1
|
Krone L, Mahankali S, Geiger T. Cytolysin A is an intracellularly induced and secreted cytotoxin of typhoidal Salmonella. Nat Commun 2024; 15:8414. [PMID: 39341826 PMCID: PMC11438861 DOI: 10.1038/s41467-024-52745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Typhoidal Salmonella enterica serovars, such as Typhi and Paratyphi A, cause severe systemic infections, thereby posing a significant threat as human-adapted pathogens. This study focuses on cytolysin A (ClyA), a virulence factor essential for bacterial dissemination within the human body. We show that ClyA is exclusively expressed by intracellular S. Paratyphi A within the Salmonella-containing vacuole (SCV), regulated by the PhoP/Q system and SlyA. ClyA localizes in the bacterial periplasm, suggesting potential secretion. Deletion of TtsA, an essential Type 10 Secretion System component, completely abolishes intracellular ClyA detection and its presence in host cell supernatants. Host cells infected with wild-type S. Paratyphi A contain substantial ClyA, with supernatants capable of lysing neighboring cells. Notably, ClyA selectively lyses macrophages and erythrocytes while sparing epithelial cells. These findings identify ClyA as an intracellularly induced cytolysin, dependent on the SCV environment and secreted via a Type 10 Secretion System, with specific cytolytic activity.
Collapse
Affiliation(s)
- Lena Krone
- Max von Pettenkofer-Institute, Chair for Medical Microbiology and Hygiene, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Srujita Mahankali
- Max von Pettenkofer-Institute, Chair for Medical Microbiology and Hygiene, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Tobias Geiger
- Max von Pettenkofer-Institute, Chair for Medical Microbiology and Hygiene, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany.
| |
Collapse
|
2
|
Song K, Li R, Cui Y, Chen B, Zhou L, Han W, Jiang B, He Y. The phytopathogen Xanthomonas campestris senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants. MLIFE 2024; 3:430-444. [PMID: 39359673 PMCID: PMC11442134 DOI: 10.1002/mlf2.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen Xanthomonas campestris pv. campestris (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated hepABCD expression by specifically binding to an AT-rich region of the promoter of the hepRABCD operon, Phep. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter Phep and then induced the expression of hepABCD. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The hepRABCD cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the hepRABCD cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruifang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lian Zhou
- Zhiyuan Innovative Research CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Wenying Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ya‐Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
3
|
Goh KJ, Altuvia Y, Argaman L, Raz Y, Bar A, Lithgow T, Margalit H, Gan YH. RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent Klebsiella pneumoniae. Nucleic Acids Res 2024; 52:9119-9138. [PMID: 38804271 PMCID: PMC11347178 DOI: 10.1093/nar/gkae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) can infect healthy individuals, in contrast to classical strains that commonly cause nosocomial infections. The recent convergence of hypervirulence with carbapenem-resistance in K. pneumoniae can potentially create 'superbugs' that are challenging to treat. Understanding virulence regulation of hvKp is thus critical. Accumulating evidence suggest that posttranscriptional regulation by small RNAs (sRNAs) plays a role in bacterial virulence, but it has hardly been studied in K. pneumoniae. We applied RIL-seq to a prototypical clinical isolate of hvKp to unravel the Hfq-dependent RNA-RNA interaction (RRI) network. The RRI network is dominated by sRNAs, including predicted novel sRNAs, three of which we validated experimentally. We constructed a stringent subnetwork composed of RRIs that involve at least one hvKp virulence-associated gene and identified the capsule gene loci as a hub target where multiple sRNAs interact. We found that the sRNA OmrB suppressed both capsule production and hypermucoviscosity when overexpressed. Furthermore, OmrB base-pairs within kvrA coding region and partially suppresses translation of the capsule regulator KvrA. This agrees with current understanding of capsule as a major virulence and fitness factor. It emphasizes the intricate regulatory control of bacterial phenotypes by sRNAs, particularly of genes critical to bacterial physiology and virulence.
Collapse
Affiliation(s)
- Kwok Jian Goh
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yair Raz
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
4
|
Numata Y, Kikuchi Y, Sato T, Okamoto-Shibayama K, Ando Y, Miyai-Murai Y, Kokubu E, Ishihara K. Novel transcriptional regulator OxtR1 regulates potential ferrodoxin in response to oxygen stress in Treponema denticola. Anaerobe 2024; 87:102852. [PMID: 38614291 DOI: 10.1016/j.anaerobe.2024.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVE Treponema denticola has been strongly implicated in the pathogenesis of chronic periodontitis. Previously, we reported that the potential transcriptional regulator TDE_0259 (oxtR1) is upregulated in the bacteriocin ABC transporter gene-deficient mutant. OxtR1 may regulate genes to adapt to environmental conditions during colonization; however, the exact role of the gene in T. denticola has not been reported. Therefore, we investigated its function using an oxtR1-deficient mutant. METHODS The growth rates of the wild-type and oxtR1 mutant were monitored under anaerobic conditions; their antibacterial agent susceptibility and gene expression were assessed using a liquid dilution assay and DNA microarray, respectively. An electrophoretic mobility shift assay was performed to investigate the binding of OxtR1 to promoter regions. RESULTS The growth rate of the bacterium was accelerated by the inactivation of oxtR1, and the mutant exhibited an increased minimum inhibitory concentration against ofloxacin. We observed a relative increase in the expression of genes associated with potential ferrodoxin (TDE_0260), flavodoxin, ABC transporters, heat-shock proteins, DNA helicase, iron compounds, and lipoproteins in the mutant. OxtR1 expression increased upon oxygen exposure, and oxtR1 complementation suppressed the expression of potential ferrodoxin. Our findings also suggested that OxtR1 binds to a potential promoter region of the TDE_0259-260 operon. Moreover, the mutant showed a marginal yet significantly faster growth rate than the wild-type strain under H2O2 exposure. CONCLUSION The oxygen-sensing regulator OxtR1 plays a role in regulating the expression of a potential ferrodoxin, which may contribute to the response of T. denticola to oxygen-induced stress.
Collapse
Affiliation(s)
- Yumi Numata
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho Chiyoda-ku, Tokyo 101-0061, Japan
| | - Toru Sato
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuko Okamoto-Shibayama
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yutaro Ando
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuri Miyai-Murai
- Department of Crown and Bridge Prosthodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho Chiyoda-ku, Tokyo 101-0061, Japan.
| |
Collapse
|
5
|
Cheong Y, Lee JB, Kim SK, Yoon JW. Characterization of Salmonella species from poultry slaughterhouses in South Korea: carry-over transmission of Salmonella Thompson ST292 in slaughtering process. J Vet Sci 2024; 25:e39. [PMID: 38834509 PMCID: PMC11156591 DOI: 10.4142/jvs.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. OBJECTIVE This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. METHODS From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. RESULTS Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. CONCLUSIONS AND RELEVANCE This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.
Collapse
Affiliation(s)
- Yewon Cheong
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- The YOON Healthtech Co., Ltd, Chuncheon 24341, Korea.
| |
Collapse
|
6
|
Zhou Y, Gong W, Xu C, Zhu Z, Peng Y, Xie C. Probiotic assessment and antioxidant characterization of Lactobacillus plantarum GXL94 isolated from fermented chili. Front Microbiol 2022; 13:997940. [PMID: 36466645 PMCID: PMC9712218 DOI: 10.3389/fmicb.2022.997940] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 10/03/2023] Open
Abstract
Oxidative stress is caused by an imbalance between prooxidants and antioxidants, which is the cause of various chronic human diseases. Lactic acid bacteria (LAB) have been considered as an effective antioxidant to alleviate oxidative stress in the host. To obtain bacterium resources with good antioxidant properties, in the present study, 113 LAB strains were isolated from 24 spontaneously fermented chili samples and screened by tolerance to hydrogen peroxide (H2O2). Among them, Lactobacillus plantarum GXL94 showed the best antioxidant characteristics and the in vitro antioxidant activities of this strain was evaluated extensively. The results showed that L. plantarum GXL94 can tolerate hydrogen peroxide up to 22 mM, and it could normally grow in MRS with 5 mM H2O2. Its fermentate (fermented supernatant, intact cell and cell-free extract) also had strong reducing capacities and various free radical scavenging capacities. Meanwhile, eight antioxidant-related genes were found to up-regulate with varying degrees under H2O2 challenge. Furthermore, we evaluated the probiotic properties by using in vitro assessment. It was showed that GXL94 could maintain a high survival rate at pH 2.5% or 2% bile salt or 8.0% NaCl, live through simulated gastrointestinal tract (GIT) to colonizing the GIT of host, and also show higher abilities of auto-aggregation and hydrophobicity. Additionally, the usual antibiotic susceptible profile and non-hemolytic activity indicated the safety of the strain. In conclusion, this study demonstrated that L. plantarum GXL94 could be a potential probiotic candidate for producing functional foods with antioxidant properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
7
|
López‐Escarpa D, Castanheira S, García‐del Portillo F. OmpR and Prc contribute to switch the Salmonella morphogenetic program in response to phagosome cues. Mol Microbiol 2022; 118:477-493. [PMID: 36115022 PMCID: PMC9827838 DOI: 10.1111/mmi.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Salmonella enterica serovar Typhimurium infects eukaryotic cells residing within membrane-bound phagosomes. In this compartment, the pathogen replaces the morphogenetic penicillin-binding proteins 2 and 3 (PBP2/PBP3) with PBP2SAL /PBP3SAL , two proteins absent in Escherichia coli. The basis for this switch is unknown. Here, we show that PBP3 protein levels drop drastically when S. Typhimurium senses acidity, high osmolarity and nutrient scarcity, cues that activate virulence functions required for intra-phagosomal survival and proliferation. The protease Prc and the transcriptional regulator OmpR contribute to lower PBP3 levels whereas OmpR stimulates PBP2SAL /PBP3SAL production. Surprisingly, despite being essential for division in E. coli, PBP3 levels also drop in non-pathogenic and pathogenic E. coli exposed to phagosome cues. Such exposure alters E. coli morphology resulting in very long bent and twisted filaments indicative of failure in the cell division and elongation machineries. None of these aberrant shapes are detected in S. Typhimurium. Expression of PBP3SAL restores cell division in E. coli exposed to phagosome cues although the cells retain elongation defects in the longitudinal axis. By switching the morphogenetic program, OmpR and Prc allow S. Typhimurium to properly divide and elongate inside acidic phagosomes maintaining its cellular dimensions and the rod shape.
Collapse
Affiliation(s)
- David López‐Escarpa
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Sónia Castanheira
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | | |
Collapse
|
8
|
In Vitro Characterisation of Potential Probiotic Bacteria Isolated from a Naturally Fermented Carrot and Ginger Brine. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unhealthy dietary patterns have been associated with an increase in mortality rate as well as the high occurrence of nontransmissible chronic degenerative diseases. Subsequently, the development of new functional foods has been proposed to reduce the incidence of nontransmissible chronic degenerative diseases. Probiotics represent a group of functional foods, defined as live microbial feeds, which provide the host with intestinal health benefits. The present study focused on the identification and characterisation of the probiotic potential of lactic acid bacteria isolated from a fermented carrot and ginger brine. Sixteen isolates were identified as Leuconostoc mesenteroides subsp. mesenteroides species, following preliminary screening based on 16S rDNA gene sequencing, and were further characterised for probiotic candidature. The probiotic properties tested included resistance towards gastrointestinal conditions (bile, acid, lysozyme tolerance), cell surface hydrophobicity, antioxidant activity, and antagonistic activity against intestinal pathogens. In general, all the isolated Leuconostoc mesenteroides subsp. mesenteroides strains exhibited high acid, bile, and lysozyme tolerance. They also showed strong antibacterial activity against common intestinal pathogens, i.e., Staphylococcus aureus and Escherichia coli, as well as antioxidant activity such as hydroxyl radical-scavenging ability and hydrogen peroxide resistance. Overall, Leuconostoc mesenteroides subsp. mesenteroides possesses a great potential as a beneficial strain for functional food.
Collapse
|
9
|
Kim JS, Liu L, Davenport B, Kant S, Morrison TE, Vazquez-Torres A. Oxidative stress activates transcription of Salmonella pathogenicity island-2 genes in macrophages. J Biol Chem 2022; 298:102130. [PMID: 35714768 PMCID: PMC9270255 DOI: 10.1016/j.jbc.2022.102130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The type III secretion system encoded in the Salmonella pathogenicity island-2 (SPI-2) gene cluster facilitates intracellular growth of nontyphoidal Salmonella by interfering with the maturation of Salmonella-containing vacuoles along the degradative pathway. SPI-2 gene products also protect Salmonella against the antimicrobial activity of reactive oxygen species (ROS) synthesized by the phagocyte NADPH oxidase 2 (NOX2). However, a potential relationship between inflammatory ROS and the activation of transcription of SPI-2 genes by intracellular Salmonella is unclear. Here, we show that ROS engendered in the innate host response stimulate SPI-2 gene transcription. We found that the expression of SPI-2 genes in Salmonella-sustaining oxidative stress conditions involves DksA, a protein otherwise known to regulate the stringent response of bacteria to nutritional stress. We also demonstrate that the J and zinc-2-oxidoreductase domains of DnaJ as well as the ATPase activity of the DnaK chaperone facilitate loading of DksA onto RNA polymerase complexed with SPI-2 promoters. Furthermore, the DksA-driven transcription of SPI-2 genes in Salmonella experiencing oxidative stress is contingent on upstream OmpR, PhoP, and SsrB signaling events that participate in the removal of nucleoid proteins while simultaneously recruiting RNA polymerase to SPI-2 promoter regions. Taken together, our results suggest the activation of SPI-2 gene transcription in Salmonella subjected to ROS produced by the respiratory burst of macrophages protects this intracellular pathogen against NOX2-mediated killing. We propose that Salmonella have co-opted inflammatory ROS to induce SPI-2-mediated protective responses against NOX2 host defenses.
Collapse
Affiliation(s)
- Ju-Sim Kim
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Lin Liu
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Bennett Davenport
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Sashi Kant
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Thomas E Morrison
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA
| | - Andres Vazquez-Torres
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA; Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA.
| |
Collapse
|
10
|
Takaichi M, Osawa K, Nomoto R, Nakanishi N, Kameoka M, Miura M, Shigemura K, Kinoshita S, Kitagawa K, Uda A, Miyara T, Mertaniasih NM, Hadi U, Raharjo D, Yulistiani R, Fujisawa M, Kuntaman K, Shirakawa T. Antibiotic Resistance in Non-Typhoidal Salmonella enterica Strains Isolated from Chicken Meat in Indonesia. Pathogens 2022; 11:pathogens11050543. [PMID: 35631064 PMCID: PMC9143091 DOI: 10.3390/pathogens11050543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
The increase in antibiotic resistance in non-typhoidal Salmonella enterica (NTS) has been confirmed in Indonesia by this study. We confirmed the virulence genes and antimicrobial susceptibilities of clinical NTS (n = 50) isolated from chicken meat in Indonesia and also detected antimicrobial resistance genes. Of 50 strains, 30 (60%) were non-susceptible to nalidixic acid (NA) and all of them had amino acid mutations in gyrA. Among 27 tetracycline (TC) non-susceptible strains, 22 (81.5%) had tetA and/or tetB. The non-susceptibility rates to ampicillin, gentamicin or kanamycin were lower than that of NA or TC, but the prevalence of blaTEM or aadA was high. Non-susceptible strains showed a high prevalence of virulence genes compared with the susceptible strains (tcfA, p = 0.014; cdtB, p < 0.001; sfbA, p < 0.001; fimA, p = 0.002). S. Schwarzengrund was the most prevalent serotype (23 strains, 46%) and the most frequently detected as multi-antimicrobial resistant. The prevalence of virulence genes in S. Schwarzengrund was significantly higher than other serotypes in hlyE (p = 0.011) and phoP/Q (p = 0.011) in addition to the genes above. In conclusion, NTS strains isolated from Indonesian chicken had a high resistance to antibiotics and many virulence factors. In particular, S. Schwarzengrund strains were most frequently detected as multi-antimicrobial resistant and had a high prevalence of virulence genes.
Collapse
Affiliation(s)
- Minori Takaichi
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; (M.T.); (M.K.); (K.S.)
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, Kobe 653-0838, Japan;
- Correspondence:
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe 650-0046, Japan; (R.N.); (N.N.)
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe 650-0046, Japan; (R.N.); (N.N.)
| | - Masanori Kameoka
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; (M.T.); (M.K.); (K.S.)
| | - Makiko Miura
- Department of Medical Technology, Kobe Tokiwa University, Kobe 653-0838, Japan;
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan; (M.T.); (M.K.); (K.S.)
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.F.); (T.S.)
| | - Shohiro Kinoshita
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe 650-0017, Japan; (S.K.); (K.K.)
| | - Koichi Kitagawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe 650-0017, Japan; (S.K.); (K.K.)
| | - Atsushi Uda
- Department of Infection Control and Prevention, Kobe University Hospital, Kobe 650-0017, Japan; (A.U.); (T.M.)
- Department of Pharmacy, Kobe University Hospital, Kobe 650-0017, Japan
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, Kobe 650-0017, Japan; (A.U.); (T.M.)
| | - Ni Made Mertaniasih
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia; (N.M.M.); (U.H.)
| | - Usman Hadi
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia; (N.M.M.); (U.H.)
| | - Dadik Raharjo
- Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia; (D.R.); (K.K.)
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
| | - Ratna Yulistiani
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jawa Timur, Surabaya 60294, Indonesia;
| | - Masato Fujisawa
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.F.); (T.S.)
| | - Kuntaman Kuntaman
- Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia; (D.R.); (K.K.)
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Airlangga University, Surabaya 60115, Indonesia
| | - Toshiro Shirakawa
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (M.F.); (T.S.)
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe 650-0017, Japan; (S.K.); (K.K.)
| |
Collapse
|
11
|
Kucukyildirim S. Whole-population genomic sequencing reveals the mutational profiles of the antibiotic-treated Escherichia coli populations. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Chang Y, Bai J, Yu H, Chang PS, Nitin N. Synergistic Inactivation of Bacteria Using a Combination of Erythorbyl Laurate and UV Type-A Light Treatment. Front Microbiol 2021; 12:682900. [PMID: 34335506 PMCID: PMC8322444 DOI: 10.3389/fmicb.2021.682900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the synergistic antimicrobial activity of erythorbyl laurate (EL) and UV type-A (UVA). To investigate the mode of synergism, changes in gene expression and bacterial inactivation activity were examined. Individual treatments with EL (10 mM) or UVA caused a 1.9- or 0.5-log CFU/ml reduction respectively, whereas EL/UVA co-treatment resulted in a 5.5-log CFU/ml reduction in Escherichia coli viable cell numbers. Similarly, treatment with either EL (2 mM) or UVA for 30 min resulted in a 2.8- or 0.1-log CFU/ml reduction in Listeria innocua, respectively, whereas combined treatment with both EL and UVA resulted in a 5.4-log CFU/ml reduction. Measurements of gene expression levels showed that EL and UVA treatment synergistically altered the gene expression of genes related to bacterial membrane synthesis/stress response. However, addition of 10–50-fold excess concentration of exogenous antioxidant compared to EL reduced the synergistic effect of EL and UVA by approximately 1 log. In summary, the results illustrate that synergistic combination of EL and UVA enhanced membrane damage independent of the oxidative stress damage induced by UVA and thus illustrate a novel photo-activated synergistic antimicrobial approach for the inactivation of both the Gram-positive and Gram-negative bacteria. Overall, this study illustrates mechanistic evaluation of a novel photochemical approach for food and environmental applications.
Collapse
Affiliation(s)
- Yoonjee Chang
- Department of Food and Nutrition, Kookmin University, Seoul, South Korea.,Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jaewoo Bai
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Division of Applied Food System, Major in Food Science & Technology, Seoul Women's University, Seoul, South Korea
| | - Hyunjong Yu
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Li Z, Zhang L, Song Q, Wang G, Yang W, Tang H, Srinivasan R, Lin L, Lin X. Proteomics Analysis Reveals Bacterial Antibiotics Resistance Mechanism Mediated by ahslyA Against Enoxacin in Aeromonas hydrophila. Front Microbiol 2021; 12:699415. [PMID: 34168639 PMCID: PMC8217646 DOI: 10.3389/fmicb.2021.699415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial antibiotic resistance is a serious global problem; the underlying regulatory mechanisms are largely elusive. The earlier reports states that the vital role of transcriptional regulators (TRs) in bacterial antibiotic resistance. Therefore, we have investigated the role of TRs on enoxacin (ENX) resistance in Aeromonas hydrophila in this study. A label-free quantitative proteomics method was utilized to compare the protein profiles of the ahslyA knockout and wild-type A. hydrophila strains under ENX stress. Bioinformatics analysis showed that the deletion of ahslyA triggers the up-regulated expression of some vital antibiotic resistance proteins in A. hydrophila upon ENX stress and thereby reduce the pressure by preventing the activation of SOS repair system. Moreover, ahslyA directly or indirectly induced at least 11 TRs, which indicates a complicated regulatory network under ENX stress. We also deleted six selected genes in A. hydrophila that altered in proteomics data in order to evaluate their roles in ENX stress. Our results showed that genes such as AHA_0655, narQ, AHA_3721, AHA_2114, and AHA_1239 are regulated by ahslyA and may be involved in ENX resistance. Overall, our data demonstrated the important role of ahslyA in ENX resistance and provided novel insights into the effects of transcriptional regulation on antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Zhangzhou Health Vocational College, Zhangzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Qingli Song
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Wenxiao Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Huamei Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Li Z, Zhang L, Sun L, Wang Y, Chen J, Tang H, Lin L, Lin X. Proteomics analysis reveals the importance of transcriptional regulator slyA in regulation of several physiological functions in Aeromonas hydrophila. J Proteomics 2021; 244:104275. [PMID: 34044167 DOI: 10.1016/j.jprot.2021.104275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
SlyA is a well-known transcription factor that plays important roles in the regulation of diverse physiological functions including virulence and stress response in various bacterial species. The biological effects of slyA have species-specific characteristics. In this study, a phenotype assay showed that slyA gene deletion in Aeromonas hydrophila (ahslyA) decreased biofilm formation capability but did not affect bacterial hemolytic activity or acid stress response. The differentially expressed proteins between ΔahslyA and wild-type strains were compared by label-free quantitative proteomics to further understand the effects of AhSlyA on biological functions. Bioinformatics assays showed that ΔahslyA may be involved in the regulation of several intracellular metabolic pathways such as galactose metabolism, arginine biosynthesis, and sulfur metabolism. A further phenotypic assay confirmed that AhSlyA plays an important role in the regulation of sulfur and phosphate metabolism. Moreover, ahslyA also directly or indirectly regulated at least eight outer membrane proteins involved in the maintenance of cell permeability. Overall, the results provide insights into the functions of ahslyA and demonstrate its importance in A. hydrophila. BIOLOGICAL SIGNIFICANCE: In this study, we compared the DEPs between the transcriptional regulator slyA-deleted and the wild-type A. hydrophila strains using a label-free quantitative proteomics method. The bioinformatics analysis showed that slyA may be involved in the regulation of several metabolic pathways. Subsequent phenotype and growth assays confirmed that ΔahslyA affected sulfur and phosphate metabolism, and OM permeability. Finally, a ChIP-PCR assay further confirmed that AhSlyA directly binds to the promoters of several candidate genes, including sulfur metabolism-related genes. These results indicated that slyA plays an important regulatory role in pleiotropic physiological functions of A. hydrophila, and these functions may be different from those identified in previous reports from other bacterial species.
Collapse
Affiliation(s)
- Zhen Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Zhangzhou Health Vocational College, 363000 Zhangzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Jiazhen Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Huamei Tang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China.
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
15
|
Kotecka K, Kawalek A, Kobylecki K, Bartosik AA. The MarR-Type Regulator PA3458 Is Involved in Osmoadaptation Control in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22083982. [PMID: 33921535 PMCID: PMC8070244 DOI: 10.3390/ijms22083982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459–PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459–PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.
Collapse
|
16
|
Shebs-Maurine EL, Giotto FM, Laidler ST, de Mello AS. Effects of bacteriophages and peroxyacetic acid applications on beef contaminated with Salmonella during different grinding stages. Meat Sci 2020; 173:108407. [PMID: 33338779 DOI: 10.1016/j.meatsci.2020.108407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Research has suggested that the incidence of Salmonella in ground beef may be associated with contaminated lymph nodes that are not removed from trimmings destined for grinding. In this study, we tested the application of bacteriophages and peroxyacetic acid solutions on trimmings and on coarse and fine ground beef to simulate different scenarios of contamination. Overall, peroxyacetic acid applications did not reduce Salmonella loads on ground beef when applied on trimmings or at any stage of grinding. When applied on contaminated trim, bacteriophage solutions at 1 × 108 PFU/g and 1 × 109 PFU/g reduced more than 1 log cfu/g of Salmonella. When applied directly on contaminated coarse or fine ground beef, bacteriophage solutions at 1 × 109 PFU/g reduced approximately 1.6 log cfu/g. Results of this study suggest that bacteriophage applications on contaminated, comminuted beef may be used as an aid to decrease Salmonella loads.
Collapse
Affiliation(s)
- E L Shebs-Maurine
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - F M Giotto
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - S T Laidler
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - A S de Mello
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America.
| |
Collapse
|
17
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
18
|
Tian S, Wang C, Li Y, Bao X, Zhang Y, Tang T. The Impact of SlyA on Cell Metabolism of Salmonella typhimurium: A Joint Study of Transcriptomics and Metabolomics. J Proteome Res 2020; 20:184-190. [PMID: 32969666 DOI: 10.1021/acs.jproteome.0c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SlyA is an important transcriptional regulator in Salmonella typhimurium (S. typhimurium). Numerous reports have indicated the impact of SlyA on the virulence of S. typhimurium. Less information regarding the role of SlyA in the cell metabolism of S. typhimurium is available. To close this gap, we compared the growth kinetics of an S. typhimurium wild-type strain to a slyA deletion mutant strain. The data suggested that the cell growth of S. typhimurium was impaired when slyA abolished, indicating that SlyA might affect the cell metabolism of S. typhimurium. To determine the role of SlyA in cell metabolism, we analyzed the metabolite profiles of S. typhimurium in the presence or absence of slyA using gas chromatography coupled with tandem mass spectrometry (GC-MS-MS). With the aim of appropriately interpreting the results obtained from metabolomics, a transcriptomic analysis on both the wild-type S. typhimurium and the slyA deletion mutant was performed. The metabolome data indicated that several glycolysis and lipid metabolism-associated pathways, including the turnover of glycerolipid, pyruvate, butanoate, and glycerophospholipid, were affected in the absence of slyA. In addition, the mRNA levels of several genes associated with glycolysis and lipid turnover were downregulated when slyA was deleted, including pagP, fadL, mgtB, iacp, and yciA. Collectively, these evidence suggested that SlyA affects the glycolysis and lipid turnover of S. typhimurium at a transcriptional level. The raw data of metabolomics is available in the MetaboLights database with an access number of MTBLS1858. The raw data of transcriptome is available in the Sequence Read Archive (SRA) database with an access number of PRJNA656165.
Collapse
Affiliation(s)
- Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Yongyu Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoming Bao
- Shimadzu (China) Co., Ltd., Sanse Road, Spirit Industry Business District, Chengdu, Sichuan Province 610063, P.R. China
| | - Yunwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
19
|
Prete R, Garcia-Gonzalez N, Di Mattia CD, Corsetti A, Battista N. Food-borne Lactiplantibacillus plantarum protect normal intestinal cells against inflammation by modulating reactive oxygen species and IL-23/IL-17 axis. Sci Rep 2020; 10:16340. [PMID: 33004903 PMCID: PMC7529774 DOI: 10.1038/s41598-020-73201-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Food-associated Lactiplantibacillus plantarum (Lpb. plantarum) strains, previously classified as Lactobacillus plantarum, are a promising strategy to face intestinal inflammatory diseases. Our study was aimed at clarifying the protective role of food-borne Lpb. plantarum against inflammatory damage by testing the scavenging microbial ability both in selected strains and in co-incubation with normal mucosa intestinal cells (NCM460). Here, we show that Lpb. plantarum endure high levels of induced oxidative stress through partially neutralizing reactive oxygen species (ROS), whereas they elicit their production when co-cultured with NCM460. Moreover, pre-treatment with food-borne Lpb. plantarum significantly reduce pro-inflammatory cytokines IL-17F and IL-23 levels in inflamed NCM460 cells. Our results suggest that food-vehicled Lpb. plantarum strains might reduce inflammatory response in intestinal cells by directly modulating local ROS production and by triggering the IL-23/IL-17 axis with future perspectives on health benefits in the gut derived by the consumption of functional foods enriched with selected strains.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Carla D Di Mattia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
20
|
Rivera I, Linz B, Dewan KK, Ma L, Rice CA, Kyle DE, Harvill ET. Conservation of Ancient Genetic Pathways for Intracellular Persistence Among Animal Pathogenic Bordetellae. Front Microbiol 2019; 10:2839. [PMID: 31921025 PMCID: PMC6917644 DOI: 10.3389/fmicb.2019.02839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Animal and human pathogens of the genus Bordetella are not commonly considered to be intracellular pathogens, although members of the closely related classical bordetellae are known to enter and persist within macrophages in vitro and have anecdotally been reported to be intracellular in clinical samples. B. bronchiseptica, the species closest to the ancestral lineage of the classical bordetellae, infects a wide range of mammals but is known to have an alternate life cycle, persisting, replicating and disseminating with amoeba. These observations give rise to the hypothesis that the ability for intracellular survival has an ancestral origin and is common among animal-pathogenic and environmental Bordetella species. Here we analyzed the survival of B. bronchiseptica and defined its transcriptional response to internalization by murine macrophage-like cell line RAW 264.7. Although the majority of the bacteria were killed and digested by the macrophages, a consistent fraction survived and persisted inside the phagocytes. Internalization prompted the activation of a prominent stress response characterized by upregulation of genes involved in DNA repair, oxidative stress response, pH homeostasis, chaperone functions, and activation of specific metabolic pathways. Cross species genome comparisons revealed that most of these upregulated genes are highly conserved among both the classical and non-classical Bordetella species. The diverse Bordetella species also shared the ability to survive inside RAW 264.7 cells, with the single exception being the bird pathogen B. avium, which has lost several of those genes. Knock-out mutations in genes expressed intracellularly resulted in decreased persistence inside the phagocytic cells, emphasizing the importance of these genes in this environment. These data show that the ability to persist inside macrophage-like RAW 264.7 cells is shared among nearly all Bordetella species, suggesting that resisting phagocytes may be an ancient mechanism that precedes speciation in the genus and may have facilitated the adaptation of Bordetella species from environmental bacteria to mammalian respiratory pathogens.
Collapse
Affiliation(s)
- Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kalyan K Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Christopher A Rice
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States.,Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Dennis E Kyle
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
A Dopamine-Responsive Signal Transduction Controls Transcription of Salmonella enterica Serovar Typhimurium Virulence Genes. mBio 2019; 10:mBio.02772-18. [PMID: 30992361 PMCID: PMC6469979 DOI: 10.1128/mbio.02772-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that the ligand-responsive MarR family member SlyA plays an important role in transcription activation of multiple virulence genes in Salmonella enterica serovar Typhimurium by responding to guanosine tetraphosphate (ppGpp). Here, we demonstrate that another MarR family member, EmrR, is required for virulence of S. Typhimurium and another enteric bacterium, Yersinia pestis EmrR is found to activate transcription of an array of virulence determinants, including Salmonella pathogenicity island 2 (SPI-2) genes and several divergent operons, which have been shown to be activated by SlyA and the PhoP/PhoQ two-component system. We studied the regulatory effect of EmrR on one of these genetic loci, i.e., the pagC-pagD divergent operon, and characterized a catecholamine neurotransmitter, dopamine, as an EmrR-sensed signal. Dopamine acts on EmrR to reduce its ability to bind to the target promoters, thus functioning as a negative signal to downregulate this EmrR-activated transcription. EmrR can bind to AT-rich sequences, which particularly overlap the SlyA and PhoP binding sites in the pagC-pagD divergent promoter. EmrR is a priming transcription regulator that binds its target promoters prior to successive transcription activators, by which it displaces universal silencer H-NS from these promoters and facilitates successive regulators to bind these regions. Regulation of the Salmonella-specific gene in Escherichia coli and Y. pestis reveals that EmrR-dependent regulation is conserved in enteric bacteria. These observations suggest that EmrR is a transcription activator to control the expression of virulence genes, including the SPI-2 genes. Dopamine can act on the EmrR-mediated signal transduction, thus downregulating expression of these virulence factors.IMPORTANCE In this study, MarR family regulator EmrR is identified as a novel virulence factor of enteric bacteria, here exemplified by Salmonella enterica serovar Typhimurium and Yersinia pestis EmrR exerts an essential effect as a transcription activator for expression of virulence determinants, including Salmonella pathogenicity island 2 genes and a set of horizontally acquired genetic loci that formed divergent operons. EmrR senses the neurotransmitter dopamine and is subsequently released from target promoters, resulting in downregulation of the virulence gene expression. Through this action on EmrR, dopamine can weaken Salmonella resistance against host defense mechanisms. This provides an explanation for the previous observation that dopamine inhibits bacterial infection in animal gastrointestinal tracts. Our findings provide evidence that this neurotransmitter can modulate bacterial gene expression through interaction with virulence regulator EmrR.
Collapse
|
22
|
Regulatory Effect of SlyA on rcsB Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00673-18. [PMID: 30510144 DOI: 10.1128/jb.00673-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium RcsCDB system regulates the synthesis of colanic acid and the flagellum as well as the expression of virulence genes. We previously demonstrated that the rcsC11 mutant, which constitutively activates the RcsB regulator, attenuates Salmonella virulence in an animal model. This attenuated phenotype was also produced by deletion of the slyA gene. In this work, we investigated if this antagonistic behavior is produced by modulating the expression of both regulator-encoding genes. We demonstrated that SlyA overproduction negatively regulates rcsB transcription. A bioinformatics analysis enabled us to identify putative SlyA binding sites on both promoters, P rcsDB and P rcsB , which control rcsB transcriptional levels. We also determined that SlyA is able to recognize and bind to these predicted sites to modulate the activity of both rcsB promoters. According to these results, SlyA represses rcsB transcription by direct binding to specific sites located on the rcsB promoters, thus accounting for the attenuated/virulence antagonistic behaviors. Moreover, we showed that the opposite effect between both regulators also physiologically affects the Salmonella motility phenotype. In this sense, we observed that under SlyA overproduction, P rcsB is repressed, and consequently, bacterial motility is increased. On the basis of these results, we suggest that during infection, the different RcsB levels produced act as a switch between the virulent and attenuated forms of Salmonella Thereby, we propose that higher concentrations of RcsB tilt the balance toward the attenuated form, while absence or low concentrations resulting from SlyA overproduction tilt the balance toward the virulent form.IMPORTANCE The antagonistic behavior of RcsB and SlyA on virulence gene expression led us to hypothesize that there is interplay between both regulators in a regulatory network and these could be considered coordinators of this process. Here, we report that the SlyA virulence factor influences motility behavior by controlling rcsB transcription from the P rcsB promoter. We also demonstrate that SlyA negatively affects the expression of the rcsB gene by direct binding to P rcsDB and P rcsB promoters. We suggest that different levels of RcsB act as a switch between the virulent and attenuated forms of Salmonella, where high concentrations of the regulator tend to tilt the balance toward the attenuated form and low concentrations or its absence tilt it toward the virulent form.
Collapse
|
23
|
Potts AH, Guo Y, Ahmer BMM, Romeo T. Role of CsrA in stress responses and metabolism important for Salmonella virulence revealed by integrated transcriptomics. PLoS One 2019; 14:e0211430. [PMID: 30682134 PMCID: PMC6347204 DOI: 10.1371/journal.pone.0211430] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
To cause infection, Salmonella must survive and replicate in host niches that present dramatically different environmental conditions. This requires a flexible metabolism and physiology, responsive to conditions of the local milieu. The sequence specific RNA binding protein CsrA serves as a global regulator that governs gene expression required for pathogenicity, metabolism, biofilm formation, and motility in response to nutritional conditions. Its activity is determined by two noncoding small RNAs (sRNA), CsrB and CsrC, which sequester and antagonize this protein. Here, we used ribosome profiling and RNA-seq analysis to comprehensively examine the effects of CsrA on mRNA occupancy with ribosomes, a measure of translation, transcript stability, and the steady state levels of transcripts under in vitro SPI-1 inducing conditions, to simulate growth in the intestinal lumen, and under in vitro SPI-2-inducing conditions, to simulate growth in the Salmonella containing vacuole (SCV) of the macrophage. Our findings uncovered new roles for CsrA in controlling the expression of structural and regulatory genes involved in stress responses, metabolism, and virulence systems required for infection. We observed substantial variation in the CsrA regulon under the two growth conditions. In addition, CsrB/C sRNA levels were greatly reduced under the simulated intracellular conditions and were responsive to nutritional factors that distinguish the intracellular and luminal environments. Altogether, our results reveal CsrA to be a flexible regulator, which is inferred to be intimately involved in maintaining the distinct gene expression patterns associated with growth in the intestine and the macrophage.
Collapse
Affiliation(s)
- Anastasia H Potts
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Yinping Guo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
24
|
Lewis J, Soto E. Gene expression of putative type VI secretion system (T6SS) genes in the emergent fish pathogen Francisella noatunensis subsp. orientalis in different physiochemical conditions. BMC Microbiol 2019; 19:21. [PMID: 30665355 PMCID: PMC6341738 DOI: 10.1186/s12866-019-1389-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen and the etiologic agent of piscine francisellosis. Besides persisting in the environment in both biofilm and planktonic forms, Fno is known to infect and replicate inside tilapia macrophages and endothelial-derived cells. However, the mechanism used by this emergent bacterium for intracellular survival is unknown. Additionally, the basis of virulence for Fno is still poorly understood. Several potential virulence determinants have been identified in Fno, including homologues of the recently described F. tularensis Type VI Secretion System (T6SS). In order to gain a better understanding of the role the putative Fno T6SS might play in the pathogenesis of piscine francisellosis, we performed transcriptional analysis of Fno T6SS gene-homologues under temperature, acidic, and oxidative stress conditions. Results Few transcriptional differences were observed at different temperatures, growth stages and pHs; however, a trend towards higher expression of Fno T6SS-homologue genes at 25 °C and under oxidative stress was detected when compared to those quantified at 30 °C and under no H2O2 (p < 0.05). Conclusions Results from this study suggest that several of the F. tularensis T6SS-homologues may play an important role in the virulence of Fno, particularly when the bacterium is exposed to low temperatures and oxidative stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1389-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jainee Lewis
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, University of California-Davis, School of Veterinary Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Pardo-Esté C, Hidalgo AA, Aguirre C, Briones AC, Cabezas CE, Castro-Severyn J, Fuentes JA, Opazo CM, Riedel CA, Otero C, Pacheco R, Valvano MA, Saavedra CP. The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by Salmonella Typhimurium. PLoS One 2018; 13:e0203497. [PMID: 30180204 PMCID: PMC6122832 DOI: 10.1371/journal.pone.0203497] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica Serovar Typhimurium (S. Typhimurium) is an intracellular bacterium that overcomes host immune system barriers for successful infection. The bacterium colonizes the proximal small intestine, penetrates the epithelial layer, and is engulfed by macrophages and neutrophils. Intracellularly, S. Typhimurium encounters highly toxic reactive oxygen species including hydrogen peroxide and hypochlorous acid. The molecular mechanisms of Salmonella resistance to intracellular oxidative stress is not completely understood. The ArcAB two-component system is a global regulatory system that responds to oxygen. In this work, we show that the ArcA response regulator participates in Salmonella adaptation to changing oxygen levels and is also involved in promoting intracellular survival in macrophages and neutrophils, enabling S. Typhimurium to successfully establish a systemic infection.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alejandro A. Hidalgo
- Laboratorio de Patogenesis Bacteriana, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Camila Aguirre
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alan C. Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina E. Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cecilia M. Opazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de la Vida y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de la Vida y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Carolina Otero
- Center for Integrative Medicine and Innovative Science (CIMIS), Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Miguel A. Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de la Vida y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
26
|
Zhang B, Ran L, Wu M, Li Z, Jiang J, Wang Z, Cheng S, Fu J, Liu X. Shigellaflexneri Regulator SlyA Controls Bacterial Acid Resistance by Directly Activating the Glutamate Decarboxylation System. Front Microbiol 2018; 9:2071. [PMID: 30233544 PMCID: PMC6128205 DOI: 10.3389/fmicb.2018.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri is an important foodborne bacterial pathogen with infectious dose as low as 10–100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Salmonella Typhimurium. However, the regulatory role of SlyA in S. flexneri is less understood. Here we applied unbiased proteomic profiling to define the SlyA regulon in S. flexneri. We found that the genetic ablation of slyA led to the alteration of 18 bacterial proteins among over 1400 identifications. Intriguingly, most down-regulated proteins (whose expression is SlyA-dependent) were associated with bacterial acid resistance such as the glutamate decarboxylation system. We further demonstrated that SlyA directly regulates the expression of GadA, a glutamate decarboxylase, by binding to the promotor region of its coding gene. Importantly, overexpression of GadA was able to rescue the survival defect of the ΔslyA mutant under acid stress. Therefore, our study highlights a major role of SlyA in controlling S. flexneri acid resistance and provides a molecular mechanism underlying such regulation as well.
Collapse
Affiliation(s)
- Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhao Ran
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zezhou Li
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
27
|
Investigation of Yersinia pestis and Yersinia pseudotuberculosis strains from Georgia and neighboring countries in the Caucasus by high-density SNP microarray. Arch Microbiol 2018; 200:1345-1355. [PMID: 29974157 DOI: 10.1007/s00203-018-1545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/06/2018] [Accepted: 06/22/2018] [Indexed: 11/27/2022]
Abstract
Yersinia pestis, the causative agent of plague, is a recently evolved clone of the enteropathogenic bacterium Yersinia pseudotuberculosis. Y. pestis has been extensively studied for decades; however, there are insufficient data about the intra-species diversity of this microorganism in certain parts of the world, including the Caucasus region. Using a high-density single-nucleotide polymorphism (SNP) microarray, we genotyped a total of 46 Y. pestis isolates from two plague foci in Georgia and neighboring Caucasus countries together with 12 Y. pseudotuberculosis isolates from Georgia. The genotyping microarray captured a total of 13,525 SNP positions across the Y. pestis and Y. pseudotuberculosis genomes and plasmids with high-throughput capability and superior reproducibility. From this analysis, we confirmed the presence of two independent and relatively distant phylogenetic groups of Y. pestis in the Caucasus region. The signature SNP patterns identified from this study will allow assay development for plague surveillance and pseudotuberculosis diagnostics.
Collapse
|
28
|
Cabezas CE, Briones AC, Aguirre C, Pardo-Esté C, Castro-Severyn J, Salinas CR, Baquedano MS, Hidalgo AA, Fuentes JA, Morales EH, Meneses CA, Castro-Nallar E, Saavedra CP. The transcription factor SlyA from Salmonella Typhimurium regulates genes in response to hydrogen peroxide and sodium hypochlorite. Res Microbiol 2018; 169:263-278. [DOI: 10.1016/j.resmic.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/29/2018] [Accepted: 04/21/2018] [Indexed: 11/15/2022]
|
29
|
Lin X, Xia Y, Wang G, Xiong Z, Zhang H, Lai F, Ai L. Lactobacillus plantarumAR501 Alleviates the Oxidative Stress of D-Galactose-Induced Aging Mice Liver by Upregulation of Nrf2-Mediated Antioxidant Enzyme Expression. J Food Sci 2018; 83:1990-1998. [DOI: 10.1111/1750-3841.14200] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Xiangna Lin
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology; Univ. of Shanghai for Science and Technology; No. 516 Jungong Road Shanghai 200093 China
| | - Yongjun Xia
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology; Univ. of Shanghai for Science and Technology; No. 516 Jungong Road Shanghai 200093 China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology; Univ. of Shanghai for Science and Technology; No. 516 Jungong Road Shanghai 200093 China
| | - Zhiqiang Xiong
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology; Univ. of Shanghai for Science and Technology; No. 516 Jungong Road Shanghai 200093 China
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology; Univ. of Shanghai for Science and Technology; No. 516 Jungong Road Shanghai 200093 China
| | - Fengxi Lai
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology; Univ. of Shanghai for Science and Technology; No. 516 Jungong Road Shanghai 200093 China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology; Univ. of Shanghai for Science and Technology; No. 516 Jungong Road Shanghai 200093 China
| |
Collapse
|
30
|
Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci 2018; 139:44-48. [DOI: 10.1016/j.meatsci.2018.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 11/20/2022]
|
31
|
Fan JR, Zhang HX, Mu YG, Zheng QC. Studying the recognition mechanism of TcaR and ssDNA using molecular dynamic simulations. J Mol Graph Model 2018; 80:67-75. [DOI: 10.1016/j.jmgm.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
32
|
The genes slyA, STM3120 and htrA are required for the anticancer ability of VNP20009. Oncotarget 2018; 7:81187-81196. [PMID: 27835896 PMCID: PMC5348385 DOI: 10.18632/oncotarget.13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
VNP20009 is a very effective anti-cancer agent and can specifically target tumors and inhibit tumor growth. It was assumed that the tumor targeting ability of VNP20009 correlated to its anticancer capacity. However, our observation contradicted to this assumption. Three VNP20009 mutant strains (ΔslyA, ΔSTM3120 and ΔhtrA) with reduced fitness in normal tissues and unchanged fitness in tumors partially or completely lost their anti-cancer capacities. The genes slyA, STM3120 and htrA were required for survival within macrophages and were indispensable for tumor microenvironment remodeling by VNP20009. The infiltration of immune cells occurred less in the tumors of mice infected with the mutant strains. In addition, the mRNA levels of TNF-α and IL-1β were significantly decreased in the tumors of mice treated with the mutant strains. Our results indicate that the immune responses elicited by bacteria rather than the bacterial titer in tumors play a “decisive” role in VNP20009-mediated bacterial cancer therapy, which provides a novel perspective for the underlying mechanism of bacterial cancer therapy.
Collapse
|
33
|
Khusro A, Aarti C, Dusthackeer A, Agastian P. Anti-tubercular and probiotic properties of coagulase-negative staphylococci isolated from Koozh, a traditional fermented food of South India. Microb Pathog 2018; 114:239-250. [DOI: 10.1016/j.micpath.2017.11.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/05/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023]
|
34
|
Aarti C, Khusro A, Varghese R, Arasu MV, Agastian P, Al-Dhabi NA, Ilavenil S, Choi KC. In vitro studies on probiotic and antioxidant properties of Lactobacillus brevis strain LAP2 isolated from Hentak, a fermented fish product of North-East India. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Curran TD, Abacha F, Hibberd SP, Rolfe MD, Lacey MM, Green J. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon. MICROBIOLOGY-SGM 2017; 163:400-409. [PMID: 28073397 PMCID: PMC5797941 DOI: 10.1099/mic.0.000423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain.
Collapse
Affiliation(s)
- Thomas D Curran
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Fatima Abacha
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Stephen P Hibberd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melissa M Lacey
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
36
|
Zhou J, Zhang H, Lv M, Chen Y, Liao L, Cheng Y, Liu S, Chen S, He F, Cui Z, Jiang Z, Chang C, Zhang L. SlyA regulates phytotoxin production and virulence in Dickeya zeae EC1. MOLECULAR PLANT PATHOLOGY 2016; 17:1398-1408. [PMID: 26814706 PMCID: PMC6638372 DOI: 10.1111/mpp.12376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/23/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Dickeya zeae is a causal agent of rice root rot disease. The pathogen is known to produce a range of virulence factors, including phytotoxic zeamines and extracellular enzymes, but the mechanisms of virulence regulation remain vague. In this study, we identified a SlyA/MarR family transcription factor SlyA in D. zeae strain EC1. Disruption of slyA significantly decreased zeamine production, enhanced swimming and swarming motility, reduced biofilm formation and significantly decreased pathogenicity on rice. Quantitative polymerase chain reaction (qPCR) analysis confirmed the role of SlyA in transcriptional modulation of a range of genes associated with bacterial virulence. In trans expression of slyA in expI mutants recovered the phenotypes of motility and biofilm formation, suggesting that SlyA is downstream of the acylhomoserine lactone-mediated quorum sensing pathway. Taken together, the findings from this study unveil a key transcriptional regulatory factor involved in the modulation of virulence factor production and overall pathogenicity of D. zeae EC1.
Collapse
Affiliation(s)
- Jia‐Nuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Hai‐Bao Zhang
- Institute of Molecular and Cell Biology 61 Biopolis DriveSingapore138673
| | - Ming‐Fa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Yu‐Fan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Li‐Sheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Ying‐Ying Cheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Shi‐Yin Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Shao‐Hua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Fei He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Zi‐Ning Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Zi‐De Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Chang‐Qing Chang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Lian‐Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
- Institute of Molecular and Cell Biology 61 Biopolis DriveSingapore138673
| |
Collapse
|
37
|
Gao D, Li Y, Zheng E, Liu N, Shao Z, Lu C. Eha, a regulator of Edwardsiella tarda, required for resistance to oxidative stress in macrophages. FEMS Microbiol Lett 2016; 363:fnw192. [PMID: 27511959 DOI: 10.1093/femsle/fnw192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2016] [Indexed: 01/29/2023] Open
Abstract
Edwardsiella tarda is distributed widely in a variety of hosts. Eha has recently been found to be its virulence regulator. In order to explore the mechanism of its regulation, we investigated the survival rates of wild type strain ET13, and its eha mutant and complemented strains in RAW264.7 macrophages under light microscopic observation as well as by counting bacterial CFUs on the plates. All of the different strains could live within the macrophages; however, the intracellular numbers of the wild type were significantly higher than the mutant when the incubation time extended 4 h or 6 h (P < 0.05). Furthermore, more ROS were produced by the mutant-infected cells, indicating that Eha may enhance ET13's capacity to detoxify ROS. In agreement with this, we found that the mutant exhibited more sensitivity by H2O2 disk inhibitory assay and less survival ability with H2O2 treatment. We further demonstrated that the bacterial antioxidant enzymes SodC and KatG were regulated by Eha with qRT-PCR and β-galactosidase assay. Collectively, our data show Eha is required for E. tarda to resist the oxidative stress from the macrophages.
Collapse
Affiliation(s)
- Daqing Gao
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Yuhong Li
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Enjin Zheng
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Nian Liu
- Department of Pathogenic Microbiology and Immunology, Southeast University School of Medicine, Nanjing, China
| | - Zeye Shao
- Department of Clinical Lab, Southeast University School of Medicine, Nanjing, China
| | - Chengping Lu
- NanJing Agricultural University, College of Veterinary Medicine, Nanjing, China
| |
Collapse
|
38
|
Lamas A, Fernandez-No IC, Miranda JM, Vázquez B, Cepeda A, Franco CM. Prevalence, molecular characterization and antimicrobial resistance of Salmonella serovars isolated from northwestern Spanish broiler flocks (2011-2015). Poult Sci 2016; 95:2097-105. [PMID: 27143768 DOI: 10.3382/ps/pew150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the prevalence, antimicrobial resistance to twenty antibiotics, and class 1 integron and virulence genes of Salmonella isolated from poultry houses of broilers in northwestern Spain between 2011 and 2015. Strains were classified to the serotype level using the Kauffman-White typing scheme and subtyping with enterobacterial repetitive intergenic consensus PCR. The prevalence of Salmonella spp. was 1.02%. Sixteen different serotypes were found, with S. typhimurium and S. arizonae 48:z4, z23:- being the most prevalent. A total of 59.70% of strains were resistant to at least one, and 19.70% were resistant to multiple drugs. All Salmonella spp. were susceptible to cefotaxime, ciprofloxacin, gentamicin, kanamycin, levofloxacin, neomycin, and trimethoprim. The highest level of resistance was to sulfamethoxazole (40.29%), doxycycline (17.91%), and nalidixic acid (17.91%). None of the isolates carried class 1 integron and only isolates of S. enterica subspecies enterica were positive for all virulence factors tested, whereas S. arizonae lacked genes related to replication and invasion in nonphagocytic cells. This study demonstrates that the prevalence and antimicrobial resistance of Salmonella spp. in poultry houses of broilers of northwestern Spain is low compared with those found in other studies and in other steps of the food chain.
Collapse
Affiliation(s)
- A Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos. Dpto. de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela. 27002-Lugo. Spain
| | - I C Fernandez-No
- Laboratorio de Higiene Inspección y Control de Alimentos. Dpto. de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela. 27002-Lugo. Spain
| | - J M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos. Dpto. de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela. 27002-Lugo. Spain
| | - B Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos. Dpto. de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela. 27002-Lugo. Spain
| | - A Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos. Dpto. de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela. 27002-Lugo. Spain
| | - C M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos. Dpto. de Química Analítica, Nutrición y Bromatología. Universidad de Santiago de Compostela. 27002-Lugo. Spain
| |
Collapse
|
39
|
Characterization of SlyA in Shigella flexneri Identifies a Novel Role in Virulence. Infect Immun 2016; 84:1073-1082. [PMID: 26831468 DOI: 10.1128/iai.00806-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/23/2016] [Indexed: 12/18/2022] Open
Abstract
The SlyA transcriptional regulator has important roles in the virulence and pathogenesis of several members of the Enterobacteriaceae family, including Salmonella enterica serovar Typhimurium and Escherichia coli. Despite the identification of the slyA gene in Shigella flexneri nearly 2 decades ago, as well as the significant conservation of SlyA among enteric bacteria, the role of SlyA in Shigella remains unknown. The genes regulated by SlyA in closely related organisms often are absent from or mutated inS. flexneri, and consequently many described SlyA-dependent phenotypes are not present. By characterizing the expression of slyA and determining its ultimate effect in this highly virulent organism, we postulated that novel SlyA-regulated virulence phenotypes would be identified. In this study, we report the first analysis of SlyA in Shigella and show that (i) the slyA gene is transcribed and ultimately translated into protein, (ii) slyA promoter activity is maximal during stationary phase and is negatively autoregulated and positively regulated by the PhoP response regulator, (iii) the exogenous expression of slyA rescues transcription and virulence-associated deficiencies during virulence-repressed conditions, and (iv) the absence of slyA significantly decreases acid resistance, demonstrating a novel and important role in Shigella virulence. Cumulatively, our study illustrates unexpected parallels between the less conserved S. flexneri and S Typhimurium slyA promoters as well as a unique role for SlyA in Shigella virulence that has not been described previously in any closely related organism.
Collapse
|
40
|
Thekkiniath J, Ravirala R, San Francisco M. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:131-49. [DOI: 10.1016/bs.pmbts.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Otani H, Stogios PJ, Xu X, Nocek B, Li SN, Savchenko A, Eltis LD. The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Nucleic Acids Res 2015; 44:595-607. [PMID: 26400178 PMCID: PMC4737184 DOI: 10.1093/nar/gkv955] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022] Open
Abstract
CouR, a MarR-type transcriptional repressor, regulates the cou genes, encoding p-hydroxycinnamate catabolism in the soil bacterium Rhodococcus jostii RHA1. The CouR dimer bound two molecules of the catabolite p-coumaroyl-CoA (Kd = 11 ± 1 μM). The presence of p-coumaroyl-CoA, but neither p-coumarate nor CoASH, abrogated CouR's binding to its operator DNA in vitro. The crystal structures of ligand-free CouR and its p-coumaroyl-CoA-bound form showed no significant conformational differences, in contrast to other MarR regulators. The CouR-p-coumaroyl-CoA structure revealed two ligand molecules bound to the CouR dimer with their phenolic moieties occupying equivalent hydrophobic pockets in each protomer and their CoA moieties adopting non-equivalent positions to mask the regulator's predicted DNA-binding surface. More specifically, the CoA phosphates formed salt bridges with predicted DNA-binding residues Arg36 and Arg38, changing the overall charge of the DNA-binding surface. The substitution of either arginine with alanine completely abrogated the ability of CouR to bind DNA. By contrast, the R36A/R38A double variant retained a relatively high affinity for p-coumaroyl-CoA (Kd = 89 ± 6 μM). Together, our data point to a novel mechanism of action in which the ligand abrogates the repressor's ability to bind DNA by steric occlusion of key DNA-binding residues and charge repulsion of the DNA backbone.
Collapse
Affiliation(s)
- Hiroshi Otani
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw Nocek
- Structural Biology Center, Biosciences Division, Argonne National Laboratory and the Midwest Center for Structural Genomics, Lemont, IL 60439, USA
| | - Shu-Nan Li
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
42
|
Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 2015; 6:949. [PMID: 26441883 PMCID: PMC4563271 DOI: 10.3389/fmicb.2015.00949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process.
Collapse
Affiliation(s)
- Marc Erhardt
- Young Investigator Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
43
|
Abstract
Trans-aconitate methyltransferase regulator (TamR) is a member of the ligand-responsive multiple antibiotic resistance regulator (MarR) family of transcription factors. In Streptomyces coelicolor, TamR regulates transcription of tamR (encoding TamR), tam (encoding trans-aconitate methyltransferase) and sacA (encoding aconitase); up-regulation of these genes promotes metabolic flux through the citric acid cycle. DNA binding by TamR is attenuated and transcriptional derepression is achieved on binding of ligands such as citrate and trans-aconitate to TamR. In the present study, we show that three additional genes are regulated by S. coelicolor TamR. Genes encoding malate synthase (aceB1; SCO6243), malate dehydrogenase (mdh; SCO4827) and isocitrate dehydrogenase (idh; SCO7000) are up-regulated in vivo when citrate and trans-aconitate accumulate, and TamR binds the corresponding gene promoters in vitro, a DNA binding that is attenuated by cognate ligands. Mutations to the TamR binding site attenuate DNA binding in vitro and result in constitutive promoter activity in vivo. The predicted TamR binding sites are highly conserved in the promoters of these genes in Streptomyces species that encode divergent tam-tamR gene pairs, suggesting evolutionary conservation. Like aconitase and trans-aconitate methyltransferase, malate dehydrogenase, isocitrate dehydrogenase and malate synthase are closely related to the citric acid cycle, either catalysing individual reaction steps or, in the case of malate synthase, participating in the glyoxylate cycle to produce malate that enters the citric acid cycle to replenish the intermediate pool. Taken together, our data suggest that TamR plays an important and conserved role in promoting metabolic flux through the citric acid cycle.
Collapse
|
44
|
Vijayakumar M, Ilavenil S, Kim DH, Arasu MV, Priya K, Choi KC. In-vitro assessment of the probiotic potential of Lactobacillus plantarum KCC-24 isolated from Italian rye-grass ( Lolium multiflorum ) forage. Anaerobe 2015; 32:90-97. [DOI: 10.1016/j.anaerobe.2015.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
|
45
|
Kadaikunnan S, Rejiniemon T, Khaled JM, Alharbi NS, Mothana R. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens. Ann Clin Microbiol Antimicrob 2015; 14:9. [PMID: 25858278 PMCID: PMC4342198 DOI: 10.1186/s12941-015-0069-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Food born pathogenic bacteria and filamentous fungi are able to grow on most foods, including natural foods, processed foods, and fermented foods and create considerable economic loss. The aim of this study was to determine the antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens recovered from silage. METHODS Minimum Inhibitory Concentration (MIC) of the compounds was assessed by using broth micro dilution method. The 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging and hydroxyl radical-scavenging abilities were measured to evaluate antioxidant activity of the strain. RESULTS Primary antimicrobial compound production screening revealed that B. amyloliquefaciens exhibited significant activity against all the tested bacteria and fungi compared to other strains. The 16S rRNA and gyrase A gene sequence analysis determined using molecular biological tools confirmed that the strain was 99% similarity towards B. amyloliquefaciens. The Minimum Inhibitory Concentration (MIC) of ethyl acetate extract against Bacillus subtilis, Enterococcus cloacae and Staphylococcus aureus were 25.0 μg ml-1, and S, epidermidis were 12.5 μg ml-1, respectively. Filamentous fungi Aspergillus clavatus, A. fumigates, A. niger and Gibberella moniliformis showed 25 μg ml-1. VJ-1 was able to survive the gastrointestinal conditions simulating the stomach and duodenum passage with the highest percentage of hydrophobicity. In addition, its resistance to hydrogen peroxide and highest hydroxyl radical and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities, with inhibition rates of 56.84% and 67.12% respectively, were its advantage. An antimicrobial susceptibility pattern was an intrinsic feature of this strain, and thus, consumption does not represent a health risk to humans. CONCLUSION Bacillus amyloliquefaciens might be a promising candidate for new pharmaceutical agents and probiotics.
Collapse
|
46
|
Ewers C, Dematheis F, Singamaneni HD, Nandanwar N, Fruth A, Diehl I, Semmler T, Wieler LH. Correlation between the genomic o454-nlpD region polymorphisms, virulence gene equipment and phylogenetic group of extraintestinal Escherichia coli (ExPEC) enables pathotyping irrespective of host, disease and source of isolation. Gut Pathog 2014; 6:37. [PMID: 25349632 PMCID: PMC4209514 DOI: 10.1186/s13099-014-0037-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The mutS-rpoS intergenic region in E. coli displays a mosaic structure which revealed pathotype specific patterns. To assess the importance of this region as a surrogate marker for the identification of highly virulent extraintestinal pathogenic E. coli (ExPEC) strains we aimed to: (i) characterize the genetic diversity of the mutS gene and the o454-nlpD genomic region among 510 E. coli strains from animals and humans; (ii) delineate associations between the polymorphism of this region and features such as phylogenetic background of E. coli, pathotype, host species, clinical condition, serogroup and virulence associated genes (VAG)s; and (iii) identify the most important VAGs for classification of the o454-nlpD region. METHODS Size variation in the o454-nlpD region was investigated by PCR amplification and sequencing. Phylogenetic relationships were assessed by Ecor- and Multilocus sequence- typing (MLST), and a comparative analysis between mutS gene phylogenetic tree obtained with RAxML and the MLST grouping method was performed. Correlation between o454-nlpD patterns and the features described above were analysed. In addition, the importance of 47 PCR-amplified ExPEC-related VAGs for classification of o454-nlpD patterns was investigated by means of Random Forest algorithm. RESULTS Four main structures (patterns I-IV) of the o454-nlpD region among ExPEC and commensal E. coli strains were identified. Statistical analysis showed a positive and exclusive association between pattern III and the ExPEC strains. A strong association between pattern III and either the Ecor group B2 or the sequence type complexes known to represent the phylogenetic background of highly virulent ExPEC strains (such as STC95, STC73 and STC131) was found as well. RF analyses determined five genes (csgA, malX, chuA, sit, and vat) to be suitable to predict pattern III strains. CONCLUSION The significant association between pattern III and group B2 strains suggested the o454-nlpD region to be of great value in identifying highly virulent strains among the mixed population of E. coli promising to be the basis of a future typing tool for ExPEC and their gut reservoir. Furthermore, top-ranked VAGs for classification and prediction of pattern III were identified. These data are most valuable for defining ExPEC pathotype in future in vivo assays.
Collapse
Affiliation(s)
- Christa Ewers
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-Universität Giessen, Frankfurter Str. 85-89, Giessen, 35392, Germany
| | - Flavia Dematheis
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Haritha Devi Singamaneni
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Nishant Nandanwar
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany ; Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500046, Gachibowli, India
| | - Angelika Fruth
- National Reference Centre for Salmonella and Other Enteric Pathogens, Robert Koch Institute, Burgstr. 37, Wernigerode, 38855, Germany
| | - Ines Diehl
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Torsten Semmler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| | - Lothar H Wieler
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin, 14163, Germany
| |
Collapse
|
47
|
Lai YJ, Tsai SH, Lee MY. Isolation of exopolysaccharide producing Lactobacillus strains from sorghum distillery residues pickled cabbage and their antioxidant properties. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Gupta A, Grove A. Ligand-binding pocket bridges DNA-binding and dimerization domains of the urate-responsive MarR homologue MftR from Burkholderia thailandensis. Biochemistry 2014; 53:4368-80. [PMID: 24955985 PMCID: PMC4100783 DOI: 10.1021/bi500219t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Members of the multiple antibiotic
resistance regulator (MarR)
family often regulate gene activity by responding to a specific ligand.
In the absence of ligand, most MarR proteins function as repressors,
while ligand binding causes attenuated DNA binding and therefore increased
gene expression. Previously, we have shown that urate is a ligand
for MftR (major facilitator transport regulator), which is encoded
by the soil bacterium Burkholderia thailandensis.
We show here that both mftR and the divergently oriented
gene mftP encoding a major facilitator transport
protein are upregulated in the presence of urate. MftR binds two cognate
sites in the mftR-mftP intergenic region with equivalent
affinity and sensitivity to urate. Mutagenesis of four conserved residues
previously reported to be involved in urate binding to Deinococcus
radiodurans HucR and Rhizobium radiobacter PecS significantly reduced protein stability and DNA binding affinity
but not ligand binding. These data suggest that residues equivalent
to those implicated in ligand binding to HucR and PecS serve structural
roles and that MftR relies on distinct residues for ligand binding.
MftR exhibits a two-step melting transition suggesting independent
unfolding of the dimerization and DNA-binding regions; urate binding
or mutations in the predicted ligand-binding sites result in one-step
unfolding transitions. We suggest that MftR binds the ligand in a
cleft between the DNA-binding lobes and the dimer interface but that
the mechanism of ligand-mediated attenuation of DNA binding differs
from that proposed for other urate-responsive MarR homologues. Since
DNA binding by MftR is attenuated at 37 °C, our data also suggest
that MftR responds to both ligand and a thermal upshift by attenuated
DNA binding and upregulation of the genes under its control.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
49
|
Gao D, Cheng J, Zheng E, Li Y, Shao Z, Xu Z, Lu C. Eha, a transcriptional regulator of hemolytic activity ofEdwardsiella tarda. FEMS Microbiol Lett 2014; 353:132-40. [DOI: 10.1111/1574-6968.12420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Daqing Gao
- Department of Pathogenic Microbiology and Immunology; Southeast University School of Medicine; Nanjing China
| | - Jing Cheng
- JiangSu University School of Medicine; Zhenjiang China
| | - Enjin Zheng
- Department of Pathogenic Microbiology and Immunology; Southeast University School of Medicine; Nanjing China
| | - Yuhong Li
- Department of Pathogenic Microbiology and Immunology; Southeast University School of Medicine; Nanjing China
| | - Zeye Shao
- Department of Clinical Lab; Southeast University School of Medicine; Nanjing China
| | - Zeyan Xu
- JiangSu University School of Medicine; Zhenjiang China
| | - Chengping Lu
- NanJing Agricultural University, College of Veterinary Medicine; Nanjing China
| |
Collapse
|
50
|
Chen HL, Bernard CS, Hubert P, My L, Zhang CC. Fluorescence resonance energy transfer based on interaction of PII and PipX proteins provides a robust and specific biosensor for 2-oxoglutarate, a central metabolite and a signalling molecule. FEBS J 2014; 281:1241-55. [DOI: 10.1111/febs.12702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Hai-Lin Chen
- Laboratoire de Chimie Bactérienne; UMR 7283; Aix-Marseille Université and CNRS; France
| | - Christophe S. Bernard
- Laboratoire de Chimie Bactérienne; UMR 7283; Aix-Marseille Université and CNRS; France
| | - Pierre Hubert
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires; UMR 7255; Aix-Marseille Université and CNRS; France
| | - Laetitia My
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires; UMR 7255; Aix-Marseille Université and CNRS; France
| | - Cheng-Cai Zhang
- Laboratoire de Chimie Bactérienne; UMR 7283; Aix-Marseille Université and CNRS; France
| |
Collapse
|