Nitrate Supports a Salmonella Pathogenicity Island 1-Independent Mechanism of Invasion. mBio 2016; 7:mBio.00960-16. [PMID: 27435462 PMCID: PMC4958259 DOI: 10.1128/mbio.00960-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Salmonella enterica serovar Typhimurium can cross the epithelial barrier using either the invasion-associated type III secretion system (T3SS-1) or a T3SS-1-independent mechanism that remains poorly characterized. Here we show that flagellum-mediated motility supported a T3SS-1-independent pathway for entering ileal Peyer’s patches in the mouse model. Flagellum-dependent invasion of Peyer’s patches required energy taxis toward nitrate, which was mediated by the methyl-accepting chemotaxis protein (MCP) Tsr. Generation of nitrate in the intestinal lumen required inducible nitric oxide synthase (iNOS), which was synthesized constitutively in the mucosa of the terminal ileum but not in the jejunum, duodenum, or cecum. Tsr-mediated invasion of ileal Peyer’s patches was abrogated in mice deficient for Nos2, the gene encoding iNOS. We conclude that Tsr-mediated energy taxis enables S. Typhimurium to migrate toward the intestinal epithelium by sensing host-derived nitrate, thereby contributing to invasion of Peyer’s patches. Nontyphoidal Salmonella serovars, such as S. enterica serovar Typhimurium, are a common cause of gastroenteritis in immunocompetent individuals but can also cause bacteremia in immunocompromised individuals. While the invasion-associated type III secretion system (T3SS-1) is important for entry, S. Typhimurium strains lacking a functional T3SS-1 can still cross the intestinal epithelium and cause a disseminated lethal infection in mice. Here we observed that flagellum-mediated motility and chemotaxis contributed to a T3SS-1-independent pathway for invasion and systemic dissemination to the spleen. This pathway required the methyl-accepting chemotaxis protein (MCP) Tsr and energy taxis toward host-derived nitrate, which we found to be generated by inducible nitric oxide synthase (iNOS) in the ileal mucosa prior to infection. Collectively, our data suggest that S. Typhimurium enhances invasion by actively migrating toward the intestinal epithelium along a gradient of host-derived nitrate emanating from the mucosal surface of the ileum.
Collapse
|
13
|
Tang T, Gao Q, Barrow P, Wang M, Cheng A, Jia R, Zhu D, Chen S, Liu M, Sun K, Yang Q, Chen X. Development and evaluation of live attenuated Salmonella vaccines in newly hatched duckings. Vaccine 2015; 33:5564-5571. [DOI: 10.1016/j.vaccine.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
|
14
|
Geng S, Liu Z, Lin Z, Barrow P, Pan Z, Li Q, Jiao X. Identification of in vivo-induced genes during infection of chickens with Salmonella enterica serovar Enteritidis. Res Vet Sci 2015; 100:1-7. [PMID: 25843894 DOI: 10.1016/j.rvsc.2015.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 02/28/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Chickens are an important source of food worldwide and are often infected with food-poisoning serovars of Salmonella enterica, frequently Salmonella Enteritidis (SE), without exhibiting clinical signs of disease. Ivi (in vivo induced) genes identified using in vivo-induced antigen technology (IVIAT) are expressed only during bacterial infection and have the potential value of identifying epidemic strains and antigens which can form the basis for sub-unit vaccine development. We applied IVIAT to SE strain 50041 and identified 42 ivi genes. Eight representative ivi genes were further confirmed by qRT-PCR as being expressed only in vivo within 48 h of infection compared with that of in vitro-cultured. Although our results indicated that the identified ivi genes are expressed only in vivo, further research is needed to elucidate the exact roles of these genes during infection and pathogenesis.
Collapse
Affiliation(s)
- Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhicheng Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhijie Lin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Paul Barrow
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
15
|
Guidot A, Jiang W, Ferdy JB, Thébaud C, Barberis P, Gouzy J, Genin S. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants. Mol Biol Evol 2014; 31:2913-28. [PMID: 25086002 DOI: 10.1093/molbev/msu229] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ralstonia solanacearum, the causal agent of a lethal bacterial wilt plant disease, infects an unusually wide range of hosts. These hosts can further be split into plants where R. solanacearum is known to cause disease (original hosts) and those where this bacterium can grow asymptomatically (distant hosts). Moreover, this pathogen is able to adapt to many plants as supported by field observations reporting emergence of strains with enlarged pathogenic properties. To investigate the genetic bases of host adaptation, we conducted evolution experiments by serial passages of a single clone of the pathogen on three original and two distant hosts over 300 bacterial generations and then analyzed the whole-genome of nine evolved clones. Phenotypic analysis of the evolved clones showed that the pathogen can increase its fitness on both original and distant hosts although the magnitude of fitness increase was greater on distant hosts. Only few genomic modifications were detected in evolved clones compared with the ancestor but parallel evolutionary changes in two genes were observed in independent evolved populations. Independent mutations in the regulatory gene efpR were selected for in three populations evolved on beans, a distant host. Reverse genetic approaches confirmed that these mutations were associated with fitness gain on bean plants. This work provides a first step toward understanding the within-host evolutionary dynamics of R. solanacearum during infection and identifying bacterial genes subjected to in planta selection. The discovery of EfpR as a determinant conditioning host adaptation of the pathogen illustrates how experimental evolution coupled with whole-genome sequencing is a potent tool to identify novel molecular players involved in central life-history traits.
Collapse
Affiliation(s)
- Alice Guidot
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Wei Jiang
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Jean-Baptiste Ferdy
- UPS-CNRS-ENFA, Laboratoire Évolution et Diversité Biologique (EDB), UMR5174, Université Paul Sabatier, Toulouse, France
| | - Christophe Thébaud
- UPS-CNRS-ENFA, Laboratoire Évolution et Diversité Biologique (EDB), UMR5174, Université Paul Sabatier, Toulouse, France
| | - Patrick Barberis
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Jérôme Gouzy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Stéphane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| |
Collapse
|
16
|
Barbau-Piednoir E, Bertrand S, Mahillon J, Roosens NH, Botteldoorn N. SYBR®Green qPCR Salmonella detection system allowing discrimination at the genus, species and subspecies levels. Appl Microbiol Biotechnol 2013; 97:9811-24. [PMID: 24113820 PMCID: PMC3825158 DOI: 10.1007/s00253-013-5234-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 01/25/2023]
Abstract
In this work, a three-level Salmonella detection system based on a combination of seven SYBR®Green qPCR was developed. This detection system discriminates Salmonella at the genus, species and subspecies levels using a single 96-well plate. The SYBR®Green qPCR assays target the invA, rpoD, iroB and safC genes, as well as the STM0296 locus, putatively coding for a cytoplasmic protein. This study includes the design of primer pairs, in silico and in situ selectivity, sensitivity, repeatability and reproducibility evaluations of the seven SYBR®Green qPCR assays. Each detection level displayed a selectivity of 100 %. This combinatory SYBR®Green qPCR system was also compared with three commercially available Salmonella qPCR detection kits. This comparison highlighted the importance of using a multi-gene detection system to be able to detect every target strain, even those with deletion or mutation of important genes.
Collapse
|
17
|
Infection with Mycobacterium avium subsp. paratuberculosis results in rapid interleukin-1β release and macrophage transepithelial migration. Infect Immun 2012; 80:3225-35. [PMID: 22778093 DOI: 10.1128/iai.06322-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pathogen processing by the intestinal epithelium involves a dynamic innate immune response initiated by pathogen-epithelial cell cross talk. Interactions between epithelium and Mycobacterium avium subsp. paratuberculosis have not been intensively studied, and it is currently unknown how the bacterium-epithelial cell cross talk contributes to the course of infection. We hypothesized that M. avium subsp. paratuberculosis harnesses host responses to recruit macrophages to the site of infection to ensure its survival and dissemination. We investigated macrophage recruitment in response to M. avium subsp. paratuberculosis using a MAC-T bovine macrophage coculture system. We show that M. avium subsp. paratuberculosis infection led to phagosome acidification within bovine epithelial (MAC-T) cells as early as 10 min, which resulted in upregulation of interleukin-1β (IL-1β) at transcript and protein levels. Within 10 min of infection, macrophages were recruited to the apical side of MAC-T cells. Inhibition of phagosome acidification or IL-1β abrogated this response, while MCP-1/CCL-2 blocking had no effect. IL-1β processing was dependent upon Ca(2+) uptake from the extracellular medium and intracellular Ca(2+) oscillations, as determined by EGTA and BAPTA-AM [1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester)] treatments. Thus, M. avium subsp. paratuberculosis is an opportunist that takes advantage of extracellular Ca(2+)-dependent phagosome acidification and IL-1β processing in order to efficiently transverse the epithelium and enter its niche--the macrophage.
Collapse
|
18
|
Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, de Jong MF, Winter MG, Winter SE, Wehkamp J, Shen B, Salzman NH, Underwood MA, Tsolis RM, Young GM, Lu W, Lehrer RI, Bäumler AJ, Bevins CL. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 2012; 337:477-81. [PMID: 22722251 DOI: 10.1126/science.1218831] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human α-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.
Collapse
Affiliation(s)
- Hiutung Chu
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
De Weirdt R, Crabbé A, Roos S, Vollenweider S, Lacroix C, van Pijkeren JP, Britton RA, Sarker S, Van de Wiele T, Nickerson CA. Glycerol supplementation enhances L. reuteri's protective effect against S. Typhimurium colonization in a 3-D model of colonic epithelium. PLoS One 2012; 7:e37116. [PMID: 22693569 PMCID: PMC3365044 DOI: 10.1371/journal.pone.0037116] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/15/2012] [Indexed: 01/12/2023] Open
Abstract
The probiotic effects of Lactobacillus reuteri have been speculated to partly depend on its capacity to produce the antimicrobial substance reuterin during the reduction of glycerol in the gut. In this study, the potential of this process to protect human intestinal epithelial cells against infection with Salmonella enterica serovar Typhimurium was investigated. We used a three-dimensional (3-D) organotypic model of human colonic epithelium that was previously validated and applied to study interactions between S. Typhimurium and the intestinal epithelium that lead to enteric salmonellosis. Using this model system, we show that L. reuteri protects the intestinal cells against the early stages of Salmonella infection and that this effect is significantly increased when L. reuteri is stimulated to produce reuterin from glycerol. More specifically, the reuterin-containing ferment of L. reuteri caused a reduction in Salmonella adherence and invasion (1 log unit), and intracellular survival (2 log units). In contrast, the L. reuteri ferment without reuterin stimulated growth of the intracellular Salmonella population with 1 log unit. The short-term exposure to reuterin or the reuterin-containing ferment had no observed negative impact on intestinal epithelial cell health. However, long-term exposure (24 h) induced a complete loss of cell-cell contact within the epithelial aggregates and compromised cell viability. Collectively, these results shed light on a potential role for reuterin in inhibiting Salmonella-induced intestinal infections and may support the combined application of glycerol and L. reuteri. While future in vitro and in vivo studies of reuterin on intestinal health should fine-tune our understanding of the mechanistic effects, in particular in the presence of a complex gut microbiota, this the first report of a reuterin effect on the enteric infection process in any mammalian cell type.
Collapse
Affiliation(s)
- Rosemarie De Weirdt
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Center for Infectious Diseases and Vaccinology - The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Stefan Roos
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Christophe Lacroix
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Jan Peter van Pijkeren
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert A. Britton
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Shameema Sarker
- Center for Infectious Diseases and Vaccinology - The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Ghent, Belgium
| | - Cheryl A. Nickerson
- Center for Infectious Diseases and Vaccinology - The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bhagwat AA, Kannan P, Leow YN, Dharne M, Smith A. Role of anionic charges of osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium SL1344 in mice virulence. Arch Microbiol 2012; 194:541-8. [PMID: 22278765 DOI: 10.1007/s00203-012-0791-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 01/17/2023]
Abstract
opgB gene of Salmonella enterica serovar Typhimurium was identified earlier in a genome-wide screen for mice virulence (Valentine et al. in Infect Immun 66:3378-3383, 1998). Although mutation in opgB resulted in avirulent Salmonella strain, how this gene contributes to pathogenesis remains unclear. Based on DNA homology, opgB is predicted to be responsible for adding phosphoglycerate residues to osmoregulated periplasmic glucans (OPGs) giving them anionic characteristics. In Escherichia coli, yet another gene, opgC, is also reported to contribute to anionic characteristics of OPGs by adding succinic acid residues. We constructed opgB, opgC, and opgBC double mutants of S. enterica serovar Typhimurium strain SL1344. As predicted opgBC mutant synthesized neutral OPGs that were devoid of any anionic substituents. However, opgB, opgC, and opgBC mutations had no significant impact on mice virulence as well as on competitive organ colonization. In low osmotic conditions, opgB, opgC, and opgBC mutants exhibited delay in growth initiation in the presence of sodium deoxycholate. Anionic substituents of OPGs from Salmonella although appear to be needed to overcome resistance of deoxycholate in hypoosmotic growth media, no evidence was found for their role in mice virulence.
Collapse
Affiliation(s)
- Arvind A Bhagwat
- Environmental Microbial and Food Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, 10300 Baltimore Avenue, Bldg. 173, BARC-E, Beltsville, MD 20705-2350, USA.
| | | | | | | | | |
Collapse
|
21
|
Radtke AL, Wilson JW, Sarker S, Nickerson CA. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One 2010; 5:e15750. [PMID: 21206750 PMCID: PMC3012082 DOI: 10.1371/journal.pone.0015750] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 02/07/2023] Open
Abstract
The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrea L. Radtke
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - James W. Wilson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Shameema Sarker
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bowden SD, Ramachandran VK, Knudsen GM, Hinton JCD, Thompson A. An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages. PLoS One 2010; 5:e13871. [PMID: 21079785 PMCID: PMC2975626 DOI: 10.1371/journal.pone.0013871] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 10/14/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice. METHODOLOGY/PRINCIPAL FINDINGS We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence. CONCLUSIONS/SIGNIFICANCE Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.
Collapse
Affiliation(s)
| | | | | | - Jay C. D. Hinton
- Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | | |
Collapse
|
23
|
Quantitative PCR-based competitive index for high-throughput screening of Salmonella virulence factors. Infect Immun 2010; 79:360-8. [PMID: 21041489 DOI: 10.1128/iai.00873-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an intracellular pathogen and a main cause of food-borne illness. In this study, a quantitative PCR (qPCR)-based competitive index (CI) method was developed to simultaneously compare the growth of multiple Salmonella strains. This method was applied to a mixture of 17 Salmonella mutants lacking regulator genes, and their survival ratios were compared based on expression of natural resistance-associated macrophage protein 1 (Nramp1). Nramp1, as a major host innate immune component, controls the intracellular replication of pathogens. Deletion strains containing unique DNA barcodes in place of regulator genes were mixed with the parental control, and the bacteria were inoculated into congenic mice differing only at Nramp1. Most of the deletion strains were outcompeted by wild-type bacteria in either mouse strain, and the lack of Nramp1 didn't increase the tested strain/parent control replication ratios. When the same collection of mutants was tested in congenic mouse-derived primary macrophages, a major Nramp1-expressing cell type, six strains (ΔhimD, ΔphoP/phoQ, ΔrpoE, ΔrpoS, ΔompR/envZ, and Δhfq strains) grew better in Nramp1(-/-) than in Nramp1(+/+) macrophages, suggesting that these six regulators may play roles in overcoming Nramp1-mediated bactericidal activity in primary macrophages. The discrepancy in survival of macrophages and that of mice suggests either that there are differences in macrophage populations or that other cell types expressing Nramp1 control Salmonella proliferation in the host. The method described allows competitive infection analysis to be carried out on complex mixtures of bacteria and provides high reproducibility from independent biological replicates.
Collapse
|
24
|
Macho AP, Guidot A, Barberis P, Beuzón CR, Genin S. A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1197-205. [PMID: 20687809 DOI: 10.1094/mpmi-23-9-1197] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, is a soil bacterium which can naturally infect a wide range of host plants through the root system. Pathogenicity relies on a type III secretion system which delivers a large set of approximately 75 type III effectors (T3E) into plant cells. On several plants, pathogenicity assays based on quantification of wilting symptoms failed to detect a significant contribution of R. solanacearum T3E in this process, thus revealing the collective effect of T3E in pathogenesis. We developed a mixed infection-based method with R. solanacearum to monitor bacterial fitness in plant leaf tissues as a virulence assay. This accurate and sensitive assay provides evidence that growth defects can be detected for T3E mutants: we identified 12 genes contributing to bacterial fitness in eggplant leaves and 3 of them were also implicated in bacterial fitness on two other hosts, tomato and bean. Contribution to fitness of several T3E appears to be host specific, and we show that some known avirulence determinants such as popP2 or avrA do provide competitive advantages on some susceptible host plants. In addition, this assay revealed that the efe gene, which directs the production of ethylene by bacteria in plant tissues, and hdfB, involved in the biosynthesis of the secondary metabolite 3-hydroxy-oxindole, are also required for optimal growth in plant leaf tissues.
Collapse
Affiliation(s)
- Alberto P Macho
- Instituto de Hortifruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | | | | | | | | |
Collapse
|
25
|
Navarre WW, Zou SB, Roy H, Xie JL, Savchenko A, Singer A, Edvokimova E, Prost LR, Kumar R, Ibba M, Fang FC. PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 2010; 39:209-21. [PMID: 20670890 PMCID: PMC2913146 DOI: 10.1016/j.molcel.2010.06.021] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/03/2010] [Accepted: 05/14/2010] [Indexed: 11/21/2022]
Abstract
We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid to a protein resembling tRNA rather than to a tRNA.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun 2009; 78:914-26. [PMID: 20028809 DOI: 10.1128/iai.01038-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) interkingdom signaling system mediates chemical communication between bacteria and their mammalian hosts. The three signals are sensed by the QseC histidine kinase (HK) sensor. Salmonella enterica serovar Typhimurium is a pathogen that uses HKs to sense its environment and regulate virulence. Salmonella serovar Typhimurium invades epithelial cells and survives within macrophages. Invasion of epithelial cells is mediated by the type III secretion system (T3SS) encoded in Salmonella pathogenicity island 1 (SPI-1), while macrophage survival and systemic disease are mediated by the T3SS encoded in SPI-2. Here we show that QseC plays an important role in Salmonella serovar Typhimurium pathogenicity. A qseC mutant was impaired in flagellar motility, in invasion of epithelial cells, and in survival within macrophages and was attenuated for systemic infection in 129x1/SvJ mice. QseC acts globally, regulating expression of genes within SPI-1 and SPI-2 in vitro and in vivo (during infection of mice). Additionally, dopamine beta-hydroxylase knockout (Dbh(-)(/)(-)) mice that do not produce Epi or NE showed different susceptibility to Salmonella serovar Typhimurium infection than wild-type mice. These data suggest that the AI-3/Epi/NE signaling system is a key factor during Salmonella serovar Typhimurium pathogenesis in vitro and in vivo. Elucidation of the role of this interkingdom signaling system in Salmonella serovar Typhimurium should contribute to a better understanding of the complex interplay between the pathogen and the host during infection.
Collapse
|
27
|
The capsule-encoding viaB locus reduces intestinal inflammation by a Salmonella pathogenicity island 1-independent mechanism. Infect Immun 2009; 77:2932-42. [PMID: 19451244 DOI: 10.1128/iai.00172-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Typhimurium elicits acute neutrophil influx in the human intestinal mucosa within 1 or 2 days after infection, resulting in inflammatory diarrhea. In contrast, no overt symptoms are observed within the first 1 or 2 weeks after infection with S. enterica serotype Typhi. Here we show that introduction of the capsule-encoding viaB locus of serotype Typhi reduced the ability of serotype Typhimurium to elicit acute intestinal inflammation in a streptomycin-pretreated mouse model. Serotype Typhimurium requires a functional invasion-associated type III secretion system (type III secretion system 1 [T3SS-1]) to elicit cecal inflammation within 48 h after infection of streptomycin-pretreated mice, and the presence of the viaB locus reduced its invasiveness for human intestinal epithelial cells in vitro. However, a reduced activity of T3SS-1 could not account for the ability of the viaB locus to attenuate cecal inflammation, because introduction of the viaB locus into an invasion-deficient serotype Typhimurium strain (invA mutant) resulted in a significant reduction of pathology and inflammatory cytokine expression in the cecum 5 days after infection of mice. We conclude that a T3SS-1-independent mechanism contributes to the ability of the viaB locus to reduce intestinal inflammation.
Collapse
|
28
|
Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun 2009; 77:3117-26. [PMID: 19380470 DOI: 10.1128/iai.00093-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella is a widespread zoonotic enteropathogen that causes gastroenteritis and fatal typhoidal disease in mammals. During systemic infection of mice, Salmonella enterica serovar Typhimurium resides and replicates in macrophages within the "Salmonella-containing vacuole" (SCV). It is surprising that the substrates and metabolic pathways necessary for growth of S. Typhimurium within the SCV of macrophages have not been identified yet. To determine whether S. Typhimurium utilized sugars within the SCV, we constructed a series of S. Typhimurium mutants that lacked genes involved in sugar transport and catabolism and tested them for replication in mice and macrophages. These mutants included a mutant with a mutation in the pfkAB-encoded phosphofructokinase, which catalyzes a key committing step in glycolysis. We discovered that a pfkAB mutant is severely attenuated for replication and survival within RAW 264.7 macrophages. We also show that disruption of the phosphoenolpyruvate:carbohydrate phosphotransferase system by deletion of the ptsHI and crr genes reduces S. Typhimurium replication within RAW 264.7 macrophages. We discovered that mutants unable to catabolize glucose due to deletion of ptsHI, crr, and glk or deletion of ptsG, manXYZ, and glk showed reduced replication within RAW 264.7 macrophages. This study proves that S. Typhimurium requires glycolysis for infection of mice and macrophages and that transport of glucose is required for replication within macrophages.
Collapse
|
29
|
Botteldoorn N, Van Coillie E, Goris J, Werbrouck H, Piessens V, Godard C, Scheldeman P, Herman L, Heyndrickx M. Limited genetic diversity and gene expression differences between egg- and non-egg-related Salmonella Enteritidis strains. Zoonoses Public Health 2009; 57:345-57. [PMID: 19486501 DOI: 10.1111/j.1863-2378.2008.01216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Salmonella Enteritidis strains of egg- and non-egg-related origin were characterized molecularly to find markers correlated with the egg-contaminating property of Salmonella Enteritidis. Isolates were examined by random amplified polymorphic DNA (RAPD), plasmid profiling and phage typing. Furthermore, the presence of 30 virulence genes was tested by PCR. In genetic fingerprinting and gene content, only small differences between the strains were found and no correlation was observed with the origin (egg-related versus non-egg-related). A major RADP group was present in both egg- and non-egg-related strains, but other smaller RAPD groups were present as well in both categories of strains. Phage types PT4 and PT21 were predominant. Differential mRNA expression levels of fimA and agfA under conditions of growth simulating the conditions during egg formation were determined by real-time RT-PCR. Although differences in fimA and agfA expression levels were observed between the strains, these could not be correlated with the origin of the strains (egg-related versus non-egg-related). The highest expression levels of agfA and fimA were only found in two non-egg-related strains, which seemed to be correlated with the presence of a 93 kb plasmid instead of the 60 kb virulence plasmid. Our results seem to indicate only a limited role for at least type I fimbriae (encoded by fim operon) in egg contamination by Salmonella Enteritidis.
Collapse
Affiliation(s)
- N Botteldoorn
- Flemish Government, Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Unit, Melle, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rodland KD, Adkins JN, Ansong C, Chowdhury S, Manes NP, Shi L, Yoon H, Smith RD, Heffron F. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella. Future Microbiol 2008; 3:625-34. [PMID: 19072180 PMCID: PMC2734448 DOI: 10.2217/17460913.3.6.625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis and, most important from the standpoint of this review, much higher throughput, allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach has enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions and new insights into virulence and expression of Salmonella proteins within host cells. One of the most significant findings is that a relatively high percentage of all the annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high-throughput mass spectrometry provides a new view of host-pathogen interactions, emphasizing the protein products and defining how protein interactions determine the outcome of infection.
Collapse
Affiliation(s)
- Karin D Rodland
- Pacific Northwest National Laboratory, Richland, WA 99354, USA, Tel.:+1 509 376 7608
| | - Joshua N Adkins
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Nathan P Manes
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Hyunjin Yoon
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Fred Heffron
- Oregon Health & Science University, Portland, OR 97239, USA Tel.:+1 503 494 6738
| |
Collapse
|
31
|
Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, Salzman N. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun 2008; 76:907-15. [PMID: 18160481 PMCID: PMC2258829 DOI: 10.1128/iai.01432-07] [Citation(s) in RCA: 345] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 11/18/2007] [Accepted: 12/10/2007] [Indexed: 11/20/2022] Open
Abstract
The commensal microbiota protects the murine host from enteric pathogens. Nevertheless, specific pathogens are able to colonize the intestinal tract and invade, despite the presence of an intact biota. Possibly, effective pathogens disrupt the indigenous microbiota, either directly through pathogen-commensal interaction, indirectly via the host mucosal immune response to the pathogen, or by a combination of these factors. This study investigates the effect of peroral Salmonella enterica serovar Typhimurium infection on the intestinal microbiota. Since the majority of the intestinal microbiota cannot be cultured by conventional techniques, molecular approaches using 16S rRNA sequences were applied. Several major bacterial groups were assayed using quantitative PCR. Administration of either the 50% lethal dose (LD(50)) or 10x LD(50) of Salmonella enterica serovar Typhimurium caused changes in the microbiota throughout the intestinal tract over the time course of infection. A 95% decrease in total bacterial number was noted in the cecum and large intestine with 10x LD(50) S. enterica serovar Typhimurium challenge at 7 days postinfection, concurrent with gross evidence of diarrhea. In addition, alterations in microbiota composition preceded the onset of diarrhea, suggesting the involvement of pathogen-commensal interactions and/or host responses unrelated to diarrhea. Microbiota alterations were not permanent and reverted to the microbiota of uninfected mice by 1 month postinfection. Infection with a Salmonella pathogenicity island 1 (SPI1) mutant did not result in microbiota alterations, while SPI2 mutant infections triggered partial changes. Neither mutant was capable of prolonged colonization or induction of mucosal inflammation. These data suggest that several Salmonella virulence factors, particularly those involved in the local mucosal host response, are required for disruption of the intestinal ecosystem.
Collapse
Affiliation(s)
- Melissa Barman
- Division of Gastroenterology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Winter SE, Raffatellu M, Wilson RP, Rüssmann H, Bäumler AJ. The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cell Microbiol 2008; 10:247-61. [PMID: 17725646 DOI: 10.1111/j.1462-5822.2007.01037.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unlike non-typhoidal Salmonella serotypes, S. enterica serotype Typhi does not elicit neutrophilic infiltrates in the human intestinal mucosa. The Vi capsule-encoding tviABCDEvexABCDE operon (viaB locus) is a S. Typhi-specific DNA region preventing production of interleukin (IL)-8 during infection of intestinal epithelial cells. We elucidated the mechanism by which the viaB locus reduces IL-8 production in human colonic epithelial (T84) cells. A S. Typhi tviABCDEvexABCDE deletion mutant, but not a tviBCDEvexABCDE deletion mutant, elicited increased IL-8 production, which could be reduced to wild-type levels by introducing the cloned tviA regulatory gene. Thus, IL-8 expression in T84 cells was modulated by the TviA regulatory protein, but not by the Vi capsular antigen. Consistent with previous reports, IL-8 secretion by T84 cells was dependent on the presence of the flagellin protein FliC. TviA reduced expression of flhDC::lacZ and fliC::lacZ transcriptional fusions and secretion of FliC in S. Typhi. Introduction of tviA into S. enterica serotype Typhimurium reduced flagellin secretion and IL-8 expression. In conclusion, the viaB locus reduces IL-8 production in T84 cells by a TviA-mediated repression of flagellin secretion. Our data suggest that changes in flagella gene regulation played an important role during evolution of the human-adapted S. Typhi.
Collapse
Affiliation(s)
- Sebastian E Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA, USA
| | | | | | | | | |
Collapse
|
33
|
Martinoli C, Chiavelli A, Rescigno M. Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 2008; 27:975-84. [PMID: 18083577 DOI: 10.1016/j.immuni.2007.10.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/12/2007] [Accepted: 10/30/2007] [Indexed: 12/30/2022]
Abstract
Secretory immunoglobulin A (SIgA) represents a first line of defense against mucosal pathogens by limiting their entrance. By using different strains of Salmonella typhimurium that target the two mechanisms of bacterial entry (microfold cell [M cell]- or dendritic cell-mediated), we demonstrated here that the distribution of bacteria after oral infection directed the type of induced immune response. M cell-penetrating invasive, but not noninvasive, S. typhimurium was found in large numbers in Peyer's patches (PPs), leading to the activation of immune cells and the release of fecal IgA. In contrast, both strains of bacteria were equally capable of reaching the mesenteric lymph node and the spleen and inducing IgG responses. These data suggest that PPs are absolutely required for the initiation of an IgA response to Salmonella, whereas they are dispensable for a systemic response. This compartmentalization could allow the fast generation of both mucosal and systemic acquired immunity to pathogens.
Collapse
Affiliation(s)
- Chiara Martinoli
- Department of Experimental Oncology, European Institute of Oncology, I-20124 Milan, Italy
| | | | | |
Collapse
|
34
|
Sun YH, Rolán HG, Tsolis RM. Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J Biol Chem 2007; 282:33897-901. [PMID: 17911114 DOI: 10.1074/jbc.c700181200] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial flagellins are potent inducers of innate immunity. Three signaling pathways have been implicated in the sensing of flagellins; these involve toll-like receptor 5 (TLR5) and the cytosolic proteins Birc1e/Naip5 and Ipaf. Although the structural basis of TLR5-flagellin interaction is known, little is known about how flagellin enters the host cell cytosol to induce signaling via Birc1e/Naip5 and Ipaf. Here we demonstrate for the first time the translocation of bacterial flagellin into the cytosol of host macrophages by the vacuolar pathogen, Salmonella enterica serotype Typhimurium. Translocation of flagellin into the host cell cytosol was directly demonstrated using beta-lactamase reporter constructs. Flagellin translocation required the Salmonella Pathogenicity Island 1 Type III secretion system (SPI-1 T3SS) but not the flagellar T3SS.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Macho AP, Zumaquero A, Ortiz-Martín I, Beuzón CR. Competitive index in mixed infections: a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. MOLECULAR PLANT PATHOLOGY 2007; 8:437-50. [PMID: 20507512 DOI: 10.1111/j.1364-3703.2007.00404.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mixed infections have been broadly applied to the study of bacterial pathogens in animals. However, the application of mixed infection-based methods in plant pathogens has been very limited. An important factor for this limitation is the different dynamics that mixed infections have been reported to show in the different types of models. Reports in systemic animal infections have shown that any bacterium has the same probability of multiplying within a mixed infection than in a single infection. However, in plant pathogens, bacterial growth in a mixed infection does not seem to reflect growth in a single infection, as growth interference takes place between the co-inoculated strains. Here we show that growth interference in mixed infection between different Pseudomonas syringae strains is not intrinsic to growth within a plant host, but dependent on the dose of inoculation. We also show that the minimal inoculation dose required to avoid interference depends on the aggressiveness of the pathogen as well as the type of virulence factor that differentiates the co-inoculated strains. This study establishes the basis for the use of mixed infection-based applications to the study of phytopathogenic bacteria. Analysis of the virulence of a type III effector mutant and an hrp regulatory mutant illustrate the increased accuracy and sensitivity of competitive index assays vs. regular growth assays. Several applications of this assay are addressed, and potential implications for this and other mixed infection-based methods are discussed.
Collapse
Affiliation(s)
- Alberto P Macho
- Departamento de Biología Celular, Genética y Fisiología, Area de Genética, Universidad de Málaga, Campus de Teatinos, Málaga E-29071, Spain
| | | | | | | |
Collapse
|
36
|
Cook P, Tötemeyer S, Stevenson C, Fitzgerald KA, Yamamoto M, Akira S, Maskell DJ, Bryant CE. Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif. Immunology 2007; 122:222-9. [PMID: 17490432 PMCID: PMC2266008 DOI: 10.1111/j.1365-2567.2007.02631.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar typhimurium (S. typhimurium) is an intracellular pathogen that causes macrophage cell death by at least two different mechanisms. Rapid cell death is dependent on the Salmonella pathogenicity island-1 protein SipB whereas delayed cell death is independent of SipB and occurs 18-24 hr post infection. Lipopolysaccharide (LPS) is essential for the delayed cell death. LPS is the main structural component of the outer membrane of Gram-negative bacteria and is recognized by Toll-like receptor 4, signalling via the adapter proteins Mal, MyD88, Tram and Trif. Here we show that S. typhimurium induces SipB-independent cell death through Toll-like receptor 4 signalling via the adapter proteins Tram and Trif. In contrast to wild type bone marrow derived macrophages (BMDM), Tram(-/-) and Trif(-/-) BMDM proliferate in response to Salmonella infection.
Collapse
Affiliation(s)
- Pamela Cook
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Jones-Carson J, McCollister BD, Clambey ET, Vázquez-Torres A. Systemic CD8 T-cell memory response to a Salmonella pathogenicity island 2 effector is restricted to Salmonella enterica encountered in the gastrointestinal mucosa. Infect Immun 2007; 75:2708-16. [PMID: 17403871 PMCID: PMC1932863 DOI: 10.1128/iai.01905-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the evolution of a systemic memory response to a mucosal pathogen, we monitored antigen-specific OT1 CD8 T-cell responses to a fusion of the SspH2 protein and the peptide SIINFEKL stably expressed from the chromosome of Salmonella enterica and loaded into the class I pathway of antigen presentation of professional phagocytes through the Salmonella pathogenicity island 2 type III secretion system (TTSS). This strategy has revealed that effector memory CD8 T cells with low levels of CD62L expression (CD62L(low)) are maintained in systemic sites months after vaccination in response to low-grade infections with Salmonella. However, the CD8 T-cell pool eventually declines. Low numbers of central memory cells surviving after prolonged resting from an antigen encounter can nevertheless reconstitute the systemic effector memory pool in a route-specific recall response to cognate antigens encountered in the gut. Accordingly, populations of CD62L(high) interleukin-7 receptor-positive progenitor central memory cells grafted into naïve mice expand in response to orally administered Salmonella expressing the chromosomal translational fusion of sspH2 and the sequence encoding the SIINFEKL peptide but fail to proliferate following systemic stimulation. Moreover, populations of systemic memory CD8 T cells restricted to Salmonella in oral vaccines selectively expand in response to cognate antigens presented by cells isolated from mesenteric lymph nodes (MLN). Together, these findings have revealed the imprinting of systemic CD8 central memory T-cell recall responses against enteropathogens by MLN. MLN restriction represents a novel mechanism by which systemic CD8 T-cell immunity is confined to periods of high risk for extraintestinal dissemination.
Collapse
Affiliation(s)
- Jessica Jones-Carson
- Department of Microbiology, UCHSC School of Medicine at Fitzsimons, University of Colorado Health Sciences Center, Aurora, CO 80010, USA.
| | | | | | | |
Collapse
|
38
|
Erickson KD, Detweiler CS. The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Mol Microbiol 2006; 62:883-94. [PMID: 17010160 PMCID: PMC2895427 DOI: 10.1111/j.1365-2958.2006.05420.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria utilize phosphorelay systems to respond to environmental or intracellular stimuli. Salmonella enterica encodes a four-step phosphorelay system that involves two sensor kinase proteins, RcsC and RcsD, and a response regulator, RcsB. The physiological stimulus for Rcs phosphorelay activation is unknown; however, Rcs-regulated genes can be induced in vitro by osmotic shock, low temperature and antimicrobial peptide exposure. In this report we investigate the role of the Rcs pathway using phylogenetic analysis and experimental techniques. Phylogenetic analysis determined that full-length RcsC- and RcsD-like proteins are generally restricted to Enterobacteriaceae species that have an enteric pathogenic or commensal relationship with the host. Experimental data show that RcsD and RcsB, in addition to RcsC, are important for systemic infection in mice and polymyxin B resistance in vitro. To identify Rcs-regulated genes that confer these phenotypes, we took advantage of our observation that RcsA, a transcription factor and binding partner of RcsB, is not required for polymyxin B resistance or survival in mice. S. enterica serovar Typhimurium oligonucleotide microarrays were used to identify 18 loci that are activated by RcsC, RcsD and RcsB but not RcsA. Five of the 18 loci encode genes that contribute to polymyxin B resistance. One of these genes, ydeI, was shown by quantitative real-time PCR to be regulated by the Rcs pathway independently of RcsA. Additionally, the stationary-phase sigma factor, RpoS (sigmaS), regulates ydeI transcription. In vivo infections show that ydeI mutants are out-competed by wild type 10- to 100-fold after oral inoculation, but are only modestly attenuated after intraperitoneal inoculation. These data indicate that ydeI is an Rcs-activated gene that plays an important role in persistent infection of mice, possibly by increasing bacterial resistance to antimicrobial peptides.
Collapse
Affiliation(s)
- Kimberly D. Erickson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
39
|
Cummings LA, Wilkerson WD, Bergsbaken T, Cookson BT. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol Microbiol 2006; 61:795-809. [PMID: 16803592 DOI: 10.1111/j.1365-2958.2006.05271.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FliC is a natural antigen recognized by the innate and adaptive immune systems during Salmonella infection in mice and humans; however, the regulatory mechanisms governing its expression in vivo are incompletely understood. Here, we use flow cytometry to quantify fliC gene expression in single bacteria. In vitro, fliC transcription was not uniformly positive; a viable fliC-negative subpopulation was also identified. Intracellular Salmonella repressed transcription of fliC and its positive regulator fliA, but constitutively transcribed the master regulator flhD; fliC repression required ClpXP protease, known to degrade FlhD. In orally infected mice, fliC transcription was anatomically restricted: Salmonella transcribed fliC in the Peyer's Patches (PP) but not in the mesenteric lymph nodes and spleen. The intracellularly transcribed pagC promoter was upregulated by Salmonella in all tissues, defining the infected PP as a unique environment that initiates expression of intracellularly induced genes and yet permits transcription of fliC. Because a single bacterium can escape the GI tract to colonize deeper tissues, heterogeneous gene expression may have important implications for Salmonella pathogenesis: FliC-positive bacteria in the PP could stimulate inflammation and facilitate the priming of FliC-specific immune responses, while FliC-negative bacteria escape host detection in the gut and spread to systemic sites of replication.
Collapse
Affiliation(s)
- Lisa A Cummings
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
40
|
Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, Coyle AJ, Flavell RA, Galán JE. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. ACTA ACUST UNITED AC 2006; 203:1407-12. [PMID: 16717117 PMCID: PMC2118315 DOI: 10.1084/jem.20060206] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Caspase-1 is activated by a variety of stimuli after the assembly of the “inflammasome,” an activating platform made up of a complex of the NOD-LRR family of proteins. Caspase-1 is required for the secretion of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and is involved in the control of many bacterial infections. Paradoxically, however, its absence has been reported to confer resistance to oral infection by Salmonella typhimurium. We show here that absence of caspase-1 or components of the inflammasome does not result in resistance to oral infection by S. typhimurium, but rather, leads to increased susceptibility to infection.
Collapse
Affiliation(s)
- Maria Lara-Tejero
- Section of Microbial Pathogenesis, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Na HS, Kim HJ, Lee HC, Hong Y, Rhee JH, Choy HE. Immune response induced by Salmonella typhimurium defective in ppGpp synthesis. Vaccine 2005; 24:2027-34. [PMID: 16356600 DOI: 10.1016/j.vaccine.2005.11.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/09/2005] [Accepted: 11/15/2005] [Indexed: 11/24/2022]
Abstract
Systemic infection by Salmonella typhimurium requires coordinated expression of virulence genes found primarily in Salmonella Pathogenecity Islands (SPIs). We have previously reported that the intracellular signal that induces these virulence genes is a stringent signal molecule, ppGpp [Song et al. J Biol Chem 2003;279:34183]. In this study, we found that relA and spoT double mutant Salmonella (DeltappGpp strain), which is defective in ppGpp synthesis, was virtually avirulent in BALB/c mice. Subsequently, the live vaccine potential of the avirulent DeltappGpp Salmonella strain was determined. A single immunization with live DeltappGpp Salmonella efficiently protected mice from challenge with wild-type Salmonella at a dose 10(6)-fold above the LD50 30 days after immunization. Various assays revealed that immunization of mice with the DeltappGpp strain elicited both systemic and mucosal antibody responses, in addition to cell-mediated immunity.
Collapse
Affiliation(s)
- Hee Sam Na
- Genome Research Center for Enteropathogenic Bacteria and Research Institute of Vibrio Infection, South Korea
| | | | | | | | | | | |
Collapse
|
42
|
Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, Chae JS. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology (Reading) 2005; 151:3957-3968. [PMID: 16339940 DOI: 10.1099/mic.0.28126-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella gallinarum (SG) is a non-motile host-adapted salmonella that causes fowl typhoid, a severe systemic disease responsible for significant economic losses to the poultry industry worldwide. This study describes the application of a PCR-based signature-tagged mutagenesis system to identify in vivo-essential genes of SG. Ninety-six pools representing 1152 SG mutants were screened in a natural-host chicken infection model. Twenty presumptive attenuated mutants were identified and examined further. The identity of the disrupted gene in each mutant was determined by cloning of the DNA sequences adjacent to the transposon, followed by sequencing and comparison with the bacterial genome database. In vitro and in vivo competition indices were determined for each identified mutant and a total of 18 unique, attenuating gene disruptions were identified. These mutations represented six broad genomic classes: Salmonella pathogenicity island-1 (SPI-1), SPI-2, SPI-10, SPI-13, SPI-14 and non-SPI-encoded virulence genes. SPI-13 and SPI-14 are newly identified and designated in this study. Most of the genes identified in this study were not previously believed or known to play a role in the pathogenesis of SG infection in chickens. Each STM identified mutant showed competitiveness and/or virulence defects, confirmed by in vitro and in vivo assays, and challenge tests. This study should contribute to a better understanding of the pathogenic mechanisms involved in progression of disease caused by SG, and identification of novel live vaccine candidates and new potential antibiotic targets.
Collapse
Affiliation(s)
- Devendra H Shah
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Mi-Jin Lee
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Jin-Ho Park
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - John-Hwa Lee
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Seong-Kug Eo
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Jung-Thek Kwon
- Halim Inc., 13-14 Euryang-Ri, Samgi-Myeon, Iksan 570-883, Korea
| | - Joon-Seok Chae
- Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| |
Collapse
|
43
|
Grøndahl ML, Unmack MA, Ragnarsdóttir HB, Hansen MB, Olsen JE, Skadhauge E. Effects of nitric oxide in 5-hydroxytryptamine-, cholera toxin-, enterotoxigenic Escherichia coli- and Salmonella Typhimurium-induced secretion in the porcine small intestine. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:476-84. [PMID: 16098780 DOI: 10.1016/j.cbpb.2005.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
The effects of nitric oxide (NO) in the secretory response to the endogenous secretagogue 5-hydroxytryptamine (5-HT), the enterotoxins heat-labile enterotoxigenic Escherichia coli (ETEC) toxin (LT) and cholera toxin (CT), and various cultures of ETEC and Salmonella serotype Typhimurium in the porcine small intestine (Sus scrofa) were investigated. In anaesthetized pigs, jejunal tied-off loops were instilled with 5-HT, LT, CT, various cultures of ETEC or S. Typhimurium. Pigs were given intravenously isotonic saline or isotonic saline containing the NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME). L-NAME significantly induced an increased fluid accumulation in loops induced by 5-HT, ETEC and stn-mutated S. Typhimurium. Fluid accumulation in loops instilled with wild-type S. Typhimurium was increased by L-NAME, although not significantly, while there was no effect on fluid accumulation induced by an invH-mutated isogenic strain. No significant effect of L-NAME was observed on the fluid accumulation induced by the purified enterotoxins LT and CT. The results also demonstrated a relatively large difference in the ability to induce fluid accumulation between the bacteria strains. Diastolic, systolic and mean blood pressures were significantly increased and the body temperature was significantly decreased in groups of pigs treated with L-NAME. In conclusion, the results suggest that NO has a proabsorptive effect in the intact porcine jejunum and is involved in the systemic vascular tone.
Collapse
Affiliation(s)
- Marie Louise Grøndahl
- Department of Basic Animal and Veterinary Sciences, The Royal Veterinary and Agricultural University, Grønnegårdsvej 7, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
44
|
Linehan SA, Rytkönen A, Yu XJ, Liu M, Holden DW. SlyA regulates function of Salmonella pathogenicity island 2 (SPI-2) and expression of SPI-2-associated genes. Infect Immun 2005; 73:4354-62. [PMID: 15972530 PMCID: PMC1168564 DOI: 10.1128/iai.73.7.4354-4362.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During the systemic phase of murine infection with Salmonella enterica serovar Typhimurium, bacterial virulence is correlated with the ability to grow and survive within host macrophages. Salmonella pathogenicity island 2 (SPI-2), encoding a type three secretion system, has emerged as an important contributor to Salmonella intracellular growth. SPI-2 mutants have been proposed to be more accessible than wild-type Salmonella to oxyradicals generated by the NADPH phagocyte oxidase. We performed mixed infections of mice to investigate the relationship between SPI-2 and SlyA, a transcriptional regulator that confers resistance to oxyradicals. In mixed-infection experiments, the SPI-2 null mutant was severely attenuated in virulence, whereas slyA mutants were only mildly attenuated. Surprisingly, further experiments indicated that the function of SPI-2 was partially dependent on slyA. The intracellular behavior of a slyA mutant in infected cells was consistent with inefficient SPI-2 expression, as formation of Salmonella-induced filaments and the intracellular F-actin meshwork, features that depend on SPI-2, were present at abnormally low frequencies. Furthermore, the translocated levels of the SPI-2 effector SseJ were severely reduced in a strain carrying a mutation in slyA. We used flow cytometry to investigate the role of SlyA in expression of green fluorescent protein (GFP) from transcriptional fusions with promoters of either of two other SPI-2 effector genes, sifB and sifA. The slyA mutant exhibited reduced GFP expression from both promoters. Combining mutations in slyA and other regulators of SPI-2 indicated that SlyA acts through the SsrAB two-component regulatory system. SlyA exhibits partial functional redundancy with OmpR-EnvZ and contributes to the transcriptional response to low osmolarity and the absence of calcium, two environmental stimuli that promote SPI-2 gene expression.
Collapse
Affiliation(s)
- Sheena A Linehan
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, The Flowers Building, Armstrong Road, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Bäumler AJ. The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 2005; 73:3358-66. [PMID: 15908362 PMCID: PMC1111867 DOI: 10.1128/iai.73.6.3358-3366.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/16/2004] [Accepted: 02/15/2005] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serotype Typhimurium causes human infections that can frequently be traced back through the food chain to healthy livestock whose intestine is colonized by the pathogen. Little is known about the genes important for intestinal carriage of S. enterica serotype Typhimurium in vertebrate animals. Here we characterized the role of 10 fimbrial operons, agf, fim, lpf, pef, bcf, stb, stc, std, stf, and sth, using competitive infection experiments performed in genetically susceptible (BALB/c) and resistant (CBA) mice. Deletion of agfAB, fimAICDHF, lpfABCDE, pefABCDI, bcfABCDEFG, stbABCD, stcABCD, stdAB, stfACDEFG, or sthABCDE did not reduce the ability of S. enterica serotype Typhimurium to colonize the spleen and cecum of BALB/c mice 5 days after infection. Similarly, deletion of agfAB, fimAICDHF, pefABCDI, and stfACDEFG did not result in reduced recovery of S. enterica serotype Typhimurium from fecal samples collected from infected CBA mice over a 30-day time period. However, S. enterica serotype Typhimurium strains carrying deletions in lpfABCDE, bcfABCDEFG, stbABCD, stcABCD, stdAB, or sthABCDE were recovered at significantly reduced numbers from the feces of CBA mice. There was a good correlation (R(2) = 0.9626) between competitive indices in the cecum and fecal samples of CBA mice at 30 days after infection, suggesting that the recovery of S. enterica serotype Typhimurium from fecal samples closely reflected its ability to colonize the cecum. Collectively, these data show that six fimbrial operons (lpf, bcf, stb, stc, std, and sth) contribute to long-term intestinal carriage of S. enterica serotype Typhimurium in genetically resistant mice.
Collapse
Affiliation(s)
- Eric H Weening
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | | | | | | | | | |
Collapse
|
46
|
Pizarro-Cerdá J, Tedin K. The bacterial signal molecule, ppGpp, regulates Salmonella virulence gene expression. Mol Microbiol 2005; 52:1827-44. [PMID: 15186428 DOI: 10.1111/j.1365-2958.2004.04122.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous, overlapping global regulatory systems mediate the environmental signalling controlling the virulence of Salmonella typhimurium. With both extra- and intracellular lifestyles, unravelling the mechanisms involved in regulating Salmonella pathogenesis has been complex. Here, we report a factor co-ordinating environmental signals with global regulators involved in pathogenesis. An S. typhimuriumDeltarelADeltaspoT strain deficient in guanosine tetraphosphate (ppGpp) synthesis was found to be highly attenuated in vivo and non-invasive in vitro. The DeltarelADeltaspoT strain exhibited severely reduced expression of hilA and invF, encoding major transcriptional activators required for Salmonella pathogenicity island 1 (SPI-1) gene expression and at least two other pathogenicity islands. None of the growth conditions intended to mimic the intestinal milieu was capable of inducing hilA expression in the absence of ppGpp. However, the expression of global regulators of Salmonella virulence, RpoS and PhoP/Q, and RpoS- and PhoP/Q-dependent, non-virulence-related genes was not significantly different from the wild-type strain. The results indicate that ppGpp plays a central role as a regulator of virulence gene expression in S. typhimurium and implicates ppGpp as a major factor in the environmental and host-dependent regulation of Salmonella pathogenesis.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Institut Pasteur, Unité Interactions Bactéries-Cellules, 28 Rue du Docteur Roux, F-75724 Cedex 15 Paris, France
| | | |
Collapse
|
47
|
Raffatellu M, Wilson RP, Chessa D, Andrews-Polymenis H, Tran QT, Lawhon S, Khare S, Adams LG, Bäumler AJ. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect Immun 2005; 73:146-54. [PMID: 15618149 PMCID: PMC538951 DOI: 10.1128/iai.73.1.146-154.2005] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The centisome 63 type III secretion system (T3SS-1) encoded by Salmonella pathogenicity island 1 (SPI1) mediates invasion of epithelial cells by Salmonella enterica serotype Typhimurium. Characterization of mutants lacking individual genes has revealed that T3SS-1 secreted proteins (effectors) SopE2 and SopB are required for invasion while the SipA protein accelerates entry into cells. Here we have revisited the question of which T3SS-1 effectors contribute to the invasion of epithelial cells by complementing a strain lacking all of the effector genes that are required to cause diarrhea in a calf (a sipA sopABDE2 mutant). Introduction of either the cloned sipA, the cloned sopB, or the cloned sopE2 gene increased the invasiveness of the sipA sopABDE2 mutant for nonpolarized HT-29 cells. However, a contribution of sopA or sopD to invasion was not apparent when invasion assays were performed with the nonpolarized colon carcinoma cell lines T84 and HT-29. In contrast, introduction of either the sopA, the sopB, the sopD, or the sopE2 gene increased the invasiveness of the sipA sopABDE2 mutant for polarized T84 cells. Furthermore, introduction of a plasmid carrying sipA and sopB increased the invasiveness of the sipA sopABDE2 mutant for polarized T84 cells significantly compared to the introduction of plasmids carrying only sipA or sopB. We conclude that SipA, SopA, SopB, SopD, and SopE2 contribute to S. enterica serotype Typhimurium invasion of epithelial cells in vitro.
Collapse
Affiliation(s)
- Manuela Raffatellu
- Department of Medical Microbiology and Immunology, College of Medicine, Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Waterman SR, Holden DW. Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 2003; 5:501-11. [PMID: 12864810 DOI: 10.1046/j.1462-5822.2003.00294.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.
Collapse
Affiliation(s)
- Scott R Waterman
- Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | |
Collapse
|
49
|
Abstract
M cells are located in the epithelia overlying mucosa-associated lymphoid tissues such as Peyer's patches where they function as the antigen sampling cells of the mucosal immune system. Paradoxically, some pathogens exploit M cells as a route of invasion. Here we review our current knowledge of intestinal M cells with particular emphasis on the mechanisms underlying bacterial infection of these atypical epithelial cells.
Collapse
Affiliation(s)
- M Ann Clark
- Department of Physiological Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
50
|
Salzman NH, Chou MM, de Jong H, Liu L, Porter EM, Paterson Y. Enteric salmonella infection inhibits Paneth cell antimicrobial peptide expression. Infect Immun 2003; 71:1109-15. [PMID: 12595421 PMCID: PMC148886 DOI: 10.1128/iai.71.3.1109-1115.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paneth cells, highly secretory epithelial cells found at the bases of small intestinal crypts, release a variety of microbicidal molecules, including alpha-defensins and lysozyme. The secretion of antimicrobials by Paneth cells is thought to be important in mucosal host defense against invasion by enteric pathogens. We explored whether enteric pathogens can interfere with this arm of defense. We found that oral inoculation of mice with wild-type Salmonella enterica serovar Typhimurium decreases the expression of alpha-defensins (called cryptdins in mice) and lysozyme. Oral inoculation with Salmonella serovar Typhimurium strains that are heat killed, lack the PhoP regulon, and lack the SPI1 type III secretion system or with Listeria monocytogenes does not have this effect. Salmonella may gain a specific survival advantage in the intestinal lumen by decreasing the expression of microbicidal peptides in Paneth cells through direct interactions between Salmonella and the small intestinal epithelium.
Collapse
Affiliation(s)
- Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|