1
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
2
|
A Bivalent Recombinant Mycobacterium bovis BCG Expressing the S1 Subunit of the Pertussis Toxin Induces a Polyfunctional CD4 + T Cell Immune Response. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9630793. [PMID: 30941374 PMCID: PMC6420988 DOI: 10.1155/2019/9630793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022]
Abstract
Background A recombinant BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin 9K/129G (rBCG-S1PT), previously constructed by our research group, demonstrated the ability to develop high protection in mouse models of pertussis challenge which correlated with the induction of a Th1 immune response pattern. The Th1 immune response induced by rBCG-S1PT treatment was also confirmed in the murine orthotopic bladder cancer model, in which the intravesical instillation of rBCG-S1PT resulted in an improved antitumor effect. Based on these observations, we hypothesize that the reengineering of the S1PT expression in BCG could increase the efficiency of the protective Th1 immune response in order to develop a new alternative of immunotherapy in bladder cancer treatment. Objectives To construct rBCG strains expressing S1PT from extrachromosomal (rBCG-S1PT) and integrative vectors (rBCG-Sli), or their combination, generating the bivalent strain (rBCG-S1+S1i), and to evaluate the respective immunogenicity of rBCG strains in mice. Methods Mycobacterial plasmids were constructed by cloning the s1pt gene under integrative and extrachromosomal vectors and used to transform BCG, individually or in combination. Antigen expression and localization were confirmed by Western blot. Mice were immunized with wild-type BCG or the rBCG strains, and cytokines quantification and flow cytometry analysis were performed in splenocytes culture stimulated with mycobacterial-specific proteins. Findings S1PT expression was confirmed in all rBCG strains. The extrachromosomal vector directs S1PT to the cell wall-associated fraction, while the integrative vector directs its expression mainly to the intracellular fraction. Higher levels of IFN-γ were observed in the splenocytes culture from the group immunized with rBCG-S1i in comparison to BCG or rBCG-S1PT. rBCG-S1+S1i showed higher levels of CD4+ IFN-γ+ and double-positive CD4+ IFN-γ+ TNF-α+ T cells. Conclusions rBCG-S1+S1i was able to express the two forms of S1PT and elicited higher induction of polyfunctional CD4+ T cells, indicating enhanced immunogenicity and suggesting its use as immunotherapy for bladder cancer.
Collapse
|
3
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
4
|
Protective immunity induced by a recombinant BCG vaccine encoding the cyclophilin gene of Toxoplasma gondii. Vaccine 2013; 31:6065-71. [DOI: 10.1016/j.vaccine.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/14/2013] [Accepted: 10/03/2013] [Indexed: 01/18/2023]
|
5
|
Chapman R, Chege G, Shephard E, Stutz H, Williamson AL. Recombinant Mycobacterium bovis BCG as an HIV vaccine vector. Curr HIV Res 2010; 8:282-98. [PMID: 20353397 PMCID: PMC3188323 DOI: 10.2174/157016210791208686] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/05/2010] [Indexed: 11/22/2022]
Abstract
HIV-1 has resulted in a devastating AIDS pandemic. An effective HIV/AIDS vaccine that can be used to either, prevent HIV infection, control infection or prevent progression of the disease to AIDS is needed. In this review we discuss the use of Mycobacterium bovis BCG, the tuberculosis vaccine, as a vaccine vector for an HIV vaccine. Numerous features make BCG an attractive vehicle to deliver HIV antigens. It has a good safety profile, elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable, a necessary consideration for developing countries. In this review we discuss the numerous factors that influence generation of a genetically stable recombinant BCG vaccine for HIV.
Collapse
Affiliation(s)
- Rosamund Chapman
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | | | | | | |
Collapse
|
6
|
Recombinant Mycobacterium bovis BCG. Vaccine 2009; 27:6495-503. [PMID: 19720367 DOI: 10.1016/j.vaccine.2009.08.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 12/14/2022]
Abstract
The Bacillus Calmette-Guerin (BCG) is an attenuated strain of Mycobacterium bovis that has been broadly used as a vaccine against human tuberculosis. This live bacterial vaccine is able to establish a persistent infection and induces both cellular and humoral immune responses. The development of mycobacterial genetic systems to express foreign antigens and the adjuvanticity of BCG are the basis of the potential use of this attenuated mycobacterium as a recombinant vaccine. Over the years, a range of strategies has been developed to allow controlled and stable expression of viral, bacterial and parasite antigens in BCG. Herein, we review the strategies developed to express heterologous antigens in BCG and the immune response elicited by recombinant BCG constructs. In addition, the use of recombinant BCG as an immunomodulator and future perspectives of BCG as a recombinant vaccine vector are discussed.
Collapse
|
7
|
Soria-Guerra RE, Alpuche-Solís AG, Rosales-Mendoza S, Moreno-Fierros L, Bendik EM, Martínez-González L, Korban SS. Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer. PLANTA 2009; 229:1293-302. [PMID: 19306020 PMCID: PMC7087907 DOI: 10.1007/s00425-009-0918-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/04/2009] [Indexed: 05/08/2023]
Abstract
Expression of genes in plant chloroplasts provides an opportunity for enhanced production of target proteins. We report the introduction and expression of a fusion DPT protein containing immunoprotective exotoxin epitopes of Corynebacterium diphtheriae, Bordetella pertussis, and Clostridium tetani in tobacco chloroplasts. Using biolistic-mediated transformation, a plant-optimized synthetic DPT gene was successfully transferred to tobacco plastomes. Putative transplastomic T0 plants were identified by PCR, and Southern blot analysis confirmed homoplasmy in T1 progeny. ELISA assays demonstrated that the DPT protein retained antigenicity of the three components of the fusion protein. The highest level of expression in these transplastomic plants reached 0.8% of total soluble protein. To assess whether the functional recombinant protein expressed in tobacco plants would induce specific antibodies in test animals, a mice feeding experiment was conducted. For mice orally immunized with freeze-dried transplastomic leaves, production of IgG and IgA antibodies specific to each toxin were detected in serum and mucosal tissues.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/blood
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Blotting, Southern
- Blotting, Western
- Chloroplasts/genetics
- Chloroplasts/immunology
- Chloroplasts/metabolism
- Diphtheria Toxin/genetics
- Diphtheria Toxin/immunology
- Diphtheria Toxin/metabolism
- Enzyme-Linked Immunosorbent Assay
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Gene Expression
- Genetic Vectors/genetics
- Immunization/methods
- Intestines/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Pertussis Toxin/genetics
- Pertussis Toxin/immunology
- Pertussis Toxin/metabolism
- Plant Leaves/genetics
- Plant Leaves/immunology
- Plant Leaves/metabolism
- Plants, Genetically Modified
- Polymerase Chain Reaction
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Tetanus Toxin/genetics
- Tetanus Toxin/immunology
- Tetanus Toxin/metabolism
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Ruth Elena Soria-Guerra
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
| | - Angel G. Alpuche-Solís
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | - Sergio Rosales-Mendoza
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
| | - Leticia Moreno-Fierros
- Inmunidad en Mucosas, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, Mexico
| | - Elise M. Bendik
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
| | - Luzmila Martínez-González
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216 San Luis Potosí, Mexico
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821 USA
- University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
8
|
Wei SH, Yin W, An QX, Lei YF, Hu XB, Yang J, Lu X, Zhang H, Xu ZK. A novel hepatitis C virus vaccine approach using recombinant Bacillus Calmette-Guerin expressing multi-epitope antigen. Arch Virol 2008; 153:1021-9. [PMID: 18421415 DOI: 10.1007/s00705-008-0082-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. HCV infection is associated with high morbidity and has become a major problem in public health. Until now, there has been no effective prophylactic or therapeutic vaccine. BCG, a live vaccine typically used for tuberculosis prevention, has been increasingly utilized as a vector for the expression of recombinant proteins that will induce specific humoral and cellular immune responses. In this study, recombinant BCG (rBCG) was engineered to express a HCV multi-epitope antigen CtEm, and HLA-A2.1 transgenic mice were immunized with rBCG-CtEm. High levels of specific anti-HCV antibodies targeted to mimotopes of HVR1 were detected in the serum. HCV-specific lymphocyte proliferation assay, cytokine determination and cytotoxicity assay indicated that HCV epitope-specific cellular immune responses were elicited in vitro. The rBCG-CtEm immunization conferred protection against infection with the recombinant vaccinia virus (rVV-HCV-CNS) in vivo. These results suggest that rBCG expressing multi-epitope antigen may serve as an effective vaccine against HCV infection.
Collapse
Affiliation(s)
- S-H Wei
- The State Key Discipline and Department of Microbiology, Fourth Military Medical University of PLA, 17 Changlexi Road, 710032 Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kravchenko TB, Platonov ME, Vahrameeva GM, Bannov VA, Kudryavtseva TJ, Mokrievich AN, Pavlov VM. Cloning and expression of protective antigens of Mycobacterium tuberculosis Ag85B and ESAT-6 in Francisella tularensis 15/10. BIOCHEMISTRY (MOSCOW) 2007; 72:735-43. [PMID: 17680765 DOI: 10.1134/s0006297907070073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The possibility of expression of genes encoding mycobacterial antigens in Francisella tularensis 15/10 vaccine strain cells has been shown for the first time. To obtain stable and effective expression of mycobacterial antigens in the F. tularensis cells, the plasmid vector pPMC1 and hybrid genes consisting of the leader part FL of the F. tularensis membrane protein FopA and structural moieties of the mature protein Ag85B or the fused protein Ag85B-ESAT-6 were constructed. Recombinant strains F. tularensis RVp17 and RVp18 expressing protective mycobacterial antigens in the fused proteins FL-Ag85B and FL-Ag85B-ESAT-6, respectively, were obtained. Expression of the protective mycobacterial antigens in F. tularensis was analyzed using specific antisera to the recombinant proteins Ag85-(His)6 and ESAT-6-(His)6 isolated from Escherichia coli producer strains created on the basis of the pET23b(+) and pET24b(+) vectors. The expression of heterologous protective antigens in F. tularensis 15/10 is promising for creation of live recombinant anti-tuberculosis vaccines on the basis of the tularemia vaccine strain.
Collapse
Affiliation(s)
- T B Kravchenko
- State Research Center of Applied Microbiology and Biotechnology, Obolensk, Moscow Region, 142279, Russia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Dennehy M, Bourn W, Steele D, Williamson AL. Evaluation of recombinant BCG expressing rotavirus VP6 as an anti-rotavirus vaccine. Vaccine 2007; 25:3646-57. [PMID: 17339069 DOI: 10.1016/j.vaccine.2007.01.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 12/19/2006] [Accepted: 01/11/2007] [Indexed: 11/16/2022]
Abstract
Recombinant BCG expressing rotavirus VP6 was explored as an anti-rotavirus vaccine in a mouse model. Three promoters and five ribosome-binding sites were used in episomal and integrative E. coli-mycobacterium shuttle vectors to express VP6 in BCG. The VP6 gene was configured for accumulation within the BCG cytoplasm, secretion from the BCG cell or targeting to the BCG cell membrane. Vectors were assessed in terms of stability, levels of antigen production, immunogenicity and protection in mice. Gross instability occurred in episomal vectors utilizing the hsp60 promoter. However, three integrative vectors using the same expression system and two episomal vectors using inducible promoters were successfully recovered from BCG. Growth rates of the former were not detectably reduced. Growth rates of the latter were considerably reduced, implying the existence of a significant metabolic load. In the absence of selection, loss rate of these plasmids was high. VP6 production levels (0.04-1.78% of total cytoplasmic protein) were on the lower end of the range reported for other rBCG. One episomal and one integrated vaccine reduced viral shedding in intraperitoneally vaccinated mice challenged with rotavirus. Compared to controls, infection-associated faecal shedding of virus was reduced by 66% and 62%, respectively. These protective vectors differ in promoter, ribosome-binding site and antigen production level, but both link the VP6 protein to the 19kDa lipoprotein signal sequence, suggesting that transport of VP6 to the BCG membrane is important for induction of a protective immune response. Protection occurred in the absence of detectable anti-rotavirus antibody in serum or faeces, implicating cellular immunity in protection.
Collapse
Affiliation(s)
- Maureen Dennehy
- Division of Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.
| | | | | | | |
Collapse
|
11
|
Santangelo MP, McIntosh D, Bigi F, Armôa GRG, Campos ASD, Ruybal P, Dellagostin OA, McFadden J, Mendum T, Gicquel B, Winter N, Farber M, Cataldi A. Mycobacterium bovis BCG as a delivery system for the RAP-1 antigen from Babesia bovis. Vaccine 2007; 25:1104-13. [PMID: 17049681 DOI: 10.1016/j.vaccine.2006.09.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/20/2022]
Abstract
Babesia bovis is the causative agent of babesiosis, a tick-borne disease that is a major cause of loss to livestock production in Latin America. Vaccination against Babesia species represents a major challenge against cattle morbidity and mortality in enzootic areas. The aim of this study was to evaluate the capacity of Bacille Calmette-Guerin (BCG) to deliver the rhoptry associated protein (RAP-1) antigen of B. bovis and to stimulate specific cellular and humoral immune responses in mice. Two of five mycobacterial expression vectors efficiently expressed the antigen. These constructs were subsequently studied in vivo following three immunization protocols. The construct with the greatest in vivo stability proved to be the one that induced the strongest immune responses. Our data support the hypothesis that specific T lymphocyte priming by rBCG can be employed as a component of a combined vaccine strategy to induce long-lasting humoral and cellular immune responsiveness towards B. bovis and encourage further work on the application of rBCG to the development of Babesia vaccines.
Collapse
Affiliation(s)
- M P Santangelo
- Institute of Biotechnology, CICVyA-INTA, Los Reseros y Las Cabañas, 1712 Castelar, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Medeiros MA, Armôa GRG, Dellagostin OA, McIntosh D. Induction of humoral immunity in response to immunization with recombinant Mycobacterium bovis BCG expressing the S1 subunit of Bordetella pertussis toxin. Can J Microbiol 2006; 51:1015-20. [PMID: 16462859 DOI: 10.1139/w05-095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two recombinant Mycobacterium bovis BCG (rBCG) vaccine strains were developed for the expression of cytoplasmically located S1 subunit of pertussis toxin, with expression driven by the hsp60 promoter of M. bovis (rBCG/pPB10) or the pAN promoter of Mycobacterium paratuberculosis (rBCG/pPB12). Both strains showed stable expression of equivalent levels of recombinant S1 in vitro and induced long-term (up to 8 months) humoral immune responses in BALB/c mice, although these responses differed quantitatively and qualitatively. Specifically, rBCG/pPB12 induced markedly higher levels of IgG1 than did rBCG/pPB10, and mice immunized with the former strain developed specific long-term memory to S1, as indicated by the production of high levels of S1-specific IgG in response to a sublethal challenge with pertussis toxin 15 months after initial immunization. When considered in combination with previous studies, our data encourage further evaluation of rBCG as a potential means of developing a low-cost whooping cough vaccine based on defined antigens.
Collapse
Affiliation(s)
- Marco A Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
13
|
Suppian R, Zainuddin ZF, Norazmi MN. Cloning and expression of malaria and tuberculosis epitopes in mycobacterium bovis bacille calmette-guérin. Malays J Med Sci 2006; 13:13-20. [PMID: 22589585 PMCID: PMC3347897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Accepted: 12/26/2005] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium bovis bacille Calmette-Guèrin (BCG) represents one of the most promising live vectors for the delivery of foreign antigens to the immune system. A recombinant BCG containing a synthetic gene coding for the malarial epitopes namely, the fragment 2 of region II of EBA-175 (F2R(II)EBA) and the repeat sequence of the circumsporozoite protein NANP generated in favour of mycobacterium codon usage using assembly PCR was constructed. Two T-cell epitopes of the 6-kDa M. tuberculosis early-secreted antigenic target (ESAT-6) antigen were also clone in the same construct. Expression of the synthetic gene was driven by the heat shock protein 65 (hsp65) promoter from M. tuberculosis and the signal peptide from the MPT63 antigen of M. tuberculosis. Expression of the composite epitopes was detected by Western blotting of the cell extract and culture supernatant of the recombinant clones using a specific rabbit polyclonal antibody against F2R(II)EBA. This study demonstrates the possibility of cloning and expressing immunogenic epitopes from causative agents of two important diseases: malaria and tuberculosis (TB) in a single recombinant BCG construct.
Collapse
Affiliation(s)
- Rapeah Suppian
- Correspondence : Dr. Rapeah Suppian, BSc. (USM), PhD. (USM), School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia, E-mail: Tel :+609-7663903; Fax : +609-7647884
| | | | | |
Collapse
|
14
|
Dennehy M, Williamson AL. Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines. Vaccine 2005; 23:1209-24. [PMID: 15652663 DOI: 10.1016/j.vaccine.2004.08.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
A wide range of recombinant BCG vaccine candidates containing foreign viral, bacterial, parasite or immunomodulatory genetic material have been developed and evaluated, primarily in animal models, for immune response to the foreign antigen. This review considers some of the factors that may influence the immunogenicity of these vaccines. The influence of levels and timing of expression of the foreign antigen and the use of targeting sequences are considered in the first section. Genetic and functional stability of rBCG is reviewed in the second section. In the last section, the influence of dose and route of immunization, strain of BCG and the animal model used are discussed.
Collapse
Affiliation(s)
- Maureen Dennehy
- The Biovac Institute, Private Bag X3, Pinelands, 7430 Cape Town, South Africa.
| | | |
Collapse
|
15
|
Mazzantini RP, Miyaji EN, Dias WO, Sakauchi D, Nascimento ALTO, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LCC. Adjuvant activity of Mycobacterium bovis BCG expressing CRM197 on the immune response induced by BCG expressing tetanus toxin fragment C. Vaccine 2004; 22:740-6. [PMID: 14741167 DOI: 10.1016/j.vaccine.2003.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to develop a combined recombinant Mycobacterium bovis BCG (rBCG) vaccine against diphtheria, pertussis and tetanus (DPT), we have constructed different strains of rBCG expressing tetanus toxin fragment C (FC), driven by the up-regulated M. fortuitum beta-lactamase promoter, pBlaF*. Tetanus toxin FC was expressed in comparable levels in native form or in fusion with the beta-lactamase exportation signal sequence; however, in both constructs it was localized to the cytosol. Immunization of mice with rBCG-FC or its combination with rBCG expressing CRM197, induced anti-tetanus toxin antibodies with a Th2 immunoglobulin profile. Administration of a subimmunizing dose of the diphtheria-tetanus toxoid vaccine showed that rBCG-FC primed mice for production of an intense humoral response. Interestingly, the combination of rBCG-FC and rBCG-CRM197 reduced the time required for maturation of the immune response and increased anti-tetanus toxin antibody levels, suggesting adjuvant properties for rBCG-CRM197; this combination induced 75% protection in mice challenged with 100 minimum lethal doses (MLD) of tetanus toxin. Antisera from guinea pigs immunized with this combination were shown to neutralize tetanus toxin and diphtheria toxin. Our results suggest reciprocal adjuvant effects of rBCG-FC and rBCG-CRM197, which may contribute to induction of a more effective immune response against both diseases.
Collapse
Affiliation(s)
- Rogerio P Mazzantini
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stevenson A, Roberts M. Use of Bordetella bronchiseptica and Bordetella pertussis as live vaccines and vectors for heterologous antigens. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 37:121-8. [PMID: 12832115 DOI: 10.1016/s0928-8244(03)00068-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bordetella pertussis and Bordetella bronchiseptica are respiratory pathogens of humans and animals respectively. Unlike many bacteria, they are able to efficiently colonise healthy ciliated respiratory mucosa. This characteristic of Bordetella spp. can potentially be exploited to develop efficient live vaccines and vectors for delivery of heterologous antigens to the respiratory tract. Here we review the progress in this area.
Collapse
Affiliation(s)
- Andrew Stevenson
- Molecular Bacteriology Group, Department of Veterinary Pathology, Glasgow University Veterinary School, Bearsden Road, G61 1QH, Glasgow, UK
| | | |
Collapse
|
17
|
Dietrich G, Viret JF, Hess J. Novel vaccination strategies based on recombinant Mycobacterium bovis BCG. Int J Med Microbiol 2003; 292:441-51. [PMID: 12635927 DOI: 10.1078/1438-4221-00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this manuscript, we will review the utilization of Mycobacterium bovis Bacille Calmette-Guerin (BCG) as a vaccine against tuberculosis (TB) and as a carrier system for heterologous antigens. BCG is one of the most widely used vaccines. Novel techniques in genome manipulation allow the construction of virulence-attenuated recombinant (r)-BCG strains that can be employed as homologous vaccines, or as heterologous antigen delivery systems, for priming pathogen-specific immunity against infectious diseases, including TB. Several approaches are available for heterologous antigen expression and compartmentalization in BCG and recent findings show the potential to modulate and direct the immune responses induced by r-BCG strains as desired. Recent achievements in complete genome analysis of various target pathogens, combined with a better understanding of protective pathogen-specific immune responses, form the basis for the rational design of a new generation of recombinant mycobacterial vaccines against a multitude of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Cattle
- Communicable Disease Control
- Genetic Vectors
- Humans
- Mycobacterium bovis/genetics
- Recombination, Genetic
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/immunology
- Vaccination/methods
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Guido Dietrich
- Bacterial Vaccine Research, Berna Biotech Ltd., Berne, Switzerland.
| | | | | |
Collapse
|
18
|
Bastos RG, Dellagostin OA, Barletta RG, Doster AR, Nelson E, Osorio FA. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus. Vaccine 2002; 21:21-9. [PMID: 12443659 DOI: 10.1016/s0264-410x(02)00443-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium bovis BCG was used to express a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) and M protein of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV proteins were expressed in BCG under control of the mycobacterial hsp60 gene promoter either in the mycobacterial cytoplasm (BCGGP5cyt and BCGMcyt) or as MT19-fusion proteins on the mycobacterial surface (BCGGP5surf and BCGMsurf). Mice inoculated with BCGGP5surf and BCGMsurf developed antibodies against the viral proteins at 30 days post-inoculation (dpi) as detected by ELISA and Western blot. By 60 dpi, the animals developed titer of neutralizing antibodies of 8. A PRRSV-specific gamma interferon response was also detected in splenocytes of recombinant BCG-inoculated mice at 60 and 90 dpi. These results indicate that BCG was able to express antigens of PRRSV and elicit an immune response against the viral proteins in mice.
Collapse
Affiliation(s)
- Reginaldo G Bastos
- Department of Veterinary and Biomedical Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
19
|
Medeiros MA, Dellagostin OA, Armôa GRG, Degrave WM, de Mendonça-Lima L, Lopes MQ, Costa JF, Mcfadden J, McIntosh D. Comparative evaluation of Mycobacterium vaccae as a surrogate cloning host for use in the study of mycobacterial genetics. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1999-2009. [PMID: 12101288 DOI: 10.1099/00221287-148-7-1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium vaccae represents an alternative mycobacterial cloning host that has been largely overlooked to date. The main reason for this may be the reported non-transformability of this species, specifically the so-called Stanford strain (NCTC 11659), with expression vectors that use kanamycin resistance as a selection method. However, this strain can be transformed using hygromycin resistance as an alternative selectable phenotype. The present study has shown that in contrast to previous reports, M. vaccae (ATCC 15483) is capable of being transformed with a range of vectors encoding kanamycin resistance as the selectable marker. Thereafter, the expression of the lacZ reporter gene in M. vaccae, Mycobacterium bovis BCG and Mycobacterium smegmatis mc(2)155 was evaluated using a range of characterized mycobacterial promoter sequences (hsp60, hsp70, PAN, 18kDa and 16S rRNA) cloned in the same promoter probe vector. In general, the promoters showed similar levels of activity in the three species, demonstrating that existing expression systems can readily be employed with M. vaccae (ATCC 15483). This was further confirmed by the observation that M. vaccae was capable of stable, in vitro expression of recombinant S1 subunit of pertussis toxin at levels equivalent to those obtained with BCG and M. smegmatis. Analysis of structural and functional stability of a range of vectors demonstrated that the incidence of instability noted for M. vaccae was lower than that recorded for M. smegmatis. Taken together, the results indicate that M. vaccae is an additional cloning host which may prove useful for specific aspects of mycobacterial biology and provide increased flexibility to the field of recombinant protein technology for mycobacteria.
Collapse
Affiliation(s)
- Marco A Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil1
| | | | - Geraldo R G Armôa
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil1
| | - Wim M Degrave
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Leila de Mendonça-Lima
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Márcia Q Lopes
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Joseane F Costa
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Johnjoe Mcfadden
- School of Biological Sciences, University of Surrey, Guildford, Surrey, UK4
| | - Douglas McIntosh
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil1
| |
Collapse
|
20
|
Stevenson A, Roberts M. Use of a rationally attenuated Bordetella bronchiseptica as a live mucosal vaccine and vector for heterologous antigens. Vaccine 2002; 20:2325-35. [PMID: 12009288 DOI: 10.1016/s0264-410x(02)00118-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inactivation of the aroA gene of Bordetella bronchiseptica severely impaired its ability to colonise the respiratory tract of mice. The B. bronchiseptica aroA mutant was investigated as a live vaccine and vector for heterologous antigens. The B. bronchiseptica aroA mutant expressing the non-toxic fragment C (FrgC) of tetanus toxin (strain GVB120) was used to immunise mice intranasally. Immunised mice produced a strong serum and mucosal antibody response to B. bronchiseptica and serum anti-FrgC antibodies. Upon challenge with wild type B. bronchiseptica, immunised mice rapidly reduced the numbers of B. bronchiseptica in their respiratory tract, although clearance was more pronounced in the lower than in the upper respiratory tract. Immunisation with GVB120 protected approximately 40% of mice from tetanus toxin challenge. As far as we are aware, this is the first description of a recombinant B. bronchiseptica strain being used as a live vaccine vector for heterologous antigens.
Collapse
Affiliation(s)
- Andrew Stevenson
- Molecular Bacteriology Group, Department of Veterinary Pathology, Glasgow University Veterinary School, Bearsden Road, Glasgow, UK
| | | |
Collapse
|
21
|
Méderlé I, Bourguin I, Ensergueix D, Badell E, Moniz-Peireira J, Gicquel B, Winter N. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect Immun 2002; 70:303-14. [PMID: 11748196 PMCID: PMC127622 DOI: 10.1128/iai.70.1.303-314.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bivalent recombinant strains of Mycobacterium bovis BCG (rBCG) expressing the early regulatory nef and the structural gag(p26) genes from the simian immunodeficiency virus (SIV) SIVmac251 were engineered so that both genes were cotranscribed from a synthetic operon. The expression cassette was cloned into a multicopy-replicating vector, and the expression levels of both nef and gag in the bivalent rBCG(nef-gag) strain were found to be comparable to those of monovalent rBCG(nef) or rBCG(gag) strains. However, extrachromosomal cloning of the nef-gag operon into a replicative plasmid resulted in strains of low genetic stability that rapidly lost the plasmid in vivo. Thus, the nef-gag operon was inserted site specifically into the BCG chromosome by means of mycobacteriophage Ms6-derived vectors. The resulting integrative rBCG(nef-gag) strains showed very high genetic stability both in vitro and in vivo. The in vivo expression of the heterologous genes was much longer lived when the expression cassette was inserted into the BCG chromosome. In one of the strains obtained, integrative cloning did not reduce the expression levels of the genes even though a single copy was present. Accordingly, this strain induced cellular immune responses of the same magnitude as that of the replicative rBCG strain containing several copies of the genes.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacteriophages
- Cells, Cultured
- Chromosomes, Bacterial
- Cloning, Molecular/methods
- DNA, Viral
- Female
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors/genetics
- Macrophages/cytology
- Macrophages/immunology
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Insertional/methods
- Mutagenesis, Site-Directed
- Mycobacterium bovis/genetics
- Mycobacterium bovis/virology
- Operon
- Plasmids
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- I Méderlé
- Unité de Génétique Mycobactérienne, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
22
|
da Cruz FW, McBride AJ, Conceição FR, Dale JW, McFadden J, Dellagostin OA. Expression of the B-cell and T-cell epitopes of the rabies virus nucleoprotein in Mycobacterium bovis BCG and induction of an humoral response in mice. Vaccine 2001; 20:731-6. [PMID: 11738736 DOI: 10.1016/s0264-410x(01)00414-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression vectors containing rabies virus nucleoprotein B-cell and T-cell epitopes in Mycobacterium bovis BCG were constructed. The epitopes were subcloned into the M. leprae 18-kDa gene to ensure correct presentation to the host immune system. Expression of the 18-kDa::B+T epitope fusion protein was driven by either the hsp60 promoter, which is constitutively activated at a high level in M. bovis BCG, or the 18-kDa promoter, which is strongly induced in vivo. Mice were immunised intra-peritoneally with the recombinant BCG cultures and compared to a control group vaccinated with the commercial rabies vaccine Rai-SAD. Both of the expression vectors elicited a higher antibody titre than that of the rabies vaccine, with the highest response shown by M. bovis BCG (pUP203), expression controlled by the 18-kDa promoter. Immunisation with M. bovis BCG (pUP202), expression controlled by the hsp60 promoter, resulted in a continuously increasing antibody titre up to 60 days post immunisation. The mice antibodies were also capable of recognising the whole rabies virus and not only the synthetic peptide epitopes.
Collapse
Affiliation(s)
- F W da Cruz
- Centre of Biotechnology, University of Pelotas, P.O. Box 354, CEP: 96001, Pelotas, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Live recombinant bacteria represent an attractive means to induce both mucosal and systemic immune responses against heterologous antigens. Several models have now been developed and shown to be highly efficient following intranasal immunization. In this review, we describe the two main classes of live recombinant bacteria: generally recognized as safe bacteria and attenuated strains derived from pathogenic bacteria. Among the latter, we have differentiated the bacteria, which do not usually colonize the respiratory tract from those that are especially adapted to respiratory tissues. The strategies of expression of the heterologous antigens, the invasiveness and the immunogenicity of the recombinant bacteria are discussed.
Collapse
Affiliation(s)
- N Mielcarek
- INSERM U447, IBL, Institut Pasteur of Lille, 1 Rue du Pr. Calmette, 59019, Lille, France
| | | | | |
Collapse
|
24
|
Affiliation(s)
- N Ohara
- Nagasaki University School of Dentistry, Sakamoto 1-7-1, 852-8588, Nagasaki, Japan.
| | | |
Collapse
|
25
|
Mollenkopf H, Dietrich G, Kaufmann SH. Intracellular bacteria as targets and carriers for vaccination. Biol Chem 2001; 382:521-32. [PMID: 11405217 DOI: 10.1515/bc.2001.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review we discuss intracellular bacteria as targets and carriers for vaccines. For clarity and ease of comprehension, we focus on three microbes, Mycobacterium tuberculosis, Listeria monocytogenes and Salmonella, with an emphasis on tuberculosis, one of the leading causes of death from infectious disease. Novel vaccination strategies against these pathogens are currently being considered. One approach favors the use of live attenuated vaccines and vaccine carrier strains thereof, either for heterologous antigen presentation or DNA vaccine delivery. This strategy includes both the improvement of attenuated vaccine strains as well as the 'de novo' generation of attenuated variants of virulent pathogens. An alternative strategy relies on the application of subunit immunizations, either as nucleic acid vaccines or protein antigens of the pathogen. Finally, we present a short summary of the vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- H Mollenkopf
- Max-Planck-Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | | | |
Collapse
|
26
|
Miyaji EN, Mazzantini RP, Dias WO, Nascimento AL, Marcovistz R, Matos DS, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LC. Induction of neutralizing antibodies against diphtheria toxin by priming with recombinant Mycobacterium bovis BCG expressing CRM(197), a mutant diphtheria toxin. Infect Immun 2001; 69:869-74. [PMID: 11159980 PMCID: PMC97964 DOI: 10.1128/iai.69.2.869-874.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BCG, the attenuated strain of Mycobacterium bovis, has been widely used as a vaccine against tuberculosis and is thus an important candidate as a live carrier for multiple antigens. With the aim of developing a recombinant BCG (rBCG) vaccine against diphtheria, pertussis, and tetanus (DPT), we analyzed the potential of CRM(197), a mutated nontoxic derivative of diphtheria toxin, as the recombinant antigen for a BCG-based vaccine against diphtheria. Expression of CRM(197) in rBCG was achieved using Escherichia coli-mycobacterium shuttle vectors under the control of pBlaF*, an upregulated beta-lactamase promoter from Mycobacterium fortuitum. Immunization of mice with rBCG-CRM(197) elicited an anti-diphtheria toxoid antibody response, but the sera of immunized mice were not able to neutralize diphtheria toxin (DTx) activity. On the other hand, a subimmunizing dose of the conventional diphtheria-tetanus vaccine, administered in order to mimic an infection, showed that rBCG-CRM(197) was able to prime the induction of a humoral response within shorter periods. Interestingly, the antibodies produced showed neutralizing activity only when the vaccines had been given as a mixture in combination with rBCG expressing tetanus toxin fragment C (FC), suggesting an adjuvant effect of rBCG-FC on the immune response induced by rBCG-CRM(197). Isotype analysis of the anti-diphtheria toxoid antibodies induced by the combined vaccines, but not rBCG-CRM(197) alone, showed an immunoglobulin G1-dominant profile, as did the conventional vaccine. Our results show that rBCG expressing CRM(197) can elicit a neutralizing humoral response and encourage further studies on the development of a DPT vaccine with rBCG.
Collapse
Affiliation(s)
- E N Miyaji
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nascimento IP, Dias WO, Mazzantini RP, Miyaji EN, Gamberini M, Quintilio W, Gebara VC, Cardoso DF, Ho PL, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LC. Recombinant Mycobacterium bovis BCG expressing pertussis toxin subunit S1 induces protection against an intracerebral challenge with live Bordetella pertussis in mice. Infect Immun 2000; 68:4877-83. [PMID: 10948100 PMCID: PMC101688 DOI: 10.1128/iai.68.9.4877-4883.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent development of acellular pertussis vaccines has been a significant improvement in the conventional whole-cell diphtheria-pertussis-tetanus toxoid vaccines, but high production costs will limit its widespread use in developing countries. Since Mycobacterium bovis BCG vaccination against tuberculosis is used in most developing countries, a recombinant BCG-pertussis vaccine could be a more viable alternative. We have constructed recombinant BCG (rBCG) strains expressing the genetically detoxified S1 subunit of pertussis toxin 9K/129G (S1PT) in fusion with either the beta-lactamase signal sequence or the whole beta-lactamase protein, under control of the upregulated M. fortuitum beta-lactamase promoter, pBlaF*. Expression levels were higher in the fusion with the whole beta-lactamase protein, and both were localized to the mycobacterial cell wall. The expression vectors were relatively stable in vivo, since at two months 85% of the BCG recovered from the spleens of vaccinated mice maintained kanamycin resistance. Spleen cells from rBCG-S1PT-vaccinated mice showed elevated gamma interferon (IFN-gamma) and low interleukin-4 (IL-4) production, as well as increased proliferation, upon pertussis toxin (PT) stimulation, characterizing a strong antigen-specific Th1-dominant cellular response. The rBCG-S1PT strains induced a low humoral response against PT after 2 months. Mice immunized with rBCG-S1PT strains displayed high-level protection against an intracerebral challenge with live Bordetella pertussis, which correlated with the induction of a PT-specific cellular immune response, reinforcing the importance of cell-mediated immunity in the protection against B. pertussis infection. Our results suggest that rBCG-expressing pertussis antigens could constitute an effective, low-cost combined vaccine against tuberculosis and pertussis.
Collapse
Affiliation(s)
- I P Nascimento
- Centro de Biotecnologia, Instituto Butantan, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The last year in tuberculosis vaccine research has witnessed the initial flowering of the benefits promised by the tuberculosis genome sequencing product. Although the real benefits in terms of clinical treatments are yet to be realized, genomics is making its presence felt in the rapid identification and expression of proteins with vaccine potential from Mycobacterium tuberculosis, the definition of species-specific antigens for diagnostic use, and the construction of a variety of novel living vectors for vaccination. At the same time, the recent increase in work on animal models with more direct applicability to the situations likely to be encountered in human vaccine trials are providing the basic underpinnings needed for the assessment of these new vaccines.
Collapse
Affiliation(s)
- T M Doherty
- Department of TB Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|