1
|
Takeuchi T, Hashizume-Takizawa T, Kobayashi R. Oral immunization with Porphyromonas gingivalis outer membrane protein and CpG oligodeoxynucleotides attenuates P. gingivalis-accelerated atherosclerosis and inflammation. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Shimizu Y, Iwasaki T, Tajima T, Yuba E, Kono K, Watarai S. Induction of antibody response in the oral cavity of dogs following intraocular (eye drop) immunization with Porphyromonas gingivalis cell lysate incorporated in pH-sensitive fusogenic polymer-modified liposomes. J Vet Med Sci 2016; 79:290-298. [PMID: 27916762 PMCID: PMC5326933 DOI: 10.1292/jvms.16-0338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Induction of mucosal immune responses against Porphyromonas gingivalis within the oral cavity of dogs was studied by immunizing with pH-sensitive fusogenic polymer (MGluPG)-modified liposome-associated cell lysate. Dogs immunized with P. gingivalis cell lysate-containing MGluPG-modified liposomes by intraocular (eye drop) route displayed significant levels of P. gingivalis cell lysate-specific serum IgG and IgA as well as mucosal IgA antibodies in saliva secretion. Serum and salivary antibodies generated by intraocularly immunized with MGluPG-modified liposome-associated P. gingivalis cell lysate revealed a significant aggregation activity against P. gingivalis, whereas serum and saliva from dogs receiving MGluPG-modified liposomes unentrapping P. gingivalis cell lysate did not show the aggregation activity against P. gingivalis. Furthermore, P. gingivalis-specific antibodies in saliva of immunized dogs inhibited the adherence of P. gingivalis to cultured HeLa cells. More importantly, salivary antibodies induced by intraocular immunization with P. gingivalis cell lysate-containing MGluPG-modified liposomes significantly inhibited the coaggregation of P. gingivalis with Actinomyces naeslundii and the cell damage activity of P. gingivalis against FaDu cells, an oral epithelial cell. These results suggest that intraocularly administered P. gingivalis cell lysate-containing MGluPG-modified liposomes should be an effective mucosal vaccine against P. gingivalis infection in dogs and may be an important tool for the prevention of periodontitis.
Collapse
Affiliation(s)
- Yosuke Shimizu
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | | | |
Collapse
|
3
|
Cai Y, Kurita-Ochiai T, Kobayashi R, Hashizume T, Yamamoto M. Nasal immunization with the 40-kDa outer membrane protein of Porphyromonas gingivalis plus cholera toxin induces protective immunity in aged mice. J Oral Sci 2013; 55:107-14. [DOI: 10.2334/josnusd.55.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
4
|
Sugita N, Iwanaga R, Kobayashi T, Yoshie H. Association of the FcγRIIB-nt645+25A/G polymorphism with the expression level of the FcγRIIb receptor, the antibody response to Porphyromonas gingivalis and the severity of periodontitis. J Periodontal Res 2011; 47:105-13. [PMID: 21906057 DOI: 10.1111/j.1600-0765.2011.01411.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Human FcγRIIb is an immunoglobulin G (IgG) receptor that inhibits the activation of B lymphocytes through cross-linking with the B-cell receptor via immune complexes. This function acts as a negative regulator of antibody production. Our previous studies have demonstrated the gene polymorphisms in FcγRIIb to be associated with periodontitis. In this study, we presented a polymorphism--FcγRIIB-nt645+25A/G (rs2125685)--in intron 4 and analyzed its functional relevance to periodontitis. We examined whether the FcγRIIB-nt645+25A/G polymorphism is associated with periodontal parameters, the IgG response to the periodontopathic bacterium Porphyromonas gingivalis and/or the expression level of FcγRIIb on peripheral B lymphocytes. MATERIAL AND METHODS Thirty-two patients with chronic periodontitis were genotyped with nested PCR and by direct sequencing of genome DNA. The levels of serum IgG and of specific IgG subclasses for P. gingivalis sonicate and for the recombinant 40-kDa outer membrane protein (OMP) were determined. The expression levels of FcγRIIb on peripheral B lymphocytes from 19 healthy donors were measured by flow cytometry. RESULTS Patients with the FcγRIIB-nt645+25AA genotype showed significantly higher mean clinical attachment levels compared to patients with the FcγRIIB-nt645+25GG genotype (p = 0.003) and a significantly lower IgG response to P. gingivalis sonicate and to the 40-kDa OMP. The expression levels of FcγRIIb protein on the cell surface in peripheral B lymphocytes were higher in healthy donors with the FcγRIIB-nt645+25AA genotype than in those with the FcγRIIB-nt645+25GG genotype (p = 0.03). CONCLUSION The higher expression levels of FcγRIIb in subjects with the FcγRIIB-nt645+25AA genotype may induce a lower level of production of IgG against P. gingivalis and therefore more severe periodontitis.
Collapse
Affiliation(s)
- N Sugita
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | |
Collapse
|
5
|
Shibata Y, Okano S, Shiroza T, Tahara T, Nakazawa K, Kataoka S, Ishida I, Kobayashi T, Yoshie H, Abiko Y. Characterization of human-type monoclonal antibodies against reduced form of hemin binding protein 35 from Porphyromonas gingivalis. J Periodontal Res 2011; 46:673-81. [PMID: 21644999 DOI: 10.1111/j.1600-0765.2011.01389.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVE The gram-negative anaerobe Porphyromonas gingivalis has been implicated as an important pathogen in the development of adult periodontitis, and its colonization of subgingival sites is critical in the pathogenic process. We previously identified a 35 kDa surface protein (hemin binding protein 35; HBP35) from P. gingivalis that exhibited coaggregation activity, while additional analysis suggested that this protein possessed an ability to bind heme molecules. For development of passive immunotherapy for periodontal diseases, human-type monoclonal antibodies have been prepared using HBP35 as an antigen in TransChromo mice. In the present study, we focused on a single antibody, TCmAb-h13, which is known to inhibit heme binding to recombinant HBP35. The aim of our investigation was to clarify the redox-related function of HBP35 and consider the benefits of human-type monoclonal antibodies. MATERIAL AND METHODS To examine the antigen recognition capability of TCmAbs with immunoblotting and Biacore techniques, we used the native form as well as several Cys-to-Ser variants of recombinant HBP35. RESULTS We found that the redox state of recombinant HBP35 was dependent on two Cys residues, (48) C and (51) C, in the thioredoxin active center (WCGxCx). Furthermore, TCmAb-h13 recognized the reduced forms of recombinant HBP35, indicating its inhibitory effect on P. gingivalis growth. CONCLUSION Hemin binding protein 35 appears to be an important molecule involved in recognition of the redox state of environmental conditions. In addition, TCmAb-h13 had an inhibitory effect on heme binding to recombinant HBP35, thereby interfering with P. gingivalis growth.
Collapse
Affiliation(s)
- Y Shibata
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 2011; 90:1271-8. [PMID: 21335541 DOI: 10.1177/0022034511399096] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on the adherence properties of oral bacteria have been a major focus in microbiology research for several decades. The ability of bacteria to adhere to the variety of surfaces present in the oral cavity, and to become integrated within the resident microbial communities, confers growth and survival properties. Molecular analyses have revealed several families of Gram-positive bacterial surface proteins, including serine-rich repeat, antigen I/II, and pilus families, that mediate adherence to a variety of salivary and oral bacterial receptors. In Gram-negative bacteria, pili, auto-transporters, and extracellular matrix-binding proteins provide components for host tissue recognition and building of complex microbial communities. Future studies will reveal in greater detail the binding pockets for these adhesin families and their receptors. This information will be crucial for the development of new inhibitors or vaccines that target the functional regions of bacterial proteins that are involved in colonization and pathogenesis.
Collapse
Affiliation(s)
- A H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | | | |
Collapse
|
7
|
Choi JI, Seymour GJ. Vaccines against periodontitis: a forward-looking review. J Periodontal Implant Sci 2010; 40:153-63. [PMID: 20827324 PMCID: PMC2931303 DOI: 10.5051/jpis.2010.40.4.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 07/02/2010] [Indexed: 12/18/2022] Open
Abstract
Periodontal disease, as a polymicrobial disease, is globally endemic as well as being a global epidemic. It is the leading cause for tooth loss in the adult population and has been positively related to life-threatening systemic diseases such as atherosclerosis and diabetes. As a result, it is clear that more sophisticated therapeutic modalities need to be developed, which may include vaccines. Up to now, however, no periodontal vaccine trial has been successful in satisfying all the requirements; to prevent the colonization of a multiple pathogenic biofilm in the subgingival area, to elicit a high level of effector molecules such as immunoglobulin sufficient to opsonize and phagocytose the invading organisms, to suppress the induced alveolar bone loss, or to stimulate helper T-cell polarization that exerts cytokine functions optimal for protection against bacteria and tissue destruction. This article reviews all the vaccine trials so as to construct a more sophisticated strategy which may be relevant in the future. As an innovative strategy to circumvent these barriers, vaccine trials to stimulate antigen-specific T-cells polarized toward helper T-cells with a regulatory phenotype (Tregs, CD4+, CD25+, FoxP3+) have also been introduced. Targeting not only a single pathogen, but polymicrobial organisms, and targeting not only periodontal disease, but also periodontal disease-triggered systemic disease could be a feasible goal.
Collapse
Affiliation(s)
- Jeom-Il Choi
- Department of Periodontology, Pusan National University School of Dentistry, Yangsan, Korea
| | | |
Collapse
|
8
|
Ishikura K, Hashizume T, Kurita-Ochiai T, Makimura M, Yamamoto M. Transcutaneous Immunization with the Outer Membrane Protein of P. gingivalis Elicits Long-term Protective Immunity in the Oral Cavity. J Oral Biosci 2009. [DOI: 10.1016/s1349-0079(09)80015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Honma Y, Sugita N, Kobayashi T, Abiko Y, Yoshie H. Lower antibody response toPorphyromonas gingivalisassociated with immunoglobulin G Fcγ receptor IIBpolymorphism. J Periodontal Res 2008; 43:706-11. [DOI: 10.1111/j.1600-0765.2007.01078.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Functional analysis of the thioredoxin domain in Porphyromonas gingivalis HBP35. Biosci Biotechnol Biochem 2008; 72:1826-35. [PMID: 18603768 DOI: 10.1271/bbb.80101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Periodontitis is one of the most common oral diseases in humans. This caused by infection by the oral bacterium Porphyromonas gingivalis. Our strategy to prevent this infection is to establish a passive immunization system in which endogenous antibodies can be applied directly to neutralize virulent factors associated with this bacterium. We focused our attention on the P. gingivalis 35 kDa surface protein, or HBP35, since this protein is involved not only in the coaggregation with oral miroflora but also in hemin binding. In addition, nucleotide sequencing of the gene, hbp35, coding for this protein revealed the presence of a catalytic center for thioredoxin, and we further attempted to characterized the protein by amino acid substitution. A total of four Cys residues were substituted for Ser residues by combining the simple method for site-directed mutagenesis and the heterodimer system, an approach designed to construct chimeric plasmids readily. Native and mutagenized hbp35 were introduced into the Eschericha coli dsbA mutant strain, JCB 572, defective in both alkaline phosphatase and motile activities due to inefficient disulfide bond formation. Transformant harboring the native hbp35 could complement the dsbA mutation, suggesting a role of disulfide bond formation of this protein in P. gingivalis cells. Possible roles of the Cys residues in complementation are discussed.
Collapse
|
11
|
Nasal immunization with Porphyromonas gingivalis outer membrane protein decreases P. gingivalis-induced atherosclerosis and inflammation in spontaneously hyperlipidemic mice. Infect Immun 2008; 76:2958-65. [PMID: 18426881 DOI: 10.1128/iai.01572-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis has been shown to accelerate atherosclerotic lesion development in hyperlipidemic animals. We assessed the potential of a nasal vaccine against P. gingivalis infection for the prevention of atherosclerosis. Apolipoprotein E-deficient spontaneously hyperlipidemic (Apoe(shl)) mice were nasally immunized with the 40-kDa outer membrane protein (OMP) of P. gingivalis plus cholera toxin (CT) as adjuvant and then challenged intravenously with P. gingivalis strain 381. The animals were euthanized 11 or 14 weeks later. Atheromatous lesions in the proximal aorta of each animal were analyzed histomorphometrically, and the serum concentrations of 40-kDa OMP-specific antibodies and cytokines were determined. The areas of the aortic sinus that were covered with atherosclerotic plaque and the serum levels of inflammatory cytokines and chemokines were increased in Apoe(shl) mice challenged with P. gingivalis compared to nonchallenged mice. In comparison, nasal immunization with 40-kDa OMP plus CT significantly reduced atherosclerotic plaque accumulation in the aortic sinus and lowered the serum levels of cytokines and chemokines compared to nonimmunized animals. Nasal immunization also induced 40-kDa OMP-specific serum immunoglobulin G (IgG) and saliva IgA antibody responses. These findings suggest that systemic infection with P. gingivalis accelerates atherosclerosis in Apoe(shl) mice, and 40-kDa OMP plus CT may be an effective nasal vaccine for the reduction of atherosclerosis accelerated by P. gingivalis in the hyperlipidemic mouse model.
Collapse
|
12
|
Nasal vaccination with the 40-kilodalton outer membrane protein of Porphyromonas gingivalis and a nontoxic chimeric enterotoxin adjuvant induces long-term protective immunity with reduced levels of immunoglobulin E antibodies. Infect Immun 2008; 76:2777-84. [PMID: 18411288 DOI: 10.1128/iai.01502-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this study, we demonstrated that the 40-kDa outer membrane protein of Porphyromonas gingivalis (40-kDa OMP) nasally administered with a nontoxic chimeric adjuvant that combines the A subunit of mutant cholera toxin E112K with the pentameric B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli (mCTA/LTB) elicited a long-term protective immune response. Immunization with the 40-kDa OMP and mCTA/LTB induced high levels of 40-kDa-OMP-specific immunoglobulin G (IgG) and IgA antibodies (Abs) in sera and elicited a significant IgA anti-40-kDa OMP Ab response in saliva. These Ab responses were maintained for at least 1 year after the immunization. Although using adjuvant mCTA/LTB gave Ab responses in the saliva comparable to those obtained using native cholera toxin (nCT) as the adjuvant, the levels of total IgE and 40-kDa-OMP-specific IgE Abs as well as interleukin-4 levels induced by the immunization with mCTA/LTB were lower than those induced by the immunization with nCT. Importantly, IgG Abs generated by nasal immunization with the 40-kDa OMP plus mCTA/LTB inhibited the coaggregation and hemagglutinin activities of P. gingivalis. Furthermore, the mice given nasal 40-kDa OMP plus mCTA/LTB showed a significant reduction of alveolar bone loss caused by oral infection with P. gingivalis even 1 year after the immunization compared to the loss in unimmunized mice. Because mCTA/LTB is nontoxic, nasally administered 40-kDa OMP together with mCTA/LTB should be an effective and safe mucosal vaccine against P. gingivalis infection in humans and may be an important tool for the prevention of chronic periodontitis.
Collapse
|
13
|
Koizumi Y, Kurita-Ochiai T, Yamamoto M. Transcutaneous immunization with an outer membrane protein of Porphyromonas gingivalis without adjuvant elicits marked antibody responses. ACTA ACUST UNITED AC 2008; 23:131-8. [DOI: 10.1111/j.1399-302x.2007.00400.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Role of the hemin-binding protein 35 (HBP35) of Porphyromonas gingivalis in coaggregation. Microb Pathog 2007; 44:320-8. [PMID: 18053679 DOI: 10.1016/j.micpath.2007.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/06/2007] [Accepted: 10/12/2007] [Indexed: 11/22/2022]
Abstract
Hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis is one of the outer membrane proteins and has been reported to be a non-fimbrial coaggregation factor. In this study, a P. gingivalis HBP35-deficient mutant (MD774) was constructed from wild-type strain FDC381 by insertion mutagenesis in order to provide a better understanding of this protein's role in coaggregation. The intact cells and vesicles in FDC381 were found to have strong aggregation activities with Gram-positive bacteria. But neither the vesicles nor the intact cells showed aggregation activity in MD774. In addition, MD774 reduced autoaggregation activity. Immunoblot analysis of MD774 showed the presence of a non-maturated 45-kDa fimbrillin protein. Electron microscopy showed that the MD774 had no long fimbriae on the cell surface. Arg- and Lys-gingipain activity in MD774 was significantly decreased, compared with FDC381. Real-time RT-PCR demonstrated a significant reduction in the expression of gingipain-associated genes rgpA, rgpB, and kgp. In conclusion, we suggest that the reduction in coaggregation was caused by the combined reduction of a variety of molecules, including HBP35, gingipains, and fimbriae. Our results suggest that the HBP35 protein directly influences not only coaggregation as an adhesion molecule but also indirectly influences the expression of other coaggregation factors.
Collapse
|
15
|
Sharma DCG, Prasad SBM, Karthikeyan BV. Vaccination against periodontitis: the saga continues. Expert Rev Vaccines 2007; 6:579-90. [PMID: 17669011 DOI: 10.1586/14760584.6.4.579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periodontal disease can be considered to be one of the most common chronic inflammatory diseases inflicting humans. With the advent of advanced molecular diagnostic techniques, a better understanding of the role of specific pathogens and the contributory role of the host immune response in the initiation and progression of periodontal disease has been possible - although not completely. However, successful vaccine development that fully utilizes the current level of understanding has not yet occurred for human use. This paper reviews various in vitro, animal studies and human trials undertaken to develop a vaccine against periodontal disease, with emphases on the shortfalls of these efforts and future prospects of developing a successful vaccine against periodontal disease.
Collapse
Affiliation(s)
- Dileep C G Sharma
- Department of Periodontics, KGF College of Dental Sciences, Kolar Gold Fields, Karnataka, India.
| | | | | |
Collapse
|
16
|
Hamada N, Watanabe K, Tahara T, Nakazawa K, Ishida I, Shibata Y, Kobayashi T, Yoshie H, Abiko Y, Umemoto T. The r40-kDa outer membrane protein human monoclonal antibody protects against Porphyromonas gingivalis-induced bone loss in rats. J Periodontol 2007; 78:933-9. [PMID: 17470029 DOI: 10.1902/jop.2007.060245] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Porphyromonas gingivalis has been implicated as an important pathogen in the development of adult periodontitis, and its colonization of subgingival sites is critical in the pathogenic process. We recently reported the construction and characterization of human immunoglobulin G isotype clones, which were specifically reactive with recombinant (r) 40-kDa outer membrane protein (OMP) of P. gingivalis. The aim of this study was to investigate the efficacy of human monoclonal antibody (hMAb) against r40-kDa OMP of P. gingivalis to the protection alveolar bone loss by P. gingivalis in rats. METHODS The role of 40-kDa OMP in the adherence of P. gingivalis to human gingival epithelial cells (HGECs) was examined by preincubating with r40-kDa OMP hMAb before adding the HGECs. Moreover, we used a rat model to examine the effect of the anti-r40-kDa OMP hMAb in alveolar bone loss by oral infection. Forty-six days after the last infection, the periodontal bone level was assessed morphometrically on defleshed rat jaws. RESULTS The adherence to HGECs was reduced by 84% compared to adherence levels without the antibody. P. gingivalis could not be detected from rats in a P. gingivalis-non-infected group and a group that was administered the anti-r40-kDa OMP hMAb. The bone loss in P. gingivalis-infected animals that were administered the anti-r40-kDa OMP hMAb was significantly lower than that of P. gingivalis-infected rats. CONCLUSIONS Our results suggest that transchromosomic mouse-derived hMAb against r40-kDa OMP of P. gingivalis protects against periodontal bone loss. This newly constructed anti-r40-kDa OMP hMAb was used to protect against periodontal diseases caused by P. gingivalis infection.
Collapse
Affiliation(s)
- Nobushiro Hamada
- Division of Microbiology, Department of Infection Control, Kanagawa Dental College, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nagasawa T, Kiji M, Yashiro R, Hormdee D, Lu H, Kunze M, Suda T, Koshy G, Kobayashi H, Oda S, Nitta H, Ishikawa I. Roles of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in periodontal health and disease. Periodontol 2000 2007; 43:65-84. [PMID: 17214836 DOI: 10.1111/j.1600-0757.2006.00185.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Toshiyuki Nagasawa
- Division of Periodontology, Department of Hard Tissue Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hamajima S, Maruyama M, Hijiya T, Hatta H, Abiko Y. Egg yolk-derived immunoglobulin (IgY) against Porphyromonas gingivalis 40-kDa outer membrane protein inhibits coaggregation activity. Arch Oral Biol 2007; 52:697-704. [PMID: 17275778 DOI: 10.1016/j.archoralbio.2006.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/18/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
The anaerobic bacterium Porphyromonas gingivalis, a major pathogen in periodontitis, aggregates with a number of oral bacteria to form dental plaque, which is important for its colonization. We previously cloned the gene coding the 40-kDa outer membrane protein (OMP) of P. gingivalis 381 and produced large amounts of the recombinant (r) protein. Affinity-purified rabbit antiserum against r40-kDa OMP effectively inhibited the coaggregation activity of P. gingivalis to oral bacteria, thus 40-kDa OMP was thought to be an important coaggregation factor of P. gingivalis. Further, since it is conserved among many P. gingivalis strains, this coaggregation factor may be an effective target for passive immunotherapy against P. gingivalis infection. Recently, passive immunization approaches using a specific antibody produced from hen egg yolk (IgY) have been developed for oral infectious diseases, and shown to be convenient and economic. In the present study, we immunized hens intramuscularly with r40-kDa OMP and obtained highly purified IgY from the egg yolks. The purified IgY specifically recognized r40-kDa OMP and also reacted with a functional coaggregation-associated domain peptide of 40-kDa OMP. Our results demonstrated that a ratio of purified IgY as low as 2.5 microg/150 microl significantly inhibited the coaggregation of P. gingivalis with Streptococcus gordonii, which was verified by a visual coaggregation assay and radioactivity-based quantitative micro-coaggregation assay. We concluded anti-r40-kDa OMP IgY may be useful for passive immunization against periodontal diseases caused by P. gingivalis infection.
Collapse
Affiliation(s)
- Susumu Hamajima
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | |
Collapse
|
19
|
Kobayashi T, Kaneko S, Tahara T, Hayakawa M, Abiko Y, Yoshie H. Antibody responses to Porphyromonas gingivalis hemagglutinin A and outer membrane protein in chronic periodontitis. J Periodontol 2006; 77:364-9. [PMID: 16512750 DOI: 10.1902/jop.2006.050138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hemagglutinin and outer membrane protein (OMP) are major virulence factors associated with colonization of Porphyromonas gingivalis in the gingival crevice. The genes for the 200-kDa antigenic protein (200-kDa AP) and 40-kDa OMP of P. gingivalis have been successfully cloned. Additionally, the 200-kDa AP gene has been shown to constitute the hemagglutinin A (hagA) gene of P. gingivalis. Therefore, this study was constructed to evaluate the distributions and serum levels of immnoglobulin G (IgG) antibodies specific for 200-kDa AP and 40-kDa OMP in periodontitis patients. METHODS Fifty patients with chronic periodontitis and 59 controls without periodontal destruction were enrolled in this study. We cloned the genes for 200-kDa AP and 40-kDa OMP from P. gingivalis and constructed the purified recombinant proteins. Serum levels of IgG subclass antibodies specific for both recombinant 200-kDa and 40-kDa OMP were determined in patients and controls by an enzyme-linked immunosorbent assay (ELISA). RESULTS The serum IgG subclass distribution for patients and controls was IgG1>IgG4>IgG2>IgG3 in the anti-200-kDa AP response, which was almost identical to that in the anti-40-kDa OMP response. The patient group showed significantly higher serum IgG responses to the 40-kDa OMP than the control group (P<0.01). In contrast, IgG subclass responses to the 200-kDa AP were not different between the patients and controls. Serum levels of antibodies reactive with both 200-kDa and 40-kDa proteins did not have a significant association with mean probing depth. CONCLUSION These results suggested that serum IgG responses against P. gingivalis OMP rather than the hagA may be more active in chronic periodontitis.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, and General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005; 38:72-122. [PMID: 15853938 DOI: 10.1111/j.1600-0757.2005.00113.x] [Citation(s) in RCA: 668] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Stanley C Holt
- Department of Periodontology, The Forsyth Institute, Boston, MA, USA
| | | |
Collapse
|
21
|
Takauchi A, Kobayashi T, Tahara T, Nakazawa K, Hayakawa M, Shibata Y, Ishida I, Abiko Y, Yoshie H. The Trans-Chromosomic Mouse-Derived Human Monoclonal Antibody Promotes Phagocytosis ofPorphyromonas gingivalisby Neutrophils. J Periodontol 2005; 76:680-5. [PMID: 15898926 DOI: 10.1902/jop.2005.76.5.680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND As a safe immunotherapeutic approach, human monoclonal antibody (hMAb) may be effective in clearing periodontopathic bacteria. The trans-chromosomic (TC) technology has recently been applied to construction of the TC mouse, which enables us to incorporate entire human chromosome fragments containing immunoglobulin (Ig) gene cluster. The aim of this study is to establish TC mouse-derived hMAb, and to test the in vitro opsonophagocytic activity. METHODS Human Ig-producing TC mouse was immunized by recombinant 40-kDa outer membrane protein (r40-kDa OMP) of Porphyromonas gingivalis 381, and the spleen cells were fused with the mouse myeloma cell line. The specificity of antir40- kDa OMP hMAb was evaluated with the enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance assays. Flow cytometric analyses were performed to assess the opsonophagocytic activity. RESULTS We successfully constructed 99 IgG isotype clones (IgG1: 84; IgG2: 11; IgG4: four clones), which were specifically reactive with r40-kDa OMP. The anti-r40-kDa OMP IgG1 hMAbs promoted phagocytosis of P. gingivalis by neutrophils. Futhermore, an increased opsonophagocytic activitity of anti-r40-kDa OMP IgG1 hMAbs was observed not only in P. gingivalis 381, but also in the W50, W83, and Su63 strains. CONCLUSION Our results document the TC mouse-derived hMAb to promote neutrophil phagocytosis of P. gingivalis, suggesting an immunotherapeutic option for clearance of P. gingivalis.
Collapse
Affiliation(s)
- Ayano Takauchi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shibata Y, Hosogi Y, Hayakawa M, Hori N, Kamada M, Abiko Y. Construction of novel human monoclonal antibodies neutralizing Porphyromonas gingivalis hemagglutination activity using transgenic mice expressing human Ig loci. Vaccine 2005; 23:3850-6. [PMID: 15893624 DOI: 10.1016/j.vaccine.2005.01.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 01/06/2005] [Accepted: 01/18/2005] [Indexed: 12/31/2022]
Abstract
Porphyromonas gingivalis has been implicated as an important pathogen in the development of adult periodontitis, and its colonization of subgingival sites is critical in the pathogenic process. One potential virulence factor, hemagglutinin, may mediate bacteria attachment onto and penetration into host cells, as well as agglutinate and lyses erythrocytes to intake heme, an absolute requirement for growth. Toward the development of passive immunotherapy, the construction of a human type monoclonal antibody, which is capable of inhibiting the hemagglutinating ability, will be significant and important. The human mAbs, both exhibiting a high degree of specificity and affinity against the recombinant 130 kDa hemagglutinin domain protein have been prepared using XenoMouse technology. The constructed Xeno-mAbs, IgG2 subclass, significantly inhibited hemagglutination of P. gingivalis and its vesicles. The newly constructed Xeno-mAbs may prove to be useful for the development of passive immunization against periodontal diseases caused by P. gingivalis infection, pending the results of fertility study in disease mode.
Collapse
Affiliation(s)
- Yasuko Shibata
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Chiba 271-8587, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Maeba S, Otake S, Namikoshi J, Shibata Y, Hayakawa M, Abiko Y, Yamamoto M. Transcutaneous immunization with a 40-kDa outer membrane protein of Porphyromonas gingivalis induces specific antibodies which inhibit coaggregation by P. gingivalis. Vaccine 2005; 23:2513-21. [PMID: 15752838 DOI: 10.1016/j.vaccine.2004.10.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 09/30/2004] [Accepted: 10/05/2004] [Indexed: 11/17/2022]
Abstract
This study seeks to assess the potential of a 40-kDa outer membrane protein of Porphyromonas gingivalis (40k-OMP) as a transcutaneous vaccine against chronic periodontitis. Transcutaneous immunization (TCI) of mice with 40k-OMP alone elicited 40k-OMP-specific IgG antibody (Ab) responses in both serum and saliva. When administered with cholera toxin (CT) as adjuvant, TCI with 40k-OMP not only elevated IgG Abs as noted above, but also induced IgA responses in serum but not in saliva. Salivary IgG from mice given 40k-OMP alone or 40k-OMP plus CT showed higher binding levels to the 40k-OMP than did that of non-immunized mice. Ab-forming cell (AFC) analysis revealed high numbers of 40k-OMP-specific IgG AFCs in the spleen but low numbers in the salivary glands of mice given 40k-OMP alone or 40k-OMP plus CT. Since 40k-OMP-specific IgG inhibited the coaggregation of P. gingivalis vesicles and S. gordonii, TCI with 40k-OMP may be a useful tool in the quest to prevent P. gingivalis infection.
Collapse
Affiliation(s)
- Satomi Maeba
- Clinical Pathology, Nihon University Graduate School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Namikoshi J, Otake S, Maeba S, Hayakawa M, Abiko Y, Yamamoto M. Specific antibodies induced by nasally administered 40-kDa outer membrane protein of Porphyromonas gingivalis inhibits coaggregation activity of P. gingivalis. Vaccine 2004; 22:250-6. [PMID: 14615153 DOI: 10.1016/s0264-410x(03)00576-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we have assessed the efficacy of the 40-kDa outer membrane protein (40k-OMP) of Porphyromonas gingivalis as a nasal vaccine for the prevention of adult periodontitis. Mice nasally immunized with 40k-OMP and cholera toxin as mucosal adjuvant displayed significant levels of 40k-OMP-specific serum IgG1, IgG2b and IgA as well as mucosal IgA antibodies (Abs) in saliva and nasal secretions. Ab-forming cell (AFC) analysis confirmed the antibody titers by detecting high numbers of 40k-OMP-specific AFCs in spleen, salivary glands and nasal passages. Because 40k-OMP-specific IgG inhibited coaggregation of P. gingivalis vesicles and S. gordonii, it may be an important tool for the prevention of adult periodontitis.
Collapse
Affiliation(s)
- Jun Namikoshi
- Clinical Pathology, Nihon University Graduate School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, 271-8587, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Production of a single-chain variable fraction capable of inhibiting the Streptococcus mutans glucosyltransferase in Bacillus brevis: construction of a chimeric shuttle plasmid secreting its gene product. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1626:57-64. [PMID: 12697330 DOI: 10.1016/s0167-4781(03)00038-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Periodontitis and dental caries are common oral diseases, in these days, and the passive immunization is one of the most effective approaches for prevention. For this purpose, we have constructed mouse and human monoclonal antibodies to inhibit the Porphyromonas gingivalis-associated hemagglutination and coaggregation. In addition, an artificial antibody, single-chain variable fraction, or scFv, which also inhibited the hemagglutination, was constructed. Specifically for dental caries, mouse and human monoclonal antibodies that inhibited the glucosyltransferase (GTF) activity, responsible for biofilm formation, were also constructed. The advantage of scFv over the native antibody is that the former molecule does not induce possible side-effects due to Fc, such as autoimmune disease, because it consists only of variable regions originating from both heavy and light chains. To increase the abilities of the antibody preparations, we attempted to construct an additional scFv using Bacillus brevis, a secretion-proficient gram-positive bacterium, as a host cell. An scFv protein possessing the same biological activity as that of the parental antibody was successfully secreted from a B. brevis transformant following the construction of a chimeric shuttle plasmid, which was accomplished by employing a new heterodimer system.
Collapse
|
26
|
Nasal Immunization with P. gingivalis Surface Protein Antigen and Cholera Toxin Adjuvant Induces T Helper 2 Responses in Both Mucosal and Systemic Compartments. ACTA ACUST UNITED AC 2003. [DOI: 10.5466/ijoms.1.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Abiko Y. Passive immunization against dental caries and periodontal disease: development of recombinant and human monoclonal antibodies. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 11:140-58. [PMID: 12002812 DOI: 10.1177/10454411000110020101] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Indigenous micro-organisms in the oral cavity can cause two major diseases, dental caries and periodontal diseases. There is neither agreement nor consensus as to the actual mechanisms of pathogenesis of the specific virulence factors of these micro-organisms. The complexity of the bacterial community in dental plaque has made it difficult for the single bacterial agent of dental caries to be determined. However, there is considerable evidence that Streptococcus mutans is implicated as the primary causative organism of dental caries, and the cell-surface protein antigen (SA I/II) as well as glucosyltransferases (GTFs) produced by S. mutans appear to be major colonization factors. Various forms of periodontal diseases are closely associated with specific subgingival bacteria. Porphyromonas gingivalis has been implicated as an important etiological agent of adult periodontitis. Adherence of bacteria to host tissues is a prerequisite for colonization and one of the important steps in the disease process. Bacterial coaggregation factors and hemagglutinins likely play major roles in colonization in the subgingival area. Emerging evidence suggests that inhibition of these virulence factors may protect the host against caries and periodontal disease. Active and passive immunization approaches have been developed for immunotherapy of these diseases. Recent advances in mucosal immunology and the introduction of novel strategies for inducing mucosal immune responses now raise the possibility that effective and safe vaccines can be constructed. In this regard, some successful results have been reported in animal experimental models. Nevertheless, since the public at large might be skeptical about the seriousness of oral diseases, immunotherapy must be carried out with absolute safety. For this goal to be achieved, the development of safe antibodies for passive immunization is significant and important. In this review, salient advances in passive immunization against caries and periodontal diseases are summarized, and the biotechnological approaches for developing recombinant and human-type antibodies are introduced. Furthermore, our own attempts to construct single-chain variable fragments (ScFv) and human-type antibodies capable of neutralizing virulence factors are discussed.
Collapse
Affiliation(s)
- Y Abiko
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| |
Collapse
|
28
|
Lamont RJ, Jenkinson HF. Subgingival colonization by Porphyromonas gingivalis. ORAL MICROBIOLOGY AND IMMUNOLOGY 2000; 15:341-9. [PMID: 11154429 DOI: 10.1034/j.1399-302x.2000.150601.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a major causative agent in the initiation and progression of severe forms of periodontal disease. In order to cause periodontal disease, P. gingivalis must colonize the subgingival region, a process that involves several distinct steps and multiple gene products. The organism must first navigate within the oral fluids in order to reach the hard or soft tissues of the mouth. Retention and growth of bacteria on these surfaces is facilitated by a repertoire of adhesins including fimbriae, hemagglutinins and proteinases. Once established subgingivally, P. gingivalis cells participate in intercellular communication networks with other oral prokaryotic cells and with eukaryotic cells. The establishment of these multiple interactive interfaces can lead to biofilm formation, invasion of root dentin and internalization within gingival epithelial cells. The resulting bacterial and host cellular locations, products and fate contribute to the success of P. gingivalis in colonizing the periodontal region.
Collapse
Affiliation(s)
- R J Lamont
- Department of Oral Biology, Box 357132, University of Washington, Seattle, WA 98195-7132, USA
| | | |
Collapse
|
29
|
Katoh M, Saito S, Takiguchi H, Abiko Y. Bactericidal activity of a monoclonal antibody against a recombinant 40-kDa outer membrane protein of Porphyromonas gingivalis. J Periodontol 2000; 71:368-75. [PMID: 10776923 DOI: 10.1902/jop.2000.71.3.368] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND We have cloned the gene for a 40-kDa outer membrane protein (40-kDa OMP) from Porphyromonas gingivalis 381. The recombinant (r)40-kDa OMP has become the subject of considerable interest because of its potential role in the development of a vaccine useful for passive immunization. To develop such a vaccine, it is essential to fully understand the functions of anti-r40-kDa OMP antibody in the host defense against P. gingivalis. To that end, we developed a panel of monoclonal antibodies by immunizing mice with purified r40-kDa OMP. The objective of this study was to determine the bactericidal activity on P. gingivalis by the IgG1 monoclonal antibody Pg-ompA2. METHODS Bacterial growth measurement, a complement-mediated anti-P. gingivalis assay based on [3H]thymidine uptake, and a 14C-release assay were performed to test the bactericidal activity of Pg-ompA2 to P. gingivalis. RESULTS In the presence of complement, Pg-ompA2 was lethal to P. gingivalis 381 as well as to the more virulent P. gingivalis strains, including ATCC 53977 and W83. Using component-deficient complement, we determined that Pg-ompA2 killed P. gingivalis by activating both the classical and alternative complement pathways. CONCLUSIONS Pg-ompA2 has an in vitro complement-mediated bactericidal activity to P. gingivalis. Pg-ompA2 may contribute to the development of a local immunotherapy that can be applied in the gingival crevice of a patient with P. gingivalis-related periodontitis, or be a vaccine candidate.
Collapse
Affiliation(s)
- M Katoh
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|
30
|
Kinane DF, Mooney J, Ebersole JL. Humoral immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease. Periodontol 2000 1999; 20:289-340. [PMID: 10522229 DOI: 10.1111/j.1600-0757.1999.tb00164.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D F Kinane
- Department of Periodontology and Oral Immunology, Glasgow Dental Hospital and School, Scotland, United Kingdom
| | | | | |
Collapse
|
31
|
Saito S, Hayakawa M, Takiguchi H, Abiko Y. Opsonophagocytic effect of antibody against recombinant conserved 40-kDa outer membrane protein of Porphyromonas gingivalis. J Periodontol 1999; 70:610-7. [PMID: 10397516 DOI: 10.1902/jop.1999.70.6.610] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is associated with the initiation and progression of adult periodontitis. The outer membrane proteins of the bacteria are potentially important targets for interaction with host defense systems. A 40-kDa outer membrane protein (40-kDa OMP) is conserved among many strains of P. gingivalis. We have cloned the gene for 40-kDa OMP from P. gingivalis 381 and produced a recombinant protein. For the development of recombinant 40-kDa OMP as a component of a vaccine for passive immunization, the elucidation of the roles of the anti-recombinant 40-kDa OMP antibody in the host defense against P. gingivalis is essential. The objective of this study was to determine the opsonic capacity of the antibody for phagocytosis by neutrophils which play a key role in the immune response to microbial infections. METHODS To test the opsonic activity of a rabbit polyclonal antibody against r40-kDa OMP (r40-kDa OMP Ab) on human neutrophils to phagocytize P. gingivalis, we constructed a reproducible in vitro model of P. gingivalis-neutrophil interaction using the human promyelocytic cell line HL-60. RESULTS We demonstrated that r40-kDa OMP Ab in the presence of human complement successfully opsonized [3H]-thymidine-labeled P. gingivalis as a target for phagocytosis by HL-60 cells differentiated with dimethyl sulfoxide. The phagocytized bacteria were then intracellularly killed and lysed, and the radioactive degradation debris egested into the culture medium. CONCLUSIONS We conclude that antibody against r40-kDa OMP has opsonic activity on human neutrophil function for phagocytosis of P. gingivalis. Subgingival bacteria are coated in vivo with immunoglobulin and complement. When the antibody is specific for crevicular bacteria, immunological interactions can be expected in the crevice. Our observations suggest that the anti-recombinant 40-kDa OMP antibody in concert with the crevicular complement may prevent P. gingivalis colonization r40-kDa OMP may contribute to the development of a local immunotherapy when applied to the crevice of a patient with P. gingivalis-related periodontitis which relates to susceptibility for certain systemic diseases such as diabetes mellitus, cardiovascular disease, and preterm labor.
Collapse
Affiliation(s)
- S Saito
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|